Revert "Add Chromium-style TimeDelta, Time and TimeTicks classes, and a new ElapsedTimer class."

This reverts commit r16390 for breaking the Windows build. Will
reland fixed version, which also uses the platform/ folder instead
of time/ folder as per offline discussion.

TBR=machenbach@chromium.org

Review URL: https://codereview.chromium.org/23690003

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@16391 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
This commit is contained in:
bmeurer@chromium.org 2013-08-28 11:38:20 +00:00
parent fa5216a145
commit 1d3f6815e3
31 changed files with 255 additions and 1256 deletions

View File

@ -7310,13 +7310,13 @@ const CpuProfileNode* CpuProfile::GetSample(int index) const {
int64_t CpuProfile::GetStartTime() const {
const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this);
return (profile->start_time() - i::Time::UnixEpoch()).InMicroseconds();
return profile->start_time_us();
}
int64_t CpuProfile::GetEndTime() const {
const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this);
return (profile->end_time() - i::Time::UnixEpoch()).InMicroseconds();
return profile->end_time_us();
}

View File

@ -260,9 +260,10 @@ void OptimizingCompiler::RecordOptimizationStats() {
Handle<JSFunction> function = info()->closure();
int opt_count = function->shared()->opt_count();
function->shared()->set_opt_count(opt_count + 1);
double ms_creategraph = time_taken_to_create_graph_.InMillisecondsF();
double ms_optimize = time_taken_to_optimize_.InMillisecondsF();
double ms_codegen = time_taken_to_codegen_.InMillisecondsF();
double ms_creategraph =
static_cast<double>(time_taken_to_create_graph_) / 1000;
double ms_optimize = static_cast<double>(time_taken_to_optimize_) / 1000;
double ms_codegen = static_cast<double>(time_taken_to_codegen_) / 1000;
if (FLAG_trace_opt) {
PrintF("[optimizing ");
function->ShortPrint();
@ -372,9 +373,9 @@ OptimizingCompiler::Status OptimizingCompiler::CreateGraph() {
// performance of the hydrogen-based compiler.
bool should_recompile = !info()->shared_info()->has_deoptimization_support();
if (should_recompile || FLAG_hydrogen_stats) {
ElapsedTimer timer;
int64_t start_ticks = 0;
if (FLAG_hydrogen_stats) {
timer.Start();
start_ticks = OS::Ticks();
}
CompilationInfoWithZone unoptimized(info()->shared_info());
// Note that we use the same AST that we will use for generating the
@ -393,7 +394,8 @@ OptimizingCompiler::Status OptimizingCompiler::CreateGraph() {
Logger::LAZY_COMPILE_TAG, &unoptimized, shared);
}
if (FLAG_hydrogen_stats) {
isolate()->GetHStatistics()->IncrementFullCodeGen(timer.Elapsed());
int64_t ticks = OS::Ticks() - start_ticks;
isolate()->GetHStatistics()->IncrementFullCodeGen(ticks);
}
}
@ -1242,7 +1244,7 @@ CompilationPhase::CompilationPhase(const char* name, CompilationInfo* info)
: name_(name), info_(info), zone_(info->isolate()) {
if (FLAG_hydrogen_stats) {
info_zone_start_allocation_size_ = info->zone()->allocation_size();
timer_.Start();
start_ticks_ = OS::Ticks();
}
}
@ -1251,7 +1253,8 @@ CompilationPhase::~CompilationPhase() {
if (FLAG_hydrogen_stats) {
unsigned size = zone()->allocation_size();
size += info_->zone()->allocation_size() - info_zone_start_allocation_size_;
isolate()->GetHStatistics()->SaveTiming(name_, timer_.Elapsed(), size);
int64_t ticks = OS::Ticks() - start_ticks_;
isolate()->GetHStatistics()->SaveTiming(name_, ticks, size);
}
}

View File

@ -30,7 +30,6 @@
#include "allocation.h"
#include "ast.h"
#include "time/elapsed-timer.h"
#include "zone.h"
namespace v8 {
@ -502,6 +501,9 @@ class OptimizingCompiler: public ZoneObject {
graph_builder_(NULL),
graph_(NULL),
chunk_(NULL),
time_taken_to_create_graph_(0),
time_taken_to_optimize_(0),
time_taken_to_codegen_(0),
last_status_(FAILED) { }
enum Status {
@ -527,9 +529,9 @@ class OptimizingCompiler: public ZoneObject {
HOptimizedGraphBuilder* graph_builder_;
HGraph* graph_;
LChunk* chunk_;
TimeDelta time_taken_to_create_graph_;
TimeDelta time_taken_to_optimize_;
TimeDelta time_taken_to_codegen_;
int64_t time_taken_to_create_graph_;
int64_t time_taken_to_optimize_;
int64_t time_taken_to_codegen_;
Status last_status_;
MUST_USE_RESULT Status SetLastStatus(Status status) {
@ -539,20 +541,18 @@ class OptimizingCompiler: public ZoneObject {
void RecordOptimizationStats();
struct Timer {
Timer(OptimizingCompiler* compiler, TimeDelta* location)
Timer(OptimizingCompiler* compiler, int64_t* location)
: compiler_(compiler),
location_(location) {
ASSERT(location_ != NULL);
timer_.Start();
}
start_(OS::Ticks()),
location_(location) { }
~Timer() {
*location_ += timer_.Elapsed();
*location_ += (OS::Ticks() - start_);
}
OptimizingCompiler* compiler_;
ElapsedTimer timer_;
TimeDelta* location_;
int64_t start_;
int64_t* location_;
};
};
@ -644,7 +644,7 @@ class CompilationPhase BASE_EMBEDDED {
CompilationInfo* info_;
Zone zone_;
unsigned info_zone_start_allocation_size_;
ElapsedTimer timer_;
int64_t start_ticks_;
DISALLOW_COPY_AND_ASSIGN(CompilationPhase);
};

View File

@ -60,7 +60,8 @@ void* Histogram::CreateHistogram() const {
// Start the timer.
void HistogramTimer::Start() {
if (Enabled()) {
timer_.Start();
stop_time_ = 0;
start_time_ = OS::Ticks();
}
if (FLAG_log_internal_timer_events) {
LOG(isolate(), TimerEvent(Logger::START, name()));
@ -71,9 +72,10 @@ void HistogramTimer::Start() {
// Stop the timer and record the results.
void HistogramTimer::Stop() {
if (Enabled()) {
stop_time_ = OS::Ticks();
// Compute the delta between start and stop, in milliseconds.
AddSample(static_cast<int>(timer_.Elapsed().InMilliseconds()));
timer_.Stop();
int milliseconds = static_cast<int>(stop_time_ - start_time_) / 1000;
AddSample(milliseconds);
}
if (FLAG_log_internal_timer_events) {
LOG(isolate(), TimerEvent(Logger::END, name()));

View File

@ -245,7 +245,9 @@ class HistogramTimer : public Histogram {
int max,
int num_buckets,
Isolate* isolate)
: Histogram(name, min, max, num_buckets, isolate) {}
: Histogram(name, min, max, num_buckets, isolate),
start_time_(0),
stop_time_(0) { }
// Start the timer.
void Start();
@ -255,11 +257,12 @@ class HistogramTimer : public Histogram {
// Returns true if the timer is running.
bool Running() {
return Enabled() && timer_.IsStarted();
return Enabled() && (start_time_ != 0) && (stop_time_ == 0);
}
private:
ElapsedTimer timer_;
int64_t start_time_;
int64_t stop_time_;
};
// Helper class for scoping a HistogramTimer.

View File

@ -46,12 +46,12 @@ static const int kProfilerStackSize = 64 * KB;
ProfilerEventsProcessor::ProfilerEventsProcessor(
ProfileGenerator* generator,
Sampler* sampler,
TimeDelta period)
int period_in_useconds)
: Thread(Thread::Options("v8:ProfEvntProc", kProfilerStackSize)),
generator_(generator),
sampler_(sampler),
running_(true),
period_(period),
period_in_useconds_(period_in_useconds),
last_code_event_id_(0), last_processed_code_event_id_(0) {
}
@ -124,10 +124,9 @@ bool ProfilerEventsProcessor::ProcessTicks() {
void ProfilerEventsProcessor::ProcessEventsAndDoSample() {
ElapsedTimer timer;
timer.Start();
int64_t stop_time = OS::Ticks() + period_in_useconds_;
// Keep processing existing events until we need to do next sample.
while (!timer.HasExpired(period_)) {
while (OS::Ticks() < stop_time) {
if (ProcessTicks()) {
// All ticks of the current dequeue_order are processed,
// proceed to the next code event.
@ -435,8 +434,7 @@ void CpuProfiler::StartProcessorIfNotStarted() {
generator_ = new ProfileGenerator(profiles_);
Sampler* sampler = logger->sampler();
processor_ = new ProfilerEventsProcessor(
generator_, sampler,
TimeDelta::FromMicroseconds(FLAG_cpu_profiler_sampling_interval));
generator_, sampler, FLAG_cpu_profiler_sampling_interval);
is_profiling_ = true;
// Enumerate stuff we already have in the heap.
ASSERT(isolate_->heap()->HasBeenSetUp());

