Reduce boot-up memory use of V8.

This is a recommit of http://codereview.chromium.org/9179012
after fixing what turned out to be unrelated out-of-memory
errors.
That was a rebase of http://codereview.chromium.org/9017009/
Review URL: https://chromiumcodereview.appspot.com/9289047

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@10542 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
This commit is contained in:
erik.corry@gmail.com 2012-01-30 09:15:34 +00:00
parent f2eda210d0
commit 419ea5fcc3
14 changed files with 429 additions and 212 deletions

View File

@ -1150,6 +1150,7 @@ MemoryChunk* Deoptimizer::CreateCode(BailoutType type) {
MemoryChunk* chunk = MemoryChunk* chunk =
Isolate::Current()->memory_allocator()->AllocateChunk(desc.instr_size, Isolate::Current()->memory_allocator()->AllocateChunk(desc.instr_size,
desc.instr_size,
EXECUTABLE, EXECUTABLE,
NULL); NULL);
if (chunk == NULL) { if (chunk == NULL) {

View File

@ -582,10 +582,14 @@ void Heap::ReserveSpace(
PagedSpace* map_space = Heap::map_space(); PagedSpace* map_space = Heap::map_space();
PagedSpace* cell_space = Heap::cell_space(); PagedSpace* cell_space = Heap::cell_space();
LargeObjectSpace* lo_space = Heap::lo_space(); LargeObjectSpace* lo_space = Heap::lo_space();
bool one_old_space_gc_has_been_performed = false;
bool gc_performed = true; bool gc_performed = true;
int counter = 0; int counter = 0;
static const int kThreshold = 20; static const int kThreshold = 20;
bool old_space_gc_performed;
while (gc_performed && counter++ < kThreshold) { while (gc_performed && counter++ < kThreshold) {
old_space_gc_performed = false;
gc_performed = false; gc_performed = false;
if (!new_space->ReserveSpace(new_space_size)) { if (!new_space->ReserveSpace(new_space_size)) {
Heap::CollectGarbage(NEW_SPACE); Heap::CollectGarbage(NEW_SPACE);
@ -594,22 +598,27 @@ void Heap::ReserveSpace(
if (!old_pointer_space->ReserveSpace(pointer_space_size)) { if (!old_pointer_space->ReserveSpace(pointer_space_size)) {
Heap::CollectGarbage(OLD_POINTER_SPACE); Heap::CollectGarbage(OLD_POINTER_SPACE);
gc_performed = true; gc_performed = true;
old_space_gc_performed = true;
} }
if (!(old_data_space->ReserveSpace(data_space_size))) { if (!(old_data_space->ReserveSpace(data_space_size))) {
Heap::CollectGarbage(OLD_DATA_SPACE); Heap::CollectGarbage(OLD_DATA_SPACE);
gc_performed = true; gc_performed = true;
old_space_gc_performed = true;
} }
if (!(code_space->ReserveSpace(code_space_size))) { if (!(code_space->ReserveSpace(code_space_size))) {
Heap::CollectGarbage(CODE_SPACE); Heap::CollectGarbage(CODE_SPACE);
gc_performed = true; gc_performed = true;
old_space_gc_performed = true;
} }
if (!(map_space->ReserveSpace(map_space_size))) { if (!(map_space->ReserveSpace(map_space_size))) {
Heap::CollectGarbage(MAP_SPACE); Heap::CollectGarbage(MAP_SPACE);
gc_performed = true; gc_performed = true;
old_space_gc_performed = true;
} }
if (!(cell_space->ReserveSpace(cell_space_size))) { if (!(cell_space->ReserveSpace(cell_space_size))) {
Heap::CollectGarbage(CELL_SPACE); Heap::CollectGarbage(CELL_SPACE);
gc_performed = true; gc_performed = true;
old_space_gc_performed = true;
} }
// We add a slack-factor of 2 in order to have space for a series of // We add a slack-factor of 2 in order to have space for a series of
// large-object allocations that are only just larger than the page size. // large-object allocations that are only just larger than the page size.
@ -619,15 +628,22 @@ void Heap::ReserveSpace(
// allocation in the other spaces. // allocation in the other spaces.
large_object_size += cell_space_size + map_space_size + code_space_size + large_object_size += cell_space_size + map_space_size + code_space_size +
data_space_size + pointer_space_size; data_space_size + pointer_space_size;
if (!(lo_space->ReserveSpace(large_object_size))) {
// If we already did one GC in order to make space in old space, there is
// no sense in doing another one. We will attempt to force through the
// large object space allocation, which comes directly from the OS,
// regardless of any soft limit.
if (!one_old_space_gc_has_been_performed &&
!(lo_space->ReserveSpace(large_object_size))) {
Heap::CollectGarbage(LO_SPACE); Heap::CollectGarbage(LO_SPACE);
gc_performed = true; gc_performed = true;
} }
if (old_space_gc_performed) one_old_space_gc_has_been_performed = true;
} }
if (gc_performed) { if (gc_performed) {
// Failed to reserve the space after several attempts. // Failed to reserve the space after several attempts.
V8::FatalProcessOutOfMemory("Heap::ReserveSpace"); V8::FatalProcessOutOfMemory("Heap.:ReserveSpace");
} }
} }

View File

@ -287,7 +287,7 @@ void IncrementalMarking::SetOldSpacePageFlags(MemoryChunk* chunk,
// It's difficult to filter out slots recorded for large objects. // It's difficult to filter out slots recorded for large objects.
if (chunk->owner()->identity() == LO_SPACE && if (chunk->owner()->identity() == LO_SPACE &&
chunk->size() > static_cast<size_t>(Page::kPageSize) && chunk->size() > Page::kPageSize &&
is_compacting) { is_compacting) {
chunk->SetFlag(MemoryChunk::RESCAN_ON_EVACUATION); chunk->SetFlag(MemoryChunk::RESCAN_ON_EVACUATION);
} }

View File

@ -2919,7 +2919,8 @@ static void SweepPrecisely(PagedSpace* space,
for ( ; live_objects != 0; live_objects--) { for ( ; live_objects != 0; live_objects--) {
Address free_end = object_address + offsets[live_index++] * kPointerSize; Address free_end = object_address + offsets[live_index++] * kPointerSize;
if (free_end != free_start) { if (free_end != free_start) {
space->Free(free_start, static_cast<int>(free_end - free_start)); space->AddToFreeLists(free_start,
static_cast<int>(free_end - free_start));
} }
HeapObject* live_object = HeapObject::FromAddress(free_end); HeapObject* live_object = HeapObject::FromAddress(free_end);
ASSERT(Marking::IsBlack(Marking::MarkBitFrom(live_object))); ASSERT(Marking::IsBlack(Marking::MarkBitFrom(live_object)));
@ -2945,7 +2946,8 @@ static void SweepPrecisely(PagedSpace* space,
cells[cell_index] = 0; cells[cell_index] = 0;
} }
if (free_start != p->ObjectAreaEnd()) { if (free_start != p->ObjectAreaEnd()) {
space->Free(free_start, static_cast<int>(p->ObjectAreaEnd() - free_start)); space->AddToFreeLists(free_start,
static_cast<int>(p->ObjectAreaEnd() - free_start));
} }
p->ResetLiveBytes(); p->ResetLiveBytes();
} }
@ -3238,7 +3240,9 @@ void MarkCompactCollector::EvacuateNewSpaceAndCandidates() {
Page* p = evacuation_candidates_[i]; Page* p = evacuation_candidates_[i];
if (!p->IsEvacuationCandidate()) continue; if (!p->IsEvacuationCandidate()) continue;
PagedSpace* space = static_cast<PagedSpace*>(p->owner()); PagedSpace* space = static_cast<PagedSpace*>(p->owner());
space->Free(p->ObjectAreaStart(), Page::kObjectAreaSize); space->AddToFreeLists(
p->ObjectAreaStart(),
static_cast<int>(p->ObjectAreaEnd() - p->ObjectAreaStart()));
p->set_scan_on_scavenge(false); p->set_scan_on_scavenge(false);
slots_buffer_allocator_.DeallocateChain(p->slots_buffer_address()); slots_buffer_allocator_.DeallocateChain(p->slots_buffer_address());
p->ClearEvacuationCandidate(); p->ClearEvacuationCandidate();
@ -3555,8 +3559,8 @@ intptr_t MarkCompactCollector::SweepConservatively(PagedSpace* space, Page* p) {
} }
size_t size = block_address - p->ObjectAreaStart(); size_t size = block_address - p->ObjectAreaStart();
if (cell_index == last_cell_index) { if (cell_index == last_cell_index) {
freed_bytes += static_cast<int>(space->Free(p->ObjectAreaStart(), freed_bytes += static_cast<int>(space->AddToFreeLists(
static_cast<int>(size))); p->ObjectAreaStart(), static_cast<int>(size)));
ASSERT_EQ(0, p->LiveBytes()); ASSERT_EQ(0, p->LiveBytes());
return freed_bytes; return freed_bytes;
} }
@ -3565,8 +3569,8 @@ intptr_t MarkCompactCollector::SweepConservatively(PagedSpace* space, Page* p) {
Address free_end = StartOfLiveObject(block_address, cells[cell_index]); Address free_end = StartOfLiveObject(block_address, cells[cell_index]);
// Free the first free space. // Free the first free space.
size = free_end - p->ObjectAreaStart(); size = free_end - p->ObjectAreaStart();
freed_bytes += space->Free(p->ObjectAreaStart(), freed_bytes += space->AddToFreeLists(p->ObjectAreaStart(),
static_cast<int>(size)); static_cast<int>(size));
// The start of the current free area is represented in undigested form by // The start of the current free area is represented in undigested form by
// the address of the last 32-word section that contained a live object and // the address of the last 32-word section that contained a live object and
// the marking bitmap for that cell, which describes where the live object // the marking bitmap for that cell, which describes where the live object
@ -3595,8 +3599,8 @@ intptr_t MarkCompactCollector::SweepConservatively(PagedSpace* space, Page* p) {
// so now we need to find the start of the first live object at the // so now we need to find the start of the first live object at the
// end of the free space. // end of the free space.
free_end = StartOfLiveObject(block_address, cell); free_end = StartOfLiveObject(block_address, cell);
freed_bytes += space->Free(free_start, freed_bytes += space->AddToFreeLists(
static_cast<int>(free_end - free_start)); free_start, static_cast<int>(free_end - free_start));
} }
} }
// Update our undigested record of where the current free area started. // Update our undigested record of where the current free area started.
@ -3610,8 +3614,8 @@ intptr_t MarkCompactCollector::SweepConservatively(PagedSpace* space, Page* p) {
// Handle the free space at the end of the page. // Handle the free space at the end of the page.
if (block_address - free_start > 32 * kPointerSize) { if (block_address - free_start > 32 * kPointerSize) {
free_start = DigestFreeStart(free_start, free_start_cell); free_start = DigestFreeStart(free_start, free_start_cell);
freed_bytes += space->Free(free_start, freed_bytes += space->AddToFreeLists(
static_cast<int>(block_address - free_start)); free_start, static_cast<int>(block_address - free_start));
} }
p->ResetLiveBytes(); p->ResetLiveBytes();

