[wasm-simd][ia32][liftoff] Implement double precision conversions

Extract codegen into macro-assembler functions for reuse in Liftoff.

Some minor tweaks in I32x4TruncSatF64x2SZero and I32x4TruncSatF64x2UZero
to check dst and src overlap and move to scratch/dst accordingly. In
TurboFan we can set these restrictions in the instruction-selector, but
not in Liftoff. This doesn't make TurboFan codegen any worse, since
those restrictions are still in place.

Bug: v8:11265
Change-Id: I48f354c5ff86809bb3ddc38eca6dc8990b9b7d61
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2683208
Commit-Queue: Zhi An Ng <zhin@chromium.org>
Reviewed-by: Clemens Backes <clemensb@chromium.org>
Reviewed-by: Deepti Gandluri <gdeepti@chromium.org>
Cr-Commit-Position: refs/heads/master@{#72641}
This commit is contained in:
Ng Zhi An 2021-02-10 10:52:05 -08:00 committed by Commit Bot
parent 8dd251b8e4
commit 2367a71489
4 changed files with 117 additions and 93 deletions

View File

@ -867,6 +867,101 @@ void TurboAssembler::I8x16Popcnt(XMMRegister dst, XMMRegister src,
} }
} }
void TurboAssembler::F64x2ConvertLowI32x4U(XMMRegister dst, XMMRegister src,
Register tmp) {
// dst = [ src_low, 0x43300000, src_high, 0x4330000 ];
// 0x43300000'00000000 is a special double where the significand bits
// precisely represents all uint32 numbers.
Unpcklps(dst, src,
ExternalReferenceAsOperand(
ExternalReference::
address_of_wasm_f64x2_convert_low_i32x4_u_int_mask(),
tmp));
Subpd(dst, dst,
ExternalReferenceAsOperand(
ExternalReference::address_of_wasm_double_2_power_52(), tmp));
}
void TurboAssembler::I32x4TruncSatF64x2SZero(XMMRegister dst, XMMRegister src,
XMMRegister scratch,
Register tmp) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope avx_scope(this, AVX);
XMMRegister original_dst = dst;
// Make sure we don't overwrite src.
if (dst == src) {
DCHECK_NE(scratch, src);
dst = scratch;
}
// dst = 0 if src == NaN, else all ones.
vcmpeqpd(dst, src, src);
// dst = 0 if src == NaN, else INT32_MAX as double.
vandpd(dst, dst,
ExternalReferenceAsOperand(
ExternalReference::address_of_wasm_int32_max_as_double(), tmp));
// dst = 0 if src == NaN, src is saturated to INT32_MAX as double.
vminpd(dst, src, dst);
// Values > INT32_MAX already saturated, values < INT32_MIN raises an
// exception, which is masked and returns 0x80000000.
vcvttpd2dq(dst, dst);
if (original_dst != dst) {
vmovaps(original_dst, dst);
}
} else {
if (dst != src) {
movaps(dst, src);
}
movaps(scratch, dst);
cmpeqpd(scratch, dst);
andps(scratch,
ExternalReferenceAsOperand(
ExternalReference::address_of_wasm_int32_max_as_double(), tmp));
minpd(dst, scratch);
cvttpd2dq(dst, dst);
}
}
void TurboAssembler::I32x4TruncSatF64x2UZero(XMMRegister dst, XMMRegister src,
XMMRegister scratch,
Register tmp) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope avx_scope(this, AVX);
vxorpd(scratch, scratch, scratch);
// Saturate to 0.
vmaxpd(dst, src, scratch);
// Saturate to UINT32_MAX.
vminpd(dst, dst,
ExternalReferenceAsOperand(
ExternalReference::address_of_wasm_uint32_max_as_double(), tmp));
// Truncate.
vroundpd(dst, dst, kRoundToZero);
// Add to special double where significant bits == uint32.
vaddpd(dst, dst,
ExternalReferenceAsOperand(
ExternalReference::address_of_wasm_double_2_power_52(), tmp));
// Extract low 32 bits of each double's significand, zero top lanes.
// dst = [dst[0], dst[2], 0, 0]
vshufps(dst, dst, scratch, 0x88);
} else {
CpuFeatureScope scope(this, SSE4_1);
if (dst != src) {
movaps(dst, src);
}
xorps(scratch, scratch);
maxpd(dst, scratch);
minpd(dst,
ExternalReferenceAsOperand(
ExternalReference::address_of_wasm_uint32_max_as_double(), tmp));
roundpd(dst, dst, kRoundToZero);
addpd(dst,
ExternalReferenceAsOperand(
ExternalReference::address_of_wasm_double_2_power_52(), tmp));
shufps(dst, scratch, 0x88);
}
}
void TurboAssembler::ShlPair(Register high, Register low, uint8_t shift) { void TurboAssembler::ShlPair(Register high, Register low, uint8_t shift) {
DCHECK_GE(63, shift); DCHECK_GE(63, shift);
if (shift >= 32) { if (shift >= 32) {

