Revert of [regexp] implement character classes for unicode regexps. (patchset #11 id:220001 of https://codereview.chromium.org/1578253005/ )

Reason for revert:
Compile failure on arm.

https://build.chromium.org/p/client.v8/builders/V8%20Arm%20-%20debug%20builder/builds/7341/steps/compile/logs/stdio

Original issue's description:
> [regexp] implement character classes for unicode regexps.
>
> We divide character ranges into
> - BMP, matched normally.
> - non-BMP, matched as alternatives of surrogate pair ranges.
> - lone surrogates, matched with lookaround assertion that its indeed lone.
>
> R=erik.corry@gmail.com
> BUG=v8:2952
> LOG=N
>
> Committed: https://crrev.com/ea820ad5fa282a323a86fe20e64f83ee67ba5f04
> Cr-Commit-Position: refs/heads/master@{#33432}

TBR=littledan@chromium.org,erik.corry@gmail.com,erikcorry@google.com
# Skipping CQ checks because original CL landed less than 1 days ago.
NOPRESUBMIT=true
NOTREECHECKS=true
NOTRY=true
BUG=v8:2952

Review URL: https://codereview.chromium.org/1618753002

Cr-Commit-Position: refs/heads/master@{#33434}
This commit is contained in:
yangguo 2016-01-21 04:37:48 -08:00 committed by Commit bot
parent 52a01ae0c7
commit 4de91c5367
12 changed files with 274 additions and 920 deletions

View File

@ -8880,7 +8880,6 @@ class String: public Name {
static const uint32_t kMaxOneByteCharCodeU = unibrow::Latin1::kMaxChar;
static const int kMaxUtf16CodeUnit = 0xffff;
static const uint32_t kMaxUtf16CodeUnitU = kMaxUtf16CodeUnit;
static const uc32 kMaxCodePoint = 0x10ffff;
// Value of hash field containing computed hash equal to zero.
static const int kEmptyStringHash = kIsNotArrayIndexMask;

View File

@ -3,7 +3,6 @@
// found in the LICENSE file.
#include "src/ostreams.h"
#include "src/objects.h"
#if V8_OS_WIN
#if _MSC_VER < 1900
@ -61,16 +60,6 @@ std::ostream& PrintUC16(std::ostream& os, uint16_t c, bool (*pred)(uint16_t)) {
return os << buf;
}
std::ostream& PrintUC32(std::ostream& os, int32_t c, bool (*pred)(uint16_t)) {
if (c <= String::kMaxUtf16CodeUnit) {
return PrintUC16(os, static_cast<uint16_t>(c), pred);
}
char buf[13];
snprintf(buf, sizeof(buf), "\\u{%06x}", c);
return os << buf;
}
} // namespace
@ -92,10 +81,5 @@ std::ostream& operator<<(std::ostream& os, const AsUC16& c) {
return PrintUC16(os, c.value, IsPrint);
}
std::ostream& operator<<(std::ostream& os, const AsUC32& c) {
return PrintUC32(os, c.value, IsPrint);
}
} // namespace internal
} // namespace v8

View File

@ -50,12 +50,6 @@ struct AsUC16 {
};
struct AsUC32 {
explicit AsUC32(int32_t v) : value(v) {}
int32_t value;
};
struct AsReversiblyEscapedUC16 {
explicit AsReversiblyEscapedUC16(uint16_t v) : value(v) {}
uint16_t value;
@ -79,10 +73,6 @@ std::ostream& operator<<(std::ostream& os, const AsEscapedUC16ForJSON& c);
// of printable ASCII range.
std::ostream& operator<<(std::ostream& os, const AsUC16& c);
// Writes the given character to the output escaping everything outside
// of printable ASCII range.
