Prepare StringForwardingTable for external strings

- Move StringForwardingTable implementation to own compilation unit.
- Refactoring preparing for layout change (Introduce explicit record
  class to make transition from contiguous Tagged_t fields to a
  heterogeneous record layout easier).
- Replace RootVisitor pattern for transitioning/cleanup during GC with
  callback.
- Minor cleanups.

Bug: v8:12957
Change-Id: Iae343393f470130eac0c54148a1303b67fb95aa4
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/3845635
Reviewed-by: Camillo Bruni <cbruni@chromium.org>
Commit-Queue: Patrick Thier <pthier@chromium.org>
Reviewed-by: Dominik Inführ <dinfuehr@chromium.org>
Cr-Commit-Position: refs/heads/main@{#82730}
This commit is contained in:
Patrick Thier 2022-08-25 14:36:06 +00:00 committed by V8 LUCI CQ
parent a31e8f242f
commit 348adb07ca
13 changed files with 604 additions and 490 deletions

View File

@ -1855,6 +1855,9 @@ filegroup(
"src/objects/string-inl.h", "src/objects/string-inl.h",
"src/objects/string-set-inl.h", "src/objects/string-set-inl.h",
"src/objects/string-set.h", "src/objects/string-set.h",
"src/objects/string-forwarding-table-inl.h",
"src/objects/string-forwarding-table.cc",
"src/objects/string-forwarding-table.h",
"src/objects/string-table-inl.h", "src/objects/string-table-inl.h",
"src/objects/string-table.cc", "src/objects/string-table.cc",
"src/objects/symbol-table.cc", "src/objects/symbol-table.cc",

View File

@ -3410,6 +3410,8 @@ v8_header_set("v8_internal_headers") {
"src/objects/source-text-module-inl.h", "src/objects/source-text-module-inl.h",
"src/objects/source-text-module.h", "src/objects/source-text-module.h",
"src/objects/string-comparator.h", "src/objects/string-comparator.h",
"src/objects/string-forwarding-table-inl.h",
"src/objects/string-forwarding-table.h",
"src/objects/string-inl.h", "src/objects/string-inl.h",
"src/objects/string-set-inl.h", "src/objects/string-set-inl.h",
"src/objects/string-set.h", "src/objects/string-set.h",
@ -4637,6 +4639,7 @@ v8_source_set("v8_base_without_compiler") {
"src/objects/simd.cc", "src/objects/simd.cc",
"src/objects/source-text-module.cc", "src/objects/source-text-module.cc",
"src/objects/string-comparator.cc", "src/objects/string-comparator.cc",
"src/objects/string-forwarding-table.cc",
"src/objects/string-table.cc", "src/objects/string-table.cc",
"src/objects/string.cc", "src/objects/string.cc",
"src/objects/swiss-name-dictionary.cc", "src/objects/swiss-name-dictionary.cc",

View File

@ -66,6 +66,7 @@
#include "src/objects/objects.h" #include "src/objects/objects.h"
#include "src/objects/slots-inl.h" #include "src/objects/slots-inl.h"
#include "src/objects/smi.h" #include "src/objects/smi.h"
#include "src/objects/string-forwarding-table-inl.h"
#include "src/objects/transitions-inl.h" #include "src/objects/transitions-inl.h"
#include "src/objects/visitors.h" #include "src/objects/visitors.h"
#include "src/snapshot/shared-heap-serializer.h" #include "src/snapshot/shared-heap-serializer.h"
@ -1436,64 +1437,6 @@ class InternalizedStringTableCleaner final : public RootVisitor {
int pointers_removed_ = 0; int pointers_removed_ = 0;
}; };
class StringForwardingTableCleaner final : public RootVisitor {
public:
explicit StringForwardingTableCleaner(Heap* heap) : heap_(heap) {}
void VisitRootPointers(Root root, const char* description,
FullObjectSlot start, FullObjectSlot end) override {
UNREACHABLE();
}
void VisitRootPointers(Root root, const char* description,
OffHeapObjectSlot start,
OffHeapObjectSlot end) override {
DCHECK_EQ(root, Root::kStringForwardingTable);
// Visit all HeapObject pointers in [start, end).
// The forwarding table is organized in pairs of [orig string, forward
// string].
auto* marking_state =
heap_->mark_compact_collector()->non_atomic_marking_state();
Isolate* isolate = heap_->isolate();
for (OffHeapObjectSlot p = start; p < end; p += 2) {
Object original = p.load(isolate);
if (!original.IsHeapObject()) {
// Only if we always use the forwarding table, the string could be a
// smi, indicating that the entry died during scavenge.
DCHECK(FLAG_always_use_string_forwarding_table);
DCHECK_EQ(original, StringForwardingTable::deleted_element());
continue;
}
if (marking_state->IsBlack(HeapObject::cast(original))) {
String original_string = String::cast(original);
// Check if the string was already transitioned. This happens if we have
// multiple entries for the same string in the table.
if (original_string.IsThinString()) continue;
// The second slot of each record is the forward string.
Object forward = (p + 1).load(isolate);
String forward_string = String::cast(forward);
// Mark the forwarded string.
marking_state->WhiteToBlack(forward_string);
// Transition the original string to a ThinString and override the
// forwarding index with the correct hash.
original_string.MakeThin(isolate, forward_string);
original_string.set_raw_hash_field(forward_string.raw_hash_field());
// Record the slot in the old-to-old remembered set. This is required as
// the internalized string could be relocated during compaction.
ObjectSlot slot = ThinString::cast(original_string)
.RawField(ThinString::kActualOffset);
MarkCompactCollector::RecordSlot(original_string, slot, forward_string);
}
}
}
private:
Heap* heap_;
};
class ExternalStringTableCleaner : public RootVisitor { class ExternalStringTableCleaner : public RootVisitor {
public: public:
explicit ExternalStringTableCleaner(Heap* heap) : heap_(heap) {} explicit ExternalStringTableCleaner(Heap* heap) : heap_(heap) {}
@ -2866,6 +2809,62 @@ class ClearStringTableJobItem final : public ParallelClearingJob::ClearingItem {
Isolate* const isolate_; Isolate* const isolate_;
}; };
class StringForwardingTableCleaner final {
public:
explicit StringForwardingTableCleaner(Heap* heap)
: heap_(heap),
isolate_(heap_->isolate()),
marking_state_(
heap_->mark_compact_collector()->non_atomic_marking_state()) {}
void Run() {
StringForwardingTable* forwarding_table =
isolate_->string_forwarding_table();
forwarding_table->IterateElements(
isolate_, [&](StringForwardingTable::Record* record) {
TransitionStrings(record);
});
forwarding_table->Reset();
}
private:
void TransitionStrings(StringForwardingTable::Record* record) {
Object original = record->OriginalStringObject(isolate_);
if (!original.IsHeapObject()) {
// Only if we always use the forwarding table, the string could be a
// smi, indicating that the entry died during scavenge.
DCHECK(FLAG_always_use_string_forwarding_table);
DCHECK_EQ(original, StringForwardingTable::deleted_element());
return;
}
if (marking_state_->IsBlack(HeapObject::cast(original))) {
String original_string = String::cast(original);
TryInternalize(original_string, record);
original_string.set_raw_hash_field(record->raw_hash(isolate_));
}
}
void TryInternalize(String original_string,
StringForwardingTable::Record* record) {
if (original_string.IsThinString()) return;
String forward_string = record->forward_string(isolate_);
// Mark the forwarded string to keep it alive.
marking_state_->WhiteToBlack(forward_string);
// Transition the original string to a ThinString and override the
// forwarding index with the correct hash.
original_string.MakeThin(isolate_, forward_string);
// Record the slot in the old-to-old remembered set. This is
// required as the internalized string could be relocated during
// compaction.
ObjectSlot slot =
ThinString::cast(original_string).RawField(ThinString::kActualOffset);
MarkCompactCollector::RecordSlot(original_string, slot, forward_string);
}
Heap* heap_;
Isolate* isolate_;
NonAtomicMarkingState* marking_state_;
};
} // namespace } // namespace
void MarkCompactCollector::ClearNonLiveReferences() { void MarkCompactCollector::ClearNonLiveReferences() {
@ -2879,11 +2878,8 @@ void MarkCompactCollector::ClearNonLiveReferences() {
// Clearing the string forwarding table must happen before clearing the // Clearing the string forwarding table must happen before clearing the
// string table, as entries in the forwarding table can keep internalized // string table, as entries in the forwarding table can keep internalized
// strings alive. // strings alive.
StringForwardingTable* forwarding_table = StringForwardingTableCleaner forwarding_table_cleaner(heap());
isolate()->string_forwarding_table(); forwarding_table_cleaner.Run();
StringForwardingTableCleaner visitor(heap());
forwarding_table->IterateElements(&visitor);
forwarding_table->Reset();
} }
auto clearing_job = std::make_unique<ParallelClearingJob>(); auto clearing_job = std::make_unique<ParallelClearingJob>();

