[turbofan] Refactor the lowering of element/property accesses.

Split the monster methods in JSNativeContextSpecialization into smaller
ones, adding appropriate helpers. Improve the condition checking for
strings and numbers using CheckString/CheckNumber when applicable. Also
try to merge compatible PropertyAccessInfos, to avoid running into the
polymorphic case whenever possible.

Drive-by-fix: Don't try to resurrect dead nodes during LoadElimination.
With the improve code generation for monomorphic loads, we seem to
trigger the dead node resurrection.

R=epertoso@chromium.org
BUG=v8:4930,v8:5141

Review-Url: https://codereview.chromium.org/2191823002
Cr-Commit-Position: refs/heads/master@{#38127}
This commit is contained in:
bmeurer 2016-07-28 02:54:09 -07:00 committed by Commit bot
parent 1554e29dd5
commit 1bce27906d
7 changed files with 617 additions and 485 deletions

View File

@ -56,59 +56,51 @@ std::ostream& operator<<(std::ostream& os, AccessMode access_mode) {
return os;
}
ElementAccessInfo::ElementAccessInfo() {}
// static
PropertyAccessInfo PropertyAccessInfo::NotFound(Type* receiver_type,
MaybeHandle<JSObject> holder) {
return PropertyAccessInfo(holder, receiver_type);
}
// static
PropertyAccessInfo PropertyAccessInfo::DataConstant(
Type* receiver_type, Handle<Object> constant,
MaybeHandle<JSObject> holder) {
return PropertyAccessInfo(holder, constant, receiver_type);
}
// static
PropertyAccessInfo PropertyAccessInfo::DataField(
Type* receiver_type, FieldIndex field_index, Type* field_type,
MaybeHandle<JSObject> holder, MaybeHandle<Map> transition_map) {
return PropertyAccessInfo(holder, transition_map, field_index, field_type,
receiver_type);
}
ElementAccessInfo::ElementAccessInfo() : receiver_type_(Type::None()) {}
ElementAccessInfo::ElementAccessInfo(Type* receiver_type,
ElementAccessInfo::ElementAccessInfo(MapList const& receiver_maps,
ElementsKind elements_kind,
MaybeHandle<JSObject> holder)
: elements_kind_(elements_kind),
holder_(holder),
receiver_type_(receiver_type) {}
receiver_maps_(receiver_maps) {}
// static
PropertyAccessInfo PropertyAccessInfo::NotFound(MapList const& receiver_maps,
MaybeHandle<JSObject> holder) {
return PropertyAccessInfo(holder, receiver_maps);
}
// static
PropertyAccessInfo PropertyAccessInfo::DataConstant(
MapList const& receiver_maps, Handle<Object> constant,
MaybeHandle<JSObject> holder) {
return PropertyAccessInfo(holder, constant, receiver_maps);
}
// static
PropertyAccessInfo PropertyAccessInfo::DataField(
MapList const& receiver_maps, FieldIndex field_index, Type* field_type,
MaybeHandle<JSObject> holder, MaybeHandle<Map> transition_map) {
return PropertyAccessInfo(holder, transition_map, field_index, field_type,
receiver_maps);
}
PropertyAccessInfo::PropertyAccessInfo()
: kind_(kInvalid), receiver_type_(Type::None()), field_type_(Type::Any()) {}
: kind_(kInvalid), field_type_(Type::Any()) {}
PropertyAccessInfo::PropertyAccessInfo(MaybeHandle<JSObject> holder,
Type* receiver_type)
MapList const& receiver_maps)
: kind_(kNotFound),
receiver_type_(receiver_type),
receiver_maps_(receiver_maps),
holder_(holder),
field_type_(Type::Any()) {}
PropertyAccessInfo::PropertyAccessInfo(MaybeHandle<JSObject> holder,
Handle<Object> constant,
Type* receiver_type)
MapList const& receiver_maps)
: kind_(kDataConstant),
receiver_type_(receiver_type),
receiver_maps_(receiver_maps),
constant_(constant),
holder_(holder),
field_type_(Type::Any()) {}
@ -116,14 +108,55 @@ PropertyAccessInfo::PropertyAccessInfo(MaybeHandle<JSObject> holder,
PropertyAccessInfo::PropertyAccessInfo(MaybeHandle<JSObject> holder,
MaybeHandle<Map> transition_map,
FieldIndex field_index, Type* field_type,
Type* receiver_type)
MapList const& receiver_maps)
: kind_(kDataField),
receiver_type_(receiver_type),
receiver_maps_(receiver_maps),
transition_map_(transition_map),
holder_(holder),
field_index_(field_index),
field_type_(field_type) {}
bool PropertyAccessInfo::Merge(PropertyAccessInfo const* that) {
if (this->kind_ != that->kind_) return false;
if (this->holder_.address() != that->holder_.address()) return false;
switch (this->kind_) {
case kInvalid:
break;
case kNotFound:
return true;
case kDataField: {
// Check if we actually access the same field.
if (this->transition_map_.address() == that->transition_map_.address() &&
this->field_index_ == that->field_index_ &&
this->field_type_->Is(that->field_type_) &&
that->field_type_->Is(this->field_type_)) {
this->receiver_maps_.insert(this->receiver_maps_.end(),
that->receiver_maps_.begin(),
that->receiver_maps_.end());
return true;
}
return false;
}
case kDataConstant: {
// Check if we actually access the same constant.
if (this->constant_.address() == that->constant_.address()) {
this->receiver_maps_.insert(this->receiver_maps_.end(),
that->receiver_maps_.begin(),
that->receiver_maps_.end());
return true;
}
return false;
}
}
UNREACHABLE();
return false;
}
AccessInfoFactory::AccessInfoFactory(CompilationDependencies* dependencies,
Handle<Context> native_context, Zone* zone)
: dependencies_(dependencies),
@ -161,8 +194,7 @@ bool AccessInfoFactory::ComputeElementAccessInfo(
}
}
*access_info =
ElementAccessInfo(Type::Class(map, zone()), elements_kind, holder);
*access_info = ElementAccessInfo(MapList{map}, elements_kind, holder);
return true;
}
@ -258,7 +290,7 @@ bool AccessInfoFactory::ComputePropertyAccessInfo(
}
if (details.type() == DATA_CONSTANT) {
*access_info = PropertyAccessInfo::DataConstant(
Type::Class(receiver_map, zone()),
MapList{receiver_map},
handle(descriptors->GetValue(number), isolate()), holder);
return true;
} else if (details.type() == DATA) {
@ -294,7 +326,7 @@ bool AccessInfoFactory::ComputePropertyAccessInfo(
DCHECK(field_type->Is(Type::TaggedPointer()));
}
*access_info = PropertyAccessInfo::DataField(
Type::Class(receiver_map, zone()), field_index, field_type, holder);
MapList{receiver_map}, field_index, field_type, holder);
return true;
} else {
// TODO(bmeurer): Add support for accessors.
@ -331,8 +363,8 @@ bool AccessInfoFactory::ComputePropertyAccessInfo(
// The property was not found, return undefined or throw depending
// on the language mode of the load operation.
// Implemented according to ES6 section 9.1.8 [[Get]] (P, Receiver)
*access_info = PropertyAccessInfo::NotFound(
Type::Class(receiver_map, zone()), holder);
*access_info =
PropertyAccessInfo::NotFound(MapList{receiver_map}, holder);
return true;
} else {
return false;
@ -350,7 +382,6 @@ bool AccessInfoFactory::ComputePropertyAccessInfo(
return false;
}
bool AccessInfoFactory::ComputePropertyAccessInfos(
MapHandleList const& maps, Handle<Name> name, AccessMode access_mode,
ZoneVector<PropertyAccessInfo>* access_infos) {
@ -360,7 +391,15 @@ bool AccessInfoFactory::ComputePropertyAccessInfos(
if (!ComputePropertyAccessInfo(map, name, access_mode, &access_info)) {
return false;
}
access_infos->push_back(access_info);
// Try to merge the {access_info} with an existing one.
bool merged = false;
for (PropertyAccessInfo& other_info : *access_infos) {
if (other_info.Merge(&access_info)) {
merged = true;
break;
}
}
if (!merged) access_infos->push_back(access_info);
}
}
return true;
@ -394,8 +433,8 @@ bool AccessInfoFactory::LookupSpecialFieldAccessor(
field_type = type_cache_.kJSArrayLengthType;
}
}
*access_info = PropertyAccessInfo::DataField(Type::Class(map, zone()),
field_index, field_type);
*access_info =
PropertyAccessInfo::DataField(MapList{map}, field_index, field_type);
return true;
}
return false;
@ -445,9 +484,8 @@ bool AccessInfoFactory::LookupTransition(Handle<Map> map, Handle<Name> name,
DCHECK(field_type->Is(Type::TaggedPointer()));
}
dependencies()->AssumeMapNotDeprecated(transition_map);
*access_info =
PropertyAccessInfo::DataField(Type::Class(map, zone()), field_index,
field_type, holder, transition_map);
*access_info = PropertyAccessInfo::DataField(
MapList{map}, field_index, field_type, holder, transition_map);
return true;
}
return false;