View File

@ -138,7 +138,7 @@ class ProfilerEventsProcessor : public Thread {
public:
ProfilerEventsProcessor(ProfileGenerator* generator,
Sampler* sampler,
TimeDelta period);
int period_in_useconds);
virtual ~ProfilerEventsProcessor() {}
// Thread control.
@ -169,7 +169,7 @@ class ProfilerEventsProcessor : public Thread {
Sampler* sampler_;
bool running_;
// Sampling period in microseconds.
const TimeDelta period_;
const int period_in_useconds_;
UnboundQueue<CodeEventsContainer> events_buffer_;
static const size_t kTickSampleBufferSize = 1 * MB;
static const size_t kTickSampleQueueLength =

View File

@ -784,13 +784,12 @@ void Deoptimizer::DoComputeOutputFrames() {
}
// Print some helpful diagnostic information.
int64_t start = OS::Ticks();
if (FLAG_log_timer_events &&
compiled_code_->kind() == Code::OPTIMIZED_FUNCTION) {
LOG(isolate(), CodeDeoptEvent(compiled_code_));
}
ElapsedTimer timer;
if (trace_) {
timer.Start();
PrintF("[deoptimizing (DEOPT %s): begin 0x%08" V8PRIxPTR " ",
MessageFor(bailout_type_),
reinterpret_cast<intptr_t>(function_));
@ -871,7 +870,7 @@ void Deoptimizer::DoComputeOutputFrames() {
// Print some helpful diagnostic information.
if (trace_) {
double ms = timer.Elapsed().InMillisecondsF();
double ms = static_cast<double>(OS::Ticks() - start) / 1000;
int index = output_count_ - 1; // Index of the topmost frame.
JSFunction* function = output_[index]->GetFunction();
PrintF("[deoptimizing (%s): end 0x%08" V8PRIxPTR " ",

View File

@ -9815,15 +9815,15 @@ void HStatistics::Initialize(CompilationInfo* info) {
void HStatistics::Print() {
PrintF("Timing results:\n");
TimeDelta sum;
for (int i = 0; i < times_.length(); ++i) {
sum += times_[i];
int64_t sum = 0;
for (int i = 0; i < timing_.length(); ++i) {
sum += timing_[i];
}
for (int i = 0; i < names_.length(); ++i) {
PrintF("%32s", names_[i]);
double ms = times_[i].InMillisecondsF();
double percent = times_[i].PercentOf(sum);
double ms = static_cast<double>(timing_[i]) / 1000;
double percent = static_cast<double>(timing_[i]) * 100 / sum;
PrintF(" %8.3f ms / %4.1f %% ", ms, percent);
unsigned size = sizes_[i];
@ -9833,29 +9833,29 @@ void HStatistics::Print() {
PrintF("----------------------------------------"
"---------------------------------------\n");
TimeDelta total = create_graph_ + optimize_graph_ + generate_code_;
int64_t total = create_graph_ + optimize_graph_ + generate_code_;
PrintF("%32s %8.3f ms / %4.1f %% \n",
"Create graph",
create_graph_.InMillisecondsF(),
create_graph_.PercentOf(total));
static_cast<double>(create_graph_) / 1000,
static_cast<double>(create_graph_) * 100 / total);
PrintF("%32s %8.3f ms / %4.1f %% \n",
"Optimize graph",
optimize_graph_.InMillisecondsF(),
optimize_graph_.PercentOf(total));
static_cast<double>(optimize_graph_) / 1000,
static_cast<double>(optimize_graph_) * 100 / total);
PrintF("%32s %8.3f ms / %4.1f %% \n",
"Generate and install code",
generate_code_.InMillisecondsF(),
generate_code_.PercentOf(total));
static_cast<double>(generate_code_) / 1000,
static_cast<double>(generate_code_) * 100 / total);
PrintF("----------------------------------------"
"---------------------------------------\n");
PrintF("%32s %8.3f ms (%.1f times slower than full code gen)\n",
"Total",
total.InMillisecondsF(),
total.TimesOf(full_code_gen_));
static_cast<double>(total) / 1000,
static_cast<double>(total) / full_code_gen_);
double source_size_in_kb = static_cast<double>(source_size_) / 1024;
double normalized_time = source_size_in_kb > 0
? total.InMillisecondsF() / source_size_in_kb
? (static_cast<double>(total) / 1000) / source_size_in_kb
: 0;
double normalized_size_in_kb = source_size_in_kb > 0
? total_size_ / 1024 / source_size_in_kb
@ -9866,17 +9866,17 @@ void HStatistics::Print() {
}
void HStatistics::SaveTiming(const char* name, TimeDelta time, unsigned size) {
void HStatistics::SaveTiming(const char* name, int64_t ticks, unsigned size) {
total_size_ += size;
for (int i = 0; i < names_.length(); ++i) {
if (strcmp(names_[i], name) == 0) {
times_[i] += time;
timing_[i] += ticks;
sizes_[i] += size;
return;
}
}
names_.Add(name);
times_.Add(time);
timing_.Add(ticks);
sizes_.Add(size);
}

View File

@ -2165,37 +2165,41 @@ Zone* AstContext::zone() const { return owner_->zone(); }
class HStatistics V8_FINAL: public Malloced {
public:
HStatistics()
: times_(5),
: timing_(5),
names_(5),
sizes_(5),
create_graph_(0),
optimize_graph_(0),
generate_code_(0),
total_size_(0),
full_code_gen_(0),
source_size_(0) { }
void Initialize(CompilationInfo* info);
void Print();
void SaveTiming(const char* name, TimeDelta time, unsigned size);
void SaveTiming(const char* name, int64_t ticks, unsigned size);
void IncrementFullCodeGen(TimeDelta full_code_gen) {
void IncrementFullCodeGen(int64_t full_code_gen) {
full_code_gen_ += full_code_gen;
}
void IncrementSubtotals(TimeDelta create_graph,
TimeDelta optimize_graph,
TimeDelta generate_code) {
void IncrementSubtotals(int64_t create_graph,
int64_t optimize_graph,
int64_t generate_code) {
create_graph_ += create_graph;
optimize_graph_ += optimize_graph;
generate_code_ += generate_code;
}
private:
List<TimeDelta> times_;
List<int64_t> timing_;
List<const char*> names_;
List<unsigned> sizes_;
TimeDelta create_graph_;
TimeDelta optimize_graph_;
TimeDelta generate_code_;
int64_t create_graph_;
int64_t optimize_graph_;
int64_t generate_code_;
unsigned total_size_;
TimeDelta full_code_gen_;
int64_t full_code_gen_;
double source_size_;
};

View File

@ -2189,7 +2189,7 @@ LAllocatorPhase::~LAllocatorPhase() {
if (FLAG_hydrogen_stats) {
unsigned size = allocator_->zone()->allocation_size() -
allocator_zone_start_allocation_size_;
isolate()->GetHStatistics()->SaveTiming(name(), TimeDelta(), size);
isolate()->GetHStatistics()->SaveTiming(name(), 0, size);
}
if (ShouldProduceTraceOutput()) {

View File

@ -716,7 +716,8 @@ Logger::Logger(Isolate* isolate)
ll_logger_(NULL),
jit_logger_(NULL),
listeners_(5),
is_initialized_(false) {
is_initialized_(false),
epoch_(0) {
}
@ -867,7 +868,7 @@ void Logger::CodeDeoptEvent(Code* code) {
if (!log_->IsEnabled()) return;
ASSERT(FLAG_log_internal_timer_events);
Log::MessageBuilder msg(log_);
int since_epoch = static_cast<int>(timer_.Elapsed().InMicroseconds());
int since_epoch = static_cast<int>(OS::Ticks() - epoch_);
msg.Append("code-deopt,%ld,%d\n", since_epoch, code->CodeSize());
msg.WriteToLogFile();
}
@ -877,7 +878,7 @@ void Logger::TimerEvent(StartEnd se, const char* name) {
if (!log_->IsEnabled()) return;
ASSERT(FLAG_log_internal_timer_events);
Log::MessageBuilder msg(log_);
int since_epoch = static_cast<int>(timer_.Elapsed().InMicroseconds());
int since_epoch = static_cast<int>(OS::Ticks() - epoch_);
const char* format = (se == START) ? "timer-event-start,\"%s\",%ld\n"
: "timer-event-end,\"%s\",%ld\n";
msg.Append(format, name, since_epoch);
@ -1500,7 +1501,7 @@ void Logger::TickEvent(TickSample* sample, bool overflow) {
Log::MessageBuilder msg(log_);
msg.Append("%s,", kLogEventsNames[TICK_EVENT]);
msg.AppendAddress(sample->pc);
msg.Append(",%ld", static_cast<int>(timer_.Elapsed().InMicroseconds()));
msg.Append(",%ld", static_cast<int>(OS::Ticks() - epoch_));
if (sample->has_external_callback) {
msg.Append(",1,");
msg.AppendAddress(sample->external_callback);
@ -1895,7 +1896,7 @@ bool Logger::SetUp(Isolate* isolate) {
}
}
if (FLAG_log_internal_timer_events || FLAG_prof) timer_.Start();
if (FLAG_log_internal_timer_events || FLAG_prof) epoch_ = OS::Ticks();
return true;
}

