Accurately type foreign functions, and variables (attempt 2).

Associate a type with foreign functions at their callsite.
Associate a type with foreign variables.
More pervasively forbid computation in the module body.
Confirm foreign call arguments are exports.

Pass zone to more Type constructors, for consistency.

BUG= https://code.google.com/p/v8/issues/detail?id=4203
TEST=test-asm-validator
R=aseemgarg@chromium.org,titzer@chromium.org
LOG=N

Review URL: https://codereview.chromium.org/1643003004

Cr-Commit-Position: refs/heads/master@{#33622}
This commit is contained in:
bradnelson 2016-01-29 14:32:38 -08:00 committed by Commit bot
parent bb96455b61
commit 43be96989f
3 changed files with 229 additions and 38 deletions

View File

@ -36,7 +36,6 @@ namespace internal {
if (!valid_) return; \
} while (false)
AsmTyper::AsmTyper(Isolate* isolate, Zone* zone, Script* script,
FunctionLiteral* root)
: zone_(zone),
@ -62,6 +61,7 @@ AsmTyper::AsmTyper(Isolate* isolate, Zone* zone, Script* script,
ZoneAllocationPolicy(zone)),
in_function_(false),
building_function_tables_(false),
visiting_exports_(false),
cache_(TypeCache::Get()) {
InitializeAstVisitor(isolate);
InitializeStdlib();
@ -135,6 +135,7 @@ void AsmTyper::VisitAsmModule(FunctionLiteral* fun) {
}
// Validate exports.
visiting_exports_ = true;
ReturnStatement* stmt = fun->body()->last()->AsReturnStatement();
if (stmt == nullptr) {
FAIL(fun->body()->last(), "last statement in module is not a return");
@ -178,7 +179,7 @@ void AsmTyper::VisitFunctionAnnotation(FunctionLiteral* fun) {
if (stmt != NULL) {
Literal* literal = stmt->expression()->AsLiteral();
Type* old_expected = expected_type_;
expected_type_ = Type::Any();
expected_type_ = Type::Any(zone());
if (literal) {
RECURSE(VisitLiteral(literal, true));
} else {
@ -188,9 +189,9 @@ void AsmTyper::VisitFunctionAnnotation(FunctionLiteral* fun) {
result_type = computed_type_;
}
}
Type::FunctionType* type =
Type::Function(result_type, Type::Any(), fun->parameter_count(), zone())
->AsFunction();
Type::FunctionType* type = Type::Function(result_type, Type::Any(zone()),
fun->parameter_count(), zone())
->AsFunction();
// Extract parameter types.
bool good = true;
@ -265,7 +266,7 @@ void AsmTyper::VisitExpressionAnnotation(Expression* expr, Variable* var,
// Numbers or the undefined literal (for empty returns).
if (expr->IsLiteral()) {
RECURSE(VisitWithExpectation(expr, Type::Any(), "invalid literal"));
RECURSE(VisitWithExpectation(expr, Type::Any(zone()), "invalid literal"));
return;
}
@ -315,7 +316,7 @@ void AsmTyper::VisitBlock(Block* stmt) {
void AsmTyper::VisitExpressionStatement(ExpressionStatement* stmt) {
RECURSE(VisitWithExpectation(stmt->expression(), Type::Any(),
RECURSE(VisitWithExpectation(stmt->expression(), Type::Any(zone()),
"expression statement expected to be any"));
}
@ -367,7 +368,7 @@ void AsmTyper::VisitReturnStatement(ReturnStatement* stmt) {
VisitLiteral(literal, true);
} else {
RECURSE(
VisitWithExpectation(stmt->expression(), Type::Any(),
VisitWithExpectation(stmt->expression(), Type::Any(zone()),
"return expression expected to have return type"));
}
if (!computed_type_->Is(return_type_) || !return_type_->Is(computed_type_)) {
@ -489,11 +490,11 @@ void AsmTyper::VisitDebuggerStatement(DebuggerStatement* stmt) {
void AsmTyper::VisitFunctionLiteral(FunctionLiteral* expr) {
Scope* scope = expr->scope();