View File

@ -612,6 +612,7 @@ Address Deserializer::Allocate(int space_index, Space* space, int size) {
pages_[LO_SPACE].Add(address); pages_[LO_SPACE].Add(address);
} }
last_object_address_ = address; last_object_address_ = address;
ASSERT(address >= Page::FromAddress(address)->ObjectAreaStart());
return address; return address;
} }
@ -622,7 +623,12 @@ HeapObject* Deserializer::GetAddressFromEnd(int space) {
int offset = source_->GetInt(); int offset = source_->GetInt();
ASSERT(!SpaceIsLarge(space)); ASSERT(!SpaceIsLarge(space));
offset <<= kObjectAlignmentBits; offset <<= kObjectAlignmentBits;
return HeapObject::FromAddress(high_water_[space] - offset); Address address = high_water_[space] - offset;
// This assert will fail if kMinimumSpaceSizes is too small for a space,
// because we rely on the fact that all allocation is linear when the VM
// is very young.
ASSERT(address >= Page::FromAddress(address)->ObjectAreaStart());
return HeapObject::FromAddress(address);
} }

View File

@ -26,6 +26,7 @@
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "isolate.h" #include "isolate.h"
#include "spaces.h"
#ifndef V8_SNAPSHOT_H_ #ifndef V8_SNAPSHOT_H_
#define V8_SNAPSHOT_H_ #define V8_SNAPSHOT_H_
@ -86,6 +87,7 @@ class Snapshot {
DISALLOW_IMPLICIT_CONSTRUCTORS(Snapshot); DISALLOW_IMPLICIT_CONSTRUCTORS(Snapshot);
}; };
} } // namespace v8::internal } } // namespace v8::internal
#endif // V8_SNAPSHOT_H_ #endif // V8_SNAPSHOT_H_

View File

@ -164,12 +164,12 @@ Page* Page::Initialize(Heap* heap,
Executability executable, Executability executable,
PagedSpace* owner) { PagedSpace* owner) {
Page* page = reinterpret_cast<Page*>(chunk); Page* page = reinterpret_cast<Page*>(chunk);
ASSERT(chunk->size() == static_cast<size_t>(kPageSize)); ASSERT(chunk->size() <= kPageSize);
ASSERT(chunk->owner() == owner); ASSERT(chunk->owner() == owner);
owner->IncreaseCapacity(Page::kObjectAreaSize); int object_bytes =
owner->Free(page->ObjectAreaStart(), static_cast<int>(page->ObjectAreaEnd() - page->ObjectAreaStart());
static_cast<int>(page->ObjectAreaEnd() - owner->IncreaseCapacity(object_bytes);
page->ObjectAreaStart())); owner->AddToFreeLists(page->ObjectAreaStart(), object_bytes);
heap->incremental_marking()->SetOldSpacePageFlags(chunk); heap->incremental_marking()->SetOldSpacePageFlags(chunk);
@ -257,6 +257,7 @@ HeapObject* PagedSpace::AllocateLinearly(int size_in_bytes) {
if (new_top > allocation_info_.limit) return NULL; if (new_top > allocation_info_.limit) return NULL;
allocation_info_.top = new_top; allocation_info_.top = new_top;
ASSERT(new_top >= Page::FromAllocationTop(new_top)->ObjectAreaStart());
return HeapObject::FromAddress(current_top); return HeapObject::FromAddress(current_top);
} }