View File

@ -31,7 +31,6 @@
#include "allocation.h"
#include "objects.h"
#include "platform.h"
#include "time/elapsed-timer.h"
namespace v8 {
namespace internal {
@ -451,7 +450,7 @@ class Logger {
// 'true' between SetUp() and TearDown().
bool is_initialized_;
ElapsedTimer timer_;
int64_t epoch_;
friend class CpuProfiler;
};

View File

@ -48,8 +48,8 @@ void OptimizingCompilerThread::Run() {
DisallowHandleAllocation no_handles;
DisallowHandleDereference no_deref;
ElapsedTimer total_timer;
if (FLAG_trace_concurrent_recompilation) total_timer.Start();
int64_t epoch = 0;
if (FLAG_trace_concurrent_recompilation) epoch = OS::Ticks();
while (true) {
input_queue_semaphore_->Wait();
@ -65,7 +65,7 @@ void OptimizingCompilerThread::Run() {
break;
case STOP:
if (FLAG_trace_concurrent_recompilation) {
time_spent_total_ = total_timer.Elapsed();
time_spent_total_ = OS::Ticks() - epoch;
}
stop_semaphore_->Signal();
return;
@ -81,13 +81,13 @@ void OptimizingCompilerThread::Run() {
continue;
}
ElapsedTimer compiling_timer;
if (FLAG_trace_concurrent_recompilation) compiling_timer.Start();
int64_t compiling_start = 0;
if (FLAG_trace_concurrent_recompilation) compiling_start = OS::Ticks();
CompileNext();
if (FLAG_trace_concurrent_recompilation) {
time_spent_compiling_ += compiling_timer.Elapsed();
time_spent_compiling_ += OS::Ticks() - compiling_start;
}
}
}
@ -175,7 +175,9 @@ void OptimizingCompilerThread::Stop() {
}
if (FLAG_trace_concurrent_recompilation) {
double percentage = time_spent_compiling_.PercentOf(time_spent_total_);
double compile_time = static_cast<double>(time_spent_compiling_);
double total_time = static_cast<double>(time_spent_total_);
double percentage = (compile_time * 100) / total_time;
PrintF(" ** Compiler thread did %.2f%% useful work\n", percentage);
}

View File

@ -32,7 +32,6 @@
#include "flags.h"
#include "platform.h"
#include "unbound-queue-inl.h"
#include "time/time.h"
namespace v8 {
namespace internal {
@ -52,7 +51,9 @@ class OptimizingCompilerThread : public Thread {
isolate_(isolate),
stop_semaphore_(OS::CreateSemaphore(0)),
input_queue_semaphore_(OS::CreateSemaphore(0)),
install_mutex_(OS::CreateMutex()) {
install_mutex_(OS::CreateMutex()),
time_spent_compiling_(0),
time_spent_total_(0) {
NoBarrier_Store(&stop_thread_, static_cast<AtomicWord>(CONTINUE));
NoBarrier_Store(&queue_length_, static_cast<AtomicWord>(0));
}
@ -111,8 +112,8 @@ class OptimizingCompilerThread : public Thread {
Mutex* install_mutex_;
volatile AtomicWord stop_thread_;
volatile Atomic32 queue_length_;
TimeDelta time_spent_compiling_;
TimeDelta time_spent_total_;
int64_t time_spent_compiling_;
int64_t time_spent_total_;
};
} } // namespace v8::internal

View File

@ -569,13 +569,10 @@ Parser::Parser(CompilationInfo* info)
FunctionLiteral* Parser::ParseProgram() {
HistogramTimerScope timer_scope(isolate()->counters()->parse());
HistogramTimerScope timer(isolate()->counters()->parse());
Handle<String> source(String::cast(script_->source()));
isolate()->counters()->total_parse_size()->Increment(source->length());
ElapsedTimer timer;
if (FLAG_trace_parse) {
timer.Start();
}
int64_t start = FLAG_trace_parse ? OS::Ticks() : 0;
fni_ = new(zone()) FuncNameInferrer(isolate(), zone());
// Initialize parser state.
@ -596,7 +593,7 @@ FunctionLiteral* Parser::ParseProgram() {
}
if (FLAG_trace_parse && result != NULL) {
double ms = timer.Elapsed().InMillisecondsF();
double ms = static_cast<double>(OS::Ticks() - start) / 1000;
if (info()->is_eval()) {
PrintF("[parsing eval");
} else if (info()->script()->name()->IsString()) {
@ -700,13 +697,10 @@ FunctionLiteral* Parser::DoParseProgram(CompilationInfo* info,
FunctionLiteral* Parser::ParseLazy() {
HistogramTimerScope timer_scope(isolate()->counters()->parse_lazy());
HistogramTimerScope timer(isolate()->counters()->parse_lazy());
Handle<String> source(String::cast(script_->source()));
isolate()->counters()->total_parse_size()->Increment(source->length());
ElapsedTimer timer;
if (FLAG_trace_parse) {
timer.Start();
}
int64_t start = FLAG_trace_parse ? OS::Ticks() : 0;
Handle<SharedFunctionInfo> shared_info = info()->shared_info();
// Initialize parser state.
@ -726,7 +720,7 @@ FunctionLiteral* Parser::ParseLazy() {
}
if (FLAG_trace_parse && result != NULL) {
double ms = timer.Elapsed().InMillisecondsF();
double ms = static_cast<double>(OS::Ticks() - start) / 1000;
SmartArrayPointer<char> name_chars = result->debug_name()->ToCString();
PrintF("[parsing function: %s - took %0.3f ms]\n", *name_chars, ms);
}

View File

@ -569,7 +569,7 @@ Semaphore* OS::CreateSemaphore(int count) {
void OS::SetUp() {
// Seed the random number generator. We preserve microsecond resolution.
uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis()) ^ (getpid() << 16);
uint64_t seed = Ticks() ^ (getpid() << 16);
srandom(static_cast<unsigned int>(seed));
limit_mutex = CreateMutex();
}

View File

@ -441,7 +441,7 @@ Semaphore* OS::CreateSemaphore(int count) {
void OS::SetUp() {
// Seed the random number generator. We preserve microsecond resolution.
uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis()) ^ (getpid() << 16);
uint64_t seed = Ticks() ^ (getpid() << 16);
srandom(static_cast<unsigned int>(seed));
limit_mutex = CreateMutex();
}

View File

@ -500,7 +500,7 @@ Semaphore* OS::CreateSemaphore(int count) {
void OS::SetUp() {
// Seed the random number generator. We preserve microsecond resolution.
uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis()) ^ (getpid() << 16);
uint64_t seed = Ticks() ^ (getpid() << 16);
srandom(static_cast<unsigned int>(seed));
limit_mutex = CreateMutex();
}

View File

@ -318,7 +318,19 @@ int OS::GetUserTime(uint32_t* secs, uint32_t* usecs) {
double OS::TimeCurrentMillis() {
return Time::Now().ToJsTime();
struct timeval tv;
if (gettimeofday(&tv, NULL) < 0) return 0.0;
return (static_cast<double>(tv.tv_sec) * 1000) +
(static_cast<double>(tv.tv_usec) / 1000);
}
int64_t OS::Ticks() {
// gettimeofday has microsecond resolution.
struct timeval tv;
if (gettimeofday(&tv, NULL) < 0)
return 0;
return (static_cast<int64_t>(tv.tv_sec) * 1000000) + tv.tv_usec;
}

