Harmony: move implementation of Math.log1p and Math.expm1 to Javascript.
R=jarin@chromium.org Review URL: https://codereview.chromium.org/179533003 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@19701 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
This commit is contained in:
parent
c6bfbace87
commit
2454b8e74d
@ -174,21 +174,51 @@ function MathClz32(x) {
|
||||
}
|
||||
|
||||
|
||||
//ES6 draft 09-27-13, section 20.2.2.9.
|
||||
// ES6 draft 09-27-13, section 20.2.2.9.
|
||||
function MathCbrt(x) {
|
||||
return %Math_cbrt(TO_NUMBER_INLINE(x));
|
||||
}
|
||||
|
||||
|
||||
//ES6 draft 09-27-13, section 20.2.2.14.
|
||||
// ES6 draft 09-27-13, section 20.2.2.14.
|
||||
// Use Taylor series to approximate.
|
||||
// exp(x) - 1 at 0 == -1 + exp(0) + exp'(0)*x/1! + exp''(0)*x^2/2! + ...
|
||||
// == x/1! + x^2/2! + x^3/3! + ...
|
||||
// The closer x is to 0, the fewer terms are required.
|
||||
function MathExpm1(x) {
|
||||
return %Math_expm1(TO_NUMBER_INLINE(x));
|
||||
if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
|
||||
var xabs = MathAbs(x);
|
||||
if (xabs < 2E-7) {
|
||||
return x * (1 + x * (1/2));
|
||||
} else if (xabs < 6E-5) {
|
||||
return x * (1 + x * (1/2 + x * (1/6)));
|
||||
} else if (xabs < 2E-2) {
|
||||
return x * (1 + x * (1/2 + x * (1/6 +
|
||||
x * (1/24 + x * (1/120 + x * (1/720))))));
|
||||
} else { // Use regular exp if not close enough to 0.
|
||||
return MathExp(x) - 1;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//ES6 draft 09-27-13, section 20.2.2.20.
|
||||
// ES6 draft 09-27-13, section 20.2.2.20.
|
||||
// Use Taylor series to approximate. With y = x + 1;
|
||||
// log(y) at 1 == log(1) + log'(1)(y-1)/1! + log''(1)(y-1)^2/2! + ...
|
||||
// == 0 + x - x^2/2 + x^3/3 ...
|
||||
// The closer x is to 0, the fewer terms are required.
|
||||
function MathLog1p(x) {
|
||||
return %Math_log1p(TO_NUMBER_INLINE(x));
|
||||
if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
|
||||
var xabs = MathAbs(x);
|
||||
if (xabs < 1E-7) {
|
||||
return x * (1 - x * (1/2));
|
||||
} else if (xabs < 3E-5) {
|
||||
return x * (1 - x * (1/2 - x * (1/3)));
|
||||
} else if (xabs < 7E-3) {
|
||||
return x * (1 - x * (1/2 - x * (1/3 - x * (1/4 -
|
||||
x * (1/5 - x * (1/6 - x * (1/7)))))));
|
||||
} else { // Use regular log if not close enough to 0.
|
||||
return MathLog(1 + x);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
@ -7694,67 +7694,6 @@ RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_cbrt) {
|
||||
}
|
||||
|
||||
|
||||
RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_log1p) {
|
||||
SealHandleScope shs(isolate);
|
||||
ASSERT(args.length() == 1);
|
||||
CONVERT_DOUBLE_ARG_CHECKED(x, 0);
|
||||
|
||||
double x_abs = std::fabs(x);
|
||||
// Use Taylor series to approximate. With y = x + 1;
|
||||
// log(y) at 1 == log(1) + log'(1)(y-1)/1! + log''(1)(y-1)^2/2! + ...
|
||||
// == 0 + x - x^2/2 + x^3/3 ...
|
||||
// The closer x is to 0, the fewer terms are required.
|
||||
static const double threshold_2 = 1.0 / 0x00800000;
|
||||
static const double threshold_3 = 1.0 / 0x00008000;
|
||||
static const double threshold_7 = 1.0 / 0x00000080;
|
||||
|
||||
double result;
|
||||
if (x_abs < threshold_2) {
|
||||
result = x * (1.0/1.0 - x * 1.0/2.0);
|
||||
} else if (x_abs < threshold_3) {
|
||||
result = x * (1.0/1.0 - x * (1.0/2.0 - x * (1.0/3.0)));
|
||||
} else if (x_abs < threshold_7) {
|
||||
result = x * (1.0/1.0 - x * (1.0/2.0 - x * (
|
||||
1.0/3.0 - x * (1.0/4.0 - x * (
|
||||
1.0/5.0 - x * (1.0/6.0 - x * (
|
||||
1.0/7.0)))))));
|
||||
} else { // Use regular log if not close enough to 0.
|
||||
result = std::log(1.0 + x);
|
||||
}
|
||||
return isolate->heap()->AllocateHeapNumber(result);
|
||||
}
|
||||
|
||||
|
||||
RUNTIME_FUNCTION(MaybeObject*, Runtime_Math_expm1) {
|
||||
SealHandleScope shs(isolate);
|
||||
ASSERT(args.length() == 1);
|
||||
CONVERT_DOUBLE_ARG_CHECKED(x, 0);
|
||||
|
||||
double x_abs = std::fabs(x);
|
||||
// Use Taylor series to approximate.
|
||||
// exp(x) - 1 at 0 == -1 + exp(0) + exp'(0)*x/1! + exp''(0)*x^2/2! + ...
|
||||
// == x/1! + x^2/2! + x^3/3! + ...
|
||||
// The closer x is to 0, the fewer terms are required.
|
||||
static const double threshold_2 = 1.0 / 0x00400000;
|
||||
static const double threshold_3 = 1.0 / 0x00004000;
|
||||
static const double threshold_6 = 1.0 / 0x00000040;
|
||||
|
||||
double result;
|
||||
if (x_abs < threshold_2) {
|
||||
result = x * (1.0/1.0 + x * (1.0/2.0));
|
||||
} else if (x_abs < threshold_3) {
|
||||
result = x * (1.0/1.0 + x * (1.0/2.0 + x * (1.0/6.0)));
|
||||
} else if (x_abs < threshold_6) {
|
||||
result = x * (1.0/1.0 + x * (1.0/2.0 + x * (
|
||||
1.0/6.0 + x * (1.0/24.0 + x * (
|
||||
1.0/120.0 + x * (1.0/720.0))))));
|
||||
} else { // Use regular exp if not close enough to 0.
|
||||
result = std::exp(x) - 1.0;
|
||||
}
|
||||
return isolate->heap()->AllocateHeapNumber(result);
|
||||
}
|
||||
|
||||
|
||||
static const double kPiDividedBy4 = 0.78539816339744830962;
|
||||
|
||||
|
||||
|
@ -179,8 +179,6 @@ namespace internal {
|
||||
F(Math_atan, 1, 1) \
|
||||
F(Math_log, 1, 1) \
|
||||
F(Math_cbrt, 1, 1) \
|
||||
F(Math_log1p, 1, 1) \
|
||||
F(Math_expm1, 1, 1) \
|
||||
F(Math_sqrt, 1, 1) \
|
||||
F(Math_exp, 1, 1) \
|
||||
F(Math_floor, 1, 1) \
|
||||
|
Loading…
Reference in New Issue
Block a user