View File

@ -31,6 +31,7 @@
#include "macro-assembler.h" #include "macro-assembler.h"
#include "mark-compact.h" #include "mark-compact.h"
#include "platform.h" #include "platform.h"
#include "snapshot.h"
namespace v8 { namespace v8 {
namespace internal { namespace internal {
@ -263,7 +264,7 @@ MemoryAllocator::MemoryAllocator(Isolate* isolate)
: isolate_(isolate), : isolate_(isolate),
capacity_(0), capacity_(0),
capacity_executable_(0), capacity_executable_(0),
size_(0), memory_allocator_reserved_(0),
size_executable_(0) { size_executable_(0) {
} }
@ -273,7 +274,7 @@ bool MemoryAllocator::SetUp(intptr_t capacity, intptr_t capacity_executable) {
capacity_executable_ = RoundUp(capacity_executable, Page::kPageSize); capacity_executable_ = RoundUp(capacity_executable, Page::kPageSize);
ASSERT_GE(capacity_, capacity_executable_); ASSERT_GE(capacity_, capacity_executable_);
size_ = 0; memory_allocator_reserved_ = 0;
size_executable_ = 0; size_executable_ = 0;
return true; return true;
@ -282,7 +283,7 @@ bool MemoryAllocator::SetUp(intptr_t capacity, intptr_t capacity_executable) {
void MemoryAllocator::TearDown() { void MemoryAllocator::TearDown() {
// Check that spaces were torn down before MemoryAllocator. // Check that spaces were torn down before MemoryAllocator.
ASSERT(size_ == 0); CHECK_EQ(memory_allocator_reserved_, 0);
// TODO(gc) this will be true again when we fix FreeMemory. // TODO(gc) this will be true again when we fix FreeMemory.
// ASSERT(size_executable_ == 0); // ASSERT(size_executable_ == 0);
capacity_ = 0; capacity_ = 0;
@ -295,8 +296,8 @@ void MemoryAllocator::FreeMemory(VirtualMemory* reservation,
// TODO(gc) make code_range part of memory allocator? // TODO(gc) make code_range part of memory allocator?
ASSERT(reservation->IsReserved()); ASSERT(reservation->IsReserved());
size_t size = reservation->size(); size_t size = reservation->size();
ASSERT(size_ >= size); ASSERT(memory_allocator_reserved_ >= size);
size_ -= size; memory_allocator_reserved_ -= size;
isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size)); isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size));
@ -316,8 +317,8 @@ void MemoryAllocator::FreeMemory(Address base,
size_t size, size_t size,
Executability executable) { Executability executable) {
// TODO(gc) make code_range part of memory allocator? // TODO(gc) make code_range part of memory allocator?
ASSERT(size_ >= size); ASSERT(memory_allocator_reserved_ >= size);
size_ -= size; memory_allocator_reserved_ -= size;
isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size)); isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size));
@ -343,7 +344,7 @@ Address MemoryAllocator::ReserveAlignedMemory(size_t size,
VirtualMemory reservation(size, alignment); VirtualMemory reservation(size, alignment);
if (!reservation.IsReserved()) return NULL; if (!reservation.IsReserved()) return NULL;
size_ += reservation.size(); memory_allocator_reserved_ += reservation.size();
Address base = RoundUp(static_cast<Address>(reservation.address()), Address base = RoundUp(static_cast<Address>(reservation.address()),
alignment); alignment);
controller->TakeControl(&reservation); controller->TakeControl(&reservation);
@ -352,11 +353,14 @@ Address MemoryAllocator::ReserveAlignedMemory(size_t size,
Address MemoryAllocator::AllocateAlignedMemory(size_t size, Address MemoryAllocator::AllocateAlignedMemory(size_t size,
size_t reserved_size,
size_t alignment, size_t alignment,
Executability executable, Executability executable,
VirtualMemory* controller) { VirtualMemory* controller) {
ASSERT(RoundUp(reserved_size, OS::CommitPageSize()) >=
RoundUp(size, OS::CommitPageSize()));
VirtualMemory reservation; VirtualMemory reservation;
Address base = ReserveAlignedMemory(size, alignment, &reservation); Address base = ReserveAlignedMemory(reserved_size, alignment, &reservation);
if (base == NULL) return NULL; if (base == NULL) return NULL;
if (!reservation.Commit(base, if (!reservation.Commit(base,
size, size,
@ -375,6 +379,53 @@ void Page::InitializeAsAnchor(PagedSpace* owner) {
} }
void Page::CommitMore(intptr_t space_needed) {
intptr_t reserved_page_size = reservation_.IsReserved() ?
reservation_.size() :
Page::kPageSize;
ASSERT(size() + space_needed <= reserved_page_size);
// At increase the page size by at least 64k (this also rounds to OS page
// size).
int expand = Min(reserved_page_size - size(),
RoundUp(size() + space_needed, Page::kGrowthUnit) - size());
ASSERT(expand <= kPageSize - size());
ASSERT(expand <= reserved_page_size - size());
Executability executable =
IsFlagSet(IS_EXECUTABLE) ? EXECUTABLE : NOT_EXECUTABLE;
Address old_end = ObjectAreaEnd();
if (!VirtualMemory::CommitRegion(old_end, expand, executable)) return;
set_size(size() + expand);
PagedSpace* paged_space = reinterpret_cast<PagedSpace*>(owner());
paged_space->heap()->isolate()->memory_allocator()->AllocationBookkeeping(
paged_space,
old_end,
0, // No new memory was reserved.
expand, // New memory committed.
executable);
paged_space->IncreaseCapacity(expand);
// In spaces with alignment requirements (e.g. map space) we have to align
// the expanded area with the correct object alignment.
uintptr_t object_area_size = old_end - ObjectAreaStart();
uintptr_t aligned_object_area_size =
object_area_size - object_area_size % paged_space->ObjectAlignment();
if (aligned_object_area_size != object_area_size) {
aligned_object_area_size += paged_space->ObjectAlignment();
}
Address new_area =
reinterpret_cast<Address>(ObjectAreaStart() + aligned_object_area_size);
// In spaces with alignment requirements, this will waste the space for one
// object per doubling of the page size until the next GC.
paged_space->AddToFreeLists(old_end, new_area - old_end);
expand -= (new_area - old_end);
paged_space->AddToFreeLists(new_area, expand);
}
NewSpacePage* NewSpacePage::Initialize(Heap* heap, NewSpacePage* NewSpacePage::Initialize(Heap* heap,
Address start, Address start,
SemiSpace* semi_space) { SemiSpace* semi_space) {
@ -460,9 +511,15 @@ void MemoryChunk::Unlink() {
MemoryChunk* MemoryAllocator::AllocateChunk(intptr_t body_size, MemoryChunk* MemoryAllocator::AllocateChunk(intptr_t body_size,
intptr_t committed_body_size,
Executability executable, Executability executable,
Space* owner) { Space* owner) {
size_t chunk_size = MemoryChunk::kObjectStartOffset + body_size; ASSERT(body_size >= committed_body_size);
size_t chunk_size = RoundUp(MemoryChunk::kObjectStartOffset + body_size,
OS::CommitPageSize());
intptr_t committed_chunk_size =
committed_body_size + MemoryChunk::kObjectStartOffset;
committed_chunk_size = RoundUp(committed_chunk_size, OS::CommitPageSize());
Heap* heap = isolate_->heap(); Heap* heap = isolate_->heap();
Address base = NULL; Address base = NULL;
VirtualMemory reservation; VirtualMemory reservation;
@ -482,20 +539,21 @@ MemoryChunk* MemoryAllocator::AllocateChunk(intptr_t body_size,
ASSERT(IsAligned(reinterpret_cast<intptr_t>(base), ASSERT(IsAligned(reinterpret_cast<intptr_t>(base),
MemoryChunk::kAlignment)); MemoryChunk::kAlignment));
if (base == NULL) return NULL; if (base == NULL) return NULL;
size_ += chunk_size; // The AllocateAlignedMemory method will update the memory allocator
// Update executable memory size. // memory used, but we are not using that if we have a code range, so
size_executable_ += chunk_size; // we update it here.
memory_allocator_reserved_ += chunk_size;
} else { } else {
base = AllocateAlignedMemory(chunk_size, base = AllocateAlignedMemory(committed_chunk_size,
chunk_size,
MemoryChunk::kAlignment, MemoryChunk::kAlignment,
executable, executable,
&reservation); &reservation);
if (base == NULL) return NULL; if (base == NULL) return NULL;
// Update executable memory size.
size_executable_ += reservation.size();
} }
} else { } else {
base = AllocateAlignedMemory(chunk_size, base = AllocateAlignedMemory(committed_chunk_size,
chunk_size,
MemoryChunk::kAlignment, MemoryChunk::kAlignment,
executable, executable,
&reservation); &reservation);
@ -503,21 +561,12 @@ MemoryChunk* MemoryAllocator::AllocateChunk(intptr_t body_size,
if (base == NULL) return NULL; if (base == NULL) return NULL;
} }
#ifdef DEBUG AllocationBookkeeping(
ZapBlock(base, chunk_size); owner, base, chunk_size, committed_chunk_size, executable);
#endif
isolate_->counters()->memory_allocated()->
Increment(static_cast<int>(chunk_size));
LOG(isolate_, NewEvent("MemoryChunk", base, chunk_size));
if (owner != NULL) {
ObjectSpace space = static_cast<ObjectSpace>(1 << owner->identity());
PerformAllocationCallback(space, kAllocationActionAllocate, chunk_size);
}
MemoryChunk* result = MemoryChunk::Initialize(heap, MemoryChunk* result = MemoryChunk::Initialize(heap,
base, base,
chunk_size, committed_chunk_size,
executable, executable,
owner); owner);
result->set_reserved_memory(&reservation); result->set_reserved_memory(&reservation);
@ -525,9 +574,40 @@ MemoryChunk* MemoryAllocator::AllocateChunk(intptr_t body_size,
} }
Page* MemoryAllocator::AllocatePage(PagedSpace* owner, void MemoryAllocator::AllocationBookkeeping(Space* owner,
Address base,
intptr_t reserved_chunk_size,