View File

@ -246,15 +246,19 @@ void MathSetup() {
// timestamps are represented as a doubles in milliseconds since 00:00:00 UTC,
// January 1, 1970.
class Win32Time {
class Time {
public:
// Constructors.
explicit Win32Time(double jstime);
Win32Time(int year, int mon, int day, int hour, int min, int sec);
Time();
explicit Time(double jstime);
Time(int year, int mon, int day, int hour, int min, int sec);
// Convert timestamp to JavaScript representation.
double ToJSTime();
// Set timestamp to current time.
void SetToCurrentTime();
// Returns the local timezone offset in milliseconds east of UTC. This is
// the number of milliseconds you must add to UTC to get local time, i.e.
// LocalOffset(CET) = 3600000 and LocalOffset(PST) = -28800000. This
@ -296,6 +300,10 @@ class Win32Time {
// Return whether or not daylight savings time is in effect at this time.
bool InDST();
// Return the difference (in milliseconds) between this timestamp and
// another timestamp.
int64_t Diff(Time* other);
// Accessor for FILETIME representation.
FILETIME& ft() { return time_.ft_; }
@ -317,20 +325,26 @@ class Win32Time {
// Static variables.
bool Win32Time::tz_initialized_ = false;
TIME_ZONE_INFORMATION Win32Time::tzinfo_;
char Win32Time::std_tz_name_[kTzNameSize];
char Win32Time::dst_tz_name_[kTzNameSize];
bool Time::tz_initialized_ = false;
TIME_ZONE_INFORMATION Time::tzinfo_;
char Time::std_tz_name_[kTzNameSize];
char Time::dst_tz_name_[kTzNameSize];
// Initialize timestamp to start of epoc.
Time::Time() {
t() = 0;
}
// Initialize timestamp from a JavaScript timestamp.
Win32Time::Win32Time(double jstime) {
Time::Time(double jstime) {
t() = static_cast<int64_t>(jstime) * kTimeScaler + kTimeEpoc;
}
// Initialize timestamp from date/time components.
Win32Time::Win32Time(int year, int mon, int day, int hour, int min, int sec) {
Time::Time(int year, int mon, int day, int hour, int min, int sec) {
SYSTEMTIME st;
st.wYear = year;
st.wMonth = mon;
@ -344,14 +358,14 @@ Win32Time::Win32Time(int year, int mon, int day, int hour, int min, int sec) {
// Convert timestamp to JavaScript timestamp.
double Win32Time::ToJSTime() {
double Time::ToJSTime() {
return static_cast<double>((t() - kTimeEpoc) / kTimeScaler);
}
// Guess the name of the timezone from the bias.
// The guess is very biased towards the northern hemisphere.
const char* Win32Time::GuessTimezoneNameFromBias(int bias) {
const char* Time::GuessTimezoneNameFromBias(int bias) {
static const int kHour = 60;
switch (-bias) {
case -9*kHour: return "Alaska";
@ -376,7 +390,7 @@ const char* Win32Time::GuessTimezoneNameFromBias(int bias) {
// Initialize timezone information. The timezone information is obtained from
// windows. If we cannot get the timezone information we fall back to CET.
// Please notice that this code is not thread-safe.
void Win32Time::TzSet() {
void Time::TzSet() {
// Just return if timezone information has already been initialized.
if (tz_initialized_) return;
@ -425,16 +439,78 @@ void Win32Time::TzSet() {
}
// Return the difference in milliseconds between this and another timestamp.
int64_t Time::Diff(Time* other) {
return (t() - other->t()) / kTimeScaler;
}
// Set timestamp to current time.
void Time::SetToCurrentTime() {
// The default GetSystemTimeAsFileTime has a ~15.5ms resolution.
// Because we're fast, we like fast timers which have at least a
// 1ms resolution.
//
// timeGetTime() provides 1ms granularity when combined with
// timeBeginPeriod(). If the host application for v8 wants fast
// timers, it can use timeBeginPeriod to increase the resolution.
//
// Using timeGetTime() has a drawback because it is a 32bit value
// and hence rolls-over every ~49days.
//
// To use the clock, we use GetSystemTimeAsFileTime as our base;
// and then use timeGetTime to extrapolate current time from the
// start time. To deal with rollovers, we resync the clock
// any time when more than kMaxClockElapsedTime has passed or
// whenever timeGetTime creates a rollover.
static bool initialized = false;
static TimeStamp init_time;
static DWORD init_ticks;
static const int64_t kHundredNanosecondsPerSecond = 10000000;
static const int64_t kMaxClockElapsedTime =
60*kHundredNanosecondsPerSecond; // 1 minute
// If we are uninitialized, we need to resync the clock.
bool needs_resync = !initialized;
// Get the current time.
TimeStamp time_now;
GetSystemTimeAsFileTime(&time_now.ft_);
DWORD ticks_now = timeGetTime();
// Check if we need to resync due to clock rollover.
needs_resync |= ticks_now < init_ticks;
// Check if we need to resync due to elapsed time.
needs_resync |= (time_now.t_ - init_time.t_) > kMaxClockElapsedTime;
// Check if we need to resync due to backwards time change.
needs_resync |= time_now.t_ < init_time.t_;
// Resync the clock if necessary.
if (needs_resync) {
GetSystemTimeAsFileTime(&init_time.ft_);
init_ticks = ticks_now = timeGetTime();
initialized = true;
}
// Finally, compute the actual time. Why is this so hard.
DWORD elapsed = ticks_now - init_ticks;
this->time_.t_ = init_time.t_ + (static_cast<int64_t>(elapsed) * 10000);
}
// Return the local timezone offset in milliseconds east of UTC. This
// takes into account whether daylight saving is in effect at the time.
// Only times in the 32-bit Unix range may be passed to this function.
// Also, adding the time-zone offset to the input must not overflow.
// The function EquivalentTime() in date.js guarantees this.
int64_t Win32Time::LocalOffset() {
int64_t Time::LocalOffset() {
// Initialize timezone information, if needed.
TzSet();
Win32Time rounded_to_second(*this);
Time rounded_to_second(*this);
rounded_to_second.t() = rounded_to_second.t() / 1000 / kTimeScaler *
1000 * kTimeScaler;
// Convert to local time using POSIX localtime function.
@ -465,7 +541,7 @@ int64_t Win32Time::LocalOffset() {
// Return whether or not daylight savings time is in effect at this time.
bool Win32Time::InDST() {
bool Time::InDST() {
// Initialize timezone information, if needed.
TzSet();
@ -489,14 +565,14 @@ bool Win32Time::InDST() {
// Return the daylight savings time offset for this time.
int64_t Win32Time::DaylightSavingsOffset() {
int64_t Time::DaylightSavingsOffset() {
return InDST() ? 60 * kMsPerMinute : 0;
}
// Returns a string identifying the current timezone for the
// timestamp taking into account daylight saving.
char* Win32Time::LocalTimezone() {
char* Time::LocalTimezone() {
// Return the standard or DST time zone name based on whether daylight
// saving is in effect at the given time.
return InDST() ? dst_tz_name_ : std_tz_name_;
@ -538,14 +614,22 @@ int OS::GetUserTime(uint32_t* secs, uint32_t* usecs) {
// Returns current time as the number of milliseconds since
// 00:00:00 UTC, January 1, 1970.
double OS::TimeCurrentMillis() {
return Time::Now().ToJsTime();
Time t;
t.SetToCurrentTime();
return t.ToJSTime();
}
// Returns the tickcounter based on timeGetTime.
int64_t OS::Ticks() {
return timeGetTime() * 1000; // Convert to microseconds.
}
// Returns a string identifying the current timezone taking into
// account daylight saving.
const char* OS::LocalTimezone(double time) {
return Win32Time(time).LocalTimezone();
return Time(time).LocalTimezone();
}
@ -553,7 +637,7 @@ const char* OS::LocalTimezone(double time) {
// taking daylight savings time into account.
double OS::LocalTimeOffset() {
// Use current time, rounded to the millisecond.
Win32Time t(TimeCurrentMillis());
Time t(TimeCurrentMillis());
// Time::LocalOffset inlcudes any daylight savings offset, so subtract it.
return static_cast<double>(t.LocalOffset() - t.DaylightSavingsOffset());
}
@ -562,7 +646,7 @@ double OS::LocalTimeOffset() {
// Returns the daylight savings offset in milliseconds for the given
// time.
double OS::DaylightSavingsOffset(double time) {
int64_t offset = Win32Time(time).DaylightSavingsOffset();
int64_t offset = Time(time).DaylightSavingsOffset();
return static_cast<double>(offset);
}

View File

@ -192,6 +192,10 @@ class OS {
// micro-second resolution.
static int GetUserTime(uint32_t* secs, uint32_t* usecs);
// Get a tick counter normalized to one tick per microsecond.
// Used for calculating time intervals.
static int64_t Ticks();
// Returns current time as the number of milliseconds since
// 00:00:00 UTC, January 1, 1970.
static double TimeCurrentMillis();

View File

@ -334,8 +334,8 @@ CpuProfile::CpuProfile(const char* title, unsigned uid, bool record_samples)
: title_(title),
uid_(uid),
record_samples_(record_samples),
start_time_(Time::NowFromSystemTime()) {
timer_.Start();
start_time_us_(OS::Ticks()),
end_time_us_(0) {
}
@ -346,7 +346,7 @@ void CpuProfile::AddPath(const Vector<CodeEntry*>& path) {
void CpuProfile::CalculateTotalTicksAndSamplingRate() {
end_time_ = start_time_ + timer_.Elapsed();
end_time_us_ = OS::Ticks();
}

View File

@ -30,7 +30,6 @@
#include "allocation.h"
#include "hashmap.h"
#include "time/time.h"
#include "../include/v8-profiler.h"
namespace v8 {
@ -203,8 +202,8 @@ class CpuProfile {
int samples_count() const { return samples_.length(); }
ProfileNode* sample(int index) const { return samples_.at(index); }
Time start_time() const { return start_time_; }
Time end_time() const { return end_time_; }
int64_t start_time_us() const { return start_time_us_; }
int64_t end_time_us() const { return end_time_us_; }
void UpdateTicksScale();
@ -214,9 +213,8 @@ class CpuProfile {
const char* title_;
unsigned uid_;
bool record_samples_;
Time start_time_;
Time end_time_;
ElapsedTimer timer_;
int64_t start_time_us_;
int64_t end_time_us_;
List<ProfileNode*> samples_;
ProfileTree top_down_;