std::ostream& operator<<(std::ostream& os, const AsUC32& c);
} // namespace internal
} // namespace v8

View File

@ -72,7 +72,7 @@ ContainedInLattice AddRange(ContainedInLattice containment,
int ranges_length,
Interval new_range) {
DCHECK((ranges_length & 1) == 1);
DCHECK(ranges[ranges_length - 1] == String::kMaxCodePoint + 1);
DCHECK(ranges[ranges_length - 1] == String::kMaxUtf16CodeUnit + 1);
if (containment == kLatticeUnknown) return containment;
bool inside = false;
int last = 0;
@ -145,8 +145,9 @@ MaybeHandle<Object> RegExpImpl::Compile(Handle<JSRegExp> re,
PostponeInterruptsScope postpone(isolate);
RegExpCompileData parse_result;
FlatStringReader reader(isolate, pattern);
if (!RegExpParser::ParseRegExp(re->GetIsolate(), &zone, &reader, flags,
&parse_result)) {
if (!RegExpParser::ParseRegExp(re->GetIsolate(), &zone, &reader,
flags & JSRegExp::kMultiline,
flags & JSRegExp::kUnicode, &parse_result)) {
// Throw an exception if we fail to parse the pattern.
return ThrowRegExpException(re, pattern, parse_result.error);
}
@ -370,16 +371,18 @@ bool RegExpImpl::CompileIrregexp(Handle<JSRegExp> re,
pattern = String::Flatten(pattern);
RegExpCompileData compile_data;
FlatStringReader reader(isolate, pattern);
if (!RegExpParser::ParseRegExp(isolate, &zone, &reader, flags,
&compile_data)) {
if (!RegExpParser::ParseRegExp(isolate, &zone, &reader,
flags & JSRegExp::kMultiline,
flags & JSRegExp::kUnicode, &compile_data)) {
// Throw an exception if we fail to parse the pattern.
// THIS SHOULD NOT HAPPEN. We already pre-parsed it successfully once.
USE(ThrowRegExpException(re, pattern, compile_data.error));
return false;
}
RegExpEngine::CompilationResult result =
RegExpEngine::Compile(isolate, &zone, &compile_data, flags, pattern,
sample_subject, is_one_byte);
RegExpEngine::CompilationResult result = RegExpEngine::Compile(
isolate, &zone, &compile_data, flags & JSRegExp::kIgnoreCase,
flags & JSRegExp::kGlobal, flags & JSRegExp::kMultiline,
flags & JSRegExp::kSticky, pattern, sample_subject, is_one_byte);
if (result.error_message != NULL) {
// Unable to compile regexp.
Handle<String> error_message = isolate->factory()->NewStringFromUtf8(
@ -942,7 +945,7 @@ class FrequencyCollator {
class RegExpCompiler {
public:
RegExpCompiler(Isolate* isolate, Zone* zone, int capture_count,
JSRegExp::Flags flags, bool is_one_byte);
bool ignore_case, bool is_one_byte);
int AllocateRegister() {
if (next_register_ >= RegExpMacroAssembler::kMaxRegister) {
@ -952,22 +955,6 @@ class RegExpCompiler {
return next_register_++;
}
// Lookarounds to match lone surrogates for unicode character class matches
// are never nested. We can therefore reuse registers.
int UnicodeLookaroundStackRegister() {
if (unicode_lookaround_stack_register_ == kNoRegister) {
unicode_lookaround_stack_register_ = AllocateRegister();
}
return unicode_lookaround_stack_register_;
}
int UnicodeLookaroundPositionRegister() {
if (unicode_lookaround_position_register_ == kNoRegister) {
unicode_lookaround_position_register_ = AllocateRegister();
}
return unicode_lookaround_position_register_;
}
RegExpEngine::CompilationResult Assemble(RegExpMacroAssembler* assembler,
RegExpNode* start,
int capture_count,
@ -994,8 +981,7 @@ class RegExpCompiler {
void SetRegExpTooBig() { reg_exp_too_big_ = true; }
inline bool ignore_case() { return (flags_ & JSRegExp::kIgnoreCase) != 0; }
inline bool unicode() { return (flags_ & JSRegExp::kUnicode) != 0; }
inline bool ignore_case() { return ignore_case_; }
inline bool one_byte() { return one_byte_; }
inline bool optimize() { return optimize_; }
inline void set_optimize(bool value) { optimize_ = value; }
@ -1020,12 +1006,10 @@ class RegExpCompiler {
private:
EndNode* accept_;
int next_register_;
int unicode_lookaround_stack_register_;
int unicode_lookaround_position_register_;
List<RegExpNode*>* work_list_;
int recursion_depth_;
RegExpMacroAssembler* macro_assembler_;
JSRegExp::Flags flags_;
bool ignore_case_;
bool one_byte_;
bool reg_exp_too_big_;
bool limiting_recursion_;
@ -1057,13 +1041,11 @@ static RegExpEngine::CompilationResult IrregexpRegExpTooBig(Isolate* isolate) {
// Attempts to compile the regexp using an Irregexp code generator. Returns
// a fixed array or a null handle depending on whether it succeeded.