View File

@ -19,7 +19,6 @@ class CompilationDependencies;
class Factory;
class TypeCache;
namespace compiler {
// Whether we are loading a property or storing to a property.
@ -27,50 +26,51 @@ enum class AccessMode { kLoad, kStore };
std::ostream& operator<<(std::ostream&, AccessMode);
typedef std::vector<Handle<Map>> MapList;
// Mapping of transition source to transition target.
typedef std::vector<std::pair<Handle<Map>, Handle<Map>>> MapTransitionList;
// This class encapsulates all information required to access a certain element.
class ElementAccessInfo final {
public:
ElementAccessInfo();
ElementAccessInfo(Type* receiver_type, ElementsKind elements_kind,
ElementAccessInfo(MapList const& receiver_maps, ElementsKind elements_kind,
MaybeHandle<JSObject> holder);
MaybeHandle<JSObject> holder() const { return holder_; }
ElementsKind elements_kind() const { return elements_kind_; }
Type* receiver_type() const { return receiver_type_; }
MapList const& receiver_maps() const { return receiver_maps_; }
MapTransitionList& transitions() { return transitions_; }
MapTransitionList const& transitions() const { return transitions_; }
private:
ElementsKind elements_kind_;
MaybeHandle<JSObject> holder_;
Type* receiver_type_;
MapList receiver_maps_;
MapTransitionList transitions_;
};
// This class encapsulates all information required to access a certain
// object property, either on the object itself or on the prototype chain.
class PropertyAccessInfo final {
public:
enum Kind { kInvalid, kNotFound, kDataConstant, kDataField };
static PropertyAccessInfo NotFound(Type* receiver_type,
static PropertyAccessInfo NotFound(MapList const& receiver_maps,
MaybeHandle<JSObject> holder);
static PropertyAccessInfo DataConstant(Type* receiver_type,
static PropertyAccessInfo DataConstant(MapList const& receiver_maps,
Handle<Object> constant,
MaybeHandle<JSObject> holder);
static PropertyAccessInfo DataField(
Type* receiver_type, FieldIndex field_index, Type* field_type,
MapList const& receiver_maps, FieldIndex field_index, Type* field_type,
MaybeHandle<JSObject> holder = MaybeHandle<JSObject>(),
MaybeHandle<Map> transition_map = MaybeHandle<Map>());
PropertyAccessInfo();
bool Merge(PropertyAccessInfo const* that) WARN_UNUSED_RESULT;
bool IsNotFound() const { return kind() == kNotFound; }
bool IsDataConstant() const { return kind() == kDataConstant; }
bool IsDataField() const { return kind() == kDataField; }
@ -83,18 +83,19 @@ class PropertyAccessInfo final {
Handle<Object> constant() const { return constant_; }
FieldIndex field_index() const { return field_index_; }
Type* field_type() const { return field_type_; }
Type* receiver_type() const { return receiver_type_; }
MapList const& receiver_maps() const { return receiver_maps_; }
private:
PropertyAccessInfo(MaybeHandle<JSObject> holder, Type* receiver_type);
PropertyAccessInfo(MaybeHandle<JSObject> holder,
MapList const& receiver_maps);
PropertyAccessInfo(MaybeHandle<JSObject> holder, Handle<Object> constant,
Type* receiver_type);
MapList const& receiver_maps);
PropertyAccessInfo(MaybeHandle<JSObject> holder,
MaybeHandle<Map> transition_map, FieldIndex field_index,
Type* field_type, Type* receiver_type);
Type* field_type, MapList const& receiver_maps);
Kind kind_;
Type* receiver_type_;
MapList receiver_maps_;
Handle<Object> constant_;
MaybeHandle<Map> transition_map_;
MaybeHandle<JSObject> holder_;