View File

@ -1,120 +0,0 @@
// Copyright 2013 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_TIME_ELAPSED_TIMER_H_
#define V8_TIME_ELAPSED_TIMER_H_
#include "checks.h"
#include "time/time.h"
namespace v8 {
namespace internal {
class ElapsedTimer V8_FINAL BASE_EMBEDDED {
public:
#ifdef DEBUG
ElapsedTimer() : started_(false) {}
#endif
// Starts this timer. Once started a timer can be checked with
// |Elapsed()| or |HasExpired()|, and may be restarted using |Restart()|.
// This method must not be called on an already started timer.
void Start() {
ASSERT(!IsStarted());
start_ticks_ = Now();
#ifdef DEBUG
started_ = true;
#endif
ASSERT(IsStarted());
}
// Stops this timer. Must not be called on a timer that was not
// started before.
void Stop() {
ASSERT(IsStarted());
start_ticks_ = TimeTicks();
#ifdef DEBUG
started_ = false;
#endif
ASSERT(!IsStarted());
}
// Returns |true| if this timer was started previously.
bool IsStarted() const {
ASSERT(started_ || start_ticks_.IsNull());
ASSERT(!started_ || !start_ticks_.IsNull());
return !start_ticks_.IsNull();
}
// Restarts the timer and returns the time elapsed since the previous start.
// This method is equivalent to obtaining the elapsed time with |Elapsed()|
// and then starting the timer again, but does so in one single operation,
// avoiding the need to obtain the clock value twice. It may only be called
// on a previously started timer.
TimeDelta Restart() {
ASSERT(IsStarted());
TimeTicks ticks = Now();
TimeDelta elapsed = ticks - start_ticks_;
ASSERT(elapsed.InMicroseconds() >= 0);
start_ticks_ = ticks;
ASSERT(IsStarted());
return elapsed;
}
// Returns the time elapsed since the previous start. This method may only
// be called on a previously started timer.
MUST_USE_RESULT TimeDelta Elapsed() const {
ASSERT(IsStarted());
TimeDelta elapsed = Now() - start_ticks_;
ASSERT(elapsed.InMicroseconds() >= 0);
return elapsed;
}
// Returns |true| if the specified |time_delta| has elapsed since the
// previous start, or |false| if not. This method may only be called on
// a previously started timer.
MUST_USE_RESULT bool HasExpired(TimeDelta time_delta) const {
ASSERT(IsStarted());
return Elapsed() >= time_delta;
}
private:
MUST_USE_RESULT V8_INLINE(static TimeTicks Now()) {
TimeTicks now = TimeTicks::HighResNow();
ASSERT(!now.IsNull());
return now;
}
TimeTicks start_ticks_;
#ifdef DEBUG
bool started_;
#endif
};
} } // namespace v8::internal
#endif // V8_TIME_ELAPSED_TIMER_H_