View File

@ -76,6 +76,7 @@
#include "src/objects/shared-function-info-inl.h" #include "src/objects/shared-function-info-inl.h"
#include "src/objects/slots-atomic-inl.h" #include "src/objects/slots-atomic-inl.h"
#include "src/objects/slots-inl.h" #include "src/objects/slots-inl.h"
#include "src/objects/string-forwarding-table-inl.h"
#include "src/objects/string-inl.h" #include "src/objects/string-inl.h"
#include "src/objects/string-set-inl.h" #include "src/objects/string-set-inl.h"
#include "src/objects/string-table-inl.h" #include "src/objects/string-table-inl.h"

View File

@ -10,8 +10,8 @@
#include "src/objects/map-inl.h" #include "src/objects/map-inl.h"
#include "src/objects/name.h" #include "src/objects/name.h"
#include "src/objects/primitive-heap-object-inl.h" #include "src/objects/primitive-heap-object-inl.h"
#include "src/objects/string-forwarding-table.h"
#include "src/objects/string-inl.h" #include "src/objects/string-inl.h"
#include "src/objects/string-table.h"
// Has to be the last include (doesn't have include guards): // Has to be the last include (doesn't have include guards):
#include "src/objects/object-macros.h" #include "src/objects/object-macros.h"

View File

@ -0,0 +1,207 @@
// Copyright 2022 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_OBJECTS_STRING_FORWARDING_TABLE_INL_H_
#define V8_OBJECTS_STRING_FORWARDING_TABLE_INL_H_
#include "src/base/atomicops.h"
#include "src/common/globals.h"
#include "src/objects/name-inl.h"
#include "src/objects/slots-inl.h"
#include "src/objects/slots.h"
#include "src/objects/string-forwarding-table.h"
#include "src/objects/string-inl.h"
// Has to be the last include (doesn't have include guards):
#include "src/objects/object-macros.h"
namespace v8 {
namespace internal {
class StringForwardingTable::Record final {
public:
String original_string(PtrComprCageBase cage_base) const {
return String::cast(OriginalStringObject(cage_base));
}
String forward_string(PtrComprCageBase cage_base) const {
return String::cast(ForwardStringObject(cage_base));
}
inline uint32_t raw_hash(PtrComprCageBase cage_base) const;
Object OriginalStringObject(PtrComprCageBase cage_base) const {
return OriginalStringSlot().Acquire_Load(cage_base);
}
Object ForwardStringObject(PtrComprCageBase cage_base) const {
return ForwardStringSlot().Acquire_Load(cage_base);
}
void set_original_string(Object object) {
OriginalStringSlot().Release_Store(object);
}
void set_forward_string(Object object) {
ForwardStringSlot().Release_Store(object);
}
inline void SetInternalized(String string, String forward_to);
private:
OffHeapObjectSlot OriginalStringSlot() const {
return OffHeapObjectSlot(&original_string_);
}
OffHeapObjectSlot ForwardStringSlot() const {
return OffHeapObjectSlot(&forward_string_);
}
Tagged_t original_string_;
Tagged_t forward_string_;
friend class StringForwardingTable::Block;
};
uint32_t StringForwardingTable::Record::raw_hash(
PtrComprCageBase cage_base) const {
String internalized = forward_string(cage_base);
uint32_t raw_hash = internalized.raw_hash_field();
DCHECK(Name::IsHashFieldComputed(raw_hash));
return raw_hash;
}
void StringForwardingTable::Record::SetInternalized(String string,
String forward_to) {
set_original_string(string);
set_forward_string(forward_to);
}
class StringForwardingTable::Block {
public:
static std::unique_ptr<Block> New(int capacity);
explicit Block(int capacity);
int capacity() const { return capacity_; }
void* operator new(size_t size, int capacity);
void* operator new(size_t size) = delete;
void operator delete(void* data);
Record* record(int index) {
DCHECK_LT(index, capacity());
return &elements_[index];
}
const Record* record(int index) const {
DCHECK_LT(index, capacity());
return &elements_[index];
}
void UpdateAfterEvacuation(PtrComprCageBase cage_base);
void UpdateAfterEvacuation(PtrComprCageBase cage_base, int up_to_index);
private:
const int capacity_;
Record elements_[1];
};
class StringForwardingTable::BlockVector {
public:
using Block = StringForwardingTable::Block;
using Allocator = std::allocator<Block*>;
explicit BlockVector(size_t capacity);
~BlockVector();
size_t capacity() const { return capacity_; }
Block* LoadBlock(size_t index, AcquireLoadTag) {
DCHECK_LT(index, size());
return base::AsAtomicPointer::Acquire_Load(&begin_[index]);
}
Block* LoadBlock(size_t index) {
DCHECK_LT(index, size());
return begin_[index];
}
void AddBlock(std::unique_ptr<Block> block) {
DCHECK_LT(size(), capacity());
base::AsAtomicPointer::Release_Store(&begin_[size_], block.release());
size_++;
}
static std::unique_ptr<BlockVector> Grow(BlockVector* data, size_t capacity,
const base::Mutex& mutex);
size_t size() const { return size_; }
private:
V8_NO_UNIQUE_ADDRESS Allocator allocator_;
const size_t capacity_;
std::atomic<size_t> size_;
Block** begin_;
};
int StringForwardingTable::size() const { return next_free_index_; }
bool StringForwardingTable::empty() const { return size() == 0; }
// static
uint32_t StringForwardingTable::BlockForIndex(int index,
uint32_t* index_in_block) {
DCHECK_GE(index, 0);
DCHECK_NOT_NULL(index_in_block);
// The block is the leftmost set bit of the index, corrected by the size
// of the first block.
const uint32_t block_index =
kBitsPerInt -
base::bits::CountLeadingZeros(
static_cast<uint32_t>(index + kInitialBlockSize)) -
kInitialBlockSizeHighestBit - 1;
*index_in_block = IndexInBlock(index, block_index);
return block_index;
}
// static
uint32_t StringForwardingTable::IndexInBlock(int index, uint32_t block_index) {
DCHECK_GE(index, 0);
// Clear out the leftmost set bit (the block index) to get the index within
// the block.
return static_cast<uint32_t>(index + kInitialBlockSize) &
~(1u << (block_index + kInitialBlockSizeHighestBit));
}
// static
uint32_t StringForwardingTable::CapacityForBlock(uint32_t block_index) {
return 1u << (block_index + kInitialBlockSizeHighestBit);
}
template <typename Func>
void StringForwardingTable::IterateElements(Isolate* isolate, Func&& callback) {
isolate->heap()->safepoint()->AssertActive();
DCHECK_NE(isolate->heap()->gc_state(), Heap::NOT_IN_GC);
if (empty()) return;
BlockVector* blocks = blocks_.load(std::memory_order_relaxed);
const uint32_t last_block_index = static_cast<uint32_t>(blocks->size() - 1);
for (uint32_t block_index = 0; block_index < last_block_index;
++block_index) {
Block* block = blocks->LoadBlock(block_index);
for (int index = 0; index < block->capacity(); ++index) {
Record* rec = block->record(index);
callback(rec);
}
}
// Handle last block separately, as it is not filled to capacity.
const uint32_t max_index = IndexInBlock(size() - 1, last_block_index) + 1;
Block* block = blocks->LoadBlock(last_block_index);
for (uint32_t index = 0; index < max_index; ++index) {
Record* rec = block->record(index);
callback(rec);
}
}
} // namespace internal
} // namespace v8
#include "src/objects/object-macros-undef.h"
#endif // V8_OBJECTS_STRING_FORWARDING_TABLE_INL_H_

