Implement trigonometric functions using a fdlibm port.
R=jochen@chromium.org, rtoy@chromium.org, svenpanne@chromium.org BUG=v8:3006 LOG=N Review URL: https://codereview.chromium.org/411263004 git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@22918 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
This commit is contained in:
parent
f862ed533a
commit
3c4d23b917
2
.gitignore
vendored
2
.gitignore
vendored
@ -63,7 +63,7 @@ shell_g
|
||||
/test/test262/tc39-test262-*
|
||||
/testing/gmock
|
||||
/testing/gtest
|
||||
/third_party
|
||||
/third_party/icu
|
||||
/tools/jsfunfuzz
|
||||
/tools/jsfunfuzz.zip
|
||||
/tools/oom_dump/oom_dump
|
||||
|
3
BUILD.gn
3
BUILD.gn
@ -194,6 +194,7 @@ action("js2c") {
|
||||
"src/string.js",
|
||||
"src/symbol.js",
|
||||
"src/uri.js",
|
||||
"third_party/fdlibm/fdlibm.js",
|
||||
"src/math.js",
|
||||
"src/messages.js",
|
||||
"src/apinatives.js",
|
||||
@ -865,6 +866,8 @@ source_set("v8_base") {
|
||||
"src/zone-inl.h",
|
||||
"src/zone.cc",
|
||||
"src/zone.h",
|
||||
"third_party/fdlibm/fdlibm.cc',
|
||||
"third_party/fdlibm/fdlibm.h',
|
||||
]
|
||||
|
||||
if (v8_target_arch == "x86") {
|
||||
|
1
DEPS
1
DEPS
@ -41,6 +41,7 @@ include_rules = [
|
||||
# Everybody can use some things.
|
||||
"+include",
|
||||
"+unicode",
|
||||
"+third_party/fdlibm",
|
||||
]
|
||||
|
||||
# checkdeps.py shouldn't check for includes in these directories:
|
||||
|
@ -14,7 +14,7 @@
|
||||
#include "src/isolate-inl.h"
|
||||
#include "src/natives.h"
|
||||
#include "src/snapshot.h"
|
||||
#include "src/trig-table.h"
|
||||
#include "third_party/fdlibm/fdlibm.h"
|
||||
|
||||
namespace v8 {
|
||||
namespace internal {
|
||||
@ -121,7 +121,7 @@ char* Bootstrapper::AllocateAutoDeletedArray(int bytes) {
|
||||
void Bootstrapper::TearDown() {
|
||||
if (delete_these_non_arrays_on_tear_down_ != NULL) {
|
||||
int len = delete_these_non_arrays_on_tear_down_->length();
|
||||
DCHECK(len < 24); // Don't use this mechanism for unbounded allocations.
|
||||
DCHECK(len < 25); // Don't use this mechanism for unbounded allocations.
|
||||
for (int i = 0; i < len; i++) {
|
||||
delete delete_these_non_arrays_on_tear_down_->at(i);
|
||||
delete_these_non_arrays_on_tear_down_->at(i) = NULL;
|
||||
@ -2651,43 +2651,19 @@ Genesis::Genesis(Isolate* isolate,
|
||||
NONE).Assert();
|
||||
|
||||
// Initialize trigonometric lookup tables and constants.
|
||||
const int table_num_bytes = TrigonometricLookupTable::table_num_bytes();
|
||||
v8::Local<v8::ArrayBuffer> sin_buffer = v8::ArrayBuffer::New(
|
||||
const int constants_size = ARRAY_SIZE(TrigonometricConstants::constants);
|
||||
const int table_num_bytes = constants_size * kDoubleSize;
|
||||
v8::Local<v8::ArrayBuffer> trig_buffer = v8::ArrayBuffer::New(
|
||||
reinterpret_cast<v8::Isolate*>(isolate),
|
||||
TrigonometricLookupTable::sin_table(), table_num_bytes);
|
||||
v8::Local<v8::ArrayBuffer> cos_buffer = v8::ArrayBuffer::New(
|
||||
reinterpret_cast<v8::Isolate*>(isolate),
|
||||
TrigonometricLookupTable::cos_x_interval_table(), table_num_bytes);
|
||||
v8::Local<v8::Float64Array> sin_table = v8::Float64Array::New(
|
||||
sin_buffer, 0, TrigonometricLookupTable::table_size());
|
||||
v8::Local<v8::Float64Array> cos_table = v8::Float64Array::New(
|
||||
cos_buffer, 0, TrigonometricLookupTable::table_size());
|
||||
const_cast<double*>(TrigonometricConstants::constants),
|
||||
table_num_bytes);
|
||||
v8::Local<v8::Float64Array> trig_table =
|
||||
v8::Float64Array::New(trig_buffer, 0, constants_size);
|
||||
|
||||
Runtime::DefineObjectProperty(builtins,
|
||||
factory()->InternalizeOneByteString(
|
||||
STATIC_ASCII_VECTOR("kSinTable")),
|
||||
Utils::OpenHandle(*sin_table),
|
||||
NONE).Assert();
|
||||
Runtime::DefineObjectProperty(
|
||||
builtins,
|
||||
factory()->InternalizeOneByteString(
|
||||
STATIC_ASCII_VECTOR("kCosXIntervalTable")),
|
||||
Utils::OpenHandle(*cos_table),
|
||||
NONE).Assert();
|
||||
Runtime::DefineObjectProperty(
|
||||
builtins,
|
||||
factory()->InternalizeOneByteString(
|
||||
STATIC_ASCII_VECTOR("kSamples")),
|
||||
factory()->NewHeapNumber(
|
||||
TrigonometricLookupTable::samples()),
|
||||
NONE).Assert();
|
||||
Runtime::DefineObjectProperty(
|
||||
builtins,
|
||||
factory()->InternalizeOneByteString(
|
||||
STATIC_ASCII_VECTOR("kIndexConvert")),
|
||||
factory()->NewHeapNumber(
|
||||
TrigonometricLookupTable::samples_over_pi_half()),
|
||||
NONE).Assert();
|
||||
factory()->InternalizeOneByteString(STATIC_ASCII_VECTOR("kTrig")),
|
||||
Utils::OpenHandle(*trig_table), NONE).Assert();
|
||||
}
|
||||
|
||||
result_ = native_context();
|
||||
|
111
src/math.js
111
src/math.js
@ -56,12 +56,6 @@ function MathCeil(x) {
|
||||
return -MathFloor(-x);
|
||||
}
|
||||
|
||||
// ECMA 262 - 15.8.2.7
|
||||
function MathCos(x) {
|
||||
x = MathAbs(x); // Convert to number and get rid of -0.
|
||||
return TrigonometricInterpolation(x, 1);
|
||||
}
|
||||
|
||||
// ECMA 262 - 15.8.2.8
|
||||
function MathExp(x) {
|
||||
return %MathExpRT(TO_NUMBER_INLINE(x));
|
||||
@ -164,97 +158,16 @@ function MathRound(x) {
|
||||
return %RoundNumber(TO_NUMBER_INLINE(x));
|
||||
}
|
||||
|
||||
// ECMA 262 - 15.8.2.16
|
||||
function MathSin(x) {
|
||||
x = x * 1; // Convert to number and deal with -0.
|
||||
if (%_IsMinusZero(x)) return x;
|
||||
return TrigonometricInterpolation(x, 0);
|
||||
}
|
||||
|
||||
// ECMA 262 - 15.8.2.17
|
||||
function MathSqrt(x) {
|
||||
return %_MathSqrtRT(TO_NUMBER_INLINE(x));
|
||||
}
|
||||
|
||||
// ECMA 262 - 15.8.2.18
|
||||
function MathTan(x) {
|
||||
return MathSin(x) / MathCos(x);
|
||||
}
|
||||
|
||||
// Non-standard extension.
|
||||
function MathImul(x, y) {
|
||||
return %NumberImul(TO_NUMBER_INLINE(x), TO_NUMBER_INLINE(y));
|
||||
}
|
||||
|
||||
|
||||
var kInversePiHalf = 0.636619772367581343; // 2 / pi
|
||||
var kInversePiHalfS26 = 9.48637384723993156e-9; // 2 / pi / (2^26)
|
||||
var kS26 = 1 << 26;
|
||||
var kTwoStepThreshold = 1 << 27;
|
||||
// pi / 2 rounded up
|
||||
var kPiHalf = 1.570796326794896780; // 0x192d4454fb21f93f
|
||||
// We use two parts for pi/2 to emulate a higher precision.
|
||||
// pi_half_1 only has 26 significant bits for mantissa.
|
||||
// Note that pi_half > pi_half_1 + pi_half_2
|
||||
var kPiHalf1 = 1.570796325802803040; // 0x00000054fb21f93f
|
||||
var kPiHalf2 = 9.920935796805404252e-10; // 0x3326a611460b113e
|
||||
|
||||
var kSamples; // Initialized to a number during genesis.
|
||||
var kIndexConvert; // Initialized to kSamples / (pi/2) during genesis.
|
||||
var kSinTable; // Initialized to a Float64Array during genesis.
|
||||
var kCosXIntervalTable; // Initialized to a Float64Array during genesis.
|
||||
|
||||
// This implements sine using the following algorithm.