View File

@ -1,483 +0,0 @@
// Copyright 2013 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "time.h"
#if V8_OS_POSIX
#include <sys/time.h>
#endif
#if V8_OS_MACOSX
#include <mach/mach_time.h>
#endif
#include <cstring>
#include "checks.h"
#include "cpu.h"
#include "platform.h"
#if V8_OS_WIN
#define V8_WIN32_HEADERS_FULL
#include "win32-headers.h"
#endif
namespace v8 {
namespace internal {
TimeDelta TimeDelta::FromDays(int days) {
return TimeDelta(days * Time::kMicrosecondsPerDay);
}
TimeDelta TimeDelta::FromHours(int hours) {
return TimeDelta(hours * Time::kMicrosecondsPerHour);
}
TimeDelta TimeDelta::FromMinutes(int minutes) {
return TimeDelta(minutes * Time::kMicrosecondsPerMinute);
}
TimeDelta TimeDelta::FromSeconds(int64_t seconds) {
return TimeDelta(seconds * Time::kMicrosecondsPerSecond);
}
TimeDelta TimeDelta::FromMilliseconds(int64_t milliseconds) {
return TimeDelta(milliseconds * Time::kMicrosecondsPerMillisecond);
}
TimeDelta TimeDelta::FromNanoseconds(int64_t nanoseconds) {
return TimeDelta(nanoseconds / Time::kNanosecondsPerMicrosecond);
}
int TimeDelta::InDays() const {
return static_cast<int>(delta_ / Time::kMicrosecondsPerDay);
}
int TimeDelta::InHours() const {
return static_cast<int>(delta_ / Time::kMicrosecondsPerHour);
}
int TimeDelta::InMinutes() const {
return static_cast<int>(delta_ / Time::kMicrosecondsPerMinute);
}
double TimeDelta::InSecondsF() const {
return static_cast<double>(delta_) / Time::kMicrosecondsPerSecond;
}
int64_t TimeDelta::InSeconds() const {
return delta_ / Time::kMicrosecondsPerSecond;
}
double TimeDelta::InMillisecondsF() const {
return static_cast<double>(delta_) / Time::kMicrosecondsPerMillisecond;
}
int64_t TimeDelta::InMilliseconds() const {
return delta_ / Time::kMicrosecondsPerMillisecond;
}
int64_t TimeDelta::InNanoseconds() const {
return delta_ * Time::kNanosecondsPerMicrosecond;
}
#if V8_OS_WIN
// We implement time using the high-resolution timers so that we can get
// timeouts which are smaller than 10-15ms. To avoid any drift, we
// periodically resync the internal clock to the system clock.
class Clock V8_FINAL {
public:
Clock() : initial_time_(CurrentWallclockTime()),
initial_ticks_(TimeTicks::Now()),
mutex_(OS::CreateMutex()) {}
~Clock() { delete mutex_; }
Time Now() {
// This must be executed under lock.
ScopedLock sl(mutex_);
// Calculate the time elapsed since we started our timer.
TimeDelta elapsed = TimeTicks::Now() - initial_ticks_;
// Check if we don't need to synchronize with the wallclock yet.
if (elapsed.InMicroseconds() <= kMaxMicrosecondsToAvoidDrift) {
return initial_time_ + elapsed;
}
// Resynchronize with the wallclock.
initial_ticks_ = TimeTicks::Now();
initial_time_ = CurrentWallclockTime();
return initial_time_;
}
Time NowFromSystemTime() {
ScopedLock sl(mutex_);
initial_ticks_ = TimeTicks::Now();
initial_time_ = CurrentWallclockTime();
return initial_time_;
}
private:
// Time between resampling the un-granular clock for this API (1 minute).
static const int64_t kMaxMicrosecondsToAvoidDrift =
Time::kMicrosecondsPerMinute;
static Time CurrentWallclockTime() {
FILETIME ft;
::GetSystemTimeAsFileTime(&ft);
return Time::FromFiletime(ft);
}
TimeTicks initial_ticks_;
Time initial_time_;
Mutex* mutex_;
};
static LazyDynamicInstance<Clock,
DefaultCreateTrait<Clock>,
ThreadSafeInitOnceTrait>::type clock = LAZY_DYNAMIC_INSTANCE_INITIALIZER;
Time Time::Now() {
return clock.Pointer()->Now();
}
Time Time::NowFromSystemTime() {
return clock.Pointer()->NowFromSystemTime();
}
// Time between windows epoch and standard epoch.
static const int64_t kTimeToEpochInMicroseconds = V8_INT64_C(11644473600000000);
Time Time::FromFiletime(FILETIME ft) {
if (ft.dwLowDateTime == 0 && ft.dwHighDateTime == 0) {
return Time();
}
if (ft.dwLowDateTime == std::numeric_limits<DWORD>::max() &&
ft.dwHighDateTime == std::numeric_limits<DWORD>::max()) {
return Max();
}
int64_t us = (static_cast<uint64_t>(ft.dwLowDateTime) +
static_cast<uint64_t>(ft.dwHighDateTime) << 32) / 10;
return Time(us - kTimeToEpochInMicroseconds);
}
FILETIME Time::ToFiletime() const {
ASSERT(us_ >= 0);
FILETIME ft;
if (IsNull()) {
ft.dwLowDateTime = 0;
ft.dwHighDateTime = 0;
return ft;
}
if (IsMax()) {
ft.dwLowDateTime = std::numeric_limits<DWORD>::max();
ft.dwHighDateTime = std::numeric_limits<DWORD>::max();
return ft;
}
uint64_t us = static_cast<uint64_t>(us_ + kTimeToEpochInMicroseconds) * 10;
ft.dwLowDateTime = static_cast<DWORD>(us);
ft.dwHighDateTime = static_cast<DWORD>(us >> 32);
return ft;
}
#elif V8_OS_POSIX
Time Time::Now() {
struct timeval tv;
int result = gettimeofday(&tv, NULL);
ASSERT_EQ(0, result);
USE(result);
return FromTimeval(tv);
}
Time Time::NowFromSystemTime() {
return Now();
}
Time Time::FromTimeval(struct timeval tv) {
ASSERT(tv.tv_usec >= 0);
ASSERT(tv.tv_usec < static_cast<suseconds_t>(kMicrosecondsPerSecond));
if (tv.tv_usec == 0 && tv.tv_sec == 0) {
return Time();
}
if (tv.tv_usec == static_cast<suseconds_t>(kMicrosecondsPerSecond - 1) &&
tv.tv_sec == std::numeric_limits<time_t>::max()) {
return Max();
}
return Time(tv.tv_sec * kMicrosecondsPerSecond + tv.tv_usec);
}
struct timeval Time::ToTimeval() const {
struct timeval tv;
if (IsNull()) {
tv.tv_sec = 0;
tv.tv_usec = 0;
return tv;
}
if (IsMax()) {
tv.tv_sec = std::numeric_limits<time_t>::max();
tv.tv_usec = static_cast<suseconds_t>(kMicrosecondsPerSecond - 1);
return tv;
}
tv.tv_sec = us_ / kMicrosecondsPerSecond;
tv.tv_usec = us_ % kMicrosecondsPerSecond;
return tv;
}
#endif // V8_OS_WIN
Time Time::FromJsTime(double ms_since_epoch) {
// The epoch is a valid time, so this constructor doesn't interpret
// 0 as the null time.
if (ms_since_epoch == std::numeric_limits<double>::max()) {
return Max();
}
return Time(
static_cast<int64_t>(ms_since_epoch * kMicrosecondsPerMillisecond));
}
double Time::ToJsTime() const {
if (IsNull()) {
// Preserve 0 so the invalid result doesn't depend on the platform.
return 0;
}
if (IsMax()) {
// Preserve max without offset to prevent overflow.
return std::numeric_limits<double>::max();
}
return static_cast<double>(us_) / kMicrosecondsPerMillisecond;
}
#if V8_OS_WIN
class TickClock {
public:
virtual ~TickClock() {}
virtual int64_t Now() = 0;
};
// Overview of time counters:
// (1) CPU cycle counter. (Retrieved via RDTSC)
// The CPU counter provides the highest resolution time stamp and is the least
// expensive to retrieve. However, the CPU counter is unreliable and should not
// be used in production. Its biggest issue is that it is per processor and it
// is not synchronized between processors. Also, on some computers, the counters
// will change frequency due to thermal and power changes, and stop in some
// states.
//
// (2) QueryPerformanceCounter (QPC). The QPC counter provides a high-
// resolution (100 nanoseconds) time stamp but is comparatively more expensive
// to retrieve. What QueryPerformanceCounter actually does is up to the HAL.
// (with some help from ACPI).
// According to http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx
// in the worst case, it gets the counter from the rollover interrupt on the
// programmable interrupt timer. In best cases, the HAL may conclude that the
// RDTSC counter runs at a constant frequency, then it uses that instead. On
// multiprocessor machines, it will try to verify the values returned from
// RDTSC on each processor are consistent with each other, and apply a handful
// of workarounds for known buggy hardware. In other words, QPC is supposed to
// give consistent result on a multiprocessor computer, but it is unreliable in
// reality due to bugs in BIOS or HAL on some, especially old computers.
// With recent updates on HAL and newer BIOS, QPC is getting more reliable but
// it should be used with caution.
//
// (3) System time. The system time provides a low-resolution (typically 10ms
// to 55 milliseconds) time stamp but is comparatively less expensive to
// retrieve and more reliable.
class HighResolutionTickClock V8_FINAL : public TickClock {
public:
explicit HighResolutionTickClock(int64_t ticks_per_second)
: ticks_per_second_(ticks_per_second) {
ASSERT_NE(0, ticks_per_second);
}
virtual ~HighResolutionTickClock() {}
virtual int64_t Now() V8_OVERRIDE {
LARGE_INTEGER now;
BOOL result = QueryPerformanceCounter(&now);
ASSERT(result);
USE(result);
// Intentionally calculate microseconds in a round about manner to avoid
// overflow and precision issues. Think twice before simplifying!
int64_t whole_seconds = now.QuadPart / ticks_per_second_;
int64_t leftover_ticks = now.QuadPart % ticks_per_second_;
int64_t ticks = (whole_seconds * Time::kMicrosecondsPerSecond) +
((leftover_ticks * Time::kMicrosecondsPerSecond) / ticks_per_second_);
// Make sure we never return 0 here, so that TimeTicks::HighResNow()
// will never return 0.
return ticks + 1;
}
private:
int64_t ticks_per_second_;
};
class RolloverProtectedTickClock V8_FINAL : public TickClock {
public:
RolloverProtectedTickClock()
: mutex_(OS::CreateMutex()), last_seen_now_(0), rollover_ms_(1) {
// We initialize rollover_ms_ to 1 to ensure that we will never
// return 0 from TimeTicks::HighResNow() and TimeTicks::Now() below.
}
virtual ~RolloverProtectedTickClock() { delete mutex_; }
virtual int64_t Now() V8_OVERRIDE {
ScopedLock sl(mutex_);
// We use timeGetTime() to implement TimeTicks::Now(), which rolls over
// every ~49.7 days. We try to track rollover ourselves, which works if
// TimeTicks::Now() is called at least every 49 days.
// Note that we do not use GetTickCount() here, since timeGetTime() gives
// more predictable delta values, as described here:
// http://blogs.msdn.com/b/larryosterman/archive/2009/09/02/what-s-the-difference-between-gettickcount-and-timegettime.aspx
DWORD now = timeGetTime();
if (now < last_seen_now_) {
rollover_ms_ += V8_INT64_C(0x100000000); // ~49.7 days.
}
last_seen_now_ = now;
return now + rollover_ms_;
}
private:
Mutex* mutex_;
DWORD last_seen_now_;
int64_t rollover_ms_;
};
static LazyDynamicInstance<RolloverProtectedTickClock,
DefaultCreateTrait<RolloverProtectedTickClock>,
ThreadSafeInitOnceTrait>::type tick_clock =
LAZY_DYNAMIC_INSTANCE_INITIALIZER;
struct CreateHighResTickClockTrait {
static TickClock* Create() {
// Check if the installed hardware supports a high-resolution performance
// counter, and if not fallback to the low-resolution tick clock.
LARGE_INTEGER ticks_per_second;
if (!QueryPerformanceFrequency(&ticks_per_second)) {
return tick_clock.Pointer();
}
// On Athlon X2 CPUs (e.g. model 15) the QueryPerformanceCounter
// is unreliable, fallback to the low-resolution tick clock.
CPU cpu;
if (strcmp(cpu.vendor(), "AuthenticAMD") == 0 && cpu.family() == 15) {
return tick_clock.Pointer();
}
return new HighResolutionTickClock(ticks_per_second.QuadPart);
}
};
static LazyDynamicInstance<TickClock,
CreateHighResTickClockTrait,
ThreadSafeInitOnceTrait>::type high_res_tick_clock =
LAZY_DYNAMIC_INSTANCE_INITIALIZER;
TimeTicks TimeTicks::Now() {
// Make sure we never return 0 here.
TimeTicks ticks(tick_clock.Pointer()->Now());
ASSERT(!ticks.IsNull());
return ticks;
}
TimeTicks TimeTicks::HighResNow() {
// Make sure we never return 0 here.
TimeTicks ticks(high_res_tick_clock.Pointer()->Now());
ASSERT(!ticks.IsNull());
return ticks;
}
#else // V8_OS_WIN
TimeTicks TimeTicks::Now() {
return HighResNow();
}
TimeTicks TimeTicks::HighResNow() {
int64_t ticks;
#if V8_OS_MACOSX
static struct mach_timebase_info info;
if (info.denom == 0) {
kern_return_t result = mach_timebase_info(&info);
ASSERT_EQ(KERN_SUCCESS, result);
USE(result);
}
ticks = (mach_absolute_time() / Time::kNanosecondsPerMicrosecond *
info.numer / info.denom);
#elif V8_OS_SOLARIS
ticks = (gethrtime() / Time::kNanosecondsPerMicrosecond);
#elif V8_OS_POSIX
struct timespec ts;
int result = clock_gettime(CLOCK_MONOTONIC, &ts);
ASSERT_EQ(0, result);
USE(result);
ticks = (ts.tv_sec * Time::kMicrosecondsPerSecond +
ts.tv_nsec / Time::kNanosecondsPerMicrosecond);
#endif // V8_OS_MACOSX
// Make sure we never return 0 here.
return TimeTicks(ticks + 1);
}
#endif // V8_OS_WIN
} } // namespace v8::internal