View File

@ -22,6 +22,38 @@ namespace v8 {
namespace internal {
namespace compiler {
namespace {
bool HasNumberMaps(MapList const& maps) {
for (auto map : maps) {
if (map->instance_type() == HEAP_NUMBER_TYPE) return true;
}
return false;
}
bool HasOnlyJSArrayMaps(MapList const& maps) {
for (auto map : maps) {
if (!map->IsJSArrayMap()) return false;
}
return true;
}
bool HasOnlyNumberMaps(MapList const& maps) {
for (auto map : maps) {
if (map->instance_type() != HEAP_NUMBER_TYPE) return false;
}
return true;
}
bool HasOnlyStringMaps(MapList const& maps) {
for (auto map : maps) {
if (!map->IsStringMap()) return false;
}
return true;
}
} // namespace
JSNativeContextSpecialization::JSNativeContextSpecialization(
Editor* editor, JSGraph* jsgraph, Flags flags,
MaybeHandle<Context> native_context, CompilationDependencies* dependencies,
@ -100,12 +132,6 @@ Reduction JSNativeContextSpecialization::ReduceNamedAccess(
// Nothing to do if we have no non-deprecated maps.
if (access_infos.empty()) return NoChange();
// The final states for every polymorphic branch. We join them with
// Merge++Phi+EffectPhi at the bottom.
ZoneVector<Node*> values(zone());
ZoneVector<Node*> effects(zone());
ZoneVector<Node*> controls(zone());
// Ensure that {index} matches the specified {name} (if {index} is given).
if (index != nullptr) {
Node* check = graph()->NewNode(simplified()->ReferenceEqual(Type::Name()),
@ -113,285 +139,168 @@ Reduction JSNativeContextSpecialization::ReduceNamedAccess(
effect = graph()->NewNode(simplified()->CheckIf(), check, effect, control);
}
// Check if {receiver} may be a number.
bool receiverissmi_possible = false;
for (PropertyAccessInfo const& access_info : access_infos) {
if (access_info.receiver_type()->Is(Type::Number())) {
receiverissmi_possible = true;
break;
}
}
// Ensure that {receiver} is a heap object.
Node* receiverissmi_control = nullptr;
Node* receiverissmi_effect = effect;
if (receiverissmi_possible) {
Node* check = graph()->NewNode(simplified()->ObjectIsSmi(), receiver);
Node* branch = graph()->NewNode(common()->Branch(), check, control);
control = graph()->NewNode(common()->IfFalse(), branch);
receiverissmi_control = graph()->NewNode(common()->IfTrue(), branch);
receiverissmi_effect = effect;
} else if (access_infos.size() != 1 ||
!access_infos[0].receiver_type()->Is(Type::String())) {
// TODO(bmeurer): We omit the Smi check here if we are going to lower to
// the CheckString below; make this less horrible and adhoc.
receiver = effect = graph()->NewNode(simplified()->CheckTaggedPointer(),
receiver, effect, control);
}
// Load the {receiver} map. The resulting effect is the dominating effect for
// all (polymorphic) branches.
Node* receiver_map = effect =
graph()->NewNode(simplified()->LoadField(AccessBuilder::ForMap()),
receiver, effect, control);
// Generate code for the various different property access patterns.
Node* fallthrough_control = control;
for (size_t j = 0; j < access_infos.size(); ++j) {
PropertyAccessInfo const& access_info = access_infos[j];
Node* this_value = value;
Node* this_receiver = receiver;
Node* this_effect = effect;
Node* this_control;
// Perform map check on {receiver}.
Type* receiver_type = access_info.receiver_type();
if (receiver_type->Is(Type::String())) {
if (j == access_infos.size() - 1) {
this_receiver = this_effect =
graph()->NewNode(simplified()->CheckString(), receiver, this_effect,
fallthrough_control);
this_control = fallthrough_control;
fallthrough_control = nullptr;
} else {
Node* check =
graph()->NewNode(simplified()->ObjectIsString(), receiver);
Node* branch =
graph()->NewNode(common()->Branch(), check, fallthrough_control);
fallthrough_control = graph()->NewNode(common()->IfFalse(), branch);
this_control = graph()->NewNode(common()->IfTrue(), branch);
}
} else {
// Emit a (sequence of) map checks for other {receiver}s.
ZoneVector<Node*> this_controls(zone());
ZoneVector<Node*> this_effects(zone());
int num_classes = access_info.receiver_type()->NumClasses();
for (auto i = access_info.receiver_type()->Classes(); !i.Done();
i.Advance()) {
DCHECK_LT(0, num_classes);
Handle<Map> map = i.Current();
Node* check =
graph()->NewNode(simplified()->ReferenceEqual(Type::Internal()),
receiver_map, jsgraph()->Constant(map));
if (--num_classes == 0 && j == access_infos.size() - 1) {
check = graph()->NewNode(simplified()->CheckIf(), check, this_effect,
fallthrough_control);
this_controls.push_back(fallthrough_control);
this_effects.push_back(check);
fallthrough_control = nullptr;
} else {
Node* branch =
graph()->NewNode(common()->Branch(), check, fallthrough_control);
fallthrough_control = graph()->NewNode(common()->IfFalse(), branch);
this_controls.push_back(graph()->NewNode(common()->IfTrue(), branch));
this_effects.push_back(this_effect);
}
}
// The Number case requires special treatment to also deal with Smis.
if (receiver_type->Is(Type::Number())) {
// Join this check with the "receiver is smi" check above.
DCHECK_NOT_NULL(receiverissmi_effect);
DCHECK_NOT_NULL(receiverissmi_control);
this_effects.push_back(receiverissmi_effect);
this_controls.push_back(receiverissmi_control);
receiverissmi_effect = receiverissmi_control = nullptr;
}
// Create dominating Merge+EffectPhi for this {receiver} type.
int const this_control_count = static_cast<int>(this_controls.size());
this_control =
(this_control_count == 1)
? this_controls.front()
: graph()->NewNode(common()->Merge(this_control_count),
this_control_count, &this_controls.front());
this_effects.push_back(this_control);
int const this_effect_count = static_cast<int>(this_effects.size());
this_effect =
(this_control_count == 1)
? this_effects.front()
: graph()->NewNode(common()->EffectPhi(this_control_count),
this_effect_count, &this_effects.front());
}
// Determine actual holder and perform prototype chain checks.
Handle<JSObject> holder;
if (access_info.holder().ToHandle(&holder)) {
AssumePrototypesStable(receiver_type, native_context, holder);
}
// Check for the monomorphic cases.
if (access_infos.size() == 1 &&
HasOnlyStringMaps(access_infos[0].receiver_maps())) {
// Monormorphic string access (ignoring the fact that there are multiple
// String maps).
receiver = effect = graph()->NewNode(simplified()->CheckString(), receiver,
effect, control);
// Generate the actual property access.
if (access_info.IsNotFound()) {
DCHECK_EQ(AccessMode::kLoad, access_mode);
this_value = jsgraph()->UndefinedConstant();
} else if (access_info.IsDataConstant()) {
this_value = jsgraph()->Constant(access_info.constant());
if (access_mode == AccessMode::kStore) {
Node* check = graph()->NewNode(
simplified()->ReferenceEqual(Type::Tagged()), value, this_value);
this_effect = graph()->NewNode(simplified()->CheckIf(), check,
this_effect, this_control);
}
} else {
DCHECK(access_info.IsDataField());
FieldIndex const field_index = access_info.field_index();
Type* const field_type = access_info.field_type();
if (access_mode == AccessMode::kLoad &&
access_info.holder().ToHandle(&holder)) {
this_receiver = jsgraph()->Constant(holder);
}
Node* this_storage = this_receiver;
if (!field_index.is_inobject()) {
this_storage = this_effect = graph()->NewNode(
simplified()->LoadField(AccessBuilder::ForJSObjectProperties()),