intptr_t committed_chunk_size,
Executability executable) {
if (executable == EXECUTABLE) {
// Update executable memory size.
size_executable_ += reserved_chunk_size;
}
#ifdef DEBUG
ZapBlock(base, committed_chunk_size);
#endif
isolate_->counters()->memory_allocated()->
Increment(static_cast<int>(committed_chunk_size));
LOG(isolate_, NewEvent("MemoryChunk", base, committed_chunk_size));
if (owner != NULL) {
ObjectSpace space = static_cast<ObjectSpace>(1 << owner->identity());
PerformAllocationCallback(
space, kAllocationActionAllocate, committed_chunk_size);
}
}
Page* MemoryAllocator::AllocatePage(intptr_t committed_object_area_size,
PagedSpace* owner,
Executability executable) { Executability executable) {
MemoryChunk* chunk = AllocateChunk(Page::kObjectAreaSize, executable, owner); ASSERT(committed_object_area_size <= Page::kObjectAreaSize);
MemoryChunk* chunk = AllocateChunk(Page::kObjectAreaSize,
committed_object_area_size,
executable,
owner);
if (chunk == NULL) return NULL; if (chunk == NULL) return NULL;
@ -538,7 +618,8 @@ Page* MemoryAllocator::AllocatePage(PagedSpace* owner,
LargePage* MemoryAllocator::AllocateLargePage(intptr_t object_size, LargePage* MemoryAllocator::AllocateLargePage(intptr_t object_size,
Executability executable, Executability executable,
Space* owner) { Space* owner) {
MemoryChunk* chunk = AllocateChunk(object_size, executable, owner); MemoryChunk* chunk =
AllocateChunk(object_size, object_size, executable, owner);
if (chunk == NULL) return NULL; if (chunk == NULL) return NULL;
return LargePage::Initialize(isolate_->heap(), chunk); return LargePage::Initialize(isolate_->heap(), chunk);
} }
@ -559,8 +640,12 @@ void MemoryAllocator::Free(MemoryChunk* chunk) {
if (reservation->IsReserved()) { if (reservation->IsReserved()) {
FreeMemory(reservation, chunk->executable()); FreeMemory(reservation, chunk->executable());
} else { } else {
// When we do not have a reservation that is because this allocation
// is part of the huge reserved chunk of memory reserved for code on
// x64. In that case the size was rounded up to the page size on
// allocation so we do the same now when freeing.
FreeMemory(chunk->address(), FreeMemory(chunk->address(),
chunk->size(), RoundUp(chunk->size(), Page::kPageSize),
chunk->executable()); chunk->executable());
} }
} }
@ -640,11 +725,12 @@ void MemoryAllocator::RemoveMemoryAllocationCallback(
#ifdef DEBUG #ifdef DEBUG
void MemoryAllocator::ReportStatistics() { void MemoryAllocator::ReportStatistics() {
float pct = static_cast<float>(capacity_ - size_) / capacity_; float pct =
static_cast<float>(capacity_ - memory_allocator_reserved_) / capacity_;
PrintF(" capacity: %" V8_PTR_PREFIX "d" PrintF(" capacity: %" V8_PTR_PREFIX "d"
", used: %" V8_PTR_PREFIX "d" ", used: %" V8_PTR_PREFIX "d"
", available: %%%d\n\n", ", available: %%%d\n\n",
capacity_, size_, static_cast<int>(pct*100)); capacity_, memory_allocator_reserved_, static_cast<int>(pct*100));
} }
#endif #endif
@ -723,7 +809,6 @@ MaybeObject* PagedSpace::FindObject(Address addr) {
bool PagedSpace::CanExpand() { bool PagedSpace::CanExpand() {
ASSERT(max_capacity_ % Page::kObjectAreaSize == 0); ASSERT(max_capacity_ % Page::kObjectAreaSize == 0);
ASSERT(Capacity() % Page::kObjectAreaSize == 0);
if (Capacity() == max_capacity_) return false; if (Capacity() == max_capacity_) return false;
@ -735,11 +820,43 @@ bool PagedSpace::CanExpand() {
return true; return true;
} }
bool PagedSpace::Expand() { bool PagedSpace::Expand(intptr_t size_in_bytes) {
if (!CanExpand()) return false; if (!CanExpand()) return false;
Page* last_page = anchor_.prev_page();
if (last_page != &anchor_) {
// We have run out of linear allocation space. This may be because the
// most recently allocated page (stored last in the list) is a small one,
// that starts on a page aligned boundary, but has not a full kPageSize of
// committed memory. Let's commit more memory for the page.
intptr_t reserved_page_size = last_page->reserved_memory()->IsReserved() ?
last_page->reserved_memory()->size() :
Page::kPageSize;
if (last_page->size() < reserved_page_size &&
(reserved_page_size - last_page->size()) >= size_in_bytes &&
!last_page->IsEvacuationCandidate() &&
last_page->WasSwept()) {
last_page->CommitMore(size_in_bytes);
return true;
}
}
// We initially only commit a part of the page, but the deserialization
// of the initial snapshot makes the assumption that it can deserialize
// into linear memory of a certain size per space, so some of the spaces
// need to have a little more committed memory.
int initial =
Max(OS::CommitPageSize(), static_cast<intptr_t>(Page::kGrowthUnit));
ASSERT(Page::kPageSize - initial < Page::kObjectAreaSize);
intptr_t expansion_size =
Max(initial,
RoundUpToPowerOf2(MemoryChunk::kObjectStartOffset + size_in_bytes)) -
MemoryChunk::kObjectStartOffset;
Page* p = heap()->isolate()->memory_allocator()-> Page* p = heap()->isolate()->memory_allocator()->
AllocatePage(this, executable()); AllocatePage(expansion_size, this, executable());
if (p == NULL) return false; if (p == NULL) return false;
ASSERT(Capacity() <= max_capacity_); ASSERT(Capacity() <= max_capacity_);
@ -784,6 +901,8 @@ void PagedSpace::ReleasePage(Page* page) {
allocation_info_.top = allocation_info_.limit = NULL; allocation_info_.top = allocation_info_.limit = NULL;
} }
intptr_t size = page->ObjectAreaEnd() - page->ObjectAreaStart();
page->Unlink(); page->Unlink();
if (page->IsFlagSet(MemoryChunk::CONTAINS_ONLY_DATA)) { if (page->IsFlagSet(MemoryChunk::CONTAINS_ONLY_DATA)) {
heap()->isolate()->memory_allocator()->Free(page); heap()->isolate()->memory_allocator()->Free(page);
@ -792,8 +911,7 @@ void PagedSpace::ReleasePage(Page* page) {
} }
ASSERT(Capacity() > 0); ASSERT(Capacity() > 0);
ASSERT(Capacity() % Page::kObjectAreaSize == 0); accounting_stats_.ShrinkSpace(size);
accounting_stats_.ShrinkSpace(Page::kObjectAreaSize);
} }
@ -1671,7 +1789,7 @@ void FreeListNode::set_size(Heap* heap, int size_in_bytes) {
// is big enough to be a FreeSpace with at least one extra word (the next // is big enough to be a FreeSpace with at least one extra word (the next
// pointer), we set its map to be the free space map and its size to an // pointer), we set its map to be the free space map and its size to an
// appropriate array length for the desired size from HeapObject::Size(). // appropriate array length for the desired size from HeapObject::Size().
// If the block is too small (eg, one or two words), to hold both a size // If the block is too small (e.g. one or two words), to hold both a size
// field and a next pointer, we give it a filler map that gives it the // field and a next pointer, we give it a filler map that gives it the
// correct size. // correct size.
if (size_in_bytes > FreeSpace::kHeaderSize) { if (size_in_bytes > FreeSpace::kHeaderSize) {
@ -1775,69 +1893,102 @@ int FreeList::Free(Address start, int size_in_bytes) {
} }
FreeListNode* FreeList::PickNodeFromList(FreeListNode** list, int* node_size) { FreeListNode* FreeList::PickNodeFromList(FreeListNode** list,
int* node_size,
int minimum_size) {
FreeListNode* node = *list; FreeListNode* node = *list;
if (node == NULL) return NULL; if (node == NULL) return NULL;
ASSERT(node->map() == node->GetHeap()->raw_unchecked_free_space_map());
while (node != NULL && while (node != NULL &&
Page::FromAddress(node->address())->IsEvacuationCandidate()) { Page::FromAddress(node->address())->IsEvacuationCandidate()) {
available_ -= node->Size(); available_ -= node->Size();
node = node->next(); node = node->next();
} }
if (node != NULL) { if (node == NULL) {
*node_size = node->Size();
*list = node->next();
} else {
*list = NULL; *list = NULL;
return NULL;
} }
// Gets the size without checking the map. When we are booting we have
// a FreeListNode before we have created its map.
intptr_t size = reinterpret_cast<FreeSpace*>(node)->Size();
// We don't search the list for one that fits, preferring to look in the
// list of larger nodes, but we do check the first in the list, because
// if we had to expand the space or page we may have placed an entry that
// was just long enough at the head of one of the lists.
if (size < minimum_size) return NULL;
*node_size = size;
available_ -= size;
*list = node->next();
return node; return node;
} }
FreeListNode* FreeList::FindNodeFor(int size_in_bytes, int* node_size) { FreeListNode* FreeList::FindAbuttingNode(
int size_in_bytes, int* node_size, Address limit, FreeListNode** list_head) {
FreeListNode* first_node = *list_head;
if (first_node != NULL &&
first_node->address() == limit &&
reinterpret_cast<FreeSpace*>(first_node)->Size() >= size_in_bytes &&
!Page::FromAddress(first_node->address())->IsEvacuationCandidate()) {
FreeListNode* answer = first_node;
int size = reinterpret_cast<FreeSpace*>(first_node)->Size();
available_ -= size;
*node_size = size;
*list_head = first_node->next();
ASSERT(IsVeryLong() || available_ == SumFreeLists());
return answer;
}
return NULL;
}
FreeListNode* FreeList::FindNodeFor(int size_in_bytes,
int* node_size,
Address limit) {
FreeListNode* node = NULL; FreeListNode* node = NULL;