DCHECK(scope->is_function_scope());
if (in_function_) {
FAIL(expr, "invalid nested function");
}
Scope* scope = expr->scope();
DCHECK(scope->is_function_scope());
if (!expr->bounds().upper->IsFunction()) {
FAIL(expr, "invalid function literal");
@ -523,7 +524,10 @@ void AsmTyper::VisitDoExpression(DoExpression* expr) {
void AsmTyper::VisitConditional(Conditional* expr) {
RECURSE(VisitWithExpectation(expr->condition(), Type::Number(),
if (!in_function_) {
FAIL(expr, "ternary operator inside module body");
}
RECURSE(VisitWithExpectation(expr->condition(), Type::Number(zone()),
"condition expected to be integer"));
if (!computed_type_->Is(cache_.kAsmInt)) {
FAIL(expr->condition(), "condition must be of type int");
@ -554,8 +558,18 @@ void AsmTyper::VisitConditional(Conditional* expr) {
void AsmTyper::VisitVariableProxy(VariableProxy* expr) {
VisitVariableProxy(expr, false);
}
void AsmTyper::VisitVariableProxy(VariableProxy* expr, bool assignment) {
Variable* var = expr->var();
VariableInfo* info = GetVariableInfo(var, false);
if (!assignment && !in_function_ && !building_function_tables_ &&
!visiting_exports_) {
if (var->location() != VariableLocation::PARAMETER || var->index() >= 3) {
FAIL(expr, "illegal variable reference in module body");
}
}
if (info == NULL || info->type == NULL) {
if (var->mode() == TEMPORARY) {
SetType(var, Type::Any(zone()));
@ -642,7 +656,7 @@ void AsmTyper::VisitArrayLiteral(ArrayLiteral* expr) {
Type* elem_type = Type::None(zone());
for (int i = 0; i < values->length(); ++i) {
Expression* value = values->at(i);
RECURSE(VisitWithExpectation(value, Type::Any(), "UNREACHABLE"));
RECURSE(VisitWithExpectation(value, Type::Any(zone()), "UNREACHABLE"));
if (!computed_type_->IsFunction()) {
FAIL(value, "array component expected to be a function");
}
@ -675,11 +689,11 @@ void AsmTyper::VisitAssignment(Assignment* expr) {
FAIL(expr, "intish or floatish assignment");
}
if (expr->target()->IsVariableProxy()) {
RECURSE(VisitWithExpectation(expr->target(), target_type,
"assignment target expected to match value"));
expected_type_ = target_type;
VisitVariableProxy(expr->target()->AsVariableProxy(), true);
} else if (expr->target()->IsProperty()) {
Property* property = expr->target()->AsProperty();
RECURSE(VisitWithExpectation(property->obj(), Type::Any(),
RECURSE(VisitWithExpectation(property->obj(), Type::Any(zone()),
"bad propety object"));
if (!computed_type_->IsArray()) {
FAIL(property->obj(), "array expected");
@ -888,7 +902,8 @@ void AsmTyper::VisitProperty(Property* expr) {
// Only recurse at this point so that we avoid needing
// stdlib.Math to have a real type.
RECURSE(VisitWithExpectation(expr->obj(), Type::Any(), "bad propety object"));
RECURSE(VisitWithExpectation(expr->obj(), Type::Any(zone()),
"bad propety object"));
// For heap view or function table access.
if (computed_type_->IsArray()) {
@ -912,7 +927,8 @@ void AsmTyper::VisitProperty(Property* expr) {
void AsmTyper::VisitCall(Call* expr) {
RECURSE(VisitWithExpectation(expr->expression(), Type::Any(),
Type* expected_type = expected_type_;
RECURSE(VisitWithExpectation(expr->expression(), Type::Any(zone()),
"callee expected to be any"));
StandardMember standard_member = kNone;
VariableProxy* proxy = expr->expression()->AsVariableProxy();
@ -967,16 +983,24 @@ void AsmTyper::VisitCall(Call* expr) {
}
intish_ = 0;
IntersectResult(expr, result_type);