View File

@ -0,0 +1,239 @@
// Copyright 2022 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/objects/string-forwarding-table.h"
#include "src/base/atomicops.h"
#include "src/common/globals.h"
#include "src/objects/objects-inl.h"
#include "src/objects/slots-inl.h"
#include "src/objects/slots.h"
#include "src/objects/string-forwarding-table-inl.h"
#include "src/utils/allocation.h"
namespace v8 {
namespace internal {
StringForwardingTable::Block::Block(int capacity) : capacity_(capacity) {
static_assert(unused_element().ptr() == 0);
static_assert(kNullAddress == 0);
static_assert(sizeof(Record) % sizeof(Address) == 0);
static_assert(offsetof(Record, original_string_) == 0);
constexpr int kRecordPointerSize = sizeof(Record) / sizeof(Address);
MemsetPointer(reinterpret_cast<Address*>(&elements_[0]), 0,
capacity_ * kRecordPointerSize);
}
void* StringForwardingTable::Block::operator new(size_t size, int capacity) {
// Make sure the size given is the size of the Block structure.
DCHECK_EQ(size, sizeof(StringForwardingTable::Block));
// Make sure the Record class is trivial and has standard layout.
static_assert(std::is_trivial_v<Record>);
static_assert(std::is_standard_layout_v<Record>);
// Make sure that the elements_ array is at the end of Block, with no padding,
// so that subsequent elements can be accessed as offsets from elements_.
static_assert(offsetof(StringForwardingTable::Block, elements_) ==
sizeof(StringForwardingTable::Block) - sizeof(Record));
// Make sure that elements_ is aligned when StringTable::Block is aligned.
static_assert((alignof(StringForwardingTable::Block) +
offsetof(StringForwardingTable::Block, elements_)) %
kTaggedSize ==
0);
const size_t elements_size = capacity * sizeof(Record);
// Storage for the first element is already supplied by elements_, so subtract
// sizeof(Record).
const size_t new_size = size + elements_size - sizeof(Record);
DCHECK_LE(alignof(StringForwardingTable::Block), kSystemPointerSize);
return AlignedAlloc(new_size, kSystemPointerSize);
}
void StringForwardingTable::Block::operator delete(void* block) {
AlignedFree(block);
}
std::unique_ptr<StringForwardingTable::Block> StringForwardingTable::Block::New(
int capacity) {
return std::unique_ptr<Block>(new (capacity) Block(capacity));
}
void StringForwardingTable::Block::UpdateAfterEvacuation(
PtrComprCageBase cage_base) {
UpdateAfterEvacuation(cage_base, capacity_);
}
void StringForwardingTable::Block::UpdateAfterEvacuation(
PtrComprCageBase cage_base, int up_to_index) {
// This is only used for Scavenger.
DCHECK(!FLAG_minor_mc);
DCHECK(FLAG_always_use_string_forwarding_table);
for (int index = 0; index < up_to_index; ++index) {
Object original = record(index)->OriginalStringObject(cage_base);
if (!original.IsHeapObject()) continue;
HeapObject object = HeapObject::cast(original);
if (Heap::InFromPage(object)) {
DCHECK(!object.InSharedWritableHeap());
MapWord map_word = object.map_word(kRelaxedLoad);
if (map_word.IsForwardingAddress()) {
HeapObject forwarded_object = map_word.ToForwardingAddress();
record(index)->set_original_string(forwarded_object);
} else {
record(index)->set_original_string(deleted_element());
}
} else {
DCHECK(!object.map_word(kRelaxedLoad).IsForwardingAddress());
}
}
}
StringForwardingTable::BlockVector::BlockVector(size_t capacity)
: allocator_(Allocator()), capacity_(capacity), size_(0) {
begin_ = allocator_.allocate(capacity);
}
StringForwardingTable::BlockVector::~BlockVector() {
allocator_.deallocate(begin_, capacity());
}
// static
std::unique_ptr<StringForwardingTable::BlockVector>
StringForwardingTable::BlockVector::Grow(
StringForwardingTable::BlockVector* data, size_t capacity,
const base::Mutex& mutex) {
mutex.AssertHeld();
std::unique_ptr<BlockVector> new_data =
std::make_unique<BlockVector>(capacity);
// Copy pointers to blocks from the old to the new vector.
for (size_t i = 0; i < data->size(); i++) {
new_data->begin_[i] = data->LoadBlock(i);
}
new_data->size_ = data->size();
return new_data;
}
StringForwardingTable::StringForwardingTable(Isolate* isolate)
: isolate_(isolate), next_free_index_(0) {
InitializeBlockVector();
}