View File

@ -1,381 +0,0 @@
// Copyright 2013 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_TIME_TIME_H_
#define V8_TIME_TIME_H_
#include <ctime>
#include <limits>
#include "allocation.h"
// Forward declarations.
extern "C" {
struct _FILETIME;
struct timeval;
}
namespace v8 {
namespace internal {
class Time;
class TimeTicks;
// -----------------------------------------------------------------------------
// TimeDelta
//
// This class represents a duration of time, internally represented in
// microseonds.
class TimeDelta V8_FINAL BASE_EMBEDDED {
public:
TimeDelta() : delta_(0) {}
// Converts units of time to TimeDeltas.
static TimeDelta FromDays(int days);
static TimeDelta FromHours(int hours);
static TimeDelta FromMinutes(int minutes);
static TimeDelta FromSeconds(int64_t seconds);
static TimeDelta FromMilliseconds(int64_t milliseconds);
static TimeDelta FromMicroseconds(int64_t microseconds) {
return TimeDelta(microseconds);
}
static TimeDelta FromNanoseconds(int64_t nanoseconds);
// Returns the time delta in some unit. The F versions return a floating
// point value, the "regular" versions return a rounded-down value.
//
// InMillisecondsRoundedUp() instead returns an integer that is rounded up
// to the next full millisecond.
int InDays() const;
int InHours() const;
int InMinutes() const;
double InSecondsF() const;
int64_t InSeconds() const;
double InMillisecondsF() const;
int64_t InMilliseconds() const;
int64_t InMillisecondsRoundedUp() const;
int64_t InMicroseconds() const { return delta_; }
int64_t InNanoseconds() const;
TimeDelta& operator=(const TimeDelta& other) {
delta_ = other.delta_;
return *this;
}
// Computations with other deltas.
TimeDelta operator+(const TimeDelta& other) const {
return TimeDelta(delta_ + other.delta_);
}
TimeDelta operator-(const TimeDelta& other) const {
return TimeDelta(delta_ - other.delta_);
}
TimeDelta& operator+=(const TimeDelta& other) {
delta_ += other.delta_;
return *this;
}
TimeDelta& operator-=(const TimeDelta& other) {
delta_ -= other.delta_;
return *this;
}
TimeDelta operator-() const {
return TimeDelta(-delta_);
}
double TimesOf(const TimeDelta& other) const {
return static_cast<double>(delta_) / static_cast<double>(other.delta_);
}
double PercentOf(const TimeDelta& other) const {
return TimesOf(other) * 100.0;
}
// Computations with ints, note that we only allow multiplicative operations
// with ints, and additive operations with other deltas.
TimeDelta operator*(int64_t a) const {
return TimeDelta(delta_ * a);
}
TimeDelta operator/(int64_t a) const {
return TimeDelta(delta_ / a);
}
TimeDelta& operator*=(int64_t a) {
delta_ *= a;
return *this;
}
TimeDelta& operator/=(int64_t a) {
delta_ /= a;
return *this;
}
int64_t operator/(const TimeDelta& other) const {
return delta_ / other.delta_;
}
// Comparison operators.
bool operator==(const TimeDelta& other) const {
return delta_ == other.delta_;
}
bool operator!=(const TimeDelta& other) const {
return delta_ != other.delta_;
}
bool operator<(const TimeDelta& other) const {
return delta_ < other.delta_;
}
bool operator<=(const TimeDelta& other) const {
return delta_ <= other.delta_;
}
bool operator>(const TimeDelta& other) const {
return delta_ > other.delta_;
}
bool operator>=(const TimeDelta& other) const {
return delta_ >= other.delta_;
}
private:
// Constructs a delta given the duration in microseconds. This is private
// to avoid confusion by callers with an integer constructor. Use
// FromSeconds, FromMilliseconds, etc. instead.
explicit TimeDelta(int64_t delta) : delta_(delta) {}
// Delta in microseconds.
int64_t delta_;
};
// -----------------------------------------------------------------------------
// Time
//
// This class represents an absolute point in time, internally represented as
// microseconds (s/1,000,000) since 00:00:00 UTC, January 1, 1970.
class Time V8_FINAL BASE_EMBEDDED {
public:
static const int64_t kMillisecondsPerSecond = 1000;
static const int64_t kMicrosecondsPerMillisecond = 1000;
static const int64_t kMicrosecondsPerSecond = kMicrosecondsPerMillisecond *
kMillisecondsPerSecond;
static const int64_t kMicrosecondsPerMinute = kMicrosecondsPerSecond * 60;
static const int64_t kMicrosecondsPerHour = kMicrosecondsPerMinute * 60;
static const int64_t kMicrosecondsPerDay = kMicrosecondsPerHour * 24;
static const int64_t kMicrosecondsPerWeek = kMicrosecondsPerDay * 7;
static const int64_t kNanosecondsPerMicrosecond = 1000;
static const int64_t kNanosecondsPerSecond = kNanosecondsPerMicrosecond *
kMicrosecondsPerSecond;
// Contains the NULL time. Use Time::Now() to get the current time.
Time() : us_(0) {}
// Returns true if the time object has not been initialized.
bool IsNull() const { return us_ == 0; }
// Returns true if the time object is the maximum time.
bool IsMax() const { return us_ == std::numeric_limits<int64_t>::max(); }
// Returns the current time. Watch out, the system might adjust its clock
// in which case time will actually go backwards. We don't guarantee that
// times are increasing, or that two calls to Now() won't be the same.
static Time Now();
// Returns the current time. Same as Now() except that this function always
// uses system time so that there are no discrepancies between the returned
// time and system time even on virtual environments including our test bot.
// For timing sensitive unittests, this function should be used.
static Time NowFromSystemTime();
// Returns the time for epoch in Unix-like system (Jan 1, 1970).
static Time UnixEpoch() { return Time(0); }
// Returns the maximum time, which should be greater than any reasonable time
// with which we might compare it.
static Time Max() { return Time(std::numeric_limits<int64_t>::max()); }
// Converts to/from POSIX time values.
static Time FromTimeval(struct timeval tv);
struct timeval ToTimeval() const;
// Converts to/from Windows file times.
static Time FromFiletime(struct _FILETIME ft);
struct _FILETIME ToFiletime() const;
// Converts to/from the Javascript convention for times, a number of
// milliseconds since the epoch:
static Time FromJsTime(double ms_since_epoch);
double ToJsTime() const;
Time& operator=(const Time& other) {
us_ = other.us_;
return *this;
}
// Compute the difference between two times.
TimeDelta operator-(const Time& other) const {
return TimeDelta::FromMicroseconds(us_ - other.us_);
}
// Modify by some time delta.
Time& operator+=(const TimeDelta& delta) {
us_ += delta.InMicroseconds();
return *this;
}
Time& operator-=(const TimeDelta& delta) {
us_ -= delta.InMicroseconds();
return *this;
}
// Return a new time modified by some delta.
Time operator+(const TimeDelta& delta) const {
return Time(us_ + delta.InMicroseconds());
}
Time operator-(const TimeDelta& delta) const {
return Time(us_ - delta.InMicroseconds());
}
// Comparison operators
bool operator==(const Time& other) const {
return us_ == other.us_;
}
bool operator!=(const Time& other) const {
return us_ != other.us_;
}
bool operator<(const Time& other) const {
return us_ < other.us_;
}
bool operator<=(const Time& other) const {
return us_ <= other.us_;
}
bool operator>(const Time& other) const {
return us_ > other.us_;
}
bool operator>=(const Time& other) const {
return us_ >= other.us_;
}
private:
explicit Time(int64_t us) : us_(us) {}
// Time in microseconds in UTC.
int64_t us_;
};
inline Time operator+(const TimeDelta& delta, const Time& time) {
return time + delta;
}
// -----------------------------------------------------------------------------
// TimeTicks
//
// This class represents an abstract time that is most of the time incrementing
// for use in measuring time durations. It is internally represented in
// microseconds. It can not be converted to a human-readable time, but is
// guaranteed not to decrease (if the user changes the computer clock,
// Time::Now() may actually decrease or jump). But note that TimeTicks may
// "stand still", for example if the computer suspended.
class TimeTicks V8_FINAL BASE_EMBEDDED {
public:
TimeTicks() : ticks_(0) {}
// Platform-dependent tick count representing "right now."
// The resolution of this clock is ~1-15ms. Resolution varies depending
// on hardware/operating system configuration.
// This method never returns a null TimeTicks.
static TimeTicks Now();
// Returns a platform-dependent high-resolution tick count. Implementation
// is hardware dependent and may or may not return sub-millisecond
// resolution. THIS CALL IS GENERALLY MUCH MORE EXPENSIVE THAN Now() AND
// SHOULD ONLY BE USED WHEN IT IS REALLY NEEDED.
// This method never returns a null TimeTicks.
static TimeTicks HighResNow();
// Returns true if this object has not been initialized.
bool IsNull() const { return ticks_ == 0; }
TimeTicks& operator=(const TimeTicks other) {
ticks_ = other.ticks_;
return *this;
}
// Compute the difference between two times.
TimeDelta operator-(const TimeTicks other) const {
return TimeDelta::FromMicroseconds(ticks_ - other.ticks_);
}
// Modify by some time delta.
TimeTicks& operator+=(const TimeDelta& delta) {
ticks_ += delta.InMicroseconds();
return *this;
}
TimeTicks& operator-=(const TimeDelta& delta) {
ticks_ -= delta.InMicroseconds();
return *this;
}
// Return a new TimeTicks modified by some delta.
TimeTicks operator+(const TimeDelta& delta) const {
return TimeTicks(ticks_ + delta.InMicroseconds());
}
TimeTicks operator-(const TimeDelta& delta) const {
return TimeTicks(ticks_ - delta.InMicroseconds());
}
// Comparison operators
bool operator==(const TimeTicks& other) const {
return ticks_ == other.ticks_;
}
bool operator!=(const TimeTicks& other) const {
return ticks_ != other.ticks_;
}
bool operator<(const TimeTicks& other) const {
return ticks_ < other.ticks_;
}
bool operator<=(const TimeTicks& other) const {
return ticks_ <= other.ticks_;
}
bool operator>(const TimeTicks& other) const {
return ticks_ > other.ticks_;
}
bool operator>=(const TimeTicks& other) const {
return ticks_ >= other.ticks_;
}
private:
// Please use Now() to create a new object. This is for internal use
// and testing. Ticks is in microseconds.
explicit TimeTicks(int64_t ticks) : ticks_(ticks) {}
// Tick count in microseconds.
int64_t ticks_;
};
inline TimeTicks operator+(const TimeDelta& delta, const TimeTicks& ticks) {
return ticks + delta;
}
} } // namespace v8::internal
#endif // V8_TIME_TIME_H_