} else if (computed_type_->Is(Type::Any())) {
} else if (computed_type_->Is(Type::Any(zone()))) {
// For foreign calls.
ZoneList<Expression*>* args = expr->arguments();
for (int i = 0; i < args->length(); ++i) {
Expression* arg = args->at(i);
RECURSE(VisitWithExpectation(arg, Type::Any(),
RECURSE(VisitWithExpectation(arg, Type::Any(zone()),
"foreign call argument expected to be any"));
// Checking for asm extern types explicitly, as the type system
// doesn't correctly check their inheritance relationship.
if (!computed_type_->Is(cache_.kAsmSigned) &&
!computed_type_->Is(cache_.kAsmFixnum) &&
!computed_type_->Is(cache_.kAsmDouble)) {
FAIL(arg,
"foreign call argument expected to be int, double, or fixnum");
}
}
intish_ = kMaxUncombinedAdditiveSteps;
IntersectResult(expr, Type::Number());
IntersectResult(expr, expected_type);
} else {
FAIL(expr, "invalid callee");
}
@ -987,7 +1011,7 @@ void AsmTyper::VisitCallNew(CallNew* expr) {
if (in_function_) {
FAIL(expr, "new not allowed in module function");
}
RECURSE(VisitWithExpectation(expr->expression(), Type::Any(),
RECURSE(VisitWithExpectation(expr->expression(), Type::Any(zone()),
"expected stdlib function"));
if (computed_type_->IsFunction()) {
Type::FunctionType* fun_type = computed_type_->AsFunction();
@ -1014,6 +1038,9 @@ void AsmTyper::VisitCallRuntime(CallRuntime* expr) {
void AsmTyper::VisitUnaryOperation(UnaryOperation* expr) {
if (!in_function_) {
FAIL(expr, "unary operator inside module body");
}
switch (expr->op()) {
case Token::NOT: // Used to encode != and !==
RECURSE(VisitWithExpectation(expr->expression(), cache_.kAsmInt,
@ -1041,7 +1068,7 @@ void AsmTyper::VisitIntegerBitwiseOperator(BinaryOperation* expr,
Type* left_expected,
Type* right_expected,
Type* result_type, bool conversion) {
RECURSE(VisitWithExpectation(expr->left(), Type::Number(),
RECURSE(VisitWithExpectation(expr->left(), Type::Number(zone()),
"left bitwise operand expected to be a number"));
int left_intish = intish_;
Type* left_type = computed_type_;
@ -1053,7 +1080,7 @@ void AsmTyper::VisitIntegerBitwiseOperator(BinaryOperation* expr,
}
RECURSE(
VisitWithExpectation(expr->right(), Type::Number(),
VisitWithExpectation(expr->right(), Type::Number(zone()),
"right bitwise operand expected to be a number"));
int right_intish = intish_;
Type* right_type = computed_type_;
@ -1082,11 +1109,20 @@ void AsmTyper::VisitIntegerBitwiseOperator(BinaryOperation* expr,
void AsmTyper::VisitBinaryOperation(BinaryOperation* expr) {
if (!in_function_) {
if (expr->op() != Token::BIT_OR && expr->op() != Token::MUL) {
FAIL(expr, "illegal binary operator inside module body");
}
if (!(expr->left()->IsProperty() || expr->left()->IsVariableProxy()) ||
!expr->right()->IsLiteral()) {
FAIL(expr, "illegal computation inside module body");
}
}
switch (expr->op()) {
case Token::COMMA: {
RECURSE(VisitWithExpectation(expr->left(), Type::Any(),
RECURSE(VisitWithExpectation(expr->left(), Type::Any(zone()),
"left comma operand expected to be any"));
RECURSE(VisitWithExpectation(expr->right(), Type::Any(),
RECURSE(VisitWithExpectation(expr->right(), Type::Any(zone()),
"right comma operand expected to be any"));
IntersectResult(expr, computed_type_);
return;
@ -1096,8 +1132,11 @@ void AsmTyper::VisitBinaryOperation(BinaryOperation* expr) {
FAIL(expr, "illegal logical operator");
case Token::BIT_OR: {
// BIT_OR allows Any since it is used as a type coercion.