RegExpCompiler::RegExpCompiler(Isolate* isolate, Zone* zone, int capture_count,
JSRegExp::Flags flags, bool one_byte)
bool ignore_case, bool one_byte)
: next_register_(2 * (capture_count + 1)),
unicode_lookaround_stack_register_(kNoRegister),
unicode_lookaround_position_register_(kNoRegister),
work_list_(NULL),
recursion_depth_(0),
flags_(flags),
ignore_case_(ignore_case),
one_byte_(one_byte),
reg_exp_too_big_(false),
limiting_recursion_(false),
@ -2116,7 +2098,9 @@ static void EmitCharClass(RegExpMacroAssembler* macro_assembler,
Label* on_failure, int cp_offset, bool check_offset,
bool preloaded, Zone* zone) {
ZoneList<CharacterRange>* ranges = cc->ranges(zone);
CharacterRange::Canonicalize(ranges);
if (!CharacterRange::IsCanonical(ranges)) {
CharacterRange::Canonicalize(ranges);
}
int max_char;
if (one_byte) {
@ -2158,14 +2142,23 @@ static void EmitCharClass(RegExpMacroAssembler* macro_assembler,
}
return;
}
if (last_valid_range == 0 &&
!cc->is_negated() &&
ranges->at(0).IsEverything(max_char)) {
// This is a common case hit by non-anchored expressions.
if (check_offset) {
macro_assembler->CheckPosition(cp_offset, on_failure);
}
return;
}
if (!preloaded) {
macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check_offset);
}
if (cc->is_standard(zone) &&
macro_assembler->CheckSpecialCharacterClass(cc->standard_type(),
on_failure)) {
macro_assembler->CheckSpecialCharacterClass(cc->standard_type(),
on_failure)) {
return;
}
@ -2805,7 +2798,9 @@ RegExpNode* TextNode::FilterOneByte(int depth, bool ignore_case) {
DCHECK(elm.text_type() == TextElement::CHAR_CLASS);
RegExpCharacterClass* cc = elm.char_class();
ZoneList<CharacterRange>* ranges = cc->ranges(zone());
CharacterRange::Canonicalize(ranges);
if (!CharacterRange::IsCanonical(ranges)) {
CharacterRange::Canonicalize(ranges);
}
// Now they are in order so we only need to look at the first.
int range_count = ranges->length();
if (cc->is_negated()) {
@ -3294,36 +3289,6 @@ bool TextNode::SkipPass(int int_pass, bool ignore_case) {
}
TextNode* TextNode::CreateForCharacterRanges(Zone* zone,
ZoneList<CharacterRange>* ranges,
bool read_backward,
RegExpNode* on_success) {
DCHECK_NOT_NULL(ranges);
ZoneList<TextElement>* elms = new (zone) ZoneList<TextElement>(1, zone);
elms->Add(
TextElement::CharClass(new (zone) RegExpCharacterClass(ranges, false)),
zone);
return new (zone) TextNode(elms, read_backward, on_success);
}
TextNode* TextNode::CreateForSurrogatePair(Zone* zone, CharacterRange lead,
CharacterRange trail,
bool read_backward,
RegExpNode* on_success) {
ZoneList<CharacterRange>* lead_ranges = CharacterRange::List(zone, lead);
ZoneList<CharacterRange>* trail_ranges = CharacterRange::List(zone, trail);
ZoneList<TextElement>* elms = new (zone) ZoneList<TextElement>(2, zone);
elms->Add(TextElement::CharClass(
new (zone) RegExpCharacterClass(lead_ranges, false)),
zone);
elms->Add(TextElement::CharClass(
new (zone) RegExpCharacterClass(trail_ranges, false)),
zone);
return new (zone) TextNode(elms, read_backward, on_success);
}
// This generates the code to match a text node. A text node can contain
// straight character sequences (possibly to be matched in a case-independent
// way) and character classes. For efficiency we do not do this in a single
@ -3440,7 +3405,9 @@ RegExpNode* TextNode::GetSuccessorOfOmnivorousTextNode(
if (elm.text_type() != TextElement::CHAR_CLASS) return NULL;
RegExpCharacterClass* node = elm.char_class();
ZoneList<CharacterRange>* ranges = node->ranges(zone());
CharacterRange::Canonicalize(ranges);
if (!CharacterRange::IsCanonical(ranges)) {
CharacterRange::Canonicalize(ranges);
}
if (node->is_negated()) {
return ranges->length() == 0 ? on_success() : NULL;
}
@ -3587,35 +3554,27 @@ class AlternativeGenerationList {
};
static const uc32 kLeadSurrogateStart = 0xd800;
static const uc32 kLeadSurrogateEnd = 0xdbff;
static const uc32 kTrailSurrogateStart = 0xdc00;
static const uc32 kTrailSurrogateEnd = 0xdfff;
static const uc32 kNonBmpStart = 0x10000;
static const uc32 kNonBmpEnd = 0x10ffff;
static const uc32 kRangeEndMarker = 0x110000;
// The '2' variant is has inclusive from and exclusive to.