StringForwardingTable::~StringForwardingTable() {
BlockVector* blocks = blocks_.load(std::memory_order_relaxed);
for (uint32_t block_index = 0; block_index < blocks->size(); block_index++) {
delete blocks->LoadBlock(block_index);
}
}
void StringForwardingTable::InitializeBlockVector() {
BlockVector* blocks = block_vector_storage_
.emplace_back(std::make_unique<BlockVector>(
kInitialBlockVectorCapacity))
.get();
blocks->AddBlock(Block::New(kInitialBlockSize));
blocks_.store(blocks, std::memory_order_relaxed);
}
StringForwardingTable::BlockVector* StringForwardingTable::EnsureCapacity(
uint32_t block_index) {
BlockVector* blocks = blocks_.load(std::memory_order_acquire);
if V8_UNLIKELY (block_index >= blocks->size()) {
base::MutexGuard table_grow_guard(&grow_mutex_);
// Reload the vector, as another thread could have grown it.
blocks = blocks_.load(std::memory_order_relaxed);
// Check again if we need to grow under lock.
if (block_index >= blocks->size()) {
// Grow the vector if the block to insert is greater than the vectors
// capacity.
if (block_index >= blocks->capacity()) {
std::unique_ptr<BlockVector> new_blocks =
BlockVector::Grow(blocks, blocks->capacity() * 2, grow_mutex_);
block_vector_storage_.push_back(std::move(new_blocks));
blocks = block_vector_storage_.back().get();
blocks_.store(blocks, std::memory_order_release);
}
const uint32_t capacity = CapacityForBlock(block_index);
std::unique_ptr<Block> new_block = Block::New(capacity);
blocks->AddBlock(std::move(new_block));
}
}
return blocks;
}
int StringForwardingTable::AddForwardString(String string, String forward_to) {
DCHECK_IMPLIES(!FLAG_always_use_string_forwarding_table,
string.InSharedHeap());
DCHECK_IMPLIES(!FLAG_always_use_string_forwarding_table,
forward_to.InSharedHeap());
int index = next_free_index_++;
uint32_t index_in_block;
const uint32_t block_index = BlockForIndex(index, &index_in_block);
BlockVector* blocks = EnsureCapacity(block_index);
Block* block = blocks->LoadBlock(block_index, kAcquireLoad);
block->record(index_in_block)->SetInternalized(string, forward_to);
return index;
}
String StringForwardingTable::GetForwardString(PtrComprCageBase cage_base,
int index) const {
CHECK_LT(index, size());
uint32_t index_in_block;
const uint32_t block_index = BlockForIndex(index, &index_in_block);
Block* block = blocks_.load(std::memory_order_acquire)
->LoadBlock(block_index, kAcquireLoad);
return block->record(index_in_block)->forward_string(cage_base);
}
// static
Address StringForwardingTable::GetForwardStringAddress(Isolate* isolate,
int index) {
return isolate->string_forwarding_table()
->GetForwardString(isolate, index)
.ptr();
}
uint32_t StringForwardingTable::GetRawHash(PtrComprCageBase cage_base,
int index) const {
CHECK_LT(index, size());
uint32_t index_in_block;
const uint32_t block_index = BlockForIndex(index, &index_in_block);
Block* block = blocks_.load(std::memory_order_acquire)
->LoadBlock(block_index, kAcquireLoad);
return block->record(index_in_block)->raw_hash(cage_base);
}
void StringForwardingTable::Reset() {
isolate_->heap()->safepoint()->AssertActive();
DCHECK_NE(isolate_->heap()->gc_state(), Heap::NOT_IN_GC);
BlockVector* blocks = blocks_.load(std::memory_order_relaxed);
for (uint32_t block_index = 0; block_index < blocks->size(); ++block_index) {
delete blocks->LoadBlock(block_index);
}
block_vector_storage_.clear();
InitializeBlockVector();
next_free_index_ = 0;
}
void StringForwardingTable::UpdateAfterEvacuation() {
DCHECK(FLAG_always_use_string_forwarding_table);
if (empty()) return;
BlockVector* blocks = blocks_.load(std::memory_order_relaxed);
const unsigned int last_block_index =
static_cast<unsigned int>(blocks->size() - 1);
for (unsigned int block_index = 0; block_index < last_block_index;
++block_index) {
Block* block = blocks->LoadBlock(block_index, kAcquireLoad);
block->UpdateAfterEvacuation(isolate_);
}
// Handle last block separately, as it is not filled to capacity.
const int max_index = IndexInBlock(size() - 1, last_block_index) + 1;
blocks->LoadBlock(last_block_index, kAcquireLoad)
->UpdateAfterEvacuation(isolate_, max_index);
}
} // namespace internal
} // namespace v8