|
||||
// 1) Multiplication takes care of to-number conversion.
|
||||
// 2) Reduce x to the first quadrant [0, pi/2].
|
||||
// Conveniently enough, in case of +/-Infinity, we get NaN.
|
||||
// Note that we try to use only 26 instead of 52 significant bits for
|
||||
// mantissa to avoid rounding errors when multiplying. For very large
|
||||
// input we therefore have additional steps.
|
||||
// 3) Replace x by (pi/2-x) if x was in the 2nd or 4th quadrant.
|
||||
// 4) Do a table lookup for the closest samples to the left and right of x.
|
||||
// 5) Find the derivatives at those sampling points by table lookup:
|
||||
// dsin(x)/dx = cos(x) = sin(pi/2-x) for x in [0, pi/2].
|
||||
// 6) Use cubic spline interpolation to approximate sin(x).
|
||||
// 7) Negate the result if x was in the 3rd or 4th quadrant.
|
||||
// 8) Get rid of -0 by adding 0.
|
||||
function TrigonometricInterpolation(x, phase) {
|
||||
if (x < 0 || x > kPiHalf) {
|
||||
var multiple;
|
||||
while (x < -kTwoStepThreshold || x > kTwoStepThreshold) {
|
||||
// Let's assume this loop does not terminate.
|
||||
// All numbers x in each loop forms a set S.
|
||||
// (1) abs(x) > 2^27 for all x in S.
|
||||
// (2) abs(multiple) != 0 since (2^27 * inverse_pi_half_s26) > 1
|
||||
// (3) multiple is rounded down in 2^26 steps, so the rounding error is
|
||||
// at most max(ulp, 2^26).
|
||||
// (4) so for x > 2^27, we subtract at most (1+pi/4)x and at least
|
||||
// (1-pi/4)x
|
||||
// (5) The subtraction results in x' so that abs(x') <= abs(x)*pi/4.
|
||||
// Note that this difference cannot be simply rounded off.
|
||||
// Set S cannot exist since (5) violates (1). Loop must terminate.
|
||||
multiple = MathFloor(x * kInversePiHalfS26) * kS26;
|
||||
x = x - multiple * kPiHalf1 - multiple * kPiHalf2;
|
||||
}
|
||||
multiple = MathFloor(x * kInversePiHalf);
|
||||
x = x - multiple * kPiHalf1 - multiple * kPiHalf2;
|
||||
phase += multiple;
|
||||
}
|
||||
var double_index = x * kIndexConvert;
|
||||
if (phase & 1) double_index = kSamples - double_index;
|
||||
var index = double_index | 0;
|
||||
var t1 = double_index - index;
|
||||
var t2 = 1 - t1;
|
||||
var y1 = kSinTable[index];
|
||||
var y2 = kSinTable[index + 1];
|
||||
var dy = y2 - y1;
|
||||
return (t2 * y1 + t1 * y2 +
|
||||
t1 * t2 * ((kCosXIntervalTable[index] - dy) * t2 +
|
||||
(dy - kCosXIntervalTable[index + 1]) * t1))
|
||||
* (1 - (phase & 2)) + 0;
|
||||
}
|
||||
|
||||
|
||||
// ES6 draft 09-27-13, section 20.2.2.28.
|
||||
function MathSign(x) {
|
||||
x = TO_NUMBER_INLINE(x);
|
||||
@ -264,7 +177,6 @@ function MathSign(x) {
|
||||
return NAN;
|
||||
}
|
||||
|
||||
|
||||
// ES6 draft 09-27-13, section 20.2.2.34.
|
||||
function MathTrunc(x) {
|
||||
x = TO_NUMBER_INLINE(x);
|
||||
@ -274,7 +186,6 @@ function MathTrunc(x) {
|
||||
return NAN;
|
||||
}
|
||||
|
||||
|
||||
// ES6 draft 09-27-13, section 20.2.2.30.
|
||||
function MathSinh(x) {
|
||||
if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
|
||||
@ -283,7 +194,6 @@ function MathSinh(x) {
|
||||
return (MathExp(x) - MathExp(-x)) / 2;
|
||||
}
|
||||
|
||||
|
||||
// ES6 draft 09-27-13, section 20.2.2.12.
|
||||
function MathCosh(x) {
|
||||
if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
|
||||
@ -291,7 +201,6 @@ function MathCosh(x) {
|
||||
return (MathExp(x) + MathExp(-x)) / 2;
|
||||
}
|
||||
|
||||
|
||||
// ES6 draft 09-27-13, section 20.2.2.33.
|
||||
function MathTanh(x) {
|
||||
if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
|
||||
@ -304,7 +213,6 @@ function MathTanh(x) {
|
||||
return (exp1 - exp2) / (exp1 + exp2);
|
||||
}
|
||||
|
||||
|
||||
// ES6 draft 09-27-13, section 20.2.2.5.
|
||||
function MathAsinh(x) {
|
||||
if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
|
||||
@ -315,7 +223,6 @@ function MathAsinh(x) {
|
||||
return -MathLog(-x + MathSqrt(x * x + 1));
|
||||
}
|
||||
|
||||
|
||||
// ES6 draft 09-27-13, section 20.2.2.3.
|
||||
function MathAcosh(x) {
|
||||
if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
|
||||
@ -325,7 +232,6 @@ function MathAcosh(x) {
|
||||
return MathLog(x + MathSqrt(x + 1) * MathSqrt(x - 1));
|
||||
}
|
||||
|
||||
|
||||
// ES6 draft 09-27-13, section 20.2.2.7.
|
||||
function MathAtanh(x) {
|
||||
if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
|
||||
@ -336,7 +242,6 @@ function MathAtanh(x) {
|
||||
return 0.5 * MathLog((1 + x) / (1 - x));
|
||||
}
|
||||
|
||||
|
||||
// ES6 draft 09-27-13, section 20.2.2.21.
|
||||
function MathLog10(x) {
|
||||
return MathLog(x) * 0.434294481903251828; // log10(x) = log(x)/log(10).
|
||||
@ -348,7 +253,6 @@ function MathLog2(x) {
|
||||
return MathLog(x) * 1.442695040888963407; // log2(x) = log(x)/log(2).
|
||||
}
|
||||
|
||||
|
||||
// ES6 draft 09-27-13, section 20.2.2.17.
|
||||
function MathHypot(x, y) { // Function length is 2.
|
||||
// We may want to introduce fast paths for two arguments and when
|
||||
@ -381,13 +285,12 @@ function MathHypot(x, y) { // Function length is 2.
|
||||
return MathSqrt(sum) * max;
|
||||
}
|
||||
|
||||
|
||||
// ES6 draft 09-27-13, section 20.2.2.16.
|
||||
function MathFroundJS(x) {
|
||||
return %MathFround(TO_NUMBER_INLINE(x));
|
||||
}
|
||||
|
||||
|
||||
// ES6 draft 07-18-14, section 20.2.2.11
|
||||
function MathClz32(x) {
|
||||
x = ToUint32(TO_NUMBER_INLINE(x));
|
||||
if (x == 0) return 32;
|
||||
@ -401,7 +304,6 @@ function MathClz32(x) {
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
// ES6 draft 09-27-13, section 20.2.2.9.
|
||||
// Cube root approximation, refer to: http://metamerist.com/cbrt/cbrt.htm
|
||||
// Using initial approximation adapted from Kahan's cbrt and 4 iterations
|
||||
@ -425,8 +327,6 @@ function CubeRoot(x) {
|
||||
return NEWTON_ITERATION_CBRT(x, approx);
|
||||
}
|
||||
|
||||
|
||||
|
||||
// ES6 draft 09-27-13, section 20.2.2.14.
|
||||
// Use Taylor series to approximate.
|
||||
// exp(x) - 1 at 0 == -1 + exp(0) + exp'(0)*x/1! + exp''(0)*x^2/2! + ...
|
||||
@ -447,7 +347,6 @@ function MathExpm1(x) {
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// ES6 draft 09-27-13, section 20.2.2.20.
|
||||
// Use Taylor series to approximate. With y = x + 1;
|
||||
// log(y) at 1 == log(1) + log'(1)(y-1)/1! + log''(1)(y-1)^2/2! + ...