this_storage, this_effect, this_control);
}
FieldAccess field_access = {
kTaggedBase, field_index.offset(), name,
field_type, MachineType::AnyTagged(), kFullWriteBarrier};
if (access_mode == AccessMode::kLoad) {
if (field_type->Is(Type::UntaggedFloat64())) {
if (!field_index.is_inobject() || field_index.is_hidden_field() ||
!FLAG_unbox_double_fields) {
this_storage = this_effect =
graph()->NewNode(simplified()->LoadField(field_access),
this_storage, this_effect, this_control);
field_access.offset = HeapNumber::kValueOffset;
field_access.name = MaybeHandle<Name>();
}
field_access.machine_type = MachineType::Float64();
}
this_value = this_effect =
graph()->NewNode(simplified()->LoadField(field_access),
this_storage, this_effect, this_control);
} else {
DCHECK_EQ(AccessMode::kStore, access_mode);
if (field_type->Is(Type::UntaggedFloat64())) {
this_value = this_effect =
graph()->NewNode(simplified()->CheckNumber(), this_value,
this_effect, this_control);
ValueEffectControl continuation =
BuildPropertyAccess(receiver, value, effect, control, name,
native_context, access_infos[0], access_mode);
value = continuation.value();
effect = continuation.effect();
control = continuation.control();
} else if (access_infos.size() == 1 &&
HasOnlyNumberMaps(access_infos[0].receiver_maps())) {
// Monomorphic number access (we also deal with Smis here).
receiver = effect = graph()->NewNode(simplified()->CheckNumber(), receiver,
effect, control);
if (!field_index.is_inobject() || field_index.is_hidden_field() ||
!FLAG_unbox_double_fields) {
if (access_info.HasTransitionMap()) {
// Allocate a MutableHeapNumber for the new property.
this_effect = graph()->NewNode(
common()->BeginRegion(RegionObservability::kNotObservable),
this_effect);
Node* this_box = this_effect =
graph()->NewNode(simplified()->Allocate(NOT_TENURED),
jsgraph()->Constant(HeapNumber::kSize),
this_effect, this_control);
this_effect = graph()->NewNode(
simplified()->StoreField(AccessBuilder::ForMap()), this_box,
jsgraph()->HeapConstant(factory()->mutable_heap_number_map()),
this_effect, this_control);
this_effect = graph()->NewNode(
simplified()->StoreField(AccessBuilder::ForHeapNumberValue()),
this_box, this_value, this_effect, this_control);
this_value = this_effect = graph()->NewNode(
common()->FinishRegion(), this_box, this_effect);
// Generate the actual property access.
ValueEffectControl continuation =
BuildPropertyAccess(receiver, value, effect, control, name,
native_context, access_infos[0], access_mode);
value = continuation.value();
effect = continuation.effect();
control = continuation.control();
} else {
// The final states for every polymorphic branch. We join them with
// Merge+Phi+EffectPhi at the bottom.
ZoneVector<Node*> values(zone());
ZoneVector<Node*> effects(zone());
ZoneVector<Node*> controls(zone());
field_access.type = Type::TaggedPointer();
} else {
// We just store directly to the MutableHeapNumber.
this_storage = this_effect =
graph()->NewNode(simplified()->LoadField(field_access),
this_storage, this_effect, this_control);
field_access.offset = HeapNumber::kValueOffset;
field_access.name = MaybeHandle<Name>();
field_access.machine_type = MachineType::Float64();
}
} else {
// Unboxed double field, we store directly to the field.
field_access.machine_type = MachineType::Float64();
}
} else if (field_type->Is(Type::TaggedSigned())) {
this_value = this_effect =
graph()->NewNode(simplified()->CheckTaggedSigned(), this_value,
this_effect, this_control);
} else if (field_type->Is(Type::TaggedPointer())) {
this_value = this_effect =
graph()->NewNode(simplified()->CheckTaggedPointer(), this_value,
this_effect, this_control);
if (field_type->NumClasses() == 1) {
// Emit a map check for the value.
Node* this_value_map = this_effect = graph()->NewNode(
simplified()->LoadField(AccessBuilder::ForMap()), this_value,
this_effect, this_control);
Node* check = graph()->NewNode(
simplified()->ReferenceEqual(Type::Internal()), this_value_map,
jsgraph()->Constant(field_type->Classes().Current()));
this_effect = graph()->NewNode(simplified()->CheckIf(), check,
this_effect, this_control);
} else {
DCHECK_EQ(0, field_type->NumClasses());
}
} else {
DCHECK(field_type->Is(Type::Tagged()));
}
Handle<Map> transition_map;
if (access_info.transition_map().ToHandle(&transition_map)) {
this_effect = graph()->NewNode(
common()->BeginRegion(RegionObservability::kObservable),
this_effect);
this_effect = graph()->NewNode(
simplified()->StoreField(AccessBuilder::ForMap()), this_receiver,
jsgraph()->Constant(transition_map), this_effect, this_control);
}
this_effect = graph()->NewNode(simplified()->StoreField(field_access),
this_storage, this_value, this_effect,
this_control);
if (access_info.HasTransitionMap()) {
this_effect =
graph()->NewNode(common()->FinishRegion(),
jsgraph()->UndefinedConstant(), this_effect);
}
// Check if {receiver} may be a number.
bool receiverissmi_possible = false;
for (PropertyAccessInfo const& access_info : access_infos) {
if (HasNumberMaps(access_info.receiver_maps())) {
receiverissmi_possible = true;
break;
}
}
// Remember the final state for this property access.
values.push_back(this_value);
effects.push_back(this_effect);
controls.push_back(this_control);
}
// Ensure that {receiver} is a heap object.
Node* receiverissmi_control = nullptr;
Node* receiverissmi_effect = effect;
if (receiverissmi_possible) {
Node* check = graph()->NewNode(simplified()->ObjectIsSmi(), receiver);
Node* branch = graph()->NewNode(common()->Branch(), check, control);
control = graph()->NewNode(common()->IfFalse(), branch);
receiverissmi_control = graph()->NewNode(common()->IfTrue(), branch);
receiverissmi_effect = effect;
} else {
receiver = effect = graph()->NewNode(simplified()->CheckTaggedPointer(),
receiver, effect, control);
}
DCHECK_NULL(fallthrough_control);
// Load the {receiver} map. The resulting effect is the dominating effect
// for all (polymorphic) branches.
Node* receiver_map = effect =
graph()->NewNode(simplified()->LoadField(AccessBuilder::ForMap()),
receiver, effect, control);
// Generate the final merge point for all (polymorphic) branches.
int const control_count = static_cast<int>(controls.size());
if (control_count == 0) {
value = effect = control = jsgraph()->Dead();
} else if (control_count == 1) {
value = values.front();
effect = effects.front();
control = controls.front();
} else {
control = graph()->NewNode(common()->Merge(control_count), control_count,
&controls.front());
values.push_back(control);
value = graph()->NewNode(
common()->Phi(MachineRepresentation::kTagged, control_count),
control_count + 1, &values.front());
effects.push_back(control);
effect = graph()->NewNode(common()->EffectPhi(control_count),
control_count + 1, &effects.front());
// Generate code for the various different property access patterns.
Node* fallthrough_control = control;
for (size_t j = 0; j < access_infos.size(); ++j) {
PropertyAccessInfo const& access_info = access_infos[j];
Node* this_value = value;
Node* this_receiver = receiver;
Node* this_effect = effect;
Node* this_control;
// Perform map check on {receiver}.
MapList const& receiver_maps = access_info.receiver_maps();
{
// Emit a (sequence of) map checks for other {receiver}s.