View File

@ -0,0 +1,87 @@
// Copyright 2022 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_OBJECTS_STRING_FORWARDING_TABLE_H_
#define V8_OBJECTS_STRING_FORWARDING_TABLE_H_
#include "src/objects/string.h"
// Has to be the last include (doesn't have include guards):
#include "src/objects/object-macros.h"
namespace v8 {
namespace internal {
// Mapping from forwarding indices (stored in a string's hash field) to
// internalized strings.
// The table is organised in "blocks". As writes only append new entries, the
// organisation in blocks allows lock-free writes. We need a lock only for
// growing the table (adding more blocks). When the vector holding the blocks
// needs to grow, we keep a copy of the old vector alive to allow concurrent
// reads while the vector is relocated.
class StringForwardingTable {
public:
// Capacity for the first block.
static constexpr int kInitialBlockSize = 16;
static_assert(base::bits::IsPowerOfTwo(kInitialBlockSize));
static constexpr int kInitialBlockSizeHighestBit =
kBitsPerInt - base::bits::CountLeadingZeros32(kInitialBlockSize) - 1;
// Initial capacity in the block vector.
static constexpr int kInitialBlockVectorCapacity = 4;
static constexpr Smi unused_element() { return Smi::FromInt(0); }
static constexpr Smi deleted_element() { return Smi::FromInt(1); }
explicit StringForwardingTable(Isolate* isolate);
~StringForwardingTable();
inline int size() const;
inline bool empty() const;
// Returns the index of the added record.
int AddForwardString(String string, String forward_to);
String GetForwardString(PtrComprCageBase cage_base, int index) const;
static Address GetForwardStringAddress(Isolate* isolate, int index);
V8_EXPORT_PRIVATE uint32_t GetRawHash(PtrComprCageBase cage_base,
int index) const;
template <typename Func>
V8_INLINE void IterateElements(Isolate* isolate, Func&& callback);
void Reset();
void UpdateAfterEvacuation();
class Record;
private:
class Block;
class BlockVector;
// Returns the block for a given index and sets the index within this block
// as out parameter.
static inline uint32_t BlockForIndex(int index, uint32_t* index_in_block_out);
static inline uint32_t IndexInBlock(int index, uint32_t block);
static inline uint32_t CapacityForBlock(uint32_t block);
void InitializeBlockVector();
// Ensure that |block| exists in the BlockVector already. If not, a new block
// is created (with capacity double the capacity of the last block) and
// inserted into the BlockVector. The BlockVector itself might grow (to double
// the capacity).
BlockVector* EnsureCapacity(uint32_t block);
Isolate* isolate_;
std::atomic<BlockVector*> blocks_;
// We need a vector of BlockVectors to keep old BlockVectors alive when we
// grow the table, due to concurrent reads that may still hold a pointer to
// them. |block_vector_sotrage_| is only accessed while we grow with the mutex
// held. All regular access go through |block_|, which holds a pointer to the
// current BlockVector.
std::vector<std::unique_ptr<BlockVector>> block_vector_storage_;
std::atomic<int> next_free_index_;
base::Mutex grow_mutex_;
};
} // namespace internal
} // namespace v8
#include "src/objects/object-macros-undef.h"
#endif // V8_OBJECTS_STRING_FORWARDING_TABLE_H_

View File

@ -24,37 +24,6 @@ uint32_t StringTableKey::hash() const {
return Name::HashBits::decode(raw_hash_field_); return Name::HashBits::decode(raw_hash_field_);
} }
int StringForwardingTable::Size() const { return next_free_index_; }
// static
uint32_t StringForwardingTable::BlockForIndex(int index,
uint32_t* index_in_block) {
DCHECK_GE(index, 0);
DCHECK_NOT_NULL(index_in_block);
// The block is the leftmost set bit of the index, corrected by the size
// of the first block.
const uint32_t block = kBitsPerInt -
base::bits::CountLeadingZeros(
static_cast<uint32_t>(index + kInitialBlockSize)) -
kInitialBlockSizeHighestBit - 1;
*index_in_block = IndexInBlock(index, block);
return block;
}
// static
uint32_t StringForwardingTable::IndexInBlock(int index, uint32_t block) {
DCHECK_GE(index, 0);
// Clear out the leftmost set bit (the block) to get the index within the
// block.
return static_cast<uint32_t>(index + kInitialBlockSize) &
~(1u << (block + kInitialBlockSizeHighestBit));
}
// static
uint32_t StringForwardingTable::CapacityForBlock(uint32_t block) {
return 1u << (block + kInitialBlockSizeHighestBit);
}
} // namespace internal } // namespace internal
} // namespace v8 } // namespace v8