if (size_in_bytes <= kSmallAllocationMax) { if (limit != NULL) {
node = PickNodeFromList(&small_list_, node_size); // We may have a memory area at the head of the free list, which abuts the
// old linear allocation area. This happens if the linear allocation area
// has been shortened to allow an incremental marking step to be performed.
// In that case we prefer to return the free memory area that is contiguous
// with the old linear allocation area.
node = FindAbuttingNode(size_in_bytes, node_size, limit, &large_list_);
if (node != NULL) return node;
node = FindAbuttingNode(size_in_bytes, node_size, limit, &huge_list_);
if (node != NULL) return node; if (node != NULL) return node;
} }
if (size_in_bytes <= kMediumAllocationMax) { node = PickNodeFromList(&small_list_, node_size, size_in_bytes);
node = PickNodeFromList(&medium_list_, node_size); ASSERT(IsVeryLong() || available_ == SumFreeLists());
if (node != NULL) return node; if (node != NULL) return node;
}
if (size_in_bytes <= kLargeAllocationMax) { node = PickNodeFromList(&medium_list_, node_size, size_in_bytes);
node = PickNodeFromList(&large_list_, node_size); ASSERT(IsVeryLong() || available_ == SumFreeLists());
if (node != NULL) return node; if (node != NULL) return node;
}
node = PickNodeFromList(&large_list_, node_size, size_in_bytes);
ASSERT(IsVeryLong() || available_ == SumFreeLists());
if (node != NULL) return node;
// The tricky third clause in this for statement is due to the fact that
// PickNodeFromList can cut pages out of the list if they are unavailable for
// new allocation (e.g. if they are on a page that has been scheduled for
// evacuation).
for (FreeListNode** cur = &huge_list_; for (FreeListNode** cur = &huge_list_;
*cur != NULL; *cur != NULL;
cur = (*cur)->next_address()) { cur = (*cur) == NULL ? cur : (*cur)->next_address()) {
FreeListNode* cur_node = *cur; node = PickNodeFromList(cur, node_size, size_in_bytes);
while (cur_node != NULL && ASSERT(IsVeryLong() || available_ == SumFreeLists());
Page::FromAddress(cur_node->address())->IsEvacuationCandidate()) { if (node != NULL) return node;
available_ -= reinterpret_cast<FreeSpace*>(cur_node)->Size();
cur_node = cur_node->next();
}
*cur = cur_node;
if (cur_node == NULL) break;
ASSERT((*cur)->map() == HEAP->raw_unchecked_free_space_map());
FreeSpace* cur_as_free_space = reinterpret_cast<FreeSpace*>(*cur);
int size = cur_as_free_space->Size();
if (size >= size_in_bytes) {
// Large enough node found. Unlink it from the list.
node = *cur;
*node_size = size;
*cur = node->next();
break;
}
} }
return node; return node;
@ -1856,10 +2007,23 @@ HeapObject* FreeList::Allocate(int size_in_bytes) {
ASSERT(owner_->limit() - owner_->top() < size_in_bytes); ASSERT(owner_->limit() - owner_->top() < size_in_bytes);
int new_node_size = 0; int new_node_size = 0;
FreeListNode* new_node = FindNodeFor(size_in_bytes, &new_node_size); FreeListNode* new_node =
FindNodeFor(size_in_bytes, &new_node_size, owner_->limit());
if (new_node == NULL) return NULL; if (new_node == NULL) return NULL;
available_ -= new_node_size; if (new_node->address() == owner_->limit()) {
// The new freelist node we were given is an extension of the one we had
// last. This is a common thing to happen when we extend a small page by
// committing more memory. In this case we just add the new node to the
// linear allocation area and recurse.
owner_->Allocate(new_node_size);
owner_->SetTop(owner_->top(), new_node->address() + new_node_size);
MaybeObject* allocation = owner_->AllocateRaw(size_in_bytes);
Object* answer;
if (!allocation->ToObject(&answer)) return NULL;
return HeapObject::cast(answer);
}
ASSERT(IsVeryLong() || available_ == SumFreeLists()); ASSERT(IsVeryLong() || available_ == SumFreeLists());
int bytes_left = new_node_size - size_in_bytes; int bytes_left = new_node_size - size_in_bytes;
@ -1869,7 +2033,9 @@ HeapObject* FreeList::Allocate(int size_in_bytes) {
// Mark the old linear allocation area with a free space map so it can be // Mark the old linear allocation area with a free space map so it can be
// skipped when scanning the heap. This also puts it back in the free list // skipped when scanning the heap. This also puts it back in the free list
// if it is big enough. // if it is big enough.
owner_->Free(owner_->top(), old_linear_size); if (old_linear_size != 0) {
owner_->AddToFreeLists(owner_->top(), old_linear_size);
}
#ifdef DEBUG #ifdef DEBUG
for (int i = 0; i < size_in_bytes / kPointerSize; i++) { for (int i = 0; i < size_in_bytes / kPointerSize; i++) {
@ -1898,8 +2064,8 @@ HeapObject* FreeList::Allocate(int size_in_bytes) {
// We don't want to give too large linear areas to the allocator while // We don't want to give too large linear areas to the allocator while
// incremental marking is going on, because we won't check again whether // incremental marking is going on, because we won't check again whether
// we want to do another increment until the linear area is used up. // we want to do another increment until the linear area is used up.
owner_->Free(new_node->address() + size_in_bytes + linear_size, owner_->AddToFreeLists(new_node->address() + size_in_bytes + linear_size,
new_node_size - size_in_bytes - linear_size); new_node_size - size_in_bytes - linear_size);
owner_->SetTop(new_node->address() + size_in_bytes, owner_->SetTop(new_node->address() + size_in_bytes,
new_node->address() + size_in_bytes + linear_size); new_node->address() + size_in_bytes + linear_size);
} else if (bytes_left > 0) { } else if (bytes_left > 0) {
@ -1908,6 +2074,7 @@ HeapObject* FreeList::Allocate(int size_in_bytes) {
owner_->SetTop(new_node->address() + size_in_bytes, owner_->SetTop(new_node->address() + size_in_bytes,
new_node->address() + new_node_size); new_node->address() + new_node_size);
} else { } else {
ASSERT(bytes_left == 0);
// TODO(gc) Try not freeing linear allocation region when bytes_left // TODO(gc) Try not freeing linear allocation region when bytes_left
// are zero. // are zero.
owner_->SetTop(NULL, NULL); owner_->SetTop(NULL, NULL);
@ -2040,7 +2207,9 @@ bool NewSpace::ReserveSpace(int bytes) {
HeapObject* allocation = HeapObject::cast(object); HeapObject* allocation = HeapObject::cast(object);
Address top = allocation_info_.top; Address top = allocation_info_.top;
if ((top - bytes) == allocation->address()) { if ((top - bytes) == allocation->address()) {
allocation_info_.top = allocation->address(); Address new_top = allocation->address();
ASSERT(new_top >= Page::FromAddress(new_top - 1)->ObjectAreaStart());
allocation_info_.top = new_top;
return true; return true;
} }
// There may be a borderline case here where the allocation succeeded, but // There may be a borderline case here where the allocation succeeded, but
@ -2055,7 +2224,7 @@ void PagedSpace::PrepareForMarkCompact() {
// Mark the old linear allocation area with a free space map so it can be // Mark the old linear allocation area with a free space map so it can be
// skipped when scanning the heap. // skipped when scanning the heap.
int old_linear_size = static_cast<int>(limit() - top()); int old_linear_size = static_cast<int>(limit() - top());
Free(top(), old_linear_size); AddToFreeLists(top(), old_linear_size);
SetTop(NULL, NULL); SetTop(NULL, NULL);
// Stop lazy sweeping and clear marking bits for unswept pages. // Stop lazy sweeping and clear marking bits for unswept pages.
@ -2098,10 +2267,13 @@ bool PagedSpace::ReserveSpace(int size_in_bytes) {
// Mark the old linear allocation area with a free space so it can be // Mark the old linear allocation area with a free space so it can be
// skipped when scanning the heap. This also puts it back in the free list // skipped when scanning the heap. This also puts it back in the free list
// if it is big enough. // if it is big enough.
Free(top(), old_linear_size); AddToFreeLists(top(), old_linear_size);
SetTop(new_area->address(), new_area->address() + size_in_bytes); SetTop(new_area->address(), new_area->address() + size_in_bytes);
Allocate(size_in_bytes); // The AddToFreeLists call above will reduce the size of the space in the
// allocation stats. We don't need to add this linear area to the size
// with an Allocate(size_in_bytes) call here, because the
// free_list_.Allocate() call above already accounted for this memory.
return true; return true;
} }
@ -2182,7 +2354,7 @@ HeapObject* PagedSpace::SlowAllocateRaw(int size_in_bytes) {
} }
// Try to expand the space and allocate in the new next page. // Try to expand the space and allocate in the new next page.
if (Expand()) { if (Expand(size_in_bytes)) {
return free_list_.Allocate(size_in_bytes); return free_list_.Allocate(size_in_bytes);
} }
@ -2543,6 +2715,7 @@ void LargeObjectSpace::FreeUnmarkedObjects() {
heap()->mark_compact_collector()->ReportDeleteIfNeeded( heap()->mark_compact_collector()->ReportDeleteIfNeeded(
object, heap()->isolate()); object, heap()->isolate());
size_ -= static_cast<int>(page->size()); size_ -= static_cast<int>(page->size());
ASSERT(size_ >= 0);
objects_size_ -= object->Size(); objects_size_ -= object->Size();
page_count_--; page_count_--;