View File

@ -100,7 +100,6 @@
'test-strtod.cc',
'test-thread-termination.cc',
'test-threads.cc',
'test-time.cc',
'test-types.cc',
'test-unbound-queue.cc',
'test-utils.cc',

View File

@ -44,15 +44,14 @@ using i::ProfileNode;
using i::ProfilerEventsProcessor;
using i::ScopedVector;
using i::SmartPointer;
using i::TimeDelta;
using i::Vector;
TEST(StartStop) {
CpuProfilesCollection profiles;
ProfileGenerator generator(&profiles);
SmartPointer<ProfilerEventsProcessor> processor(new ProfilerEventsProcessor(
&generator, NULL, TimeDelta::FromMicroseconds(100)));
SmartPointer<ProfilerEventsProcessor> processor(
new ProfilerEventsProcessor(&generator, NULL, 100));
processor->Start();
processor->StopSynchronously();
}
@ -143,8 +142,8 @@ TEST(CodeEvents) {
CpuProfilesCollection* profiles = new CpuProfilesCollection;
profiles->StartProfiling("", 1, false);
ProfileGenerator generator(profiles);
SmartPointer<ProfilerEventsProcessor> processor(new ProfilerEventsProcessor(
&generator, NULL, TimeDelta::FromMicroseconds(100)));
SmartPointer<ProfilerEventsProcessor> processor(
new ProfilerEventsProcessor(&generator, NULL, 100));
processor->Start();
CpuProfiler profiler(isolate, profiles, &generator, *processor);
@ -205,8 +204,8 @@ TEST(TickEvents) {
CpuProfilesCollection* profiles = new CpuProfilesCollection;
profiles->StartProfiling("", 1, false);
ProfileGenerator generator(profiles);
SmartPointer<ProfilerEventsProcessor> processor(new ProfilerEventsProcessor(
&generator, NULL, TimeDelta::FromMicroseconds(100)));
SmartPointer<ProfilerEventsProcessor> processor(
new ProfilerEventsProcessor(&generator, NULL, 100));
processor->Start();
CpuProfiler profiler(isolate, profiles, &generator, *processor);
@ -274,8 +273,8 @@ TEST(Issue1398) {
CpuProfilesCollection* profiles = new CpuProfilesCollection;
profiles->StartProfiling("", 1, false);
ProfileGenerator generator(profiles);
SmartPointer<ProfilerEventsProcessor> processor(new ProfilerEventsProcessor(
&generator, NULL, TimeDelta::FromMicroseconds(100)));
SmartPointer<ProfilerEventsProcessor> processor(
new ProfilerEventsProcessor(&generator, NULL, 100));
processor->Start();
CpuProfiler profiler(isolate, profiles, &generator, *processor);
@ -420,10 +419,13 @@ TEST(ProfileStartEndTime) {
v8::HandleScope scope(env->GetIsolate());
v8::CpuProfiler* cpu_profiler = env->GetIsolate()->GetCpuProfiler();
int64_t time_before_profiling = i::OS::Ticks();
v8::Local<v8::String> profile_name = v8::String::New("test");
cpu_profiler->StartCpuProfiling(profile_name);
const v8::CpuProfile* profile = cpu_profiler->StopCpuProfiling(profile_name);
CHECK(time_before_profiling <= profile->GetStartTime());
CHECK(profile->GetStartTime() <= profile->GetEndTime());
CHECK(profile->GetEndTime() <= i::OS::Ticks());
}

View File

@ -1,116 +0,0 @@
// Copyright 2013 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <cstdlib>
#include "v8.h"
#include "cctest.h"
#if V8_OS_WIN
#include "win32-headers.h"
#endif
using namespace v8::internal;
TEST(TimeDeltaFromAndIn) {
CHECK(TimeDelta::FromDays(2) == TimeDelta::FromHours(48));
CHECK(TimeDelta::FromHours(3) == TimeDelta::FromMinutes(180));
CHECK(TimeDelta::FromMinutes(2) == TimeDelta::FromSeconds(120));
CHECK(TimeDelta::FromSeconds(2) == TimeDelta::FromMilliseconds(2000));
CHECK(TimeDelta::FromMilliseconds(2) == TimeDelta::FromMicroseconds(2000));
CHECK_EQ(static_cast<int>(13), TimeDelta::FromDays(13).InDays());
CHECK_EQ(static_cast<int>(13), TimeDelta::FromHours(13).InHours());
CHECK_EQ(static_cast<int>(13), TimeDelta::FromMinutes(13).InMinutes());
CHECK_EQ(static_cast<int64_t>(13), TimeDelta::FromSeconds(13).InSeconds());
CHECK_EQ(13.0, TimeDelta::FromSeconds(13).InSecondsF());
CHECK_EQ(static_cast<int64_t>(13),
TimeDelta::FromMilliseconds(13).InMilliseconds());
CHECK_EQ(13.0, TimeDelta::FromMilliseconds(13).InMillisecondsF());
CHECK_EQ(static_cast<int64_t>(13),
TimeDelta::FromMicroseconds(13).InMicroseconds());
}
TEST(TimeJsTime) {
Time t = Time::FromJsTime(700000.3);
CHECK_EQ(700000.3, t.ToJsTime());
}
#if V8_OS_POSIX
TEST(TimeFromTimeVal) {
Time null;
CHECK(null.IsNull());
CHECK(null == Time::FromTimeval(null.ToTimeval()));
Time now = Time::Now();
CHECK(now == Time::FromTimeval(now.ToTimeval()));
Time now_sys = Time::NowFromSystemTime();
CHECK(now_sys == Time::FromTimeval(now_sys.ToTimeval()));
Time unix_epoch = Time::UnixEpoch();
CHECK(unix_epoch == Time::FromTimeval(unix_epoch.ToTimeval()));
Time max = Time::Max();
CHECK(max.IsMax());
CHECK(max == Time::FromTimeval(max.ToTimeval()));
}
#endif
#if V8_OS_WIN
TEST(TimeFromFiletime) {
Time null;
CHECK(null.IsNull());
CHECK(null == Time::FromFiletime(null.ToFiletime()));
Time now = Time::Now();
CHECK(now == Time::FromFiletime(now.ToFiletime()));
Time now_sys = Time::NowFromSystemTime();
CHECK(now_sys == Time::FromFiletime(now_sys.ToFiletime()));
Time unix_epoch = Time::UnixEpoch();
CHECK(unix_epoch == Time::FromFiletime(unix_epoch.ToFiletime()));
Time max = Time::Max();
CHECK(max.IsMax());
CHECK(max == Time::FromFiletime(max.ToFiletime()));
}
#endif
TEST(TimeTicksIsMonotonic) {
TimeTicks previous_normal_ticks;
TimeTicks previous_highres_ticks;
ElapsedTimer timer;
timer.Start();
while (!timer.HasExpired(TimeDelta::FromMilliseconds(100))) {
TimeTicks normal_ticks = TimeTicks::Now();
TimeTicks highres_ticks = TimeTicks::HighResNow();
CHECK_GE(normal_ticks, previous_normal_ticks);
CHECK_GE((normal_ticks - previous_normal_ticks).InMicroseconds(), 0);
CHECK_GE(highres_ticks, previous_highres_ticks);
CHECK_GE((highres_ticks - previous_highres_ticks).InMicroseconds(), 0);
previous_normal_ticks = normal_ticks;
previous_highres_ticks = highres_ticks;
}
}

View File

@ -500,9 +500,6 @@
'../../src/stub-cache.h',
'../../src/sweeper-thread.h',
'../../src/sweeper-thread.cc',
'../../src/time/elapsed-timer.h',
'../../src/time/time.cc',
'../../src/time/time.h',
'../../src/token.cc',
'../../src/token.h',
'../../src/transitions-inl.h',
@ -691,9 +688,6 @@
]
}],
],
'libraries': [
'-lrt'
]
},
'sources': [ ### gcmole(os:linux) ###
'../../src/platform-linux.cc',
@ -706,7 +700,7 @@
'CAN_USE_VFP_INSTRUCTIONS',
],
'sources': [
'../../src/platform-posix.cc'
'../../src/platform-posix.cc',
],
'conditions': [
['host_os=="mac"', {
@ -769,7 +763,7 @@
]},
'sources': [
'../../src/platform-solaris.cc',
'../../src/platform-posix.cc'
'../../src/platform-posix.cc',
],
}
],
@ -792,13 +786,13 @@
['build_env=="Cygwin"', {
'sources': [
'../../src/platform-cygwin.cc',
'../../src/platform-posix.cc'
'../../src/platform-posix.cc',
],
}, {
'sources': [
'../../src/platform-win32.cc',
'../../src/win32-math.h',
'../../src/win32-math.cc',
'../../src/win32-math.h'
],
}],
],
@ -808,8 +802,8 @@
}, {
'sources': [
'../../src/platform-win32.cc',
'../../src/win32-math.h',
'../../src/win32-math.cc',
'../../src/win32-math.h'
],
'msvs_disabled_warnings': [4351, 4355, 4800],
'link_settings': {