VisitIntegerBitwiseOperator(expr, Type::Any(), cache_.kAsmInt,
VisitIntegerBitwiseOperator(expr, Type::Any(zone()), cache_.kAsmInt,
cache_.kAsmSigned, true);
if (expr->left()->IsCall() && expr->op() == Token::BIT_OR) {
IntersectResult(expr->left(), cache_.kAsmSigned);
}
return;
}
case Token::BIT_XOR: {
@ -1115,7 +1154,7 @@ void AsmTyper::VisitBinaryOperation(BinaryOperation* expr) {
}
}
// BIT_XOR allows Number since it is used as a type coercion (via ~~).
VisitIntegerBitwiseOperator(expr, Type::Number(), cache_.kAsmInt,
VisitIntegerBitwiseOperator(expr, Type::Number(zone()), cache_.kAsmInt,
cache_.kAsmSigned, true);
return;
}
@ -1137,12 +1176,12 @@ void AsmTyper::VisitBinaryOperation(BinaryOperation* expr) {
case Token::DIV:
case Token::MOD: {
RECURSE(VisitWithExpectation(
expr->left(), Type::Number(),
expr->left(), Type::Number(zone()),
"left arithmetic operand expected to be number"));
Type* left_type = computed_type_;
int left_intish = intish_;
RECURSE(VisitWithExpectation(
expr->right(), Type::Number(),
expr->right(), Type::Number(zone()),
"right arithmetic operand expected to be number"));
Type* right_type = computed_type_;
int right_intish = intish_;
@ -1184,6 +1223,9 @@ void AsmTyper::VisitBinaryOperation(BinaryOperation* expr) {
} else if (expr->op() == Token::MUL && expr->right()->IsLiteral() &&
right_type->Is(cache_.kAsmDouble)) {
// For unary +, expressed as x * 1.0
if (expr->left()->IsCall() && expr->op() == Token::MUL) {
IntersectResult(expr->left(), cache_.kAsmDouble);
}
IntersectResult(expr, cache_.kAsmDouble);
return;
} else if (type->Is(cache_.kAsmFloat) && expr->op() != Token::MOD) {
@ -1207,6 +1249,9 @@ void AsmTyper::VisitBinaryOperation(BinaryOperation* expr) {
void AsmTyper::VisitCompareOperation(CompareOperation* expr) {
if (!in_function_) {
FAIL(expr, "comparison inside module body");
}
Token::Value op = expr->op();
if (op != Token::EQ && op != Token::NE && op != Token::LT &&
op != Token::LTE && op != Token::GT && op != Token::GTE) {
@ -1214,7 +1259,7 @@ void AsmTyper::VisitCompareOperation(CompareOperation* expr) {
}
RECURSE(
VisitWithExpectation(expr->left(), Type::Number(),
VisitWithExpectation(expr->left(), Type::Number(zone()),
"left comparison operand expected to be number"));
Type* left_type = computed_type_;
if (!left_type->Is(cache_.kAsmComparable)) {
@ -1222,7 +1267,7 @@ void AsmTyper::VisitCompareOperation(CompareOperation* expr) {
}
RECURSE(
VisitWithExpectation(expr->right(), Type::Number(),
VisitWithExpectation(expr->right(), Type::Number(zone()),
"right comparison operand expected to be number"));
Type* right_type = computed_type_;
if (!right_type->Is(cache_.kAsmComparable)) {
@ -1281,10 +1326,10 @@ void AsmTyper::VisitSuperCallReference(SuperCallReference* expr) {
void AsmTyper::InitializeStdlibSIMD() {
#define V(NAME, Name, name, lane_count, lane_type) \
{ \
Type* type = Type::Function(Type::Name(isolate_, zone()), Type::Any(), \
lane_count, zone()); \
Type* type = Type::Function(Type::Name(isolate_, zone()), \
Type::Any(zone()), lane_count, zone()); \
for (int i = 0; i < lane_count; ++i) { \
type->AsFunction()->InitParameter(i, Type::Number()); \
type->AsFunction()->InitParameter(i, Type::Number(zone())); \
} \
stdlib_simd_##name##_constructor_type_ = new (zone()) VariableInfo(type); \
stdlib_simd_##name##_constructor_type_->is_constructor_function = true; \