ZoneVector<Node*> this_controls(zone());
ZoneVector<Node*> this_effects(zone());
size_t num_classes = receiver_maps.size();
for (auto map : receiver_maps) {
DCHECK_LT(0u, num_classes);
Node* check =
graph()->NewNode(simplified()->ReferenceEqual(Type::Internal()),
receiver_map, jsgraph()->Constant(map));
if (--num_classes == 0 && j == access_infos.size() - 1) {
check = graph()->NewNode(simplified()->CheckIf(), check,
this_effect, fallthrough_control);
this_controls.push_back(fallthrough_control);
this_effects.push_back(check);
fallthrough_control = nullptr;
} else {
Node* branch = graph()->NewNode(common()->Branch(), check,
fallthrough_control);
fallthrough_control = graph()->NewNode(common()->IfFalse(), branch);
this_controls.push_back(
graph()->NewNode(common()->IfTrue(), branch));
this_effects.push_back(this_effect);
}
}
// The Number case requires special treatment to also deal with Smis.
if (HasNumberMaps(receiver_maps)) {
// Join this check with the "receiver is smi" check above.
DCHECK_NOT_NULL(receiverissmi_effect);
DCHECK_NOT_NULL(receiverissmi_control);
this_effects.push_back(receiverissmi_effect);
this_controls.push_back(receiverissmi_control);
receiverissmi_effect = receiverissmi_control = nullptr;
}
// Create dominating Merge+EffectPhi for this {receiver} type.
int const this_control_count = static_cast<int>(this_controls.size());
this_control =
(this_control_count == 1)
? this_controls.front()
: graph()->NewNode(common()->Merge(this_control_count),
this_control_count, &this_controls.front());
this_effects.push_back(this_control);
int const this_effect_count = static_cast<int>(this_effects.size());
this_effect =
(this_control_count == 1)
? this_effects.front()
: graph()->NewNode(common()->EffectPhi(this_control_count),
this_effect_count, &this_effects.front());
}
// Generate the actual property access.
ValueEffectControl continuation = BuildPropertyAccess(
this_receiver, this_value, this_effect, this_control, name,
native_context, access_info, access_mode);
values.push_back(continuation.value());
effects.push_back(continuation.effect());
controls.push_back(continuation.control());
}
DCHECK_NULL(fallthrough_control);
// Generate the final merge point for all (polymorphic) branches.
int const control_count = static_cast<int>(controls.size());
if (control_count == 0) {
value = effect = control = jsgraph()->Dead();
} else if (control_count == 1) {
value = values.front();
effect = effects.front();
control = controls.front();
} else {
control = graph()->NewNode(common()->Merge(control_count), control_count,
&controls.front());
values.push_back(control);
value = graph()->NewNode(
common()->Phi(MachineRepresentation::kTagged, control_count),
control_count + 1, &values.front());
effects.push_back(control);
effect = graph()->NewNode(common()->EffectPhi(control_count),
control_count + 1, &effects.front());
}
}
ReplaceWithValue(node, value, effect, control);
return Replace(value);
}
Reduction JSNativeContextSpecialization::ReduceNamedAccess(
Node* node, Node* value, FeedbackNexus const& nexus, Handle<Name> name,
AccessMode access_mode, LanguageMode language_mode) {
@ -560,16 +469,13 @@ Reduction JSNativeContextSpecialization::ReduceElementAccess(
receiver, this_effect, this_control);
// Perform map check on {receiver}.
Type* receiver_type = access_info.receiver_type();
bool receiver_is_jsarray = true;
MapList const& receiver_maps = access_info.receiver_maps();
{
ZoneVector<Node*> this_controls(zone());
ZoneVector<Node*> this_effects(zone());
int num_classes = access_info.receiver_type()->NumClasses();
for (auto i = access_info.receiver_type()->Classes(); !i.Done();
i.Advance()) {
DCHECK_LT(0, num_classes);
Handle<Map> map = i.Current();
size_t num_classes = receiver_maps.size();
for (Handle<Map> map : receiver_maps) {
DCHECK_LT(0u, num_classes);
Node* check =
graph()->NewNode(simplified()->ReferenceEqual(Type::Any()),
receiver_map, jsgraph()->Constant(map));
@ -591,7 +497,6 @@ Reduction JSNativeContextSpecialization::ReduceElementAccess(
this_effects.push_back(effect);
fallthrough_control = graph()->NewNode(common()->IfFalse(), branch);
}
if (!map->IsJSArrayMap()) receiver_is_jsarray = false;
}
// Create single chokepoint for the control.
@ -623,141 +528,16 @@ Reduction JSNativeContextSpecialization::ReduceElementAccess(
// not compatible with (monomorphic) keyed stores.
Handle<JSObject> holder;
if (access_info.holder().ToHandle(&holder)) {
AssumePrototypesStable(receiver_type, native_context, holder);
AssumePrototypesStable(receiver_maps, native_context, holder);
}
// TODO(bmeurer): We currently specialize based on elements kind. We should
// also be able to properly support strings and other JSObjects here.
ElementsKind elements_kind = access_info.elements_kind();
// Load the elements for the {receiver}.
Node* this_elements = this_effect = graph()->NewNode(
simplified()->LoadField(AccessBuilder::ForJSObjectElements()),
this_receiver, this_effect, this_control);
// Don't try to store to a copy-on-write backing store.
if (access_mode == AccessMode::kStore &&
IsFastSmiOrObjectElementsKind(elements_kind)) {
Node* this_elements_map = this_effect =
graph()->NewNode(simplified()->LoadField(AccessBuilder::ForMap()),
this_elements, this_effect, this_control);
Node* check = graph()->NewNode(
simplified()->ReferenceEqual(Type::Any()), this_elements_map,
jsgraph()->HeapConstant(factory()->fixed_array_map()));
this_effect = graph()->NewNode(simplified()->CheckIf(), check,
this_effect, this_control);
}
// Load the length of the {receiver}.
Node* this_length = this_effect =
receiver_is_jsarray
? graph()->NewNode(
simplified()->LoadField(
AccessBuilder::ForJSArrayLength(elements_kind)),
this_receiver, this_effect, this_control)
: graph()->NewNode(
simplified()->LoadField(AccessBuilder::ForFixedArrayLength()),
this_elements, this_effect, this_control);
// Check that the {index} is in the valid range for the {receiver}.
this_index = this_effect =
graph()->NewNode(simplified()->CheckBounds(), this_index, this_length,
this_effect, this_control);
// Compute the element access.
Type* element_type = Type::Any();
MachineType element_machine_type = MachineType::AnyTagged();
if (IsFastDoubleElementsKind(elements_kind)) {
element_type = Type::Number();
element_machine_type = MachineType::Float64();
} else if (IsFastSmiElementsKind(elements_kind)) {
element_type = type_cache_.kSmi;
}
ElementAccess element_access = {kTaggedBase, FixedArray::kHeaderSize,
element_type, element_machine_type,
kFullWriteBarrier};
// Access the actual element.
// TODO(bmeurer): Refactor this into separate methods or even a separate
// class that deals with the elements access.
if (access_mode == AccessMode::kLoad) {
// Compute the real element access type, which includes the hole in case
// of holey backing stores.
if (elements_kind == FAST_HOLEY_ELEMENTS ||
elements_kind == FAST_HOLEY_SMI_ELEMENTS) {
element_access.type = Type::Union(
element_type,
Type::Constant(factory()->the_hole_value(), graph()->zone()),
graph()->zone());
}
// Perform the actual backing store access.
this_value = this_effect = graph()->NewNode(
simplified()->LoadElement(element_access), this_elements, this_index,
this_effect, this_control);
// Handle loading from holey backing stores correctly, by either mapping