|
||||
@ -502,14 +401,14 @@ function SetUpMath() {
|
||||
"asin", MathAsinJS,
|
||||
"atan", MathAtanJS,
|
||||
"ceil", MathCeil,
|
||||
"cos", MathCos,
|
||||
"cos", MathCos, // implemented by third_party/fdlibm
|
||||
"exp", MathExp,
|
||||
"floor", MathFloor,
|
||||
"log", MathLog,
|
||||
"round", MathRound,
|
||||
"sin", MathSin,
|
||||
"sin", MathSin, // implemented by third_party/fdlibm
|
||||
"sqrt", MathSqrt,
|
||||
"tan", MathTan,
|
||||
"tan", MathTan, // implemented by third_party/fdlibm
|
||||
"atan2", MathAtan2JS,
|
||||
"pow", MathPow,
|
||||
"max", MathMax,
|
||||
@ -537,8 +436,6 @@ function SetUpMath() {
|
||||
%SetInlineBuiltinFlag(MathRandom);
|
||||
%SetInlineBuiltinFlag(MathSin);
|
||||
%SetInlineBuiltinFlag(MathCos);
|
||||
%SetInlineBuiltinFlag(MathTan);
|
||||
%SetInlineBuiltinFlag(TrigonometricInterpolation);
|
||||
}
|
||||
|
||||
SetUpMath();
|
||||
|
@ -45,6 +45,7 @@
|
||||
#include "src/utils.h"
|
||||
#include "src/v8threads.h"
|
||||
#include "src/vm-state-inl.h"
|
||||
#include "third_party/fdlibm/fdlibm.h"
|
||||
|
||||
#ifdef V8_I18N_SUPPORT
|
||||
#include "src/i18n.h"
|
||||
@ -7683,6 +7684,21 @@ RUNTIME_FUNCTION(Runtime_ConstructDouble) {
|
||||
}
|
||||
|
||||
|
||||
RUNTIME_FUNCTION(Runtime_RemPiO2) {
|
||||
HandleScope handle_scope(isolate);
|
||||
DCHECK(args.length() == 1);
|
||||
CONVERT_DOUBLE_ARG_CHECKED(x, 0);
|
||||
Factory* factory = isolate->factory();
|
||||
double y[2];
|
||||
int n = rempio2(x, y);
|
||||
Handle<FixedArray> array = factory->NewFixedArray(3);
|
||||
array->set(0, Smi::FromInt(n));
|
||||
array->set(1, *factory->NewHeapNumber(y[0]));
|
||||
array->set(2, *factory->NewHeapNumber(y[1]));
|
||||
return *factory->NewJSArrayWithElements(array);
|
||||
}
|
||||
|
||||
|
||||
static const double kPiDividedBy4 = 0.78539816339744830962;
|
||||
|
||||
|
||||
|
@ -149,6 +149,7 @@ namespace internal {
|
||||
F(MathExpRT, 1, 1) \
|
||||
F(RoundNumber, 1, 1) \
|
||||
F(MathFround, 1, 1) \
|
||||
F(RemPiO2, 1, 1) \
|
||||
\
|
||||
/* Regular expressions */ \
|
||||
F(RegExpCompile, 3, 1) \
|
||||
|
@ -1,38 +0,0 @@
|
||||
// Copyright 2013 the V8 project authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef V8_TRIG_TABLE_H_
|
||||
#define V8_TRIG_TABLE_H_
|
||||
|
||||
|
||||
namespace v8 {
|
||||
namespace internal {
|
||||
|
||||
class TrigonometricLookupTable : public AllStatic {
|
||||
public:
|
||||
// Casting away const-ness to use as argument for typed array constructor.
|
||||
static void* sin_table() {
|
||||
return const_cast<double*>(&kSinTable[0]);
|
||||
}
|
||||
|
||||
static void* cos_x_interval_table() {
|
||||
return const_cast<double*>(&kCosXIntervalTable[0]);
|
||||
}
|
||||
|
||||
static double samples_over_pi_half() { return kSamplesOverPiHalf; }
|
||||
static int samples() { return kSamples; }
|
||||
static int table_num_bytes() { return kTableSize * sizeof(*kSinTable); }
|
||||
static int table_size() { return kTableSize; }
|
||||
|
||||
private:
|
||||
static const double kSinTable[];
|
||||
static const double kCosXIntervalTable[];
|
||||
static const int kSamples;
|
||||
static const int kTableSize;
|
||||
static const double kSamplesOverPiHalf;
|
||||
};
|
||||
|
||||
} } // namespace v8::internal
|
||||
|
||||
#endif // V8_TRIG_TABLE_H_
|
@ -59,7 +59,7 @@ for (i = 0; i < scripts.length; i++) {
|
||||
}
|
||||
|
||||
// This has to be updated if the number of native scripts change.
|
||||
assertTrue(named_native_count == 22 || named_native_count == 23);
|
||||
assertTrue(named_native_count == 23 || named_native_count == 24);
|
||||
// Only the 'gc' extension is loaded.
|
||||
assertEquals(1, extension_count);
|
||||
// This script and mjsunit.js has been loaded. If using d8, d8 loads
|
||||
|
@ -84,7 +84,7 @@ function testScriptMirror(f, file_name, file_lines, type, compilation_type,
|
||||
|
||||
// Test the script mirror for different functions.
|
||||
testScriptMirror(function(){}, 'mirror-script.js', 98, 2, 0);
|
||||
testScriptMirror(Math.sin, 'native math.js', -1, 0, 0);
|
||||
testScriptMirror(Math.round, 'native math.js', -1, 0, 0);
|
||||
testScriptMirror(eval('(function(){})'), null, 1, 2, 1, '(function(){})', 87);
|
||||
testScriptMirror(eval('(function(){\n })'), null, 2, 2, 1, '(function(){\n })', 88);
|
||||
|
||||
|
5
test/mjsunit/runtime-gen/rempio2.js
Normal file
5
test/mjsunit/runtime-gen/rempio2.js
Normal file
@ -0,0 +1,5 @@
|
||||
// Copyright 2014 the V8 project authors. All rights reserved.
|
||||
// AUTO-GENERATED BY tools/generate-runtime-tests.py, DO NOT MODIFY
|
||||
// Flags: --allow-natives-syntax --harmony
|
||||
var _x = 1.5;
|
||||
%RemPiO2(_x);
|
@ -157,8 +157,8 @@ assertEquals(0, Math.sin("0x00000"));
|
||||
assertEquals(1, Math.cos("0x00000"));
|
||||
assertTrue(isNaN(Math.sin(Infinity)));
|
||||
assertTrue(isNaN(Math.cos("-Infinity")));
|
||||
assertEquals("Infinity", String(Math.tan(Math.PI/2)));
|
||||
assertEquals("-Infinity", String(Math.tan(-Math.PI/2)));
|
||||
assertTrue(Math.tan(Math.PI/2) > 1e16);
|
||||
assertTrue(Math.tan(-Math.PI/2) < -1e16);
|
||||
assertEquals("-Infinity", String(1/Math.sin("-0")));
|
||||
|
||||
// Assert that the remainder after division by pi is reasonably precise.
|
||||
@ -185,3 +185,96 @@ for (var i = -1024; i < 1024; i++) {
|
||||
assertFalse(isNaN(Math.cos(1.57079632679489700)));
|
||||
assertFalse(isNaN(Math.cos(-1e-100)));
|
||||
assertFalse(isNaN(Math.cos(-1e-323)));
|
||||
|
||||
// Tests for specific values expected from the fdlibm implementation.
|
||||
|
||||
var two_32 = Math.pow(2, -32);
|
||||
var two_28 = Math.pow(2, -28);
|
||||
|
||||
// Tests for Math.sin for |x| < pi/4
|
||||
assertEquals(Infinity, 1/Math.sin(+0.0));
|
||||
assertEquals(-Infinity, 1/Math.sin(-0.0));
|
||||
// sin(x) = x for x < 2^-27
|
||||
assertEquals(two_32, Math.sin(two_32));
|
||||
assertEquals(-two_32, Math.sin(-two_32));
|
||||
// sin(pi/8) = sqrt(sqrt(2)-1)/2^(3/4)
|
||||
assertEquals(0.3826834323650898, Math.sin(Math.PI/8));
|
||||
assertEquals(-0.3826834323650898, -Math.sin(Math.PI/8));
|
||||
|
||||
// Tests for Math.cos for |x| < pi/4
|
||||
// cos(x) = 1 for |x| < 2^-27
|
||||
assertEquals(1, Math.cos(two_32));
|
||||
assertEquals(1, Math.cos(-two_32));
|
||||
// Test KERNELCOS for |x| < 0.3.
|
||||
// cos(pi/20) = sqrt(sqrt(2)*sqrt(sqrt(5)+5)+4)/2^(3/2)
|
||||
assertEquals(0.9876883405951378, Math.cos(Math.PI/20));
|
||||
// Test KERNELCOS for x ~= 0.78125
|
||||
assertEquals(0.7100335477927638, Math.cos(0.7812504768371582));
|
||||
assertEquals(0.7100338835660797, Math.cos(0.78125));
|
||||
// Test KERNELCOS for |x| > 0.3.
|
||||
// cos(pi/8) = sqrt(sqrt(2)+1)/2^(3/4)
|
||||
assertEquals(0.9238795325112867, Math.cos(Math.PI/8));
|
||||
// Test KERNELTAN for |x| < 0.67434.
|
||||
assertEquals(0.9238795325112867, Math.cos(-Math.PI/8));
|
||||
|
||||
// Tests for Math.tan for |x| < pi/4
|
||||
assertEquals(Infinity, 1/Math.tan(0.0));
|
||||
assertEquals(-Infinity, 1/Math.tan(-0.0));
|
||||
// tan(x) = x for |x| < 2^-28
|
||||
assertEquals(two_32, Math.tan(two_32));
|
||||
assertEquals(-two_32, Math.tan(-two_32));
|
||||
// Test KERNELTAN for |x| > 0.67434.
|
||||
assertEquals(0.8211418015898941, Math.tan(11/16));
|
||||
assertEquals(-0.8211418015898941, Math.tan(-11/16));
|
||||
assertEquals(0.41421356237309503, Math.tan(Math.PI / 8));
|
||||
|
||||
// Tests for Math.sin.