View File

@ -448,7 +448,8 @@ void SetInternalizedReference(Isolate* isolate, String string,
if (Name::IsInternalizedForwardingIndex(field)) return; if (Name::IsInternalizedForwardingIndex(field)) return;
const int forwarding_index = const int forwarding_index =
isolate->string_forwarding_table()->Add(isolate, string, internalized); isolate->string_forwarding_table()->AddForwardString(string,
internalized);
string.set_raw_hash_field( string.set_raw_hash_field(
String::CreateInternalizedForwardingIndex(forwarding_index), String::CreateInternalizedForwardingIndex(forwarding_index),
kReleaseStore); kReleaseStore);
@ -830,337 +831,5 @@ void StringTable::NotifyElementsRemoved(int count) {
data_.load(std::memory_order_relaxed)->ElementsRemoved(count); data_.load(std::memory_order_relaxed)->ElementsRemoved(count);
} }
class StringForwardingTable::Block {
public:
static std::unique_ptr<Block> New(int capacity);
explicit Block(int capacity);
int capacity() const { return capacity_; }
void* operator new(size_t size, int capacity);
void* operator new(size_t size) = delete;
void operator delete(void* data);
void Set(int index, String string, String forward_to) {
DCHECK_LT(index, capacity());
Set(IndexOfOriginalString(index), string);
Set(IndexOfForwardString(index), forward_to);
}
String GetOriginalString(Isolate* isolate, int index) const {
DCHECK_LT(index, capacity());
return String::cast(Get(isolate, IndexOfOriginalString(index)));
}
String GetForwardString(Isolate* isolate, int index) const {
DCHECK_LT(index, capacity());
return String::cast(Get(isolate, IndexOfForwardString(index)));
}
uint32_t GetRawHash(Isolate* isolate, int index) const {
DCHECK_LT(index, capacity());
String internalized = GetForwardString(isolate, index);
uint32_t raw_hash = internalized.raw_hash_field();
DCHECK(Name::IsHashFieldComputed(raw_hash));
return raw_hash;
}
void IterateElements(RootVisitor* visitor, int up_to_index) {
OffHeapObjectSlot first_slot = slot(0);
OffHeapObjectSlot end_slot = slot(IndexOfOriginalString(up_to_index));
visitor->VisitRootPointers(Root::kStringForwardingTable, nullptr,
first_slot, end_slot);
}
void UpdateAfterEvacuation(Isolate* isolate);
void UpdateAfterEvacuation(Isolate* isolate, int up_to_index);
private:
static constexpr int kRecordSize = 2;
static constexpr int kOriginalStringOffset = 0;
static constexpr int kForwardStringOffset = 1;
int IndexOfOriginalString(int index) const {
return index * kRecordSize + kOriginalStringOffset;
}
int IndexOfForwardString(int index) const {
return index * kRecordSize + kForwardStringOffset;
}
OffHeapObjectSlot slot(int index) const {
return OffHeapObjectSlot(&elements_[index]);
}
Object Get(PtrComprCageBase cage_base, int internal_index) const {
return slot(internal_index).Acquire_Load(cage_base);
}
void Set(int internal_index, Object object) {
slot(internal_index).Release_Store(object);
}
const int capacity_;
Tagged_t elements_[1];
};
StringForwardingTable::Block::Block(int capacity) : capacity_(capacity) {}
void* StringForwardingTable::Block::operator new(size_t size, int capacity) {
// Make sure the size given is the size of the Block structure.
DCHECK_EQ(size, sizeof(StringForwardingTable::Block));
// Make sure that the elements_ array is at the end of Block, with no padding,
// so that subsequent elements can be accessed as offsets from elements_.
static_assert(offsetof(StringForwardingTable::Block, elements_) ==
sizeof(StringForwardingTable::Block) - sizeof(Tagged_t) * 1);
// Make sure that elements_ is aligned when StringTable::Block is aligned.
static_assert((alignof(StringForwardingTable::Block) +
offsetof(StringForwardingTable::Block, elements_)) %
kTaggedSize ==
0);
const size_t elements_size = capacity * kRecordSize * sizeof(Tagged_t);
// Storage for the first element is already supplied by elements_, so subtract
// sizeof(Tagged_t).
const size_t new_size = size + elements_size - sizeof(Tagged_t);
DCHECK_LE(alignof(StringForwardingTable::Block), kSystemPointerSize);
return AlignedAlloc(new_size, kSystemPointerSize);
}
void StringForwardingTable::Block::operator delete(void* block) {
AlignedFree(block);
}
std::unique_ptr<StringForwardingTable::Block> StringForwardingTable::Block::New(
int capacity) {
return std::unique_ptr<Block>(new (capacity) Block(capacity));
}
void StringForwardingTable::Block::UpdateAfterEvacuation(Isolate* isolate) {
UpdateAfterEvacuation(isolate, capacity_);
}
void StringForwardingTable::Block::UpdateAfterEvacuation(Isolate* isolate,
int up_to_index) {
// This is only used for Scavenger.
DCHECK(!FLAG_minor_mc);
DCHECK(FLAG_always_use_string_forwarding_table);
for (int index = 0; index < up_to_index; ++index) {
Object original = Get(isolate, IndexOfOriginalString(index));
if (!original.IsHeapObject()) continue;
HeapObject object = HeapObject::cast(original);
if (Heap::InFromPage(object)) {
DCHECK(!object.InSharedWritableHeap());
MapWord map_word = object.map_word(kRelaxedLoad);
if (map_word.IsForwardingAddress()) {
HeapObject forwarded_object = map_word.ToForwardingAddress();
Set(IndexOfOriginalString(index), String::cast(forwarded_object));
} else {
Set(IndexOfOriginalString(index), deleted_element());
}
} else {
DCHECK(!object.map_word(kRelaxedLoad).IsForwardingAddress());
}
}
}
class StringForwardingTable::BlockVector {
public:
using Block = StringForwardingTable::Block;
using Allocator = std::allocator<Block*>;
explicit BlockVector(size_t capacity);
~BlockVector();
size_t capacity() const { return capacity_; }
Block* LoadBlock(size_t index, AcquireLoadTag) {
DCHECK_LT(index, size());
return base::AsAtomicPointer::Acquire_Load(&begin_[index]);
}
Block* LoadBlock(size_t index) {
DCHECK_LT(index, size());
return begin_[index];
}
void AddBlock(std::unique_ptr<Block> block) {
DCHECK_LT(size(), capacity());
base::AsAtomicPointer::Release_Store(&begin_[size_], block.release());
size_++;
}