// the hole to undefined if possible, or deoptimizing otherwise.
if (elements_kind == FAST_HOLEY_ELEMENTS ||
elements_kind == FAST_HOLEY_SMI_ELEMENTS) {
// Perform the hole check on the result.
CheckTaggedHoleMode mode = CheckTaggedHoleMode::kNeverReturnHole;
// Check if we are allowed to turn the hole into undefined.
Type* initial_holey_array_type = Type::Class(
handle(isolate()->get_initial_js_array_map(elements_kind)),
graph()->zone());
if (receiver_type->NowIs(initial_holey_array_type) &&
isolate()->IsFastArrayConstructorPrototypeChainIntact()) {
// Add a code dependency on the array protector cell.
AssumePrototypesStable(receiver_type, native_context,
isolate()->initial_object_prototype());
dependencies()->AssumePropertyCell(factory()->array_protector());
// Turn the hole into undefined.
mode = CheckTaggedHoleMode::kConvertHoleToUndefined;
}
this_value = this_effect =
graph()->NewNode(simplified()->CheckTaggedHole(mode), this_value,
this_effect, this_control);
} else if (elements_kind == FAST_HOLEY_DOUBLE_ELEMENTS) {
// Perform the hole check on the result.
CheckFloat64HoleMode mode = CheckFloat64HoleMode::kNeverReturnHole;
// Check if we are allowed to return the hole directly.
Type* initial_holey_array_type = Type::Class(
handle(isolate()->get_initial_js_array_map(elements_kind)),
graph()->zone());
if (receiver_type->NowIs(initial_holey_array_type) &&
isolate()->IsFastArrayConstructorPrototypeChainIntact()) {
// Add a code dependency on the array protector cell.
AssumePrototypesStable(receiver_type, native_context,
isolate()->initial_object_prototype());
dependencies()->AssumePropertyCell(factory()->array_protector());
// Return the signaling NaN hole directly if all uses are truncating.
mode = CheckFloat64HoleMode::kAllowReturnHole;
}
this_value = this_effect =
graph()->NewNode(simplified()->CheckFloat64Hole(mode), this_value,
this_effect, this_control);
}
} else {
DCHECK_EQ(AccessMode::kStore, access_mode);
if (IsFastSmiElementsKind(elements_kind)) {
this_value = this_effect =
graph()->NewNode(simplified()->CheckTaggedSigned(), this_value,
this_effect, this_control);
} else if (IsFastDoubleElementsKind(elements_kind)) {
this_value = this_effect = graph()->NewNode(
simplified()->CheckNumber(), this_value, this_effect, this_control);
// Make sure we do not store signalling NaNs into double arrays.
this_value =
graph()->NewNode(simplified()->NumberSilenceNaN(), this_value);
}
this_effect = graph()->NewNode(simplified()->StoreElement(element_access),
this_elements, this_index, this_value,
this_effect, this_control);
}
// Remember the final state for this element access.
values.push_back(this_value);
effects.push_back(this_effect);
controls.push_back(this_control);
ValueEffectControl continuation = BuildElementAccess(
this_receiver, this_index, this_value, this_effect, this_control,
native_context, access_info, access_mode);
values.push_back(continuation.value());
effects.push_back(continuation.effect());
controls.push_back(continuation.control());
}
DCHECK_NULL(fallthrough_control);
@ -904,13 +684,283 @@ Reduction JSNativeContextSpecialization::ReduceJSStoreProperty(Node* node) {
p.language_mode(), store_mode);
}
JSNativeContextSpecialization::ValueEffectControl
JSNativeContextSpecialization::BuildPropertyAccess(
Node* receiver, Node* value, Node* effect, Node* control, Handle<Name> name,
Handle<Context> native_context, PropertyAccessInfo const& access_info,
AccessMode access_mode) {
// Determine actual holder and perform prototype chain checks.
Handle<JSObject> holder;
if (access_info.holder().ToHandle(&holder)) {
AssumePrototypesStable(access_info.receiver_maps(), native_context, holder);
}
// Generate the actual property access.
if (access_info.IsNotFound()) {
DCHECK_EQ(AccessMode::kLoad, access_mode);
value = jsgraph()->UndefinedConstant();
} else if (access_info.IsDataConstant()) {
value = jsgraph()->Constant(access_info.constant());
if (access_mode == AccessMode::kStore) {
Node* check = graph()->NewNode(
simplified()->ReferenceEqual(Type::Tagged()), value, value);
effect =
graph()->NewNode(simplified()->CheckIf(), check, effect, control);
}
} else {
DCHECK(access_info.IsDataField());
FieldIndex const field_index = access_info.field_index();
Type* const field_type = access_info.field_type();
if (access_mode == AccessMode::kLoad &&
access_info.holder().ToHandle(&holder)) {
receiver = jsgraph()->Constant(holder);
}
Node* storage = receiver;
if (!field_index.is_inobject()) {
storage = effect = graph()->NewNode(
simplified()->LoadField(AccessBuilder::ForJSObjectProperties()),
storage, effect, control);
}
FieldAccess field_access = {
kTaggedBase, field_index.offset(), name,
field_type, MachineType::AnyTagged(), kFullWriteBarrier};
if (access_mode == AccessMode::kLoad) {
if (field_type->Is(Type::UntaggedFloat64())) {
if (!field_index.is_inobject() || field_index.is_hidden_field() ||
!FLAG_unbox_double_fields) {
storage = effect = graph()->NewNode(
simplified()->LoadField(field_access), storage, effect, control);
field_access.offset = HeapNumber::kValueOffset;
field_access.name = MaybeHandle<Name>();
}
field_access.machine_type = MachineType::Float64();
}
value = effect = graph()->NewNode(simplified()->LoadField(field_access),
storage, effect, control);
} else {
DCHECK_EQ(AccessMode::kStore, access_mode);
if (field_type->Is(Type::UntaggedFloat64())) {
value = effect = graph()->NewNode(simplified()->CheckNumber(), value,
effect, control);
if (!field_index.is_inobject() || field_index.is_hidden_field() ||
!FLAG_unbox_double_fields) {
if (access_info.HasTransitionMap()) {
// Allocate a MutableHeapNumber for the new property.
effect = graph()->NewNode(
common()->BeginRegion(RegionObservability::kNotObservable),
effect);
Node* box = effect = graph()->NewNode(
simplified()->Allocate(NOT_TENURED),
jsgraph()->Constant(HeapNumber::kSize), effect, control);
effect = graph()->NewNode(
simplified()->StoreField(AccessBuilder::ForMap()), box,
jsgraph()->HeapConstant(factory()->mutable_heap_number_map()),
effect, control);
effect = graph()->NewNode(
simplified()->StoreField(AccessBuilder::ForHeapNumberValue()),
box, value, effect, control);
value = effect =
graph()->NewNode(common()->FinishRegion(), box, effect);
field_access.type = Type::TaggedPointer();
} else {
// We just store directly to the MutableHeapNumber.
storage = effect =
graph()->NewNode(simplified()->LoadField(field_access), storage,
effect, control);
field_access.offset = HeapNumber::kValueOffset;
field_access.name = MaybeHandle<Name>();
field_access.machine_type = MachineType::Float64();
}
} else {
// Unboxed double field, we store directly to the field.
field_access.machine_type = MachineType::Float64();
}
} else if (field_type->Is(Type::TaggedSigned())) {
value = effect = graph()->NewNode(simplified()->CheckTaggedSigned(),
value, effect, control);
} else if (field_type->Is(Type::TaggedPointer())) {
value = effect = graph()->NewNode(simplified()->CheckTaggedPointer(),
value, effect, control);
if (field_type->NumClasses() == 1) {
// Emit a map check for the value.
Node* value_map = effect =
graph()->NewNode(simplified()->LoadField(AccessBuilder::ForMap()),
value, effect, control);
Node* check = graph()->NewNode(