View File

@ -113,6 +113,7 @@ class AsmTyper : public AstVisitor {
bool in_function_; // In module function?
bool building_function_tables_;
bool visiting_exports_;
TypeCache const& cache_;
@ -161,6 +162,8 @@ class AsmTyper : public AstVisitor {
void VisitLiteral(Literal* expr, bool is_return);
void VisitVariableProxy(VariableProxy* expr, bool assignment);
void VisitIntegerBitwiseOperator(BinaryOperation* expr, Type* left_expected,
Type* right_expected, Type* result_type,
bool conversion);

View File

@ -1726,7 +1726,7 @@ TEST(ForeignFunction) {
"function foo() { bar(); }") {
CHECK_EXPR(FunctionLiteral, FUNC_I_TYPE) {
CHECK_EXPR(BinaryOperation, Bounds(cache.kAsmSigned)) {
CHECK_EXPR(Call, Bounds(Type::Number(zone))) {
CHECK_EXPR(Call, Bounds(cache.kAsmSigned)) {
CHECK_VAR(baz, Bounds(Type::Any(zone)));
CHECK_EXPR(Literal, Bounds(cache.kAsmFixnum));
CHECK_EXPR(Literal, Bounds(cache.kAsmFixnum));
@ -1788,7 +1788,7 @@ TEST(BadStandardFunctionCallOutside) {
"var s0 = sin(0);\n"
"function bar() { }\n"
"function foo() { bar(); }",
"asm: line 39: calls forbidden outside function bodies\n");
"asm: line 39: illegal variable reference in module body\n");
}
@ -1797,7 +1797,7 @@ TEST(BadFunctionCallOutside) {
"function bar() { return 0.0; }\n"
"var s0 = bar(0);\n"
"function foo() { bar(); }",
"asm: line 40: calls forbidden outside function bodies\n");
"asm: line 40: illegal variable reference in module body\n");
}
@ -1837,7 +1837,7 @@ TEST(NestedAssignmentInHeap) {
CHECK_EXPR(Property, Bounds::Unbounded()) {
CHECK_VAR(i8, Bounds(cache.kInt8Array));
CHECK_EXPR(BinaryOperation, Bounds(cache.kAsmSigned)) {
CHECK_EXPR(Assignment, Bounds(cache.kAsmSigned)) {
CHECK_EXPR(Assignment, Bounds(cache.kAsmInt)) {
CHECK_VAR(x, Bounds(cache.kAsmInt));
CHECK_EXPR(Literal, Bounds(cache.kAsmFixnum));
}
@ -2050,3 +2050,146 @@ TEST(BadSwitchOrder) {
"function foo() { bar(); }",
"asm: line 39: default case out of order\n");
}
TEST(BadForeignCall) {
const char test_function[] =
"function TestModule(stdlib, foreign, buffer) {\n"
" \"use asm\";\n"
" var ffunc = foreign.foo;\n"
" function test1() { var x = 0; ffunc(x); }\n"
" return { testFunc1: test1 };\n"
"}\n";
v8::V8::Initialize();
HandleAndZoneScope handles;
Zone* zone = handles.main_zone();
ZoneVector<ExpressionTypeEntry> types(zone);
CHECK_EQ(
"asm: line 4: foreign call argument expected to be int, double, or "
"fixnum\n",
Validate(zone, test_function, &types));
}
TEST(BadImports) {
const char test_function[] =
"function TestModule(stdlib, foreign, buffer) {\n"
" \"use asm\";\n"
" var fint = (foreign.bar | 0) | 0;\n"
" function test1() {}\n"
" return { testFunc1: test1 };\n"
"}\n";
v8::V8::Initialize();
HandleAndZoneScope handles;
Zone* zone = handles.main_zone();
ZoneVector<ExpressionTypeEntry> types(zone);
CHECK_EQ("asm: line 3: illegal computation inside module body\n",
Validate(zone, test_function, &types));
}
TEST(BadVariableReference) {
const char test_function[] =
"function TestModule(stdlib, foreign, buffer) {\n"
" \"use asm\";\n"
" var x = 0;\n"
" var y = x;\n"
" function test1() {}\n"
