Get the ARM simulator to throw an exception on unaligned accesses.

Review URL: http://codereview.chromium.org/8830

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@641 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
This commit is contained in:
erik.corry@gmail.com 2008-10-29 14:12:13 +00:00
parent 0b96fb22f3
commit 21228af2c0
2 changed files with 124 additions and 17 deletions

View File

@ -428,6 +428,104 @@ int32_t Simulator::get_pc() const {
}
// The ARM cannot do unaligned reads and writes. On some ARM platforms an
// interrupt is caused. On others it does a funky rotation thing. For now we
// simply disallow unaligned reads, but at some point we may want to move to
// emulating the rotate behaviour. Note that simulator runs have the runtime
// system running directly on the host system and only generated code is
// executed in the simulator. Since the host is typically IA32 we will not
// get the correct ARM-like behaviour on unaligned accesses.
int Simulator::ReadW(int32_t addr, Instr* instr) {
if ((addr & 3) == 0) {
intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
return *ptr;
}
PrintF("Unaligned read at %x\n", addr);
UNIMPLEMENTED();
return 0;
}
void Simulator::WriteW(int32_t addr, int value, Instr* instr) {
if ((addr & 3) == 0) {
intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
*ptr = value;
return;
}
PrintF("Unaligned write at %x, pc=%p\n", addr, instr);
UNIMPLEMENTED();
}
uint16_t Simulator::ReadHU(int32_t addr, Instr* instr) {
if ((addr & 1) == 0) {
uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
return *ptr;
}
PrintF("Unaligned read at %x, pc=%p\n", addr, instr);
UNIMPLEMENTED();
return 0;
}
int16_t Simulator::ReadH(int32_t addr, Instr* instr) {
if ((addr & 1) == 0) {
int16_t* ptr = reinterpret_cast<int16_t*>(addr);
return *ptr;
}
PrintF("Unaligned read at %x\n", addr);
UNIMPLEMENTED();
return 0;
}
void Simulator::WriteH(int32_t addr, uint16_t value, Instr* instr) {
if ((addr & 1) == 0) {
uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
*ptr = value;
return;
}
PrintF("Unaligned write at %x, pc=%p\n", addr, instr);
UNIMPLEMENTED();
}
void Simulator::WriteH(int32_t addr, int16_t value, Instr* instr) {
if ((addr & 1) == 0) {
int16_t* ptr = reinterpret_cast<int16_t*>(addr);
*ptr = value;
return;
}
PrintF("Unaligned write at %x, pc=%p\n", addr, instr);
UNIMPLEMENTED();
}
uint8_t Simulator::ReadBU(int32_t addr) {
uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
return *ptr;
}
int8_t Simulator::ReadB(int32_t addr) {
int8_t* ptr = reinterpret_cast<int8_t*>(addr);
return *ptr;
}
void Simulator::WriteB(int32_t addr, uint8_t value) {
uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
*ptr = value;
}
void Simulator::WriteB(int32_t addr, int8_t value) {
int8_t* ptr = reinterpret_cast<int8_t*>(addr);
*ptr = value;
}
// Returns the limit of the stack area to enable checking for stack overflows.
uintptr_t Simulator::StackLimit() const {
// Leave a safety margin of 256 bytes to prevent overrunning the stack when
@ -953,30 +1051,27 @@ void Simulator::DecodeType01(Instr* instr) {
}
if (instr->HasH()) {
if (instr->HasSign()) {
int16_t* haddr = reinterpret_cast<int16_t*>(addr);
if (instr->HasL()) {
int16_t val = *haddr;
int16_t val = ReadH(addr, instr);
set_register(rd, val);
} else {
int16_t val = get_register(rd);
*haddr = val;
WriteH(addr, val, instr);
}
} else {
uint16_t* haddr = reinterpret_cast<uint16_t*>(addr);
if (instr->HasL()) {
uint16_t val = *haddr;
uint16_t val = ReadHU(addr, instr);
set_register(rd, val);
} else {
uint16_t val = get_register(rd);
*haddr = val;
WriteH(addr, val, instr);
}
}
} else {
// signed byte loads
ASSERT(instr->HasSign());
ASSERT(instr->HasL());
int8_t* baddr = reinterpret_cast<int8_t*>(addr);
int8_t val = *baddr;
int8_t val = ReadB(addr);
set_register(rd, val);
}
return;
@ -1231,20 +1326,18 @@ void Simulator::DecodeType2(Instr* instr) {
}
}
if (instr->HasB()) {
byte* baddr = reinterpret_cast<byte*>(addr);
if (instr->HasL()) {
byte val = *baddr;
byte val = ReadBU(addr);
set_register(rd, val);
} else {
byte val = get_register(rd);
*baddr = val;
WriteB(addr, val);
}
} else {
intptr_t* iaddr = reinterpret_cast<intptr_t*>(addr);
if (instr->HasL()) {
set_register(rd, *iaddr);
set_register(rd, ReadW(addr, instr));
} else {
*iaddr = get_register(rd);
WriteW(addr, get_register(rd), instr);
}
}
}
@ -1292,11 +1385,10 @@ void Simulator::DecodeType3(Instr* instr) {
if (instr->HasB()) {
UNIMPLEMENTED();
} else {
intptr_t* iaddr = reinterpret_cast<intptr_t*>(addr);
if (instr->HasL()) {
set_register(rd, *iaddr);
set_register(rd, ReadW(addr, instr));
} else {
*iaddr = get_register(rd);
WriteW(addr, get_register(rd), instr);
}
}
}

View File

@ -147,6 +147,21 @@ class Simulator {
void HandleRList(Instr* instr, bool load);
void SoftwareInterrupt(Instr* instr);
// Read and write memory.
inline uint8_t ReadBU(int32_t addr);
inline int8_t ReadB(int32_t addr);
inline void WriteB(int32_t addr, uint8_t value);
inline void WriteB(int32_t addr, int8_t value);
inline uint16_t ReadHU(int32_t addr, Instr* instr);
inline int16_t ReadH(int32_t addr, Instr* instr);
// Note: Overloaded on the sign of the value.
inline void WriteH(int32_t addr, uint16_t value, Instr* instr);
inline void WriteH(int32_t addr, int16_t value, Instr* instr);
inline int ReadW(int32_t addr, Instr* instr);
inline void WriteW(int32_t addr, int value, Instr* instr);
// Executing is handled based on the instruction type.
void DecodeType01(Instr* instr); // both type 0 and type 1 rolled into one
void DecodeType2(Instr* instr);