View File

@ -664,6 +664,11 @@ class V8_EXPORT_PRIVATE TurboAssembler : public TurboAssemblerBase {
void S128Store32Lane(Operand dst, XMMRegister src, uint8_t laneidx); void S128Store32Lane(Operand dst, XMMRegister src, uint8_t laneidx);
void I8x16Popcnt(XMMRegister dst, XMMRegister src, XMMRegister tmp1, void I8x16Popcnt(XMMRegister dst, XMMRegister src, XMMRegister tmp1,
XMMRegister tmp2, Register scratch); XMMRegister tmp2, Register scratch);
void F64x2ConvertLowI32x4U(XMMRegister dst, XMMRegister src, Register tmp);
void I32x4TruncSatF64x2SZero(XMMRegister dst, XMMRegister src,
XMMRegister scratch, Register tmp);
void I32x4TruncSatF64x2UZero(XMMRegister dst, XMMRegister src,
XMMRegister scratch, Register tmp);
void Push(Register src) { push(src); } void Push(Register src) { push(src); }
void Push(Operand src) { push(src); } void Push(Operand src) { push(src); }

View File

@ -2048,81 +2048,15 @@ CodeGenerator::CodeGenResult CodeGenerator::AssembleArchInstruction(
break; break;
} }
case kIA32I32x4TruncSatF64x2SZero: { case kIA32I32x4TruncSatF64x2SZero: {
XMMRegister dst = i.OutputSimd128Register(); __ I32x4TruncSatF64x2SZero(i.OutputSimd128Register(),
XMMRegister src = i.InputSimd128Register(0); i.InputSimd128Register(0), kScratchDoubleReg,
Register tmp = i.TempRegister(0); i.TempRegister(0));
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope avx_scope(tasm(), AVX);
DCHECK_NE(dst, src);
// dst = 0 if src == NaN, else all ones.
__ vcmpeqpd(dst, src, src);
// dst = 0 if src == NaN, else INT32_MAX as double.
__ vandpd(
dst, dst,
__ ExternalReferenceAsOperand(
ExternalReference::address_of_wasm_int32_max_as_double(), tmp));
// dst = 0 if src == NaN, src is saturated to INT32_MAX as double.
__ vminpd(dst, src, dst);
// Values > INT32_MAX already saturated, values < INT32_MIN raises an
// exception, which is masked and returns 0x80000000.
__ vcvttpd2dq(dst, dst);
} else {
DCHECK_EQ(dst, src);
__ movaps(kScratchDoubleReg, src);
__ cmpeqpd(kScratchDoubleReg, src);
__ andps(
kScratchDoubleReg,
__ ExternalReferenceAsOperand(
ExternalReference::address_of_wasm_int32_max_as_double(), tmp));
__ minpd(dst, kScratchDoubleReg);
__ cvttpd2dq(dst, dst);
}
break; break;
} }
case kIA32I32x4TruncSatF64x2UZero: { case kIA32I32x4TruncSatF64x2UZero: {
XMMRegister dst = i.OutputSimd128Register(); __ I32x4TruncSatF64x2UZero(i.OutputSimd128Register(),
XMMRegister src = i.InputSimd128Register(0); i.InputSimd128Register(0), kScratchDoubleReg,
Register tmp = i.TempRegister(0); i.TempRegister(0));
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope avx_scope(tasm(), AVX);
__ vxorpd(kScratchDoubleReg, kScratchDoubleReg, kScratchDoubleReg);
// Saturate to 0.
__ vmaxpd(dst, src, kScratchDoubleReg);
// Saturate to UINT32_MAX.
__ vminpd(dst, dst,
__ ExternalReferenceAsOperand(
ExternalReference::address_of_wasm_uint32_max_as_double(),
tmp));
// Truncate.
__ vroundpd(dst, dst, kRoundToZero);
// Add to special double where significant bits == uint32.
__ vaddpd(
dst, dst,
__ ExternalReferenceAsOperand(
ExternalReference::address_of_wasm_double_2_power_52(), tmp));
// Extract low 32 bits of each double's significand, zero top lanes.
// dst = [dst[0], dst[2], 0, 0]
__ vshufps(dst, dst, kScratchDoubleReg, 0x88);
break;
} else {
CpuFeatureScope scope(tasm(), SSE4_1);
DCHECK_EQ(dst, src);
__ xorps(kScratchDoubleReg, kScratchDoubleReg);
__ maxpd(dst, kScratchDoubleReg);
__ minpd(dst,
__ ExternalReferenceAsOperand(
ExternalReference::address_of_wasm_uint32_max_as_double(),
tmp));
__ roundpd(dst, dst, kRoundToZero);
__ addpd(
dst,
__ ExternalReferenceAsOperand(
ExternalReference::address_of_wasm_double_2_power_52(), tmp));
__ shufps(dst, kScratchDoubleReg, 0x88);
break;
}
break; break;
} }
case kIA32F64x2ConvertLowI32x4S: { case kIA32F64x2ConvertLowI32x4S: {
@ -2130,21 +2064,8 @@ CodeGenerator::CodeGenResult CodeGenerator::AssembleArchInstruction(
break; break;
} }
case kIA32F64x2ConvertLowI32x4U: { case kIA32F64x2ConvertLowI32x4U: {
XMMRegister dst = i.OutputSimd128Register(); __ F64x2ConvertLowI32x4U(i.OutputSimd128Register(),
XMMRegister src = i.InputSimd128Register(0); i.InputSimd128Register(0), i.TempRegister(0));
Register tmp = i.TempRegister(0);
// dst = [ src_low, 0x43300000, src_high, 0x4330000 ];
// 0x43300000'00000000 is a special double where the significand bits
// precisely represents all uint32 numbers.
__ Unpcklps(dst, src,
__ ExternalReferenceAsOperand(
ExternalReference::
address_of_wasm_f64x2_convert_low_i32x4_u_int_mask(),
tmp));
__ Subpd(
dst, dst,
__ ExternalReferenceAsOperand(
ExternalReference::address_of_wasm_double_2_power_52(), tmp));
break; break;
} }
case kIA32I64x2ExtMulLowI32x4S: { case kIA32I64x2ExtMulLowI32x4S: {