static std::unique_ptr<BlockVector> Grow(BlockVector* data, size_t capacity,
const base::Mutex& mutex);
size_t size() const { return size_; }
private:
V8_NO_UNIQUE_ADDRESS Allocator allocator_;
const size_t capacity_;
std::atomic<size_t> size_;
Block** begin_;
};
StringForwardingTable::BlockVector::BlockVector(size_t capacity)
: allocator_(Allocator()), capacity_(capacity), size_(0) {
begin_ = allocator_.allocate(capacity);
}
StringForwardingTable::BlockVector::~BlockVector() {
allocator_.deallocate(begin_, capacity());
}
// static
std::unique_ptr<StringForwardingTable::BlockVector>
StringForwardingTable::BlockVector::Grow(
StringForwardingTable::BlockVector* data, size_t capacity,
const base::Mutex& mutex) {
mutex.AssertHeld();
std::unique_ptr<BlockVector> new_data =
std::make_unique<BlockVector>(capacity);
// Copy pointers to blocks from the old to the new vector.
for (size_t i = 0; i < data->size(); i++) {
new_data->begin_[i] = data->LoadBlock(i);
}
new_data->size_ = data->size();
return new_data;
}
StringForwardingTable::StringForwardingTable(Isolate* isolate)
: isolate_(isolate), next_free_index_(0) {
InitializeBlockVector();
}
StringForwardingTable::~StringForwardingTable() {
BlockVector* blocks = blocks_.load(std::memory_order_relaxed);
for (uint32_t block = 0; block < blocks->size(); block++) {
delete blocks->LoadBlock(block);
}
}
void StringForwardingTable::InitializeBlockVector() {
BlockVector* blocks = block_vector_storage_
.emplace_back(std::make_unique<BlockVector>(
kInitialBlockVectorCapacity))
.get();
blocks->AddBlock(Block::New(kInitialBlockSize));
blocks_.store(blocks, std::memory_order_relaxed);
}
StringForwardingTable::BlockVector* StringForwardingTable::EnsureCapacity(
uint32_t block) {
BlockVector* blocks = blocks_.load(std::memory_order_acquire);
if V8_UNLIKELY (block >= blocks->size()) {
base::MutexGuard table_grow_guard(&grow_mutex_);
// Reload the vector, as another thread could have grown it.
blocks = blocks_.load(std::memory_order_relaxed);
// Check again if we need to grow under lock.
if (block >= blocks->size()) {
const uint32_t capacity = CapacityForBlock(block);
std::unique_ptr<Block> new_block = Block::New(capacity);
// Grow the vector if the block to insert is greater than the vectors
// capacity.
if (block >= blocks->capacity()) {
std::unique_ptr<BlockVector> new_blocks =
BlockVector::Grow(blocks, blocks->capacity() * 2, grow_mutex_);
block_vector_storage_.push_back(std::move(new_blocks));
blocks = block_vector_storage_.back().get();
blocks_.store(blocks, std::memory_order_release);
}
blocks->AddBlock(std::move(new_block));
}
}
return blocks;
}
int StringForwardingTable::Add(Isolate* isolate, String string,
String forward_to) {
DCHECK_IMPLIES(!FLAG_always_use_string_forwarding_table,
string.InSharedHeap());
DCHECK_IMPLIES(!FLAG_always_use_string_forwarding_table,
forward_to.InSharedHeap());
int index = next_free_index_++;
uint32_t index_in_block;
const uint32_t block = BlockForIndex(index, &index_in_block);
BlockVector* blocks = EnsureCapacity(block);
Block* data = blocks->LoadBlock(block, kAcquireLoad);
data->Set(index_in_block, string, forward_to);
return index;
}
String StringForwardingTable::GetForwardString(Isolate* isolate,
int index) const {
CHECK_LT(index, Size());
uint32_t index_in_block;
const uint32_t block = BlockForIndex(index, &index_in_block);
Block* data =
blocks_.load(std::memory_order_acquire)->LoadBlock(block, kAcquireLoad);
return data->GetForwardString(isolate, index_in_block);
}
// static
Address StringForwardingTable::GetForwardStringAddress(Isolate* isolate,
int index) {
return isolate->string_forwarding_table()
->GetForwardString(isolate, index)
.ptr();
}
uint32_t StringForwardingTable::GetRawHash(Isolate* isolate, int index) const {
CHECK_LT(index, Size());
uint32_t index_in_block;
const uint32_t block = BlockForIndex(index, &index_in_block);
Block* data =
blocks_.load(std::memory_order_acquire)->LoadBlock(block, kAcquireLoad);
return data->GetRawHash(isolate, index_in_block);
}
void StringForwardingTable::IterateElements(RootVisitor* visitor) {
isolate_->heap()->safepoint()->AssertActive();
DCHECK_NE(isolate_->heap()->gc_state(), Heap::NOT_IN_GC);
if (next_free_index_ == 0) return; // Early exit if table is empty.
BlockVector* blocks = blocks_.load(std::memory_order_relaxed);
const uint32_t last_block = static_cast<uint32_t>(blocks->size() - 1);
for (uint32_t block = 0; block < last_block; ++block) {
Block* data = blocks->LoadBlock(block);
data->IterateElements(visitor, data->capacity());
}
// Handle last block separately, as it is not filled to capacity.
const uint32_t max_index = IndexInBlock(next_free_index_ - 1, last_block) + 1;
Block* data = blocks->LoadBlock(last_block);
data->IterateElements(visitor, max_index);
}
void StringForwardingTable::Reset() {
isolate_->heap()->safepoint()->AssertActive();
DCHECK_NE(isolate_->heap()->gc_state(), Heap::NOT_IN_GC);
BlockVector* blocks = blocks_.load(std::memory_order_relaxed);
for (uint32_t block = 0; block < blocks->size(); ++block) {
delete blocks->LoadBlock(block);
}
block_vector_storage_.clear();
InitializeBlockVector();
next_free_index_ = 0;
}
void StringForwardingTable::UpdateAfterEvacuation() {
DCHECK(FLAG_always_use_string_forwarding_table);
if (next_free_index_ == 0) return; // Early exit if table is empty.
BlockVector* blocks = blocks_.load(std::memory_order_relaxed);
const unsigned int last_block = static_cast<unsigned int>(blocks->size() - 1);
for (unsigned int block = 0; block < last_block; ++block) {
Block* data = blocks->LoadBlock(block, kAcquireLoad);
data->UpdateAfterEvacuation(isolate_);
}
// Handle last block separately, as it is not filled to capacity.
const int max_index = IndexInBlock(next_free_index_ - 1, last_block) + 1;
blocks->LoadBlock(last_block, kAcquireLoad)
->UpdateAfterEvacuation(isolate_, max_index);
}
} // namespace internal } // namespace internal
} // namespace v8 } // namespace v8