" return { testFunc1: test1 };\n"
"}\n";
v8::V8::Initialize();
HandleAndZoneScope handles;
Zone* zone = handles.main_zone();
ZoneVector<ExpressionTypeEntry> types(zone);
CHECK_EQ("asm: line 4: illegal variable reference in module body\n",
Validate(zone, test_function, &types));
}
TEST(Imports) {
const char test_function[] =
"function TestModule(stdlib, foreign, buffer) {\n"
" \"use asm\";\n"
" var ffunc = foreign.foo;\n"
" var fint = foreign.bar | 0;\n"
" var fdouble = +foreign.baz;\n"
" function test1() { return ffunc(fint|0, fdouble) | 0; }\n"
" function test2() { return +ffunc(fdouble, fint|0); }\n"
" return { testFunc1: test1, testFunc2: test2 };\n"
"}\n";
v8::V8::Initialize();
HandleAndZoneScope handles;
Zone* zone = handles.main_zone();
ZoneVector<ExpressionTypeEntry> types(zone);
CHECK_EQ("", Validate(zone, test_function, &types));
TypeCache cache;
CHECK_TYPES_BEGIN {
// Module.
CHECK_EXPR(FunctionLiteral, Bounds::Unbounded()) {
// function test1
CHECK_EXPR(FunctionLiteral, FUNC_I_TYPE) {
CHECK_EXPR(BinaryOperation, Bounds(cache.kAsmSigned)) {
CHECK_EXPR(Call, Bounds(cache.kAsmSigned)) {
CHECK_VAR(ffunc, Bounds(Type::Any(zone)));
CHECK_EXPR(BinaryOperation, Bounds(cache.kAsmSigned)) {
CHECK_VAR(fint, Bounds(cache.kAsmInt));
CHECK_EXPR(Literal, Bounds(cache.kAsmFixnum));
}
CHECK_VAR(fdouble, Bounds(cache.kAsmDouble));
}
CHECK_EXPR(Literal, Bounds(cache.kAsmFixnum));
}
}
// function test2
CHECK_EXPR(FunctionLiteral, FUNC_D_TYPE) {
CHECK_EXPR(BinaryOperation, Bounds(cache.kAsmDouble)) {
CHECK_EXPR(Call, Bounds(cache.kAsmDouble)) {
CHECK_VAR(ffunc, Bounds(Type::Any(zone)));
CHECK_VAR(fdouble, Bounds(cache.kAsmDouble));
CHECK_EXPR(BinaryOperation, Bounds(cache.kAsmSigned)) {
CHECK_VAR(fint, Bounds(cache.kAsmInt));
CHECK_EXPR(Literal, Bounds(cache.kAsmFixnum));
}
}
CHECK_EXPR(Literal, Bounds(cache.kAsmDouble));
}
}
// "use asm";
CHECK_EXPR(Literal, Bounds(Type::String(zone)));
// var func = foreign.foo;
CHECK_EXPR(Assignment, Bounds(Type::Any(zone))) {
CHECK_VAR(ffunc, Bounds(Type::Any(zone)));
CHECK_EXPR(Property, Bounds(Type::Any(zone))) {
CHECK_VAR(foreign, Bounds::Unbounded());
CHECK_EXPR(Literal, Bounds::Unbounded());
}
}
// var fint = foreign.bar | 0;
CHECK_EXPR(Assignment, Bounds(cache.kAsmInt)) {
CHECK_VAR(fint, Bounds(cache.kAsmInt));
CHECK_EXPR(BinaryOperation, Bounds(cache.kAsmSigned)) {
CHECK_EXPR(Property, Bounds(Type::Number(zone))) {
CHECK_VAR(foreign, Bounds::Unbounded());
CHECK_EXPR(Literal, Bounds::Unbounded());
}
CHECK_EXPR(Literal, Bounds(cache.kAsmFixnum));
}
}
// var fdouble = +foreign.baz;
CHECK_EXPR(Assignment, Bounds(cache.kAsmDouble)) {
CHECK_VAR(fdouble, Bounds(cache.kAsmDouble));
CHECK_EXPR(BinaryOperation, Bounds(cache.kAsmDouble)) {
CHECK_EXPR(Property, Bounds(Type::Number(zone))) {
CHECK_VAR(foreign, Bounds::Unbounded());
CHECK_EXPR(Literal, Bounds::Unbounded());
}
CHECK_EXPR(Literal, Bounds(cache.kAsmDouble));
}
}
// return { testFunc1: test1, testFunc2: test2 };
CHECK_EXPR(ObjectLiteral, Bounds::Unbounded()) {
CHECK_VAR(test1, FUNC_I_TYPE);
CHECK_VAR(test2, FUNC_D_TYPE);
}
}
}
CHECK_TYPES_END
}