View File

@ -4296,17 +4296,18 @@ void LiftoffAssembler::emit_f64x2_pmax(LiftoffRegister dst, LiftoffRegister lhs,
void LiftoffAssembler::emit_f64x2_convert_low_i32x4_s(LiftoffRegister dst, void LiftoffAssembler::emit_f64x2_convert_low_i32x4_s(LiftoffRegister dst,
LiftoffRegister src) { LiftoffRegister src) {
bailout(kSimd, "f64x2.convert_low_i32x4_s"); Cvtdq2pd(dst.fp(), src.fp());
} }
void LiftoffAssembler::emit_f64x2_convert_low_i32x4_u(LiftoffRegister dst, void LiftoffAssembler::emit_f64x2_convert_low_i32x4_u(LiftoffRegister dst,
LiftoffRegister src) { LiftoffRegister src) {
bailout(kSimd, "f64x2.convert_low_i32x4_u"); Register tmp = GetUnusedRegister(kGpReg, {}).gp();
F64x2ConvertLowI32x4U(dst.fp(), src.fp(), tmp);
} }
void LiftoffAssembler::emit_f64x2_promote_low_f32x4(LiftoffRegister dst, void LiftoffAssembler::emit_f64x2_promote_low_f32x4(LiftoffRegister dst,
LiftoffRegister src) { LiftoffRegister src) {
bailout(kSimd, "f64x2.promote_low_f32x4"); Cvtps2pd(dst.fp(), src.fp());
} }
void LiftoffAssembler::emit_i32x4_sconvert_f32x4(LiftoffRegister dst, void LiftoffAssembler::emit_i32x4_sconvert_f32x4(LiftoffRegister dst,
@ -4402,7 +4403,7 @@ void LiftoffAssembler::emit_f32x4_uconvert_i32x4(LiftoffRegister dst,
void LiftoffAssembler::emit_f32x4_demote_f64x2_zero(LiftoffRegister dst, void LiftoffAssembler::emit_f32x4_demote_f64x2_zero(LiftoffRegister dst,
LiftoffRegister src) { LiftoffRegister src) {
bailout(kSimd, "f32x4.demote_f64x2_zero"); Cvtpd2ps(dst.fp(), src.fp());
} }
void LiftoffAssembler::emit_i8x16_sconvert_i16x8(LiftoffRegister dst, void LiftoffAssembler::emit_i8x16_sconvert_i16x8(LiftoffRegister dst,
@ -4483,12 +4484,14 @@ void LiftoffAssembler::emit_i32x4_uconvert_i16x8_high(LiftoffRegister dst,
void LiftoffAssembler::emit_i32x4_trunc_sat_f64x2_s_zero(LiftoffRegister dst, void LiftoffAssembler::emit_i32x4_trunc_sat_f64x2_s_zero(LiftoffRegister dst,
LiftoffRegister src) { LiftoffRegister src) {
bailout(kSimd, "i32x4.trunc_sat_f64x2_s_zero"); Register tmp = GetUnusedRegister(kGpReg, {}).gp();
I32x4TruncSatF64x2SZero(dst.fp(), src.fp(), liftoff::kScratchDoubleReg, tmp);
} }
void LiftoffAssembler::emit_i32x4_trunc_sat_f64x2_u_zero(LiftoffRegister dst, void LiftoffAssembler::emit_i32x4_trunc_sat_f64x2_u_zero(LiftoffRegister dst,
LiftoffRegister src) { LiftoffRegister src) {
bailout(kSimd, "i32x4.trunc_sat_f64x2_u_zero"); Register tmp = GetUnusedRegister(kGpReg, {}).gp();
I32x4TruncSatF64x2UZero(dst.fp(), src.fp(), liftoff::kScratchDoubleReg, tmp);
} }
void LiftoffAssembler::emit_s128_and_not(LiftoffRegister dst, void LiftoffAssembler::emit_s128_and_not(LiftoffRegister dst,