View File

@ -95,66 +95,6 @@ class V8_EXPORT_PRIVATE StringTable {
Isolate* isolate_; Isolate* isolate_;
}; };
// Mapping from forwarding indices (stored in a string's hash field) to
// internalized strings.
// The table is organised in "blocks". As writes only append new entries, the
// organisation in blocks allows lock-free writes. We need a lock only for
// growing the table (adding more blocks). When the vector holding the blocks
// needs to grow, we keep a copy of the old vector alive to allow concurrent
// reads while the vector is relocated.
class StringForwardingTable {
public:
// Capacity for the first block.
static constexpr int kInitialBlockSize = 16;
static_assert(base::bits::IsPowerOfTwo(kInitialBlockSize));
static constexpr int kInitialBlockSizeHighestBit =
kBitsPerInt - base::bits::CountLeadingZeros32(kInitialBlockSize) - 1;
// Initial capacity in the block vector.
static constexpr int kInitialBlockVectorCapacity = 4;
static constexpr Smi deleted_element() { return Smi::FromInt(0); }
explicit StringForwardingTable(Isolate* isolate);
~StringForwardingTable();
inline int Size() const;
// Returns the index of the added string pair.
int Add(Isolate* isolate, String string, String forward_to);
String GetForwardString(Isolate* isolate, int index) const;
static Address GetForwardStringAddress(Isolate* isolate, int index);
V8_EXPORT_PRIVATE uint32_t GetRawHash(Isolate* isolate, int index) const;
void IterateElements(RootVisitor* visitor);
void Reset();
void UpdateAfterEvacuation();
private:
class Block;
class BlockVector;
// Returns the block for a given index and sets the index within this block
// as out parameter.
static inline uint32_t BlockForIndex(int index, uint32_t* index_in_block_out);
static inline uint32_t IndexInBlock(int index, uint32_t block);
static inline uint32_t CapacityForBlock(uint32_t block);
void InitializeBlockVector();
// Ensure that |block| exists in the BlockVector already. If not, a new block
// is created (with capacity double the capacity of the last block) and
// inserted into the BlockVector. The BlockVector itself might grow (to double
// the capacity).
BlockVector* EnsureCapacity(uint32_t block);
Isolate* isolate_;
std::atomic<BlockVector*> blocks_;
// We need a vector of BlockVectors to keep old BlockVectors alive when we
// grow the table, due to concurrent reads that may still hold a pointer to
// them. |block_vector_sotrage_| is only accessed while we grow with the mutex
// held. All regular access go through |block_|, which holds a pointer to the
// current BlockVector.
std::vector<std::unique_ptr<BlockVector>> block_vector_storage_;
std::atomic<int> next_free_index_;
base::Mutex grow_mutex_;
};
} // namespace internal } // namespace internal
} // namespace v8 } // namespace v8

View File

@ -18,7 +18,6 @@ class CodeDataContainer;
#define ROOT_ID_LIST(V) \ #define ROOT_ID_LIST(V) \
V(kStringTable, "(Internalized strings)") \ V(kStringTable, "(Internalized strings)") \
V(kStringForwardingTable, "(Forwarded strings)") \
V(kExternalStringsTable, "(External strings)") \ V(kExternalStringsTable, "(External strings)") \
V(kReadOnlyRootList, "(Read-only roots)") \ V(kReadOnlyRootList, "(Read-only roots)") \
V(kStrongRootList, "(Strong roots)") \ V(kStrongRootList, "(Strong roots)") \

View File

@ -13,6 +13,7 @@
#include "src/heap/remembered-set.h" #include "src/heap/remembered-set.h"
#include "src/objects/fixed-array.h" #include "src/objects/fixed-array.h"
#include "src/objects/objects-inl.h" #include "src/objects/objects-inl.h"
#include "src/objects/string-forwarding-table-inl.h"
#include "test/cctest/cctest.h" #include "test/cctest/cctest.h"
#include "test/cctest/heap/heap-utils.h" #include "test/cctest/heap/heap-utils.h"
@ -901,7 +902,7 @@ UNINITIALIZED_TEST(SharedStringsTransitionDuringGC) {
i_isolate->heap()->CollectSharedGarbage(GarbageCollectionReason::kTesting); i_isolate->heap()->CollectSharedGarbage(GarbageCollectionReason::kTesting);
// Check that GC cleared the forwarding table. // Check that GC cleared the forwarding table.
CHECK_EQ(i_isolate->string_forwarding_table()->Size(), 0); CHECK_EQ(i_isolate->string_forwarding_table()->size(), 0);
// Check all strings are transitioned to ThinStrings // Check all strings are transitioned to ThinStrings
for (int i = 0; i < shared_strings->length(); i++) { for (int i = 0; i < shared_strings->length(); i++) {