simplified()->ReferenceEqual(Type::Internal()), value_map,
jsgraph()->Constant(field_type->Classes().Current()));
effect =
graph()->NewNode(simplified()->CheckIf(), check, effect, control);
} else {
DCHECK_EQ(0, field_type->NumClasses());
}
} else {
DCHECK(field_type->Is(Type::Tagged()));
}
Handle<Map> transition_map;
if (access_info.transition_map().ToHandle(&transition_map)) {
effect = graph()->NewNode(
common()->BeginRegion(RegionObservability::kObservable), effect);
effect = graph()->NewNode(
simplified()->StoreField(AccessBuilder::ForMap()), receiver,
jsgraph()->Constant(transition_map), effect, control);
}
effect = graph()->NewNode(simplified()->StoreField(field_access), storage,
value, effect, control);
if (access_info.HasTransitionMap()) {
effect = graph()->NewNode(common()->FinishRegion(),
jsgraph()->UndefinedConstant(), effect);
}
}
}
return ValueEffectControl(value, effect, control);
}
JSNativeContextSpecialization::ValueEffectControl
JSNativeContextSpecialization::BuildElementAccess(
Node* receiver, Node* index, Node* value, Node* effect, Node* control,
Handle<Context> native_context, ElementAccessInfo const& access_info,
AccessMode access_mode) {
// Determine actual holder and perform prototype chain checks.
Handle<JSObject> holder;
if (access_info.holder().ToHandle(&holder)) {
AssumePrototypesStable(access_info.receiver_maps(), native_context, holder);
}
// TODO(bmeurer): We currently specialize based on elements kind. We should
// also be able to properly support strings and other JSObjects here.
ElementsKind elements_kind = access_info.elements_kind();
MapList const& receiver_maps = access_info.receiver_maps();
// Load the elements for the {receiver}.
Node* elements = effect = graph()->NewNode(
simplified()->LoadField(AccessBuilder::ForJSObjectElements()), receiver,
effect, control);
// Don't try to store to a copy-on-write backing store.
if (access_mode == AccessMode::kStore &&
IsFastSmiOrObjectElementsKind(elements_kind)) {
Node* elements_map = effect =
graph()->NewNode(simplified()->LoadField(AccessBuilder::ForMap()),
elements, effect, control);
Node* check = graph()->NewNode(
simplified()->ReferenceEqual(Type::Any()), elements_map,
jsgraph()->HeapConstant(factory()->fixed_array_map()));
effect = graph()->NewNode(simplified()->CheckIf(), check, effect, control);
}
// Load the length of the {receiver}.
Node* length = effect =
HasOnlyJSArrayMaps(receiver_maps)
? graph()->NewNode(
simplified()->LoadField(
AccessBuilder::ForJSArrayLength(elements_kind)),
receiver, effect, control)
: graph()->NewNode(
simplified()->LoadField(AccessBuilder::ForFixedArrayLength()),
elements, effect, control);
// Check that the {index} is in the valid range for the {receiver}.
index = effect = graph()->NewNode(simplified()->CheckBounds(), index, length,
effect, control);
// Compute the element access.
Type* element_type = Type::Any();
MachineType element_machine_type = MachineType::AnyTagged();
if (IsFastDoubleElementsKind(elements_kind)) {
element_type = Type::Number();
element_machine_type = MachineType::Float64();
} else if (IsFastSmiElementsKind(elements_kind)) {
element_type = type_cache_.kSmi;
}
ElementAccess element_access = {kTaggedBase, FixedArray::kHeaderSize,
element_type, element_machine_type,
kFullWriteBarrier};
// Access the actual element.
// TODO(bmeurer): Refactor this into separate methods or even a separate
// class that deals with the elements access.
if (access_mode == AccessMode::kLoad) {
// Compute the real element access type, which includes the hole in case
// of holey backing stores.
if (elements_kind == FAST_HOLEY_ELEMENTS ||
elements_kind == FAST_HOLEY_SMI_ELEMENTS) {
element_access.type = Type::Union(
element_type,
Type::Constant(factory()->the_hole_value(), graph()->zone()),
graph()->zone());
}
// Perform the actual backing store access.
value = effect = graph()->NewNode(simplified()->LoadElement(element_access),
elements, index, effect, control);
// Handle loading from holey backing stores correctly, by either mapping
// the hole to undefined if possible, or deoptimizing otherwise.
if (elements_kind == FAST_HOLEY_ELEMENTS ||
elements_kind == FAST_HOLEY_SMI_ELEMENTS) {
// Perform the hole check on the result.
CheckTaggedHoleMode mode = CheckTaggedHoleMode::kNeverReturnHole;
// Check if we are allowed to turn the hole into undefined.
// TODO(bmeurer): We might check the JSArray map from a different
// context here; may need reinvestigation.
if (receiver_maps.size() == 1 &&
receiver_maps[0].is_identical_to(
handle(isolate()->get_initial_js_array_map(elements_kind))) &&
isolate()->IsFastArrayConstructorPrototypeChainIntact()) {
// Add a code dependency on the array protector cell.
dependencies()->AssumePrototypeMapsStable(
receiver_maps[0], isolate()->initial_object_prototype());
dependencies()->AssumePropertyCell(factory()->array_protector());
// Turn the hole into undefined.
mode = CheckTaggedHoleMode::kConvertHoleToUndefined;
}
value = effect = graph()->NewNode(simplified()->CheckTaggedHole(mode),
value, effect, control);
} else if (elements_kind == FAST_HOLEY_DOUBLE_ELEMENTS) {
// Perform the hole check on the result.
CheckFloat64HoleMode mode = CheckFloat64HoleMode::kNeverReturnHole;
// Check if we are allowed to return the hole directly.
// TODO(bmeurer): We might check the JSArray map from a different
// context here; may need reinvestigation.
if (receiver_maps.size() == 1 &&
receiver_maps[0].is_identical_to(
handle(isolate()->get_initial_js_array_map(elements_kind))) &&
isolate()->IsFastArrayConstructorPrototypeChainIntact()) {
// Add a code dependency on the array protector cell.
dependencies()->AssumePrototypeMapsStable(
receiver_maps[0], isolate()->initial_object_prototype());
dependencies()->AssumePropertyCell(factory()->array_protector());
// Return the signaling NaN hole directly if all uses are truncating.
mode = CheckFloat64HoleMode::kAllowReturnHole;
}
value = effect = graph()->NewNode(simplified()->CheckFloat64Hole(mode),
value, effect, control);
}
} else {
DCHECK_EQ(AccessMode::kStore, access_mode);
if (IsFastSmiElementsKind(elements_kind)) {
value = effect = graph()->NewNode(simplified()->CheckTaggedSigned(),
value, effect, control);
} else if (IsFastDoubleElementsKind(elements_kind)) {
value = effect =
graph()->NewNode(simplified()->CheckNumber(), value, effect, control);
// Make sure we do not store signalling NaNs into double arrays.
value = graph()->NewNode(simplified()->NumberSilenceNaN(), value);
}
effect = graph()->NewNode(simplified()->StoreElement(element_access),
elements, index, value, effect, control);
}
return ValueEffectControl(value, effect, control);
}
void JSNativeContextSpecialization::AssumePrototypesStable(
Type* receiver_type, Handle<Context> native_context,
Handle<JSObject> holder) {
std::vector<Handle<Map>> const& receiver_maps,
Handle<Context> native_context, Handle<JSObject> holder) {
// Determine actual holder and perform prototype chain checks.
for (auto i = receiver_type->Classes(); !i.Done(); i.Advance()) {
Handle<Map> map = i.Current();
for (auto map : receiver_maps) {
// Perform the implicit ToObject for primitives here.
// Implemented according to ES6 section 7.3.2 GetV (V, P).
Handle<JSFunction> constructor;