View File

@ -505,11 +505,9 @@ class MemoryChunk {
static const int kObjectStartOffset = kBodyOffset - 1 + static const int kObjectStartOffset = kBodyOffset - 1 +
(kObjectStartAlignment - (kBodyOffset - 1) % kObjectStartAlignment); (kObjectStartAlignment - (kBodyOffset - 1) % kObjectStartAlignment);
size_t size() const { return size_; } intptr_t size() const { return size_; }
void set_size(size_t size) { void set_size(size_t size) { size_ = size; }
size_ = size;
}
Executability executable() { Executability executable() {
return IsFlagSet(IS_EXECUTABLE) ? EXECUTABLE : NOT_EXECUTABLE; return IsFlagSet(IS_EXECUTABLE) ? EXECUTABLE : NOT_EXECUTABLE;
@ -661,7 +659,7 @@ class Page : public MemoryChunk {
Address ObjectAreaStart() { return address() + kObjectStartOffset; } Address ObjectAreaStart() { return address() + kObjectStartOffset; }
// Returns the end address (exclusive) of the object area in this page. // Returns the end address (exclusive) of the object area in this page.
Address ObjectAreaEnd() { return address() + Page::kPageSize; } Address ObjectAreaEnd() { return address() + size(); }
// Checks whether an address is page aligned. // Checks whether an address is page aligned.
static bool IsAlignedToPageSize(Address a) { static bool IsAlignedToPageSize(Address a) {
@ -680,11 +678,17 @@ class Page : public MemoryChunk {
return address() + offset; return address() + offset;
} }
// Expand the committed area for pages that are small.
void CommitMore(intptr_t space_needed);
// --------------------------------------------------------------------- // ---------------------------------------------------------------------
// Page size in bytes. This must be a multiple of the OS page size. // Page size in bytes. This must be a multiple of the OS page size.
static const int kPageSize = 1 << kPageSizeBits; static const int kPageSize = 1 << kPageSizeBits;
// For a 1Mbyte page grow 64k at a time.
static const int kGrowthUnit = 1 << (kPageSizeBits - 4);
// Page size mask. // Page size mask.
static const intptr_t kPageAlignmentMask = (1 << kPageSizeBits) - 1; static const intptr_t kPageAlignmentMask = (1 << kPageSizeBits) - 1;
@ -849,12 +853,10 @@ class CodeRange {
FreeBlock(Address start_arg, size_t size_arg) FreeBlock(Address start_arg, size_t size_arg)
: start(start_arg), size(size_arg) { : start(start_arg), size(size_arg) {
ASSERT(IsAddressAligned(start, MemoryChunk::kAlignment)); ASSERT(IsAddressAligned(start, MemoryChunk::kAlignment));
ASSERT(size >= static_cast<size_t>(Page::kPageSize));
} }
FreeBlock(void* start_arg, size_t size_arg) FreeBlock(void* start_arg, size_t size_arg)
: start(static_cast<Address>(start_arg)), size(size_arg) { : start(static_cast<Address>(start_arg)), size(size_arg) {
ASSERT(IsAddressAligned(start, MemoryChunk::kAlignment)); ASSERT(IsAddressAligned(start, MemoryChunk::kAlignment));
ASSERT(size >= static_cast<size_t>(Page::kPageSize));
} }
Address start; Address start;
@ -950,7 +952,9 @@ class MemoryAllocator {
void TearDown(); void TearDown();
Page* AllocatePage(PagedSpace* owner, Executability executable); Page* AllocatePage(intptr_t object_area_size,
PagedSpace* owner,
Executability executable);
LargePage* AllocateLargePage(intptr_t object_size, LargePage* AllocateLargePage(intptr_t object_size,
Executability executable, Executability executable,
@ -959,10 +963,14 @@ class MemoryAllocator {
void Free(MemoryChunk* chunk); void Free(MemoryChunk* chunk);
// Returns the maximum available bytes of heaps. // Returns the maximum available bytes of heaps.
intptr_t Available() { return capacity_ < size_ ? 0 : capacity_ - size_; } intptr_t Available() {
return capacity_ < memory_allocator_reserved_ ?
0 :
capacity_ - memory_allocator_reserved_;
}
// Returns allocated spaces in bytes. // Returns allocated spaces in bytes.
intptr_t Size() { return size_; } intptr_t Size() { return memory_allocator_reserved_; }
// Returns the maximum available executable bytes of heaps. // Returns the maximum available executable bytes of heaps.
intptr_t AvailableExecutable() { intptr_t AvailableExecutable() {
@ -984,6 +992,7 @@ class MemoryAllocator {
#endif #endif
MemoryChunk* AllocateChunk(intptr_t body_size, MemoryChunk* AllocateChunk(intptr_t body_size,
intptr_t committed_body_size,
Executability executable, Executability executable,
Space* space); Space* space);
@ -991,6 +1000,7 @@ class MemoryAllocator {
size_t alignment, size_t alignment,
VirtualMemory* controller); VirtualMemory* controller);
Address AllocateAlignedMemory(size_t requested, Address AllocateAlignedMemory(size_t requested,
size_t committed,
size_t alignment, size_t alignment,
Executability executable, Executability executable,
VirtualMemory* controller); VirtualMemory* controller);
@ -1010,6 +1020,12 @@ class MemoryAllocator {
// and false otherwise. // and false otherwise.
bool UncommitBlock(Address start, size_t size); bool UncommitBlock(Address start, size_t size);
void AllocationBookkeeping(Space* owner,
Address base,
intptr_t reserved_size,
intptr_t committed_size,
Executability executable);
// Zaps a contiguous block of memory [start..(start+size)[ thus // Zaps a contiguous block of memory [start..(start+size)[ thus
// filling it up with a recognizable non-NULL bit pattern. // filling it up with a recognizable non-NULL bit pattern.
void ZapBlock(Address start, size_t size); void ZapBlock(Address start, size_t size);
@ -1037,7 +1053,7 @@ class MemoryAllocator {
size_t capacity_executable_; size_t capacity_executable_;
// Allocated space size in bytes. // Allocated space size in bytes.
size_t size_; size_t memory_allocator_reserved_;
// Allocated executable space size in bytes. // Allocated executable space size in bytes.
size_t size_executable_; size_t size_executable_;
@ -1382,9 +1398,15 @@ class FreeList BASE_EMBEDDED {
static const int kMinBlockSize = 3 * kPointerSize; static const int kMinBlockSize = 3 * kPointerSize;
static const int kMaxBlockSize = Page::kMaxHeapObjectSize; static const int kMaxBlockSize = Page::kMaxHeapObjectSize;
FreeListNode* PickNodeFromList(FreeListNode** list, int* node_size); FreeListNode* PickNodeFromList(FreeListNode** list,
int* node_size,
int minimum_size);
FreeListNode* FindNodeFor(int size_in_bytes, int* node_size); FreeListNode* FindNodeFor(int size_in_bytes, int* node_size, Address limit);
FreeListNode* FindAbuttingNode(int size_in_bytes,
int* node_size,
Address limit,
FreeListNode** list_head);
PagedSpace* owner_; PagedSpace* owner_;
Heap* heap_; Heap* heap_;
@ -1484,6 +1506,8 @@ class PagedSpace : public Space {
// free bytes that were not found at all due to lazy sweeping. // free bytes that were not found at all due to lazy sweeping.
virtual intptr_t Waste() { return accounting_stats_.Waste(); } virtual intptr_t Waste() { return accounting_stats_.Waste(); }
virtual int ObjectAlignment() { return kObjectAlignment; }
// Returns the allocation pointer in this space. // Returns the allocation pointer in this space.
Address top() { return allocation_info_.top; } Address top() { return allocation_info_.top; }
Address limit() { return allocation_info_.limit; } Address limit() { return allocation_info_.limit; }
@ -1498,7 +1522,7 @@ class PagedSpace : public Space {
// the free list or accounted as waste. // the free list or accounted as waste.
// If add_to_freelist is false then just accounting stats are updated and // If add_to_freelist is false then just accounting stats are updated and
// no attempt to add area to free list is made. // no attempt to add area to free list is made.
int Free(Address start, int size_in_bytes) { int AddToFreeLists(Address start, int size_in_bytes) {
int wasted = free_list_.Free(start, size_in_bytes); int wasted = free_list_.Free(start, size_in_bytes);
accounting_stats_.DeallocateBytes(size_in_bytes - wasted); accounting_stats_.DeallocateBytes(size_in_bytes - wasted);
return size_in_bytes - wasted; return size_in_bytes - wasted;
@ -1506,6 +1530,7 @@ class PagedSpace : public Space {
// Set space allocation info. // Set space allocation info.
void SetTop(Address top, Address limit) { void SetTop(Address top, Address limit) {
ASSERT(top == NULL || top >= Page::FromAddress(top - 1)->ObjectAreaStart());
ASSERT(top == limit || ASSERT(top == limit ||
Page::FromAddress(top) == Page::FromAddress(limit - 1)); Page::FromAddress(top) == Page::FromAddress(limit - 1));
allocation_info_.top = top; allocation_info_.top = top;
@ -1572,12 +1597,14 @@ class PagedSpace : public Space {
void IncreaseUnsweptFreeBytes(Page* p) { void IncreaseUnsweptFreeBytes(Page* p) {
ASSERT(ShouldBeSweptLazily(p)); ASSERT(ShouldBeSweptLazily(p));
unswept_free_bytes_ += (Page::kObjectAreaSize - p->LiveBytes()); unswept_free_bytes_ +=
(p->ObjectAreaEnd() - p->ObjectAreaStart()) - p->LiveBytes();
} }
void DecreaseUnsweptFreeBytes(Page* p) { void DecreaseUnsweptFreeBytes(Page* p) {
ASSERT(ShouldBeSweptLazily(p)); ASSERT(ShouldBeSweptLazily(p));
unswept_free_bytes_ -= (Page::kObjectAreaSize - p->LiveBytes()); unswept_free_bytes_ -=
(p->ObjectAreaEnd() - p->ObjectAreaStart() - p->LiveBytes());
} }
bool AdvanceSweeper(intptr_t bytes_to_sweep); bool AdvanceSweeper(intptr_t bytes_to_sweep);
@ -1586,6 +1613,7 @@ class PagedSpace : public Space {
return !first_unswept_page_->is_valid(); return !first_unswept_page_->is_valid();
} }
inline bool HasAPage() { return anchor_.next_page() != &anchor_; }
Page* FirstPage() { return anchor_.next_page(); } Page* FirstPage() { return anchor_.next_page(); }
Page* LastPage() { return anchor_.prev_page(); } Page* LastPage() { return anchor_.prev_page(); }
@ -1596,15 +1624,17 @@ class PagedSpace : public Space {
FreeList::SizeStats sizes; FreeList::SizeStats sizes;
free_list_.CountFreeListItems(p, &sizes); free_list_.CountFreeListItems(p, &sizes);
intptr_t object_area_size = p->ObjectAreaEnd() - p->ObjectAreaStart();
intptr_t ratio; intptr_t ratio;
intptr_t ratio_threshold; intptr_t ratio_threshold;
if (identity() == CODE_SPACE) { if (identity() == CODE_SPACE) {
ratio = (sizes.medium_size_ * 10 + sizes.large_size_ * 2) * 100 / ratio = (sizes.medium_size_ * 10 + sizes.large_size_ * 2) * 100 /
Page::kObjectAreaSize; object_area_size;
ratio_threshold = 10; ratio_threshold = 10;
} else { } else {
ratio = (sizes.small_size_ * 5 + sizes.medium_size_) * 100 / ratio = (sizes.small_size_ * 5 + sizes.medium_size_) * 100 /
Page::kObjectAreaSize; object_area_size;
ratio_threshold = 15; ratio_threshold = 15;
} }
@ -1614,20 +1644,20 @@ class PagedSpace : public Space {
identity(), identity(),
static_cast<int>(sizes.small_size_), static_cast<int>(sizes.small_size_),
static_cast<double>(sizes.small_size_ * 100) / static_cast<double>(sizes.small_size_ * 100) /
Page::kObjectAreaSize, object_area_size,
static_cast<int>(sizes.medium_size_), static_cast<int>(sizes.medium_size_),
static_cast<double>(sizes.medium_size_ * 100) / static_cast<double>(sizes.medium_size_ * 100) /
Page::kObjectAreaSize, object_area_size,
static_cast<int>(sizes.large_size_), static_cast<int>(sizes.large_size_),
static_cast<double>(sizes.large_size_ * 100) / static_cast<double>(sizes.large_size_ * 100) /
Page::kObjectAreaSize, object_area_size,
static_cast<int>(sizes.huge_size_), static_cast<int>(sizes.huge_size_),
static_cast<double>(sizes.huge_size_ * 100) / static_cast<double>(sizes.huge_size_ * 100) /
Page::kObjectAreaSize, object_area_size,
(ratio > ratio_threshold) ? "[fragmented]" : ""); (ratio > ratio_threshold) ? "[fragmented]" : "");
} }
if (FLAG_always_compact && sizes.Total() != Page::kObjectAreaSize) { if (FLAG_always_compact && sizes.Total() != object_area_size) {
return 1; return 1;
} }
if (ratio <= ratio_threshold) return 0; // Not fragmented. if (ratio <= ratio_threshold) return 0; // Not fragmented.
@ -1658,12 +1688,6 @@ class PagedSpace : public Space {
// Normal allocation information. // Normal allocation information.
AllocationInfo allocation_info_; AllocationInfo allocation_info_;
// Bytes of each page that cannot be allocated. Possibly non-zero
// for pages in spaces with only fixed-size objects. Always zero
// for pages in spaces with variable sized objects (those pages are
// padded with free-list nodes).
int page_extra_;
bool was_swept_conservatively_; bool was_swept_conservatively_;
// The first page to be swept when the lazy sweeper advances. Is set // The first page to be swept when the lazy sweeper advances. Is set
@ -1675,10 +1699,11 @@ class PagedSpace : public Space {
// done conservatively. // done conservatively.
intptr_t unswept_free_bytes_; intptr_t unswept_free_bytes_;
// Expands the space by allocating a fixed number of pages. Returns false if // Expands the space by allocating a page. Returns false if it cannot
// it cannot allocate requested number of pages from OS, or if the hard heap // allocate a page from OS, or if the hard heap size limit has been hit. The
// size limit has been hit. // new page will have at least enough committed space to satisfy the object
bool Expand(); // size indicated by the allocation_size argument;
bool Expand(intptr_t allocation_size);
// Generic fast case allocation function that tries linear allocation at the // Generic fast case allocation function that tries linear allocation at the
// address denoted by top in allocation_info_. // address denoted by top in allocation_info_.
@ -1833,7 +1858,8 @@ class SemiSpace : public Space {
anchor_(this), anchor_(this),
current_page_(NULL) { } current_page_(NULL) { }
// Sets up the semispace using the given chunk. // Sets up the semispace using the given chunk. After this, call Commit()
// to make the semispace usable.
void SetUp(Address start, int initial_capacity, int maximum_capacity); void SetUp(Address start, int initial_capacity, int maximum_capacity);
// Tear down the space. Heap memory was not allocated by the space, so it // Tear down the space. Heap memory was not allocated by the space, so it
@ -2338,14 +2364,7 @@ class OldSpace : public PagedSpace {
intptr_t max_capacity, intptr_t max_capacity,
AllocationSpace id, AllocationSpace id,
Executability executable) Executability executable)
: PagedSpace(heap, max_capacity, id, executable) { : PagedSpace(heap, max_capacity, id, executable) { }
page_extra_ = 0;
}
// The limit of allocation for a page in this space.
virtual Address PageAllocationLimit(Page* page) {
return page->ObjectAreaEnd();
}
public: public:
TRACK_MEMORY("OldSpace") TRACK_MEMORY("OldSpace")
@ -2372,17 +2391,12 @@ class FixedSpace : public PagedSpace {
const char* name) const char* name)
: PagedSpace(heap, max_capacity, id, NOT_EXECUTABLE), : PagedSpace(heap, max_capacity, id, NOT_EXECUTABLE),
object_size_in_bytes_(object_size_in_bytes), object_size_in_bytes_(object_size_in_bytes),
name_(name) { name_(name) { }
page_extra_ = Page::kObjectAreaSize % object_size_in_bytes;
}
// The limit of allocation for a page in this space.
virtual Address PageAllocationLimit(Page* page) {
return page->ObjectAreaEnd() - page_extra_;
}
int object_size_in_bytes() { return object_size_in_bytes_; } int object_size_in_bytes() { return object_size_in_bytes_; }
virtual int ObjectAlignment() { return object_size_in_bytes_; }
// Prepares for a mark-compact GC. // Prepares for a mark-compact GC.
virtual void PrepareForMarkCompact(); virtual void PrepareForMarkCompact();

View File

@ -496,7 +496,6 @@ void StoreBuffer::FindPointersToNewSpaceInMapsRegion(
Address map_aligned_end = MapEndAlign(end); Address map_aligned_end = MapEndAlign(end);
ASSERT(map_aligned_start == start); ASSERT(map_aligned_start == start);
ASSERT(map_aligned_end == end);
FindPointersToNewSpaceInMaps(map_aligned_start, FindPointersToNewSpaceInMaps(map_aligned_start,
map_aligned_end, map_aligned_end,
@ -524,52 +523,57 @@ void StoreBuffer::FindPointersToNewSpaceOnPage(
RegionCallback region_callback, RegionCallback region_callback,
ObjectSlotCallback slot_callback) { ObjectSlotCallback slot_callback) {
Address visitable_start = page->ObjectAreaStart(); Address visitable_start = page->ObjectAreaStart();
Address end_of_page = page->ObjectAreaEnd();
Address visitable_end = visitable_start; Address visitable_end = visitable_start;
Object* free_space_map = heap_->free_space_map(); Object* free_space_map = heap_->free_space_map();
Object* two_pointer_filler_map = heap_->two_pointer_filler_map(); Object* two_pointer_filler_map = heap_->two_pointer_filler_map();
while (visitable_end < end_of_page) { while (true) { // While the page grows (doesn't normally happen).
Object* o = *reinterpret_cast<Object**>(visitable_end); Address end_of_page = page->ObjectAreaEnd();
// Skip fillers but not things that look like fillers in the special while (visitable_end < end_of_page) {
// garbage section which can contain anything. Object* o = *reinterpret_cast<Object**>(visitable_end);
if (o == free_space_map || // Skip fillers but not things that look like fillers in the special
o == two_pointer_filler_map || // garbage section which can contain anything.
(visitable_end == space->top() && visitable_end != space->limit())) { if (o == free_space_map ||
if (visitable_start != visitable_end) { o == two_pointer_filler_map ||
// After calling this the special garbage section may have moved. (visitable_end == space->top() && visitable_end != space->limit())) {
(this->*region_callback)(visitable_start, if (visitable_start != visitable_end) {
visitable_end, // After calling this the special garbage section may have moved.
slot_callback); (this->*region_callback)(visitable_start,
if (visitable_end >= space->top() && visitable_end < space->limit()) { visitable_end,
visitable_end = space->limit(); slot_callback);
visitable_start = visitable_end; if (visitable_end >= space->top() && visitable_end < space->limit()) {
continue; visitable_end = space->limit();
visitable_start = visitable_end;
continue;
}
}
if (visitable_end == space->top() && visitable_end != space->limit()) {
visitable_start = visitable_end = space->limit();
} else {
// At this point we are either at the start of a filler or we are at
// the point where the space->top() used to be before the
// visit_pointer_region call above. Either way we can skip the
// object at the current spot: We don't promise to visit objects
// allocated during heap traversal, and if space->top() moved then it
// must be because an object was allocated at this point.
visitable_start =
visitable_end + HeapObject::FromAddress(visitable_end)->Size();
visitable_end = visitable_start;
} }
}
if (visitable_end == space->top() && visitable_end != space->limit()) {
visitable_start = visitable_end = space->limit();
} else { } else {
// At this point we are either at the start of a filler or we are at ASSERT(o != free_space_map);
// the point where the space->top() used to be before the ASSERT(o != two_pointer_filler_map);
// visit_pointer_region call above. Either way we can skip the ASSERT(visitable_end < space->top() || visitable_end >= space->limit());
// object at the current spot: We don't promise to visit objects visitable_end += kPointerSize;
// allocated during heap traversal, and if space->top() moved then it
// must be because an object was allocated at this point.
visitable_start =
visitable_end + HeapObject::FromAddress(visitable_end)->Size();
visitable_end = visitable_start;
} }
} else {
ASSERT(o != free_space_map);
ASSERT(o != two_pointer_filler_map);
ASSERT(visitable_end < space->top() || visitable_end >= space->limit());
visitable_end += kPointerSize;
} }
ASSERT(visitable_end >= end_of_page);
// If the page did not grow we are done.
if (end_of_page == page->ObjectAreaEnd()) break;
} }
ASSERT(visitable_end == end_of_page); ASSERT(visitable_end == page->ObjectAreaEnd());
if (visitable_start != visitable_end) { if (visitable_start != visitable_end) {
(this->*region_callback)(visitable_start, (this->*region_callback)(visitable_start,
visitable_end, visitable_end,

View File

@ -153,11 +153,9 @@ int HandleObjectPointerCompare(const Handle<T>* a, const Handle<T>* b) {
} }
// Returns the smallest power of two which is >= x. If you pass in a template<typename int_type>
// number that is already a power of two, it is returned as is. inline int RoundUpToPowerOf2(int_type x_argument) {
// Implementation is from "Hacker's Delight" by Henry S. Warren, Jr., uintptr_t x = static_cast<uintptr_t>(x_argument);
// figure 3-3, page 48, where the function is called clp2.
inline uint32_t RoundUpToPowerOf2(uint32_t x) {
ASSERT(x <= 0x80000000u); ASSERT(x <= 0x80000000u);
x = x - 1; x = x - 1;
x = x | (x >> 1); x = x | (x >> 1);
@ -165,7 +163,7 @@ inline uint32_t RoundUpToPowerOf2(uint32_t x) {
x = x | (x >> 4); x = x | (x >> 4);
x = x | (x >> 8); x = x | (x >> 8);
x = x | (x >> 16); x = x | (x >> 16);
return x + 1; return static_cast<int_type>(x + 1);
} }

View File

@ -1236,17 +1236,14 @@ TEST(TestSizeOfObjectsVsHeapIteratorPrecision) {
obj = iterator.next()) { obj = iterator.next()) {
size_of_objects_2 += obj->Size(); size_of_objects_2 += obj->Size();
} }
// Delta must be within 5% of the larger result. // Delta must be within 1% of the larger result.
// TODO(gc): Tighten this up by distinguishing between byte
// arrays that are real and those that merely mark free space
// on the heap.
if (size_of_objects_1 > size_of_objects_2) { if (size_of_objects_1 > size_of_objects_2) {
intptr_t delta = size_of_objects_1 - size_of_objects_2; intptr_t delta = size_of_objects_1 - size_of_objects_2;
PrintF("Heap::SizeOfObjects: %" V8_PTR_PREFIX "d, " PrintF("Heap::SizeOfObjects: %" V8_PTR_PREFIX "d, "
"Iterator: %" V8_PTR_PREFIX "d, " "Iterator: %" V8_PTR_PREFIX "d, "
"delta: %" V8_PTR_PREFIX "d\n", "delta: %" V8_PTR_PREFIX "d\n",
size_of_objects_1, size_of_objects_2, delta); size_of_objects_1, size_of_objects_2, delta);
CHECK_GT(size_of_objects_1 / 20, delta); CHECK_GT(size_of_objects_1 / 100, delta);
} else { } else {
intptr_t delta = size_of_objects_2 - size_of_objects_1; intptr_t delta = size_of_objects_2 - size_of_objects_1;
PrintF("Heap::SizeOfObjects: %" V8_PTR_PREFIX "d, " PrintF("Heap::SizeOfObjects: %" V8_PTR_PREFIX "d, "

View File

@ -534,15 +534,15 @@ TEST(BootUpMemoryUse) {
intptr_t booted_memory = MemoryInUse(); intptr_t booted_memory = MemoryInUse();
if (sizeof(initial_memory) == 8) { if (sizeof(initial_memory) == 8) {
if (v8::internal::Snapshot::IsEnabled()) { if (v8::internal::Snapshot::IsEnabled()) {
CHECK_LE(booted_memory - initial_memory, 6654 * 1024); // 6444. CHECK_LE(booted_memory - initial_memory, 3050 * 1024); // 2984.
} else { } else {
CHECK_LE(booted_memory - initial_memory, 6777 * 1024); // 6596. CHECK_LE(booted_memory - initial_memory, 3050 * 1024); // 3008.
} }
} else { } else {
if (v8::internal::Snapshot::IsEnabled()) { if (v8::internal::Snapshot::IsEnabled()) {
CHECK_LE(booted_memory - initial_memory, 6500 * 1024); // 6356. CHECK_LE(booted_memory - initial_memory, 2000 * 1024); // 1940.
} else { } else {
CHECK_LE(booted_memory - initial_memory, 6654 * 1024); // 6424 CHECK_LE(booted_memory - initial_memory, 2000 * 1024); // 1948
} }
} }
} }

View File

@ -140,8 +140,8 @@ TEST(MemoryAllocator) {
heap->MaxReserved(), heap->MaxReserved(),
OLD_POINTER_SPACE, OLD_POINTER_SPACE,
NOT_EXECUTABLE); NOT_EXECUTABLE);
Page* first_page = Page* first_page = memory_allocator->AllocatePage(
memory_allocator->AllocatePage(&faked_space, NOT_EXECUTABLE); Page::kObjectAreaSize, &faked_space, NOT_EXECUTABLE);
first_page->InsertAfter(faked_space.anchor()->prev_page()); first_page->InsertAfter(faked_space.anchor()->prev_page());
CHECK(first_page->is_valid()); CHECK(first_page->is_valid());
@ -154,7 +154,8 @@ TEST(MemoryAllocator) {
// Again, we should get n or n - 1 pages. // Again, we should get n or n - 1 pages.
Page* other = Page* other =
memory_allocator->AllocatePage(&faked_space, NOT_EXECUTABLE); memory_allocator->AllocatePage(
Page::kObjectAreaSize, &faked_space, NOT_EXECUTABLE);
CHECK(other->is_valid()); CHECK(other->is_valid());
total_pages++; total_pages++;
other->InsertAfter(first_page); other->InsertAfter(first_page);