|
||||
assertEquals(0.479425538604203, Math.sin(0.5));
|
||||
assertEquals(-0.479425538604203, Math.sin(-0.5));
|
||||
assertEquals(1, Math.sin(Math.PI/2));
|
||||
assertEquals(-1, Math.sin(-Math.PI/2));
|
||||
// Test that Math.sin(Math.PI) != 0 since Math.PI is not exact.
|
||||
assertEquals(1.2246467991473532e-16, Math.sin(Math.PI));
|
||||
assertEquals(-7.047032979958965e-14, Math.sin(2200*Math.PI));
|
||||
// Test Math.sin for various phases.
|
||||
assertEquals(-0.7071067811865477, Math.sin(7/4 * Math.PI));
|
||||
assertEquals(0.7071067811865474, Math.sin(9/4 * Math.PI));
|
||||
assertEquals(0.7071067811865483, Math.sin(11/4 * Math.PI));
|
||||
assertEquals(-0.7071067811865479, Math.sin(13/4 * Math.PI));
|
||||
assertEquals(-3.2103381051568376e-11, Math.sin(1048576/4 * Math.PI));
|
||||
|
||||
// Tests for Math.cos.
|
||||
assertEquals(1, Math.cos(two_28));
|
||||
// Cover different code paths in KERNELCOS.
|
||||
assertEquals(0.9689124217106447, Math.cos(0.25));
|
||||
assertEquals(0.8775825618903728, Math.cos(0.5));
|
||||
assertEquals(0.7073882691671998, Math.cos(0.785));
|
||||
// Test that Math.cos(Math.PI/2) != 0 since Math.PI is not exact.
|
||||
assertEquals(6.123233995736766e-17, Math.cos(Math.PI/2));
|
||||
// Test Math.cos for various phases.
|
||||
assertEquals(0.7071067811865474, Math.cos(7/4 * Math.PI));
|
||||
assertEquals(0.7071067811865477, Math.cos(9/4 * Math.PI));
|
||||
assertEquals(-0.7071067811865467, Math.cos(11/4 * Math.PI));
|
||||
assertEquals(-0.7071067811865471, Math.cos(13/4 * Math.PI));
|
||||
assertEquals(0.9367521275331447, Math.cos(1000000));
|
||||
assertEquals(-3.435757038074824e-12, Math.cos(1048575/2 * Math.PI));
|
||||
|
||||
// Tests for Math.tan.
|
||||
assertEquals(two_28, Math.tan(two_28));
|
||||
// Test that Math.tan(Math.PI/2) != Infinity since Math.PI is not exact.
|
||||
assertEquals(1.633123935319537e16, Math.tan(Math.PI/2));
|
||||
// Cover different code paths in KERNELTAN (tangent and cotangent)
|
||||
assertEquals(0.5463024898437905, Math.tan(0.5));
|
||||
assertEquals(2.0000000000000027, Math.tan(1.107148717794091));
|
||||
assertEquals(-1.0000000000000004, Math.tan(7/4*Math.PI));
|
||||
assertEquals(0.9999999999999994, Math.tan(9/4*Math.PI));
|
||||
assertEquals(-6.420676210313675e-11, Math.tan(1048576/2*Math.PI));
|
||||
assertEquals(2.910566692924059e11, Math.tan(1048575/2*Math.PI));
|
||||
|
||||
// Test Hayne-Panek reduction.
|
||||
assertEquals(0.377820109360752e0, Math.sin(Math.pow(2, 120)));
|
||||
assertEquals(-0.9258790228548379e0, Math.cos(Math.pow(2, 120)));
|
||||
assertEquals(-0.40806638884180424e0, Math.tan(Math.pow(2, 120)));
|
||||
assertEquals(-0.377820109360752e0, Math.sin(-Math.pow(2, 120)));
|
||||
assertEquals(-0.9258790228548379e0, Math.cos(-Math.pow(2, 120)));
|
||||
assertEquals(0.40806638884180424e0, Math.tan(-Math.pow(2, 120)));
|
||||
|
@ -68,14 +68,7 @@
|
||||
|
||||
##################### DELIBERATE INCOMPATIBILITIES #####################
|
||||
|
||||
# This tests precision of Math functions. The implementation for those
|
||||
# trigonometric functions are platform/compiler dependent. Furthermore, the
|
||||
# expectation values by far deviates from the actual result given by an
|
||||
# arbitrary-precision calculator, making those tests partly bogus.
|
||||
'S15.8.2.7_A7': [PASS, FAIL_OK], # Math.cos
|
||||
'S15.8.2.8_A6': [PASS, FAIL_OK], # Math.exp (less precise with --fast-math)
|
||||
'S15.8.2.16_A7': [PASS, FAIL_OK], # Math.sin
|
||||
'S15.8.2.18_A7': [PASS, FAIL_OK], # Math.tan
|
||||
|
||||
# Linux for ia32 (and therefore simulators) default to extended 80 bit
|
||||
# floating point formats, so these tests checking 64-bit FP precision fail.
|
||||
|
6
third_party/fdlibm/LICENSE
vendored
Normal file
6
third_party/fdlibm/LICENSE
vendored
Normal file
@ -0,0 +1,6 @@
|
||||
Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
|
||||
Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
Permission to use, copy, modify, and distribute this
|
||||
software is freely granted, provided that this notice
|
||||
is preserved.
|
18
third_party/fdlibm/README.v8
vendored
Normal file
18
third_party/fdlibm/README.v8
vendored
Normal file
@ -0,0 +1,18 @@
|
||||
Name: Freely Distributable LIBM
|
||||
Short Name: fdlibm
|
||||
URL: http://www.netlib.org/fdlibm/
|
||||
Version: 5.3
|
||||
License: Freely Distributable.
|
||||
License File: LICENSE.
|
||||
Security Critical: yes.
|
||||
License Android Compatible: yes.
|
||||
|
||||
Description:
|
||||
This is used to provide a accurate implementation for trigonometric functions
|
||||
used in V8.
|
||||
|
||||
Local Modifications:
|
||||
For the use in V8, fdlibm has been reduced to include only sine, cosine and
|
||||
tangent. To make inlining into generated code possible, a large portion of
|
||||
that has been translated to Javascript. The rest remains in C, but has been
|
||||
refactored and reformatted to interoperate with the rest of V8.
|
258
third_party/fdlibm/fdlibm.cc
vendored
Normal file
258
third_party/fdlibm/fdlibm.cc
vendored
Normal file
@ -0,0 +1,258 @@
|
||||
// The following is adapted from fdlibm (http://www.netlib.org/fdlibm).
|
||||
//
|
||||
// ====================================================
|
||||
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
//
|
||||
// Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
// Permission to use, copy, modify, and distribute this
|
||||
// software is freely granted, provided that this notice
|
||||
// is preserved.
|
||||
// ====================================================
|
||||
//
|
||||
// The original source code covered by the above license above has been
|
||||
// modified significantly by Google Inc.
|
||||
// Copyright 2014 the V8 project authors. All rights reserved.
|
||||
|
||||
#include "src/v8.h"
|
||||
|
||||
#include "src/double.h"
|
||||
#include "third_party/fdlibm/fdlibm.h"
|
||||
|
||||
|
||||
namespace v8 {
|
||||
namespace internal {
|
||||
|
||||
const double TrigonometricConstants::constants[] = {
|
||||
6.36619772367581382433e-01, // invpio2 0
|
||||
1.57079632673412561417e+00, // pio2_1 1
|
||||
6.07710050650619224932e-11, // pio2_1t 2
|
||||
6.07710050630396597660e-11, // pio2_2 3
|
||||
2.02226624879595063154e-21, // pio2_2t 4
|
||||
2.02226624871116645580e-21, // pio2_3 5
|
||||
8.47842766036889956997e-32, // pio2_3t 6
|
||||
-1.66666666666666324348e-01, // S1 7
|
||||
8.33333333332248946124e-03, // 8
|
||||
-1.98412698298579493134e-04, // 9
|
||||
2.75573137070700676789e-06, // 10
|
||||
-2.50507602534068634195e-08, // 11
|
||||
1.58969099521155010221e-10, // S6 12
|
||||
4.16666666666666019037e-02, // C1 13
|
||||
-1.38888888888741095749e-03, // 14
|
||||
2.48015872894767294178e-05, // 15
|
||||
-2.75573143513906633035e-07, // 16
|
||||
2.08757232129817482790e-09, // 17
|
||||
-1.13596475577881948265e-11, // C6 18
|
||||
3.33333333333334091986e-01, // T0 19
|
||||
1.33333333333201242699e-01, // 20
|
||||
5.39682539762260521377e-02, // 21
|
||||
2.18694882948595424599e-02, // 22
|
||||
8.86323982359930005737e-03, // 23
|
||||
3.59207910759131235356e-03, // 24
|
||||
1.45620945432529025516e-03, // 25
|
||||
5.88041240820264096874e-04, // 26
|
||||
2.46463134818469906812e-04, // 27
|
||||
7.81794442939557092300e-05, // 28
|
||||
7.14072491382608190305e-05, // 29
|
||||
-1.85586374855275456654e-05, // 30
|
||||
2.59073051863633712884e-05, // T12 31
|
||||
7.85398163397448278999e-01, // pio4 32
|
||||
3.06161699786838301793e-17, // pio4lo 33
|
||||
};
|
||||
|
||||
|
||||
// Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
|
||||
static const int two_over_pi[] = {
|
||||
0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62, 0x95993C,
|
||||
0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A, 0x424DD2, 0xE00649,
|
||||
0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129, 0xA73EE8, 0x8235F5, 0x2EBB44,
|
||||
0x84E99C, 0x7026B4, 0x5F7E41, 0x3991D6, 0x398353, 0x39F49C, 0x845F8B,
|
||||
0xBDF928, 0x3B1FF8, 0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D,
|
||||
0x367ECF, 0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
|
||||
0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08, 0x560330,
|
||||
0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3, 0x91615E, 0xE61B08,
|
||||
0x659985, 0x5F14A0, 0x68408D, 0xFFD880, 0x4D7327, 0x310606, 0x1556CA,
|
||||
0x73A8C9, 0x60E27B, 0xC08C6B};
|
||||
|
||||
static const double zero = 0.0;
|
||||
static const double two24 = 1.6777216e+07;
|
||||
static const double one = 1.0;
|
||||
static const double twon24 = 5.9604644775390625e-08;
|
||||
|
||||
static const double PIo2[] = {
|
||||
1.57079625129699707031e+00, // 0x3FF921FB, 0x40000000
|
||||
7.54978941586159635335e-08, // 0x3E74442D, 0x00000000
|
||||
5.39030252995776476554e-15, // 0x3CF84698, 0x80000000
|
||||
3.28200341580791294123e-22, // 0x3B78CC51, 0x60000000
|
||||
1.27065575308067607349e-29, // 0x39F01B83, 0x80000000
|
||||
1.22933308981111328932e-36, // 0x387A2520, 0x40000000
|
||||
2.73370053816464559624e-44, // 0x36E38222, 0x80000000
|
||||
2.16741683877804819444e-51 // 0x3569F31D, 0x00000000
|
||||
};
|
||||
|
||||
|
||||
int __kernel_rem_pio2(double* x, double* y, int e0, int nx) {
|
||||
static const int32_t jk = 3;
|
||||
double fw;
|
||||
int32_t jx = nx - 1;
|
||||
int32_t jv = (e0 - 3) / 24;
|
||||
if (jv < 0) jv = 0;
|
||||
int32_t q0 = e0 - 24 * (jv + 1);
|
||||
int32_t m = jx + jk;
|
||||
|
||||
double f[10];
|
||||
for (int i = 0, j = jv - jx; i <= m; i++, j++) {
|
||||
f[i] = (j < 0) ? zero : static_cast<double>(two_over_pi[j]);
|
||||
}
|
||||
|
||||
double q[10];
|
||||
for (int i = 0; i <= jk; i++) {
|
||||
fw = 0.0;
|
||||
for (int j = 0; j <= jx; j++) fw += x[j] * f[jx + i - j];
|
||||
q[i] = fw;
|
||||
}
|
||||
|
||||
int32_t jz = jk;
|
||||
|
||||
recompute:
|
||||
|
||||
int32_t iq[10];
|
||||
double z = q[jz];
|
||||
for (int i = 0, j = jz; j > 0; i++, j--) {
|
||||
fw = static_cast<double>(static_cast<int32_t>(twon24 * z));
|
||||
iq[i] = static_cast<int32_t>(z - two24 * fw);
|
||||
z = q[j - 1] + fw;
|
||||
}
|
||||
|
||||
z = scalbn(z, q0);
|
||||
z -= 8.0 * std::floor(z * 0.125);
|
||||
int32_t n = static_cast<int32_t>(z);
|
||||
z -= static_cast<double>(n);
|
||||
int32_t ih = 0;
|
||||
if (q0 > 0) {
|
||||
int32_t i = (iq[jz - 1] >> (24 - q0));
|
||||
n += i;
|
||||
iq[jz - 1] -= i << (24 - q0);
|
||||
ih = iq[jz - 1] >> (23 - q0);
|
||||
} else if (q0 == 0) {
|
||||
ih = iq[jz - 1] >> 23;
|
||||
} else if (z >= 0.5) {
|
||||
ih = 2;
|
||||
}
|
||||
|
||||
if (ih > 0) {
|
||||
n += 1;
|
||||
int32_t carry = 0;
|
||||
for (int i = 0; i < jz; i++) {
|
||||
int32_t j = iq[i];
|
||||
if (carry == 0) {
|
||||
if (j != 0) {
|
||||
carry = 1;
|
||||
iq[i] = 0x1000000 - j;
|
||||
}
|
||||
} else {
|
||||
iq[i] = 0xffffff - j;
|
||||
}
|
||||
}
|
||||
if (q0 == 1) {
|
||||
iq[jz - 1] &= 0x7fffff;
|
||||
} else if (q0 == 2) {
|
||||
iq[jz - 1] &= 0x3fffff;
|
||||
}
|
||||
if (ih == 2) {
|
||||
z = one - z;
|
||||
if (carry != 0) z -= scalbn(one, q0);
|
||||
}
|
||||
}
|
||||
|
||||
if (z == zero) {
|
||||
int32_t j = 0;
|
||||
for (int i = jz - 1; i >= jk; i--) j |= iq[i];
|
||||
if (j == 0) {
|
||||
int32_t k = 1;
|
||||
while (iq[jk - k] == 0) k++;
|
||||
for (int i = jz + 1; i <= jz + k; i++) {
|
||||
f[jx + i] = static_cast<double>(two_over_pi[jv + i]);
|
||||
for (j = 0, fw = 0.0; j <= jx; j++) fw += x[j] * f[jx + i - j];
|
||||
q[i] = fw;
|
||||
}
|
||||
jz += k;
|
||||
goto recompute;
|
||||
}
|
||||
}
|
||||
|
||||
if (z == 0.0) {
|
||||
jz -= 1;
|
||||
q0 -= 24;
|
||||
while (iq[jz] == 0) {
|
||||
jz--;
|
||||
q0 -= 24;
|
||||
}
|
||||
} else {
|
||||
z = scalbn(z, -q0);
|
||||
if (z >= two24) {
|
||||
fw = static_cast<double>(static_cast<int32_t>(twon24 * z));
|
||||
iq[jz] = static_cast<int32_t>(z - two24 * fw);
|
||||
jz += 1;
|
||||
q0 += 24;
|
||||
iq[jz] = static_cast<int32_t>(fw);
|
||||
} else {
|
||||
iq[jz] = static_cast<int32_t>(z);
|
||||
}
|
||||
}
|
||||
|
||||
fw = scalbn(one, q0);
|
||||
for (int i = jz; i >= 0; i--) {
|
||||
q[i] = fw * static_cast<double>(iq[i]);
|
||||
fw *= twon24;
|
||||
}
|
||||
|
||||
double fq[10];
|
||||
for (int i = jz; i >= 0; i--) {
|
||||
fw = 0.0;
|
||||
for (int k = 0; k <= jk && k <= jz - i; k++) fw += PIo2[k] * q[i + k];
|
||||
fq[jz - i] = fw;
|
||||
}
|
||||
|
||||
fw = 0.0;
|
||||
for (int i = jz; i >= 0; i--) fw += fq[i];
|
||||
y[0] = (ih == 0) ? fw : -fw;
|
||||
fw = fq[0] - fw;
|
||||
for (int i = 1; i <= jz; i++) fw += fq[i];
|
||||
y[1] = (ih == 0) ? fw : -fw;
|
||||
return n & 7;
|
||||
}
|
||||
|
||||
|
||||
int rempio2(double x, double* y) {
|
||||
int32_t hx = static_cast<int32_t>(double_to_uint64(x) >> 32);
|
||||
int32_t ix = hx & 0x7fffffff;
|
||||
|
||||
if (ix >= 0x7ff00000) {
|
||||
*y = base::OS::nan_value();
|
||||
return 0;
|
||||
}
|
||||
|
||||
int32_t e0 = (ix >> 20) - 1046;
|
||||
uint64_t zi = double_to_uint64(x) & 0xFFFFFFFFu;
|
||||
zi |= static_cast<uint64_t>(ix - (e0 << 20)) << 32;
|
||||
double z = uint64_to_double(zi);
|
||||
|
||||
double tx[3];
|
||||
for (int i = 0; i < 2; i++) {
|
||||
tx[i] = static_cast<double>(static_cast<int32_t>(z));
|
||||
z = (z - tx[i]) * two24;
|
||||
}
|
||||
tx[2] = z;
|
||||
|
||||
int nx = 3;
|
||||
while (tx[nx - 1] == zero) nx--;
|
||||
int n = __kernel_rem_pio2(tx, y, e0, nx);
|
||||
if (hx < 0) {
|
||||
y[0] = -y[0];
|
||||
y[1] = -y[1];
|
||||
return -n;
|
||||
}
|
||||
return n;
|
||||
}
|
||||
}
|
||||
} // namespace v8::internal
|
31
third_party/fdlibm/fdlibm.h
vendored
Normal file
31
third_party/fdlibm/fdlibm.h
vendored
Normal file
@ -0,0 +1,31 @@
|
||||
// The following is adapted from fdlibm (http://www.netlib.org/fdlibm).
|
||||
//
|
||||
// ====================================================
|
||||
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
//
|
||||
// Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
// Permission to use, copy, modify, and distribute this
|
||||
// software is freely granted, provided that this notice
|
||||
// is preserved.
|
||||
// ====================================================
|
||||
//
|
||||
// The original source code covered by the above license above has been
|
||||
// modified significantly by Google Inc.
|
||||
// Copyright 2014 the V8 project authors. All rights reserved.
|
||||
|
||||
#ifndef V8_FDLIBM_H_
|
||||
#define V8_FDLIBM_H_
|
||||
|
||||
namespace v8 {
|
||||
namespace internal {
|
||||
|
||||
int rempio2(double x, double* y);
|
||||
|
||||
// Constants to be exposed to builtins via Float64Array.
|
||||
struct TrigonometricConstants {
|
||||
static const double constants[34];
|
||||
};
|
||||
}
|
||||
} // namespace v8::internal
|
||||
|
||||
#endif // V8_FDLIBM_H_
|
356
third_party/fdlibm/fdlibm.js
vendored
Normal file
356
third_party/fdlibm/fdlibm.js
vendored
Normal file
@ -0,0 +1,356 @@
|
||||
// The following is adapted from fdlibm (http://www.netlib.org/fdlibm),
|
||||
//
|
||||
// ====================================================
|
||||
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
//
|
||||
// Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
// Permission to use, copy, modify, and distribute this
|
||||
// software is freely granted, provided that this notice
|
||||
// is preserved.
|
||||
// ====================================================
|
||||
//
|
||||
// The original source code covered by the above license above has been
|
||||
// modified significantly by Google Inc.
|
||||
// Copyright 2014 the V8 project authors. All rights reserved.
|
||||
//
|
||||
// The following is a straightforward translation of fdlibm routines for
|
||||
// sin, cos, and tan, by Raymond Toy (rtoy@google.com).
|
||||
|
||||
|
||||
var kTrig; // Initialized to a Float64Array during genesis and is not writable.
|
||||
|
||||
const INVPIO2 = kTrig[0];
|
||||
const PIO2_1 = kTrig[1];
|
||||
const PIO2_1T = kTrig[2];
|
||||
const PIO2_2 = kTrig[3];
|
||||
const PIO2_2T = kTrig[4];
|
||||
const PIO2_3 = kTrig[5];
|
||||
const PIO2_3T = kTrig[6];
|
||||
const PIO4 = kTrig[32];
|
||||
const PIO4LO = kTrig[33];
|
||||
|
||||
// Compute k and r such that x - k*pi/2 = r where |r| < pi/4. For
|
||||
// precision, r is returned as two values y0 and y1 such that r = y0 + y1
|
||||
// to more than double precision.
|
||||
macro REMPIO2(X)
|
||||
var n, y0, y1;
|
||||
var hx = %_DoubleHi(X);
|
||||
var ix = hx & 0x7fffffff;
|
||||
|
||||
if (ix < 0x4002d97c) {
|
||||
// |X| ~< 3*pi/4, special case with n = +/- 1
|
||||
if (hx > 0) {
|
||||
var z = X - PIO2_1;
|
||||
if (ix != 0x3ff921fb) {
|
||||
// 33+53 bit pi is good enough
|
||||
y0 = z - PIO2_1T;
|
||||
y1 = (z - y0) - PIO2_1T;
|
||||
} else {
|
||||
// near pi/2, use 33+33+53 bit pi
|
||||
z -= PIO2_2;
|
||||
y0 = z - PIO2_2T;
|
||||
y1 = (z - y0) - PIO2_2T;
|
||||
}
|
||||
n = 1;
|
||||
} else {
|
||||
// Negative X
|
||||
var z = X + PIO2_1;
|
||||
if (ix != 0x3ff921fb) {
|
||||
// 33+53 bit pi is good enough
|
||||
y0 = z + PIO2_1T;
|
||||
y1 = (z - y0) + PIO2_1T;
|
||||
} else {
|
||||
// near pi/2, use 33+33+53 bit pi
|
||||
z += PIO2_2;
|
||||
y0 = z + PIO2_2T;
|
||||
y1 = (z - y0) + PIO2_2T;
|
||||
}
|
||||
n = -1;
|
||||
}
|
||||
} else if (ix <= 0x413921fb) {
|
||||
// |X| ~<= 2^19*(pi/2), medium size
|
||||
var t = MathAbs(X);
|
||||
n = (t * INVPIO2 + 0.5) | 0;
|
||||
var r = t - n * PIO2_1;
|
||||
var w = n * PIO2_1T;
|
||||
// First round good to 85 bit
|
||||
y0 = r - w;
|
||||
if (ix - (%_DoubleHi(y0) & 0x7ff00000) > 0x1000000) {
|
||||
// 2nd iteration needed, good to 118
|
||||
t = r;
|
||||
w = n * PIO2_2;
|
||||
r = t - w;
|
||||
w = n * PIO2_2T - ((t - r) - w);
|
||||
y0 = r - w;
|
||||
if (ix - (%_DoubleHi(y0) & 0x7ff00000) > 0x3100000) {
|
||||
// 3rd iteration needed. 151 bits accuracy
|
||||
t = r;
|
||||
w = n * PIO2_3;
|
||||
r = t - w;
|
||||
w = n * PIO2_3T - ((t - r) - w);
|
||||
y0 = r - w;
|
||||
}
|
||||
}
|
||||
y1 = (r - y0) - w;
|
||||
if (hx < 0) {
|
||||
n = -n;
|
||||
y0 = -y0;
|
||||
y1 = -y1;
|
||||
}
|
||||
} else {
|
||||
// Need to do full Payne-Hanek reduction here.
|
||||
var r = %RemPiO2(X);
|
||||
n = r[0];
|
||||
y0 = r[1];
|
||||
y1 = r[2];
|
||||
}
|
||||
endmacro
|
||||
|
||||
|
||||
// __kernel_sin(X, Y, IY)
|
||||
// kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
|
||||
// Input X is assumed to be bounded by ~pi/4 in magnitude.
|
||||
// Input Y is the tail of X so that x = X + Y.
|
||||
//
|
||||
// Algorithm
|
||||
// 1. Since ieee_sin(-x) = -ieee_sin(x), we need only to consider positive x.
|
||||
// 2. ieee_sin(x) is approximated by a polynomial of degree 13 on
|
||||
// [0,pi/4]
|
||||
// 3 13
|
||||
// sin(x) ~ x + S1*x + ... + S6*x
|
||||
// where
|
||||
//
|
||||
// |ieee_sin(x) 2 4 6 8 10 12 | -58
|
||||
// |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2
|
||||
// | x |
|
||||
//
|
||||
// 3. ieee_sin(X+Y) = ieee_sin(X) + sin'(X')*Y
|
||||
// ~ ieee_sin(X) + (1-X*X/2)*Y
|
||||
// For better accuracy, let
|
||||
// 3 2 2 2 2
|
||||
// r = X *(S2+X *(S3+X *(S4+X *(S5+X *S6))))
|
||||
// then 3 2
|
||||
// sin(x) = X + (S1*X + (X *(r-Y/2)+Y))
|
||||
//
|
||||
macro KSIN(x)
|
||||
kTrig[7+x]
|
||||
endmacro
|
||||
|
||||
macro RETURN_KERNELSIN(X, Y, SIGN)
|
||||
var z = X * X;
|
||||
var v = z * X;
|
||||
var r = KSIN(1) + z * (KSIN(2) + z * (KSIN(3) +
|
||||
z * (KSIN(4) + z * KSIN(5))));
|
||||
return (X - ((z * (0.5 * Y - v * r) - Y) - v * KSIN(0))) SIGN;
|
||||
endmacro
|
||||
|
||||
// __kernel_cos(X, Y)
|
||||
// kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
|
||||
// Input X is assumed to be bounded by ~pi/4 in magnitude.
|
||||
// Input Y is the tail of X so that x = X + Y.
|
||||
//
|
||||
// Algorithm
|
||||
// 1. Since ieee_cos(-x) = ieee_cos(x), we need only to consider positive x.
|
||||
// 2. ieee_cos(x) is approximated by a polynomial of degree 14 on
|
||||
// [0,pi/4]
|
||||
// 4 14
|
||||
// cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
|
||||
// where the remez error is
|
||||
//
|
||||
// | 2 4 6 8 10 12 14 | -58
|
||||
// |ieee_cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2
|
||||
// | |
|
||||
//
|
||||
// 4 6 8 10 12 14
|
||||
// 3. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then
|
||||
// ieee_cos(x) = 1 - x*x/2 + r
|
||||
// since ieee_cos(X+Y) ~ ieee_cos(X) - ieee_sin(X)*Y
|
||||
// ~ ieee_cos(X) - X*Y,
|
||||
// a correction term is necessary in ieee_cos(x) and hence
|
||||
// cos(X+Y) = 1 - (X*X/2 - (r - X*Y))
|
||||
// For better accuracy when x > 0.3, let qx = |x|/4 with
|
||||
// the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
|
||||
// Then
|
||||
// cos(X+Y) = (1-qx) - ((X*X/2-qx) - (r-X*Y)).
|
||||
// Note that 1-qx and (X*X/2-qx) is EXACT here, and the
|
||||
// magnitude of the latter is at least a quarter of X*X/2,
|
||||
// thus, reducing the rounding error in the subtraction.
|
||||
//
|
||||
macro KCOS(x)
|
||||
kTrig[13+x]
|
||||
endmacro
|
||||
|
||||
macro RETURN_KERNELCOS(X, Y, SIGN)
|
||||
var ix = %_DoubleHi(X) & 0x7fffffff;
|
||||
var z = X * X;
|
||||
var r = z * (KCOS(0) + z * (KCOS(1) + z * (KCOS(2)+
|
||||
z * (KCOS(3) + z * (KCOS(4) + z * KCOS(5))))));
|
||||
if (ix < 0x3fd33333) { // |x| ~< 0.3
|
||||
return (1 - (0.5 * z - (z * r - X * Y))) SIGN;
|
||||
} else {
|
||||
var qx;
|
||||
if (ix > 0x3fe90000) { // |x| > 0.78125
|
||||
qx = 0.28125;
|
||||
} else {
|
||||
qx = %_ConstructDouble(%_DoubleHi(0.25 * X), 0);
|
||||
}
|
||||
var hz = 0.5 * z - qx;
|
||||
return (1 - qx - (hz - (z * r - X * Y))) SIGN;
|
||||
}
|
||||
endmacro
|
||||
|
||||
// kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
|
||||
// Input x is assumed to be bounded by ~pi/4 in magnitude.
|
||||
// Input y is the tail of x.
|
||||
// Input k indicates whether ieee_tan (if k = 1) or -1/tan (if k = -1)
|
||||
// is returned.
|
||||
//
|
||||
// Algorithm
|
||||
// 1. Since ieee_tan(-x) = -ieee_tan(x), we need only to consider positive x.
|
||||
// 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
|
||||
// 3. ieee_tan(x) is approximated by a odd polynomial of degree 27 on
|
||||
// [0,0.67434]
|
||||
// 3 27
|
||||
// tan(x) ~ x + T1*x + ... + T13*x
|
||||
// where
|
||||
//
|
||||
// |ieee_tan(x) 2 4 26 | -59.2
|
||||
// |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
|
||||
// | x |
|
||||
//
|
||||
// Note: ieee_tan(x+y) = ieee_tan(x) + tan'(x)*y
|
||||
// ~ ieee_tan(x) + (1+x*x)*y
|
||||
// Therefore, for better accuracy in computing ieee_tan(x+y), let
|
||||
// 3 2 2 2 2
|
||||
// r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
|
||||
// then
|
||||
// 3 2
|
||||
// tan(x+y) = x + (T1*x + (x *(r+y)+y))
|
||||
//
|
||||
// 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
|
||||
// tan(x) = ieee_tan(pi/4-y) = (1-ieee_tan(y))/(1+ieee_tan(y))
|
||||
// = 1 - 2*(ieee_tan(y) - (ieee_tan(y)^2)/(1+ieee_tan(y)))
|
||||
//
|
||||
// Set returnTan to 1 for tan; -1 for cot. Anything else is illegal
|
||||
// and will cause incorrect results.
|
||||
//
|
||||
macro KTAN(x)
|
||||
kTrig[19+x]
|
||||
endmacro
|
||||
|
||||
function KernelTan(x, y, returnTan) {
|
||||
var z;
|
||||
var w;
|
||||
var hx = %_DoubleHi(x);
|
||||
var ix = hx & 0x7fffffff;
|
||||
|
||||
if (ix < 0x3e300000) { // |x| < 2^-28
|
||||
if (((ix | %_DoubleLo(x)) | (returnTan + 1)) == 0) {
|
||||
// x == 0 && returnTan = -1
|
||||
return 1 / MathAbs(x);
|
||||
} else {
|
||||
if (returnTan == 1) {
|
||||
return x;
|
||||
} else {
|
||||
// Compute -1/(x + y) carefully
|
||||
var w = x + y;
|
||||
var z = %_ConstructDouble(%_DoubleHi(w), 0);
|
||||
var v = y - (z - x);
|
||||
var a = -1 / w;
|
||||
var t = %_ConstructDouble(%_DoubleHi(a), 0);
|
||||
var s = 1 + t * z;
|
||||
return t + a * (s + t * v);
|
||||
}
|
||||
}
|
||||
}
|
||||
if (ix >= 0x3fe59429) { // |x| > .6744
|
||||
if (x < 0) {
|
||||
x = -x;
|
||||
y = -y;
|
||||
}
|
||||
z = PIO4 - x;
|
||||
w = PIO4LO - y;
|
||||
x = z + w;
|
||||
y = 0;
|
||||
}
|
||||
z = x * x;
|
||||
w = z * z;
|
||||
|
||||
// Break x^5 * (T1 + x^2*T2 + ...) into
|
||||
// x^5 * (T1 + x^4*T3 + ... + x^20*T11) +
|
||||
// x^5 * (x^2 * (T2 + x^4*T4 + ... + x^22*T12))
|
||||
var r = KTAN(1) + w * (KTAN(3) + w * (KTAN(5) +
|
||||
w * (KTAN(7) + w * (KTAN(9) + w * KTAN(11)))));
|
||||
var v = z * (KTAN(2) + w * (KTAN(4) + w * (KTAN(6) +
|
||||
w * (KTAN(8) + w * (KTAN(10) + w * KTAN(12))))));
|
||||
var s = z * x;
|
||||
r = y + z * (s * (r + v) + y);
|
||||
r = r + KTAN(0) * s;
|
||||
w = x + r;
|
||||
if (ix >= 0x3fe59428) {
|
||||
return (1 - ((hx >> 30) & 2)) *
|
||||
(returnTan - 2.0 * (x - (w * w / (w + returnTan) - r)));
|
||||
}
|
||||
if (returnTan == 1) {
|
||||
return w;
|
||||
} else {
|
||||
z = %_ConstructDouble(%_DoubleHi(w), 0);
|
||||
v = r - (z - x);
|
||||
var a = -1 / w;
|
||||
var t = %_ConstructDouble(%_DoubleHi(a), 0);
|
||||
s = 1 + t * z;
|
||||
return t + a * (s + t * v);
|
||||
}
|
||||
}
|
||||
|
||||
function MathSinSlow(x) {
|
||||
REMPIO2(x);
|
||||
var sign = 1 - (n & 2);
|
||||
if (n & 1) {
|
||||
RETURN_KERNELCOS(y0, y1, * sign);
|
||||
} else {
|
||||
RETURN_KERNELSIN(y0, y1, * sign);
|
||||
}
|
||||
}
|
||||
|
||||
function MathCosSlow(x) {
|
||||
REMPIO2(x);
|
||||
if (n & 1) {
|
||||
var sign = (n & 2) - 1;
|
||||
RETURN_KERNELSIN(y0, y1, * sign);
|
||||
} else {
|
||||
var sign = 1 - (n & 2);
|
||||
RETURN_KERNELCOS(y0, y1, * sign);
|
||||
}
|
||||
}
|
||||
|
||||
// ECMA 262 - 15.8.2.16
|
||||
function MathSin(x) {
|
||||
x = x * 1; // Convert to number.
|
||||
if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) {
|
||||
// |x| < pi/4, approximately. No reduction needed.
|
||||
RETURN_KERNELSIN(x, 0, /* empty */);
|
||||
}
|
||||
return MathSinSlow(x);
|
||||
}
|
||||
|
||||
// ECMA 262 - 15.8.2.7
|
||||
function MathCos(x) {
|
||||
x = x * 1; // Convert to number.
|
||||
if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) {
|
||||
// |x| < pi/4, approximately. No reduction needed.
|
||||
RETURN_KERNELCOS(x, 0, /* empty */);
|
||||
}
|
||||
return MathCosSlow(x);
|
||||
}
|
||||
|
||||
// ECMA 262 - 15.8.2.18
|
||||
function MathTan(x) {
|
||||
x = x * 1; // Convert to number.
|
||||
if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) {
|
||||
// |x| < pi/4, approximately. No reduction needed.
|
||||
return KernelTan(x, 0, 1);
|
||||
}
|
||||
REMPIO2(x);
|
||||
return KernelTan(y0, y1, (n & 1) ? -1 : 1);
|
||||
}
|
@ -47,11 +47,11 @@ EXPAND_MACROS = [
|
||||
# that the parser doesn't bit-rot. Change the values as needed when you add,
|
||||
# remove or change runtime functions, but make sure we don't lose our ability
|
||||
# to parse them!
|
||||
EXPECTED_FUNCTION_COUNT = 426
|
||||
EXPECTED_FUZZABLE_COUNT = 329
|
||||
EXPECTED_FUNCTION_COUNT = 427
|
||||
EXPECTED_FUZZABLE_COUNT = 330
|
||||
EXPECTED_CCTEST_COUNT = 7
|
||||
EXPECTED_UNKNOWN_COUNT = 16
|
||||
EXPECTED_BUILTINS_COUNT = 813
|
||||
EXPECTED_BUILTINS_COUNT = 809
|
||||
|
||||
|
||||
# Don't call these at all.
|
||||
|
@ -1,83 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
#
|
||||
# Copyright 2013 the V8 project authors. All rights reserved.
|
||||
# Redistribution and use in source and binary forms, with or without
|
||||
# modification, are permitted provided that the following conditions are
|
||||
# met:
|
||||
#
|
||||
# * Redistributions of source code must retain the above copyright
|
||||
# notice, this list of conditions and the following disclaimer.
|
||||
# * Redistributions in binary form must reproduce the above
|
||||
# copyright notice, this list of conditions and the following
|
||||
# disclaimer in the documentation and/or other materials provided
|
||||
# with the distribution.
|
||||
# * Neither the name of Google Inc. nor the names of its
|
||||
# contributors may be used to endorse or promote products derived
|
||||
# from this software without specific prior written permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
# This is a utility for populating the lookup table for the
|
||||
# approximation of trigonometric functions.
|
||||
|
||||
import sys, math
|
||||
|
||||
SAMPLES = 1800
|
||||
|
||||
TEMPLATE = """\
|
||||
// Copyright 2013 Google Inc. All Rights Reserved.
|
||||
|
||||
// This file was generated from a python script.
|
||||
|
||||
#include "src/v8.h"
|
||||
#include "src/trig-table.h"
|
||||
|
||||
namespace v8 {
|
||||
namespace internal {
|
||||
|
||||
const double TrigonometricLookupTable::kSinTable[] =
|
||||
{ %(sine_table)s };
|
||||
const double TrigonometricLookupTable::kCosXIntervalTable[] =
|
||||
{ %(cosine_table)s };
|
||||
const int TrigonometricLookupTable::kSamples = %(samples)i;
|
||||
const int TrigonometricLookupTable::kTableSize = %(table_size)i;
|
||||
const double TrigonometricLookupTable::kSamplesOverPiHalf =
|
||||
%(samples_over_pi_half)s;
|
||||
|
||||
} } // v8::internal
|
||||
"""
|
||||
|
||||
def main():
|
||||
pi_half = math.pi / 2
|
||||
interval = pi_half / SAMPLES
|
||||
sin = []
|
||||
cos_times_interval = []
|
||||
table_size = SAMPLES + 2
|
||||
|
||||
for i in range(0, table_size):
|
||||
sample = i * interval
|
||||
sin.append(repr(math.sin(sample)))
|
||||
cos_times_interval.append(repr(math.cos(sample) * interval))
|
||||
|
||||
output_file = sys.argv[1]
|
||||
output = open(str(output_file), "w")
|
||||
output.write(TEMPLATE % {
|
||||
'sine_table': ','.join(sin),
|
||||
'cosine_table': ','.join(cos_times_interval),
|
||||
'samples': SAMPLES,
|
||||
'table_size': table_size,
|
||||
'samples_over_pi_half': repr(SAMPLES / pi_half)
|
||||
})
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -121,14 +121,12 @@
|
||||
'dependencies': [
|
||||
'mksnapshot#host',
|
||||
'js2c#host',
|
||||
'generate_trig_table#host',
|
||||
],
|
||||
}, {
|
||||
'toolsets': ['target'],
|
||||
'dependencies': [
|
||||
'mksnapshot',
|
||||
'js2c',
|
||||
'generate_trig_table',
|
||||
],
|
||||
}],
|
||||
['component=="shared_library"', {
|
||||
@ -153,7 +151,6 @@
|
||||
'sources': [
|
||||
'<(SHARED_INTERMEDIATE_DIR)/libraries.cc',
|
||||
'<(SHARED_INTERMEDIATE_DIR)/experimental-libraries.cc',
|
||||
'<(SHARED_INTERMEDIATE_DIR)/trig-table.cc',
|
||||
'<(INTERMEDIATE_DIR)/snapshot.cc',
|
||||
'../../src/snapshot-common.cc',
|
||||
],
|
||||
@ -197,17 +194,16 @@
|
||||
'sources': [
|
||||
'<(SHARED_INTERMEDIATE_DIR)/libraries.cc',
|
||||
'<(SHARED_INTERMEDIATE_DIR)/experimental-libraries.cc',
|
||||
'<(SHARED_INTERMEDIATE_DIR)/trig-table.cc',
|
||||
'../../src/snapshot-common.cc',
|
||||
'../../src/snapshot-empty.cc',
|
||||
],
|
||||
'conditions': [
|
||||
['want_separate_host_toolset==1', {
|
||||
'toolsets': ['host', 'target'],
|
||||
'dependencies': ['js2c#host', 'generate_trig_table#host'],
|
||||
'dependencies': ['js2c#host'],
|
||||
}, {
|
||||
'toolsets': ['target'],
|
||||
'dependencies': ['js2c', 'generate_trig_table'],
|
||||
'dependencies': ['js2c'],
|
||||
}],
|
||||
['component=="shared_library"', {
|
||||
'defines': [
|
||||
@ -226,14 +222,12 @@
|
||||
'dependencies': [
|
||||
'mksnapshot#host',
|
||||
'js2c#host',
|
||||
'generate_trig_table#host',
|
||||
'natives_blob#host',
|
||||
]}, {
|
||||
'toolsets': ['target'],
|
||||
'dependencies': [
|
||||
'mksnapshot',
|
||||
'js2c',
|
||||
'generate_trig_table',
|
||||
'natives_blob',
|
||||
],
|
||||
}],
|
||||
@ -257,7 +251,6 @@
|
||||
'../..',
|
||||
],
|
||||
'sources': [
|
||||
'<(SHARED_INTERMEDIATE_DIR)/trig-table.cc',
|
||||
'../../src/natives-external.cc',
|
||||
'../../src/snapshot-external.cc',
|
||||
],
|
||||
@ -291,32 +284,6 @@
|
||||
},
|
||||
],
|
||||
},
|
||||
{ 'target_name': 'generate_trig_table',
|
||||
'type': 'none',
|
||||
'conditions': [
|
||||
['want_separate_host_toolset==1', {
|
||||
'toolsets': ['host'],
|
||||
}, {
|
||||
'toolsets': ['target'],
|
||||
}],
|
||||
],
|
||||
'actions': [
|
||||
{
|
||||
'action_name': 'generate',
|
||||
'inputs': [
|
||||
'../../tools/generate-trig-table.py',
|
||||
],
|
||||
'outputs': [
|
||||
'<(SHARED_INTERMEDIATE_DIR)/trig-table.cc',
|
||||
],
|
||||
'action': [
|
||||
'python',
|
||||
'../../tools/generate-trig-table.py',
|
||||
'<@(_outputs)',
|
||||
],
|
||||
},
|
||||
]
|
||||
},
|
||||
{
|
||||
'target_name': 'v8_base',
|
||||
'type': 'static_library',
|
||||
@ -768,6 +735,8 @@
|
||||
'../../src/zone-inl.h',
|
||||
'../../src/zone.cc',
|
||||
'../../src/zone.h',
|
||||
'../../third_party/fdlibm/fdlibm.cc',
|
||||
'../../third_party/fdlibm/fdlibm.h',
|
||||
],
|
||||
'conditions': [
|
||||
['want_separate_host_toolset==1', {
|
||||
@ -1420,6 +1389,7 @@
|
||||
'../../src/array.js',
|
||||
'../../src/string.js',
|
||||
'../../src/uri.js',
|
||||
'../../third_party/fdlibm/fdlibm.js',
|
||||
'../../src/math.js',
|
||||
'../../src/messages.js',
|
||||
'../../src/apinatives.js',
|
||||
|
@ -218,6 +218,27 @@ def ExpandInlineMacros(lines):
|
||||
lines = ExpandMacroDefinition(lines, pos, name_pattern, macro, non_expander)
|
||||
|
||||
|
||||
INLINE_CONSTANT_PATTERN = re.compile(r'const\s+([a-zA-Z0-9_]+)\s*=\s*([^;\n]+)[;\n]')
|
||||
|
||||
def ExpandInlineConstants(lines):
|
||||
pos = 0
|
||||
while True:
|
||||
const_match = INLINE_CONSTANT_PATTERN.search(lines, pos)
|
||||
if const_match is None:
|
||||
# no more constants
|
||||
return lines
|
||||
name = const_match.group(1)
|
||||
replacement = const_match.group(2)
|
||||
name_pattern = re.compile("\\b%s\\b" % name)
|
||||
|
||||
# remove constant definition and replace
|
||||
lines = (lines[:const_match.start()] +
|
||||
re.sub(name_pattern, replacement, lines[const_match.end():]))
|
||||
|
||||
# advance position to where the constant defintion was
|
||||
pos = const_match.start()
|
||||
|
||||
|
||||
HEADER_TEMPLATE = """\
|
||||
// Copyright 2011 Google Inc. All Rights Reserved.
|
||||
|
||||
@ -333,6 +354,7 @@ def BuildFilterChain(macro_filename):
|
||||
filter_chain.extend([
|
||||
RemoveCommentsAndTrailingWhitespace,
|
||||
ExpandInlineMacros,
|
||||
ExpandInlineConstants,
|
||||
Validate,
|
||||
jsmin.JavaScriptMinifier().JSMinify
|
||||
])
|
||||
|
Loading…
Reference in New Issue
Block a user