View File

@ -24,9 +24,11 @@ namespace compiler {
// Forward declarations.
enum class AccessMode;
class CommonOperatorBuilder;
class ElementAccessInfo;
class JSGraph;
class JSOperatorBuilder;
class MachineOperatorBuilder;
class PropertyAccessInfo;
class SimplifiedOperatorBuilder;
@ -80,9 +82,41 @@ class JSNativeContextSpecialization final : public AdvancedReducer {
Reduction ReduceSoftDeoptimize(Node* node, DeoptimizeReason reason);
// A triple of nodes that represents a continuation.
class ValueEffectControl final {
public:
ValueEffectControl(Node* value, Node* effect, Node* control)
: value_(value), effect_(effect), control_(control) {}
Node* value() const { return value_; }
Node* effect() const { return effect_; }
Node* control() const { return control_; }
private:
Node* const value_;
Node* const effect_;
Node* const control_;
};
// Construct the appropriate subgraph for property access.
ValueEffectControl BuildPropertyAccess(Node* receiver, Node* value,
Node* effect, Node* control,
Handle<Name> name,
Handle<Context> native_context,
PropertyAccessInfo const& access_info,
AccessMode access_mode);
// Construct the appropriate subgraph for element access.
ValueEffectControl BuildElementAccess(Node* receiver, Node* index,
Node* value, Node* effect,
Node* control,
Handle<Context> native_context,
ElementAccessInfo const& access_info,
AccessMode access_mode);
// Adds stability dependencies on all prototypes of every class in
// {receiver_type} up to (and including) the {holder}.
void AssumePrototypesStable(Type* receiver_type,
void AssumePrototypesStable(std::vector<Handle<Map>> const& receiver_maps,
Handle<Context> native_context,
Handle<JSObject> holder);

View File

@ -312,10 +312,10 @@ Reduction LoadElimination::ReduceLoadField(Node* node) {
if (Node* const replacement = state->LookupField(object, field_index)) {
// Make sure the {replacement} has at least as good type
// as the original {node}.
if (NodeProperties::GetType(replacement)
if (!replacement->IsDead() &&
NodeProperties::GetType(replacement)
->Is(NodeProperties::GetType(node))) {
ReplaceWithValue(node, replacement, effect);
DCHECK(!replacement->IsDead());
return Replace(replacement);
}
}
@ -357,10 +357,10 @@ Reduction LoadElimination::ReduceLoadElement(Node* node) {
if (Node* const replacement = state->LookupElement(object, index)) {
// Make sure the {replacement} has at least as good type
// as the original {node}.
if (NodeProperties::GetType(replacement)
if (!replacement->IsDead() &&
NodeProperties::GetType(replacement)
->Is(NodeProperties::GetType(node))) {
ReplaceWithValue(node, replacement, effect);
DCHECK(!replacement->IsDead());
return Replace(replacement);
}
}

View File

@ -76,6 +76,11 @@ class FieldIndex final {
(IsInObjectBits::kMask | IsDoubleBits::kMask | IndexBits::kMask);
}
bool operator==(FieldIndex const& other) const {
return bit_field_ == other.bit_field_;
}
bool operator!=(FieldIndex const& other) const { return !(*this == other); }
// For GetLoadByFieldOffset.
class FieldOffsetIsInobject : public BitField<bool, 1, 1> {};
class FieldOffsetIsDouble : public BitField<bool, 2, 1> {};

View File

@ -226,6 +226,10 @@ class MaybeHandle final {
}
}
// Returns the raw address where this handle is stored. This should only be
// used for hashing handles; do not ever try to dereference it.
V8_INLINE Address address() const { return bit_cast<Address>(location_); }
bool is_null() const { return location_ == nullptr; }
protected: