Orthogonalize Lithium binary op instructions.

BUG=
R=svenpanne@chromium.org

Review URL: https://codereview.chromium.org/23703014

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@16739 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
This commit is contained in:
olivf@chromium.org 2013-09-16 15:24:49 +00:00
parent 849815fa28
commit 42879d1038
9 changed files with 185 additions and 247 deletions

View File

@ -710,51 +710,44 @@ LInstruction* LChunkBuilder::DoDeoptimize(HDeoptimize* instr) {
LInstruction* LChunkBuilder::DoShift(Token::Value op,
HBitwiseBinaryOperation* instr) {
if (instr->representation().IsTagged()) {
ASSERT(instr->left()->representation().IsTagged());
ASSERT(instr->right()->representation().IsTagged());
if (instr->representation().IsSmiOrInteger32()) {
ASSERT(instr->left()->representation().Equals(instr->representation()));
ASSERT(instr->right()->representation().Equals(instr->representation()));
LOperand* left = UseRegisterAtStart(instr->left());
LOperand* left = UseFixed(instr->left(), r1);
LOperand* right = UseFixed(instr->right(), r0);
LArithmeticT* result = new(zone()) LArithmeticT(op, left, right);
return MarkAsCall(DefineFixed(result, r0), instr);
}
ASSERT(instr->representation().IsSmiOrInteger32());
ASSERT(instr->left()->representation().Equals(instr->representation()));
ASSERT(instr->right()->representation().Equals(instr->representation()));
LOperand* left = UseRegisterAtStart(instr->left());
HValue* right_value = instr->right();
LOperand* right = NULL;
int constant_value = 0;
bool does_deopt = false;
if (right_value->IsConstant()) {
HConstant* constant = HConstant::cast(right_value);
right = chunk_->DefineConstantOperand(constant);
constant_value = constant->Integer32Value() & 0x1f;
// Left shifts can deoptimize if we shift by > 0 and the result cannot be
// truncated to smi.
if (instr->representation().IsSmi() && constant_value > 0) {
does_deopt = !instr->CheckUsesForFlag(HValue::kTruncatingToSmi);
}
} else {
right = UseRegisterAtStart(right_value);
}
// Shift operations can only deoptimize if we do a logical shift
// by 0 and the result cannot be truncated to int32.
if (op == Token::SHR && constant_value == 0) {
if (FLAG_opt_safe_uint32_operations) {
does_deopt = !instr->CheckFlag(HInstruction::kUint32);
HValue* right_value = instr->right();
LOperand* right = NULL;
int constant_value = 0;
bool does_deopt = false;
if (right_value->IsConstant()) {
HConstant* constant = HConstant::cast(right_value);
right = chunk_->DefineConstantOperand(constant);
constant_value = constant->Integer32Value() & 0x1f;
// Left shifts can deoptimize if we shift by > 0 and the result cannot be
// truncated to smi.
if (instr->representation().IsSmi() && constant_value > 0) {
does_deopt = !instr->CheckUsesForFlag(HValue::kTruncatingToSmi);
}
} else {
does_deopt = !instr->CheckUsesForFlag(HValue::kTruncatingToInt32);
right = UseRegisterAtStart(right_value);
}
}
LInstruction* result =
DefineAsRegister(new(zone()) LShiftI(op, left, right, does_deopt));
return does_deopt ? AssignEnvironment(result) : result;
// Shift operations can only deoptimize if we do a logical shift
// by 0 and the result cannot be truncated to int32.
if (op == Token::SHR && constant_value == 0) {
if (FLAG_opt_safe_uint32_operations) {
does_deopt = !instr->CheckFlag(HInstruction::kUint32);
} else {
does_deopt = !instr->CheckUsesForFlag(HValue::kTruncatingToInt32);
}
}
LInstruction* result =
DefineAsRegister(new(zone()) LShiftI(op, left, right, does_deopt));
return does_deopt ? AssignEnvironment(result) : result;
} else {
return DoArithmeticT(op, instr);
}
}
@ -763,21 +756,26 @@ LInstruction* LChunkBuilder::DoArithmeticD(Token::Value op,
ASSERT(instr->representation().IsDouble());
ASSERT(instr->left()->representation().IsDouble());
ASSERT(instr->right()->representation().IsDouble());
ASSERT(op != Token::MOD);
LOperand* left = UseRegisterAtStart(instr->left());
LOperand* right = UseRegisterAtStart(instr->right());
LOperand* left = NULL;
LOperand* right = NULL;
if (op == Token::MOD) {
left = UseFixedDouble(instr->left(), d1);
right = UseFixedDouble(instr->right(), d2);
LArithmeticD* result = new(zone()) LArithmeticD(op, left, right);
// We call a C function for double modulo. It can't trigger a GC. We need
// to use fixed result register for the call.
// TODO(fschneider): Allow any register as input registers.
return MarkAsCall(DefineFixedDouble(result, d1), instr);
}
left = UseRegisterAtStart(instr->left());
right = UseRegisterAtStart(instr->right());
LArithmeticD* result = new(zone()) LArithmeticD(op, left, right);
return DefineAsRegister(result);
}
LInstruction* LChunkBuilder::DoArithmeticT(Token::Value op,
HArithmeticBinaryOperation* instr) {
ASSERT(op == Token::ADD ||
op == Token::DIV ||
op == Token::MOD ||
op == Token::MUL ||
op == Token::SUB);
HBinaryOperation* instr) {
HValue* left = instr->left();
HValue* right = instr->right();
ASSERT(left->representation().IsTagged());
@ -1347,27 +1345,19 @@ LInstruction* LChunkBuilder::DoBitwise(HBitwise* instr) {
if (instr->representation().IsSmiOrInteger32()) {
ASSERT(instr->left()->representation().Equals(instr->representation()));
ASSERT(instr->right()->representation().Equals(instr->representation()));
ASSERT(instr->CheckFlag(HValue::kTruncatingToInt32));
LOperand* left = UseRegisterAtStart(instr->BetterLeftOperand());
LOperand* right = UseOrConstantAtStart(instr->BetterRightOperand());
return DefineAsRegister(new(zone()) LBitI(left, right));
} else {
ASSERT(instr->representation().IsTagged());
ASSERT(instr->left()->representation().IsTagged());
ASSERT(instr->right()->representation().IsTagged());
LOperand* left = UseFixed(instr->left(), r1);
LOperand* right = UseFixed(instr->right(), r0);
LArithmeticT* result = new(zone()) LArithmeticT(instr->op(), left, right);
return MarkAsCall(DefineFixed(result, r0), instr);
return DoArithmeticT(instr->op(), instr);
}
}
LInstruction* LChunkBuilder::DoDiv(HDiv* instr) {
if (instr->representation().IsDouble()) {
return DoArithmeticD(Token::DIV, instr);
} else if (instr->representation().IsSmiOrInteger32()) {
if (instr->representation().IsSmiOrInteger32()) {
ASSERT(instr->left()->representation().Equals(instr->representation()));
ASSERT(instr->right()->representation().Equals(instr->representation()));
if (instr->HasPowerOf2Divisor()) {
@ -1381,6 +1371,8 @@ LInstruction* LChunkBuilder::DoDiv(HDiv* instr) {
LOperand* temp = CpuFeatures::IsSupported(SUDIV) ? NULL : FixedTemp(d4);
LDivI* div = new(zone()) LDivI(dividend, divisor, temp);
return AssignEnvironment(DefineAsRegister(div));
} else if (instr->representation().IsDouble()) {
return DoArithmeticD(Token::DIV, instr);
} else {
return DoArithmeticT(Token::DIV, instr);
}
@ -1501,17 +1493,10 @@ LInstruction* LChunkBuilder::DoMod(HMod* instr) {
? AssignEnvironment(result)
: result;
}
} else if (instr->representation().IsTagged()) {
return DoArithmeticT(Token::MOD, instr);
} else if (instr->representation().IsDouble()) {
return DoArithmeticD(Token::MOD, instr);
} else {
ASSERT(instr->representation().IsDouble());
// We call a C function for double modulo. It can't trigger a GC. We need
// to use fixed result register for the call.
// TODO(fschneider): Allow any register as input registers.
LArithmeticD* mod = new(zone()) LArithmeticD(Token::MOD,
UseFixedDouble(left, d1),
UseFixedDouble(right, d2));
return MarkAsCall(DefineFixedDouble(mod, d1), instr);
return DoArithmeticT(Token::MOD, instr);
}
}
@ -1678,7 +1663,6 @@ LInstruction* LChunkBuilder::DoAdd(HAdd* instr) {
return DoArithmeticD(Token::ADD, instr);
} else {
ASSERT(instr->representation().IsTagged());
return DoArithmeticT(Token::ADD, instr);
}
}

View File

@ -2119,7 +2119,7 @@ class LTaggedToI V8_FINAL : public LTemplateInstruction<1, 1, 2> {
LOperand* temp2() { return temps_[1]; }
DECLARE_CONCRETE_INSTRUCTION(TaggedToI, "tagged-to-i")
DECLARE_HYDROGEN_ACCESSOR(UnaryOperation)
DECLARE_HYDROGEN_ACCESSOR(Change)
bool truncating() { return hydrogen()->CanTruncateToInt32(); }
};
@ -2778,7 +2778,7 @@ class LChunkBuilder V8_FINAL BASE_EMBEDDED {
LInstruction* DoArithmeticD(Token::Value op,
HArithmeticBinaryOperation* instr);
LInstruction* DoArithmeticT(Token::Value op,
HArithmeticBinaryOperation* instr);
HBinaryOperation* instr);
LPlatformChunk* chunk_;
CompilationInfo* info_;

View File

@ -5007,15 +5007,19 @@ void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
Register input_reg = ToRegister(input);
DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr);
if (instr->hydrogen()->value()->representation().IsSmi()) {
__ SmiUntag(input_reg);
} else {
DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr);
// Optimistically untag the input.
// If the input is a HeapObject, SmiUntag will set the carry flag.
__ SmiUntag(input_reg, SetCC);
// Branch to deferred code if the input was tagged.
// The deferred code will take care of restoring the tag.
__ b(cs, deferred->entry());
__ bind(deferred->exit());
// Optimistically untag the input.
// If the input is a HeapObject, SmiUntag will set the carry flag.
__ SmiUntag(input_reg, SetCC);
// Branch to deferred code if the input was tagged.
// The deferred code will take care of restoring the tag.
__ b(cs, deferred->entry());
__ bind(deferred->exit());
}
}

View File

@ -1733,9 +1733,9 @@ void LCodeGen::DoMulI(LMulI* instr) {
case 9:
__ lea(left, Operand(left, left, times_8, 0));
break;
case 16:
__ shl(left, 4);
break;
case 16:
__ shl(left, 4);
break;
default:
__ imul(left, left, constant);
break;
@ -2208,8 +2208,6 @@ void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
XMMRegister left = ToDoubleRegister(instr->left());
XMMRegister right = ToDoubleRegister(instr->right());
XMMRegister result = ToDoubleRegister(instr->result());
// Modulo uses a fixed result register.
ASSERT(instr->op() == Token::MOD || left.is(result));
switch (instr->op()) {
case Token::ADD:
__ addsd(left, right);
@ -2236,7 +2234,7 @@ void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
4);
// Return value is in st(0) on ia32.
// Store it into the (fixed) result register.
// Store it into the result register.
__ sub(Operand(esp), Immediate(kDoubleSize));
__ fstp_d(Operand(esp, 0));
__ movdbl(result, Operand(esp, 0));
@ -5427,12 +5425,16 @@ void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
Register input_reg = ToRegister(input);
ASSERT(input_reg.is(ToRegister(instr->result())));
DeferredTaggedToI* deferred =
new(zone()) DeferredTaggedToI(this, instr, x87_stack_);
if (instr->hydrogen()->value()->representation().IsSmi()) {
__ SmiUntag(input_reg);
} else {
DeferredTaggedToI* deferred =
new(zone()) DeferredTaggedToI(this, instr, x87_stack_);
__ JumpIfNotSmi(input_reg, deferred->entry());
__ SmiUntag(input_reg);
__ bind(deferred->exit());
__ JumpIfNotSmi(input_reg, deferred->entry());
__ SmiUntag(input_reg);
__ bind(deferred->exit());
}
}

View File

@ -762,52 +762,44 @@ LInstruction* LChunkBuilder::DoDeoptimize(HDeoptimize* instr) {
LInstruction* LChunkBuilder::DoShift(Token::Value op,
HBitwiseBinaryOperation* instr) {
if (instr->representation().IsTagged()) {
ASSERT(instr->left()->representation().IsSmiOrTagged());
ASSERT(instr->right()->representation().IsSmiOrTagged());
if (instr->representation().IsSmiOrInteger32()) {
ASSERT(instr->left()->representation().Equals(instr->representation()));
ASSERT(instr->right()->representation().Equals(instr->representation()));
LOperand* left = UseRegisterAtStart(instr->left());
LOperand* context = UseFixed(instr->context(), esi);
LOperand* left = UseFixed(instr->left(), edx);
LOperand* right = UseFixed(instr->right(), eax);
LArithmeticT* result = new(zone()) LArithmeticT(op, context, left, right);
return MarkAsCall(DefineFixed(result, eax), instr);
}
ASSERT(instr->representation().IsSmiOrInteger32());
ASSERT(instr->left()->representation().Equals(instr->representation()));
ASSERT(instr->right()->representation().Equals(instr->representation()));
LOperand* left = UseRegisterAtStart(instr->left());
HValue* right_value = instr->right();
LOperand* right = NULL;
int constant_value = 0;
bool does_deopt = false;
if (right_value->IsConstant()) {
HConstant* constant = HConstant::cast(right_value);
right = chunk_->DefineConstantOperand(constant);
constant_value = constant->Integer32Value() & 0x1f;
// Left shifts can deoptimize if we shift by > 0 and the result cannot be
// truncated to smi.
if (instr->representation().IsSmi() && constant_value > 0) {
does_deopt = !instr->CheckUsesForFlag(HValue::kTruncatingToSmi);
}
} else {
right = UseFixed(right_value, ecx);
}
// Shift operations can only deoptimize if we do a logical shift by 0 and
// the result cannot be truncated to int32.
if (op == Token::SHR && constant_value == 0) {
if (FLAG_opt_safe_uint32_operations) {
does_deopt = !instr->CheckFlag(HInstruction::kUint32);
HValue* right_value = instr->right();
LOperand* right = NULL;
int constant_value = 0;
bool does_deopt = false;
if (right_value->IsConstant()) {
HConstant* constant = HConstant::cast(right_value);
right = chunk_->DefineConstantOperand(constant);
constant_value = constant->Integer32Value() & 0x1f;
// Left shifts can deoptimize if we shift by > 0 and the result cannot be
// truncated to smi.
if (instr->representation().IsSmi() && constant_value > 0) {
does_deopt = !instr->CheckUsesForFlag(HValue::kTruncatingToSmi);
}
} else {
does_deopt = !instr->CheckUsesForFlag(HValue::kTruncatingToInt32);
right = UseFixed(right_value, ecx);
}
}
LInstruction* result =
DefineSameAsFirst(new(zone()) LShiftI(op, left, right, does_deopt));
return does_deopt ? AssignEnvironment(result) : result;
// Shift operations can only deoptimize if we do a logical shift by 0 and
// the result cannot be truncated to int32.
if (op == Token::SHR && constant_value == 0) {
if (FLAG_opt_safe_uint32_operations) {
does_deopt = !instr->CheckFlag(HInstruction::kUint32);
} else {
does_deopt = !instr->CheckUsesForFlag(HValue::kTruncatingToInt32);
}
}
LInstruction* result =
DefineSameAsFirst(new(zone()) LShiftI(op, left, right, does_deopt));
return does_deopt ? AssignEnvironment(result) : result;
} else {
return DoArithmeticT(op, instr);
}
}
@ -816,21 +808,16 @@ LInstruction* LChunkBuilder::DoArithmeticD(Token::Value op,
ASSERT(instr->representation().IsDouble());
ASSERT(instr->left()->representation().IsDouble());
ASSERT(instr->right()->representation().IsDouble());
ASSERT(op != Token::MOD);
LOperand* left = UseRegisterAtStart(instr->BetterLeftOperand());
LOperand* right = UseRegisterAtStart(instr->BetterRightOperand());
LArithmeticD* result = new(zone()) LArithmeticD(op, left, right);
if (op == Token::MOD) return MarkAsCall(DefineSameAsFirst(result), instr);
return DefineSameAsFirst(result);
}
LInstruction* LChunkBuilder::DoArithmeticT(Token::Value op,
HArithmeticBinaryOperation* instr) {
ASSERT(op == Token::ADD ||
op == Token::DIV ||
op == Token::MOD ||
op == Token::MUL ||
op == Token::SUB);
HBinaryOperation* instr) {
HValue* left = instr->left();
HValue* right = instr->right();
ASSERT(left->representation().IsTagged());
@ -1442,29 +1429,19 @@ LInstruction* LChunkBuilder::DoBitwise(HBitwise* instr) {
if (instr->representation().IsSmiOrInteger32()) {
ASSERT(instr->left()->representation().Equals(instr->representation()));
ASSERT(instr->right()->representation().Equals(instr->representation()));
ASSERT(instr->CheckFlag(HValue::kTruncatingToInt32));
LOperand* left = UseRegisterAtStart(instr->BetterLeftOperand());
LOperand* right = UseOrConstantAtStart(instr->BetterRightOperand());
return DefineSameAsFirst(new(zone()) LBitI(left, right));
} else {
ASSERT(instr->representation().IsSmiOrTagged());
ASSERT(instr->left()->representation().IsSmiOrTagged());
ASSERT(instr->right()->representation().IsSmiOrTagged());
LOperand* context = UseFixed(instr->context(), esi);
LOperand* left = UseFixed(instr->left(), edx);
LOperand* right = UseFixed(instr->right(), eax);
LArithmeticT* result =
new(zone()) LArithmeticT(instr->op(), context, left, right);
return MarkAsCall(DefineFixed(result, eax), instr);
return DoArithmeticT(instr->op(), instr);
}
}
LInstruction* LChunkBuilder::DoDiv(HDiv* instr) {
if (instr->representation().IsDouble()) {
return DoArithmeticD(Token::DIV, instr);
} else if (instr->representation().IsSmiOrInteger32()) {
if (instr->representation().IsSmiOrInteger32()) {
ASSERT(instr->left()->representation().Equals(instr->representation()));
ASSERT(instr->right()->representation().Equals(instr->representation()));
if (instr->HasPowerOf2Divisor()) {
@ -1481,8 +1458,9 @@ LInstruction* LChunkBuilder::DoDiv(HDiv* instr) {
LOperand* divisor = UseRegister(instr->right());
LDivI* result = new(zone()) LDivI(dividend, divisor, temp);
return AssignEnvironment(DefineFixed(result, eax));
} else if (instr->representation().IsDouble()) {
return DoArithmeticD(Token::DIV, instr);
} else {
ASSERT(instr->representation().IsTagged());
return DoArithmeticT(Token::DIV, instr);
}
}
@ -1584,17 +1562,10 @@ LInstruction* LChunkBuilder::DoMod(HMod* instr) {
? AssignEnvironment(result)
: result;
}
} else if (instr->representation().IsSmiOrTagged()) {
return DoArithmeticT(Token::MOD, instr);
} else if (instr->representation().IsDouble()) {
return DoArithmeticD(Token::MOD, instr);
} else {
ASSERT(instr->representation().IsDouble());
// We call a C function for double modulo. It can't trigger a GC. We need
// to use fixed result register for the call.
// TODO(fschneider): Allow any register as input registers.
LArithmeticD* mod = new(zone()) LArithmeticD(Token::MOD,
UseFixedDouble(left, xmm2),
UseFixedDouble(right, xmm1));
return MarkAsCall(DefineFixedDouble(mod, xmm1), instr);
return DoArithmeticT(Token::MOD, instr);
}
}
@ -1618,7 +1589,6 @@ LInstruction* LChunkBuilder::DoMul(HMul* instr) {
} else if (instr->representation().IsDouble()) {
return DoArithmeticD(Token::MUL, instr);
} else {
ASSERT(instr->representation().IsTagged());
return DoArithmeticT(Token::MUL, instr);
}
}
@ -1639,7 +1609,6 @@ LInstruction* LChunkBuilder::DoSub(HSub* instr) {
} else if (instr->representation().IsDouble()) {
return DoArithmeticD(Token::SUB, instr);
} else {
ASSERT(instr->representation().IsSmiOrTagged());
return DoArithmeticT(Token::SUB, instr);
}
}
@ -1671,7 +1640,6 @@ LInstruction* LChunkBuilder::DoAdd(HAdd* instr) {
} else if (instr->representation().IsDouble()) {
return DoArithmeticD(Token::ADD, instr);
} else {
ASSERT(instr->representation().IsSmiOrTagged());
return DoArithmeticT(Token::ADD, instr);
}
}

View File

@ -2189,7 +2189,7 @@ class LTaggedToI V8_FINAL : public LTemplateInstruction<1, 1, 1> {
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(TaggedToI, "tagged-to-i")
DECLARE_HYDROGEN_ACCESSOR(UnaryOperation)
DECLARE_HYDROGEN_ACCESSOR(Change)
bool truncating() { return hydrogen()->CanTruncateToInt32(); }
};
@ -2907,7 +2907,7 @@ class LChunkBuilder V8_FINAL BASE_EMBEDDED {
LInstruction* DoArithmeticD(Token::Value op,
HArithmeticBinaryOperation* instr);
LInstruction* DoArithmeticT(Token::Value op,
HArithmeticBinaryOperation* instr);
HBinaryOperation* instr);
LOperand* GetStoreKeyedValueOperand(HStoreKeyed* instr);

View File

@ -4725,12 +4725,16 @@ void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
LOperand* input = instr->value();
ASSERT(input->IsRegister());
ASSERT(input->Equals(instr->result()));
Register input_reg = ToRegister(input);
DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr);
__ JumpIfNotSmi(input_reg, deferred->entry());
__ SmiToInteger32(input_reg, input_reg);
__ bind(deferred->exit());
if (instr->hydrogen()->value()->representation().IsSmi()) {
__ SmiToInteger32(input_reg, input_reg);
} else {
DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr);
__ JumpIfNotSmi(input_reg, deferred->entry());
__ SmiToInteger32(input_reg, input_reg);
__ bind(deferred->exit());
}
}

View File

@ -719,46 +719,39 @@ LInstruction* LChunkBuilder::DoDeoptimize(HDeoptimize* instr) {
LInstruction* LChunkBuilder::DoShift(Token::Value op,
HBitwiseBinaryOperation* instr) {
if (instr->representation().IsTagged()) {
ASSERT(instr->left()->representation().IsTagged());
ASSERT(instr->right()->representation().IsTagged());
if (instr->representation().IsSmiOrInteger32()) {
ASSERT(instr->left()->representation().Equals(instr->representation()));
ASSERT(instr->right()->representation().Equals(instr->representation()));
LOperand* left = UseRegisterAtStart(instr->left());
LOperand* left = UseFixed(instr->left(), rdx);
LOperand* right = UseFixed(instr->right(), rax);
LArithmeticT* result = new(zone()) LArithmeticT(op, left, right);
return MarkAsCall(DefineFixed(result, rax), instr);
}
ASSERT(instr->representation().IsSmiOrInteger32());
ASSERT(instr->left()->representation().Equals(instr->representation()));
ASSERT(instr->right()->representation().Equals(instr->representation()));
LOperand* left = UseRegisterAtStart(instr->left());
HValue* right_value = instr->right();
LOperand* right = NULL;
int constant_value = 0;
if (right_value->IsConstant()) {
HConstant* constant = HConstant::cast(right_value);
right = chunk_->DefineConstantOperand(constant);
constant_value = constant->Integer32Value() & 0x1f;
} else {
right = UseFixed(right_value, rcx);
}
// Shift operations can only deoptimize if we do a logical shift by 0 and
// the result cannot be truncated to int32.
bool does_deopt = false;
if (op == Token::SHR && constant_value == 0) {
if (FLAG_opt_safe_uint32_operations) {
does_deopt = !instr->CheckFlag(HInstruction::kUint32);
HValue* right_value = instr->right();
LOperand* right = NULL;
int constant_value = 0;
if (right_value->IsConstant()) {
HConstant* constant = HConstant::cast(right_value);
right = chunk_->DefineConstantOperand(constant);
constant_value = constant->Integer32Value() & 0x1f;
} else {
does_deopt = !instr->CheckUsesForFlag(HValue::kTruncatingToInt32);
right = UseFixed(right_value, rcx);
}
}
LInstruction* result =
DefineSameAsFirst(new(zone()) LShiftI(op, left, right, does_deopt));
return does_deopt ? AssignEnvironment(result) : result;
// Shift operations can only deoptimize if we do a logical shift by 0 and
// the result cannot be truncated to int32.
bool does_deopt = false;
if (op == Token::SHR && constant_value == 0) {
if (FLAG_opt_safe_uint32_operations) {
does_deopt = !instr->CheckFlag(HInstruction::kUint32);
} else {
does_deopt = !instr->CheckUsesForFlag(HValue::kTruncatingToInt32);
}
}
LInstruction* result =
DefineSameAsFirst(new(zone()) LShiftI(op, left, right, does_deopt));
return does_deopt ? AssignEnvironment(result) : result;
} else {
return DoArithmeticT(op, instr);
}
}
@ -767,21 +760,21 @@ LInstruction* LChunkBuilder::DoArithmeticD(Token::Value op,
ASSERT(instr->representation().IsDouble());
ASSERT(instr->left()->representation().IsDouble());
ASSERT(instr->right()->representation().IsDouble());
ASSERT(op != Token::MOD);
LOperand* left = UseRegisterAtStart(instr->BetterLeftOperand());
LOperand* right = UseRegisterAtStart(instr->BetterRightOperand());
LOperand* right = NULL;
if (op == Token::MOD) {
right = UseFixedDouble(instr->BetterRightOperand(), xmm1);
LArithmeticD* result = new(zone()) LArithmeticD(op, left, right);
return MarkAsCall(DefineSameAsFirst(result), instr);
}
right = UseRegisterAtStart(instr->BetterRightOperand());
LArithmeticD* result = new(zone()) LArithmeticD(op, left, right);
return DefineSameAsFirst(result);
}
LInstruction* LChunkBuilder::DoArithmeticT(Token::Value op,
HArithmeticBinaryOperation* instr) {
ASSERT(op == Token::ADD ||
op == Token::DIV ||
op == Token::MOD ||
op == Token::MUL ||
op == Token::SUB);
HBinaryOperation* instr) {
HValue* left = instr->left();
HValue* right = instr->right();
ASSERT(left->representation().IsTagged());
@ -1348,27 +1341,19 @@ LInstruction* LChunkBuilder::DoBitwise(HBitwise* instr) {
if (instr->representation().IsSmiOrInteger32()) {
ASSERT(instr->left()->representation().Equals(instr->representation()));
ASSERT(instr->right()->representation().Equals(instr->representation()));
ASSERT(instr->CheckFlag(HValue::kTruncatingToInt32));
LOperand* left = UseRegisterAtStart(instr->BetterLeftOperand());
LOperand* right = UseOrConstantAtStart(instr->BetterRightOperand());
return DefineSameAsFirst(new(zone()) LBitI(left, right));
} else {
ASSERT(instr->representation().IsTagged());
ASSERT(instr->left()->representation().IsTagged());
ASSERT(instr->right()->representation().IsTagged());
LOperand* left = UseFixed(instr->left(), rdx);
LOperand* right = UseFixed(instr->right(), rax);
LArithmeticT* result = new(zone()) LArithmeticT(instr->op(), left, right);
return MarkAsCall(DefineFixed(result, rax), instr);
return DoArithmeticT(instr->op(), instr);
}
}
LInstruction* LChunkBuilder::DoDiv(HDiv* instr) {
if (instr->representation().IsDouble()) {
return DoArithmeticD(Token::DIV, instr);
} else if (instr->representation().IsSmiOrInteger32()) {
if (instr->representation().IsSmiOrInteger32()) {
ASSERT(instr->left()->representation().Equals(instr->representation()));
ASSERT(instr->right()->representation().Equals(instr->representation()));
if (instr->HasPowerOf2Divisor()) {
@ -1385,8 +1370,9 @@ LInstruction* LChunkBuilder::DoDiv(HDiv* instr) {
LOperand* divisor = UseRegister(instr->right());
LDivI* result = new(zone()) LDivI(dividend, divisor, temp);
return AssignEnvironment(DefineFixed(result, rax));
} else if (instr->representation().IsDouble()) {
return DoArithmeticD(Token::DIV, instr);
} else {
ASSERT(instr->representation().IsTagged());
return DoArithmeticT(Token::DIV, instr);
}
}
@ -1485,17 +1471,10 @@ LInstruction* LChunkBuilder::DoMod(HMod* instr) {
? AssignEnvironment(result)
: result;
}
} else if (instr->representation().IsTagged()) {
return DoArithmeticT(Token::MOD, instr);
} else if (instr->representation().IsDouble()) {
return DoArithmeticD(Token::MOD, instr);
} else {
ASSERT(instr->representation().IsDouble());
// We call a C function for double modulo. It can't trigger a GC. We need to
// use fixed result register for the call.
// TODO(fschneider): Allow any register as input registers.
LArithmeticD* mod = new(zone()) LArithmeticD(Token::MOD,
UseFixedDouble(left, xmm2),
UseFixedDouble(right, xmm1));
return MarkAsCall(DefineFixedDouble(mod, xmm1), instr);
return DoArithmeticT(Token::MOD, instr);
}
}
@ -1515,7 +1494,6 @@ LInstruction* LChunkBuilder::DoMul(HMul* instr) {
} else if (instr->representation().IsDouble()) {
return DoArithmeticD(Token::MUL, instr);
} else {
ASSERT(instr->representation().IsTagged());
return DoArithmeticT(Token::MUL, instr);
}
}
@ -1536,7 +1514,6 @@ LInstruction* LChunkBuilder::DoSub(HSub* instr) {
} else if (instr->representation().IsDouble()) {
return DoArithmeticD(Token::SUB, instr);
} else {
ASSERT(instr->representation().IsTagged());
return DoArithmeticT(Token::SUB, instr);
}
}
@ -1568,7 +1545,6 @@ LInstruction* LChunkBuilder::DoAdd(HAdd* instr) {
} else if (instr->representation().IsDouble()) {
return DoArithmeticD(Token::ADD, instr);
} else {
ASSERT(instr->representation().IsTagged());
return DoArithmeticT(Token::ADD, instr);
}
return NULL;

View File

@ -2049,7 +2049,7 @@ class LTaggedToI V8_FINAL : public LTemplateInstruction<1, 1, 1> {
LOperand* temp() { return temps_[0]; }
DECLARE_CONCRETE_INSTRUCTION(TaggedToI, "tagged-to-i")
DECLARE_HYDROGEN_ACCESSOR(UnaryOperation)
DECLARE_HYDROGEN_ACCESSOR(Change)
bool truncating() { return hydrogen()->CanTruncateToInt32(); }
};
@ -2701,7 +2701,7 @@ class LChunkBuilder V8_FINAL BASE_EMBEDDED {
LInstruction* DoArithmeticD(Token::Value op,
HArithmeticBinaryOperation* instr);
LInstruction* DoArithmeticT(Token::Value op,
HArithmeticBinaryOperation* instr);
HBinaryOperation* instr);
LPlatformChunk* chunk_;
CompilationInfo* info_;