// This covers \s as defined in ECMA-262 5.1, 15.10.2.12,
// which include WhiteSpace (7.2) or LineTerminator (7.3) values.
static const int kSpaceRanges[] = {
'\t', '\r' + 1, ' ', ' ' + 1, 0x00A0, 0x00A1, 0x1680, 0x1681,
0x180E, 0x180F, 0x2000, 0x200B, 0x2028, 0x202A, 0x202F, 0x2030,
0x205F, 0x2060, 0x3000, 0x3001, 0xFEFF, 0xFF00, kRangeEndMarker};
static const int kSpaceRanges[] = { '\t', '\r' + 1, ' ', ' ' + 1,
0x00A0, 0x00A1, 0x1680, 0x1681, 0x180E, 0x180F, 0x2000, 0x200B,
0x2028, 0x202A, 0x202F, 0x2030, 0x205F, 0x2060, 0x3000, 0x3001,
0xFEFF, 0xFF00, 0x10000 };
static const int kSpaceRangeCount = arraysize(kSpaceRanges);
static const int kWordRanges[] = {
'0', '9' + 1, 'A', 'Z' + 1, '_', '_' + 1, 'a', 'z' + 1, kRangeEndMarker};
'0', '9' + 1, 'A', 'Z' + 1, '_', '_' + 1, 'a', 'z' + 1, 0x10000 };
static const int kWordRangeCount = arraysize(kWordRanges);
static const int kDigitRanges[] = {'0', '9' + 1, kRangeEndMarker};
static const int kDigitRanges[] = { '0', '9' + 1, 0x10000 };
static const int kDigitRangeCount = arraysize(kDigitRanges);
static const int kSurrogateRanges[] = {
kLeadSurrogateStart, kLeadSurrogateStart + 1, kRangeEndMarker};
static const int kSurrogateRanges[] = { 0xd800, 0xe000, 0x10000 };
static const int kSurrogateRangeCount = arraysize(kSurrogateRanges);
static const int kLineTerminatorRanges[] = {
0x000A, 0x000B, 0x000D, 0x000E, 0x2028, 0x202A, kRangeEndMarker};
static const int kLineTerminatorRanges[] = { 0x000A, 0x000B, 0x000D, 0x000E,
0x2028, 0x202A, 0x10000 };
static const int kLineTerminatorRangeCount = arraysize(kLineTerminatorRanges);
void BoyerMoorePositionInfo::Set(int character) {
SetInterval(Interval(character, character));
}
@ -4773,8 +4732,8 @@ RegExpNode* RegExpText::ToNode(RegExpCompiler* compiler,
static bool CompareInverseRanges(ZoneList<CharacterRange>* ranges,
const int* special_class,
int length) {
length--; // Remove final marker.
DCHECK(special_class[length] == kRangeEndMarker);
length--; // Remove final 0x10000.
DCHECK(special_class[length] == 0x10000);
DCHECK(ranges->length() != 0);
DCHECK(length != 0);
DCHECK(special_class[0] != 0);
@ -4804,8 +4763,8 @@ static bool CompareInverseRanges(ZoneList<CharacterRange>* ranges,
static bool CompareRanges(ZoneList<CharacterRange>* ranges,
const int* special_class,
int length) {
length--; // Remove final marker.
DCHECK(special_class[length] == kRangeEndMarker);
length--; // Remove final 0x10000.
DCHECK(special_class[length] == 0x10000);
if (ranges->length() * 2 != length) {
return false;
}
@ -4861,257 +4820,10 @@ bool RegExpCharacterClass::is_standard(Zone* zone) {
}
bool RegExpCharacterClass::NeedsDesugaringForUnicode(Zone* zone) {
ZoneList<CharacterRange>* ranges = this->ranges(zone);
CharacterRange::Canonicalize(ranges);
for (int i = ranges->length() - 1; i >= 0; i--) {
uc32 from = ranges->at(i).from();
uc32 to = ranges->at(i).to();
// Check for non-BMP characters.
if (to >= kNonBmpStart) return true;
// Check for lone surrogates.
if (from <= kTrailSurrogateEnd && to >= kLeadSurrogateStart) return true;
}
return false;
}
UnicodeRangeSplitter::UnicodeRangeSplitter(Zone* zone,
ZoneList<CharacterRange>* base)
: zone_(zone),
table_(zone),
bmp_(nullptr),
lead_surrogates_(nullptr),
trail_surrogates_(nullptr),
non_bmp_(nullptr) {
// The unicode range splitter categorizes given character ranges into:
// - Code points from the BMP representable by one code unit.
// - Code points outside the BMP that need to be split into surrogate pairs.
// - Lone lead surrogates.
// - Lone trail surrogates.
// Lone surrogates are valid code points, even though no actual characters.
// They require special matching to make sure we do not split surrogate pairs.
// We use the dispatch table to accomplish this. The base range is split up
// by the table by the overlay ranges, and the Call callback is used to
// filter and collect ranges for each category.
for (int i = 0; i < base->length(); i++) {
table_.AddRange(base->at(i), kBase, zone_);
}
// Add overlay ranges.
table_.AddRange(CharacterRange(0, kLeadSurrogateStart - 1), kBmpCodePoints,
zone_);
table_.AddRange(CharacterRange(kLeadSurrogateStart, kLeadSurrogateEnd),
kLeadSurrogates, zone_);
table_.AddRange(CharacterRange(kTrailSurrogateStart, kTrailSurrogateEnd),
kTrailSurrogates, zone_);
table_.AddRange(CharacterRange(kTrailSurrogateEnd, kNonBmpStart - 1),
kBmpCodePoints, zone_);
table_.AddRange(CharacterRange(kNonBmpStart, kNonBmpEnd), kNonBmpCodePoints,
zone_);
table_.ForEach(this);
}
void UnicodeRangeSplitter::Call(uc32 from, DispatchTable::Entry entry) {
OutSet* outset = entry.out_set();
if (!outset->Get(kBase)) return;
ZoneList<CharacterRange>** target = NULL;
if (outset->Get(kBmpCodePoints)) {
target = &bmp_;
} else if (outset->Get(kLeadSurrogates)) {
target = &lead_surrogates_;
} else if (outset->Get(kTrailSurrogates)) {
target = &trail_surrogates_;
} else {
DCHECK(outset->Get(kNonBmpCodePoints));
target = &non_bmp_;
}
if (*target == NULL) *target = new (zone_) ZoneList<CharacterRange>(2, zone_);
(*target)->Add(CharacterRange::Range(entry.from(), entry.to()), zone_);
}
void AddBmpCharacters(RegExpCompiler* compiler, ChoiceNode* result,
RegExpNode* on_success, UnicodeRangeSplitter* splitter) {
ZoneList<CharacterRange>* bmp = splitter->bmp();
if (bmp == nullptr) return;
result->AddAlternative(GuardedAlternative(TextNode::CreateForCharacterRanges(
compiler->zone(), bmp, compiler->read_backward(), on_success)));
}
void AddNonBmpSurrogatePairs(RegExpCompiler* compiler, ChoiceNode* result,
RegExpNode* on_success,
UnicodeRangeSplitter* splitter) {
ZoneList<CharacterRange>* non_bmp = splitter->non_bmp();
if (non_bmp == nullptr) return;
DCHECK(compiler->unicode());
DCHECK(!compiler->one_byte());
Zone* zone = compiler->zone();
CharacterRange::Canonicalize(non_bmp);
for (int i = 0; i < non_bmp->length(); i++) {
// Match surrogate pair.
// E.g. [\u10005-\u11005] becomes
// \ud800[\udc05-\udfff]|
// [\ud801-\ud803][\udc00-\udfff]|
// \ud804[\udc00-\udc05]
uc32 from = non_bmp->at(i).from();
uc32 to = non_bmp->at(i).to();
uc16 from_l = unibrow::Utf16::LeadSurrogate(from);
uc16 from_t = unibrow::Utf16::TrailSurrogate(from);
uc16 to_l = unibrow::Utf16::LeadSurrogate(to);
uc16 to_t = unibrow::Utf16::TrailSurrogate(to);
if (from_l == to_l) {
// The lead surrogate is the same.
result->AddAlternative(
GuardedAlternative(TextNode::CreateForSurrogatePair(
zone, CharacterRange::Singleton(from_l),
CharacterRange::Range(from_t, to_t), compiler->read_backward(),
on_success)));
} else {
if (from_t != kTrailSurrogateStart) {
// Add [from_l][from_t-\udfff]
result->AddAlternative(
GuardedAlternative(TextNode::CreateForSurrogatePair(
zone, CharacterRange::Singleton(from_l),
CharacterRange::Range(from_t, kTrailSurrogateEnd),
compiler->read_backward(), on_success)));
from_l++;
}
if (to_t != kTrailSurrogateEnd) {
// Add [to_l][\udc00-to_t]
result->AddAlternative(
GuardedAlternative(TextNode::CreateForSurrogatePair(
zone, CharacterRange::Singleton(to_l),
CharacterRange::Range(kTrailSurrogateStart, to_t),
compiler->read_backward(), on_success)));
to_l--;
}
if (from_l <= to_l) {
// Add [from_l-to_l][\udc00-\udfff]
result->AddAlternative(
GuardedAlternative(TextNode::CreateForSurrogatePair(
zone, CharacterRange::Range(from_l, to_l),
CharacterRange::Range(kTrailSurrogateStart, kTrailSurrogateEnd),
compiler->read_backward(), on_success)));
}
}
}
}
RegExpNode* NegativeLookaroundAgainstReadDirectionAndMatch(
RegExpCompiler* compiler, ZoneList<CharacterRange>* lookbehind,
ZoneList<CharacterRange>* match, RegExpNode* on_success,
bool read_backward) {
Zone* zone = compiler->zone();
RegExpNode* match_node = TextNode::CreateForCharacterRanges(
zone, match, read_backward, on_success);
int stack_register = compiler->UnicodeLookaroundStackRegister();
int position_register = compiler->UnicodeLookaroundPositionRegister();
RegExpLookaround::Builder lookaround(false, match_node, stack_register,
position_register);
RegExpNode* negative_match = TextNode::CreateForCharacterRanges(
zone, lookbehind, !read_backward, lookaround.on_match_success());
return lookaround.ForMatch(negative_match);
}
RegExpNode* MatchAndNegativeLookaroundInReadDirection(
RegExpCompiler* compiler, ZoneList<CharacterRange>* match,
ZoneList<CharacterRange>* lookahead, RegExpNode* on_success,
bool read_backward) {
Zone* zone = compiler->zone();
int stack_register = compiler->UnicodeLookaroundStackRegister();
int position_register = compiler->UnicodeLookaroundPositionRegister();
RegExpLookaround::Builder lookaround(false, on_success, stack_register,
position_register);
RegExpNode* negative_match = TextNode::CreateForCharacterRanges(
zone, lookahead, read_backward, lookaround.on_match_success());
return TextNode::CreateForCharacterRanges(
zone, match, read_backward, lookaround.ForMatch(negative_match));
}
void AddLoneLeadSurrogates(RegExpCompiler* compiler, ChoiceNode* result,
RegExpNode* on_success,
UnicodeRangeSplitter* splitter) {
ZoneList<CharacterRange>* lead_surrogates = splitter->lead_surrogates();
if (lead_surrogates == nullptr) return;
Zone* zone = compiler->zone();
// E.g. \ud801 becomes \ud801(?![\udc00-\udfff]).
ZoneList<CharacterRange>* trail_surrogates =
new (zone) ZoneList<CharacterRange>(1, zone);
trail_surrogates->Add(
CharacterRange::Range(kTrailSurrogateStart, kTrailSurrogateEnd), zone);
RegExpNode* match =
compiler->read_backward()
// Reading backward. Assert that reading forward, there is no trail
// surrogate, and then backward match the lead surrogate.
? NegativeLookaroundAgainstReadDirectionAndMatch(
compiler, trail_surrogates, lead_surrogates, on_success, true)
// Reading forward. Forwrad match the lead surrogate and assert that
// no
// trail surrogate follows.
: MatchAndNegativeLookaroundInReadDirection(
compiler, lead_surrogates, trail_surrogates, on_success, false);
result->AddAlternative(GuardedAlternative(match));
}
void AddLoneTrailSurrogates(RegExpCompiler* compiler, ChoiceNode* result,
RegExpNode* on_success,
UnicodeRangeSplitter* splitter) {
ZoneList<CharacterRange>* trail_surrogates = splitter->trail_surrogates();
if (trail_surrogates == nullptr) return;
Zone* zone = compiler->zone();
// E.g. \udc01 becomes (?<![\ud800-\udbff])\udc01
ZoneList<CharacterRange>* lead_surrogates =
new (zone) ZoneList<CharacterRange>(1, zone);
lead_surrogates->Add(
CharacterRange::Range(kLeadSurrogateStart, kLeadSurrogateEnd), zone);
RegExpNode* match =
compiler->read_backward()
// Reading backward. Backward match the trail surrogate and assert
// that no lead surrogate precedes it.
? MatchAndNegativeLookaroundInReadDirection(
compiler, trail_surrogates, lead_surrogates, on_success, true)
// Reading forward. Assert that reading backward, there is no lead
// surrogate, and then forward match the trail surrogate.
: NegativeLookaroundAgainstReadDirectionAndMatch(
compiler, lead_surrogates, trail_surrogates, on_success, false);
result->AddAlternative(GuardedAlternative(match));
}
RegExpNode* RegExpCharacterClass::ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) {
set_.Canonicalize();
Zone* zone = compiler->zone();
ZoneList<CharacterRange>* ranges = this->ranges(zone);
if (compiler->unicode() && !compiler->one_byte()) {
if (is_negated()) {
ZoneList<CharacterRange>* negated =
new (zone) ZoneList<CharacterRange>(2, zone);
CharacterRange::Negate(ranges, negated, zone);
ranges = negated;
}
if (ranges->length() == 0) {
// No matches possible.
return new (zone) EndNode(EndNode::BACKTRACK, zone);
}
UnicodeRangeSplitter splitter(zone, ranges);
ChoiceNode* result = new (compiler->zone()) ChoiceNode(2, compiler->zone());
AddBmpCharacters(compiler, result, on_success, &splitter);
AddNonBmpSurrogatePairs(compiler, result, on_success, &splitter);
AddLoneLeadSurrogates(compiler, result, on_success, &splitter);
AddLoneTrailSurrogates(compiler, result, on_success, &splitter);
return result;
} else {
return new (zone) TextNode(this, compiler->read_backward(), on_success);
}
return new (compiler->zone())
TextNode(this, compiler->read_backward(), on_success);
}
@ -5626,47 +5338,6 @@ RegExpNode* RegExpEmpty::ToNode(RegExpCompiler* compiler,
}
RegExpLookaround::Builder::Builder(bool is_positive, RegExpNode* on_success,
int stack_pointer_register,
int position_register,
int capture_register_count,
int capture_register_start)
: is_positive_(is_positive),
on_success_(on_success),
stack_pointer_register_(stack_pointer_register),
position_register_(position_register) {
if (is_positive_) {
on_match_success_ = ActionNode::PositiveSubmatchSuccess(
stack_pointer_register, position_register, capture_register_count,
capture_register_start, on_success_);
} else {
Zone* zone = on_success_->zone();
on_match_success_ = new (zone) NegativeSubmatchSuccess(
stack_pointer_register, position_register, capture_register_count,
capture_register_start, zone);
}
}
RegExpNode* RegExpLookaround::Builder::ForMatch(RegExpNode* match) {
if (is_positive_) {
return ActionNode::BeginSubmatch(stack_pointer_register_,
position_register_, match);
} else {
Zone* zone = on_success_->zone();
// We use a ChoiceNode to represent the negative lookaround. The first
// alternative is the negative match. On success, the end node backtracks.
// On failure, the second alternative is tried and leads to success.
// NegativeLookaheadChoiceNode is a special ChoiceNode that ignores the
// first exit when calculating quick checks.
ChoiceNode* choice_node = new (zone) NegativeLookaroundChoiceNode(
GuardedAlternative(match), GuardedAlternative(on_success_), zone);
return ActionNode::BeginSubmatch(stack_pointer_register_,
position_register_, choice_node);
}
}
RegExpNode* RegExpLookaround::ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) {
int stack_pointer_register = compiler->AllocateRegister();
@ -5681,10 +5352,35 @@ RegExpNode* RegExpLookaround::ToNode(RegExpCompiler* compiler,
RegExpNode* result;
bool was_reading_backward = compiler->read_backward();
compiler->set_read_backward(type() == LOOKBEHIND);
Builder builder(is_positive(), on_success, stack_pointer_register,
position_register, register_count, register_start);
RegExpNode* match = body_->ToNode(compiler, builder.on_match_success());
result = builder.ForMatch(match);
if (is_positive()) {
result = ActionNode::BeginSubmatch(
stack_pointer_register, position_register,
body()->ToNode(compiler,
ActionNode::PositiveSubmatchSuccess(
stack_pointer_register, position_register,
register_count, register_start, on_success)));
} else {
// We use a ChoiceNode for a negative lookahead because it has most of
// the characteristics we need. It has the body of the lookahead as its
// first alternative and the expression after the lookahead of the second
// alternative. If the first alternative succeeds then the
// NegativeSubmatchSuccess will unwind the stack including everything the
// choice node set up and backtrack. If the first alternative fails then
// the second alternative is tried, which is exactly the desired result
// for a negative lookahead. The NegativeLookaheadChoiceNode is a special
// ChoiceNode that knows to ignore the first exit when calculating quick
// checks.
Zone* zone = compiler->zone();
GuardedAlternative body_alt(
body()->ToNode(compiler, new (zone) NegativeSubmatchSuccess(
stack_pointer_register, position_register,
register_count, register_start, zone)));
ChoiceNode* choice_node = new (zone) NegativeLookaroundChoiceNode(
body_alt, GuardedAlternative(on_success), zone);
result = ActionNode::BeginSubmatch(stack_pointer_register,
position_register, choice_node);
}
compiler->set_read_backward(was_reading_backward);
return result;
}
@ -5732,7 +5428,7 @@ static void AddClass(const int* elmv,
ZoneList<CharacterRange>* ranges,
Zone* zone) {
elmc--;
DCHECK(elmv[elmc] == kRangeEndMarker);
DCHECK(elmv[elmc] == 0x10000);
for (int i = 0; i < elmc; i += 2) {
DCHECK(elmv[i] < elmv[i + 1]);
ranges->Add(CharacterRange(elmv[i], elmv[i + 1] - 1), zone);
@ -5745,9 +5441,9 @@ static void AddClassNegated(const int *elmv,
ZoneList<CharacterRange>* ranges,
Zone* zone) {
elmc--;
DCHECK(elmv[elmc] == kRangeEndMarker);
DCHECK(elmv[elmc] == 0x10000);
DCHECK(elmv[0] != 0x0000);
DCHECK(elmv[elmc - 1] != String::kMaxCodePoint);
DCHECK(elmv[elmc-1] != String::kMaxUtf16CodeUnit);
uc16 last = 0x0000;
for (int i = 0; i < elmc; i += 2) {
DCHECK(last <= elmv[i] - 1);
@ -5755,7 +5451,7 @@ static void AddClassNegated(const int *elmv,
ranges->Add(CharacterRange(last, elmv[i] - 1), zone);
last = elmv[i + 1];
}
ranges->Add(CharacterRange(last, String::kMaxCodePoint), zone);
ranges->Add(CharacterRange(last, String::kMaxUtf16CodeUnit), zone);
}
@ -5812,13 +5508,60 @@ Vector<const int> CharacterRange::GetWordBounds() {
}
class CharacterRangeSplitter {
public:
CharacterRangeSplitter(ZoneList<CharacterRange>** included,
ZoneList<CharacterRange>** excluded,
Zone* zone)
: included_(included),
excluded_(excluded),
zone_(zone) { }
void Call(uc16 from, DispatchTable::Entry entry);
static const int kInBase = 0;
static const int kInOverlay = 1;
private:
ZoneList<CharacterRange>** included_;
ZoneList<CharacterRange>** excluded_;
Zone* zone_;
};
void CharacterRangeSplitter::Call(uc16 from, DispatchTable::Entry entry) {
if (!entry.out_set()->Get(kInBase)) return;
ZoneList<CharacterRange>** target = entry.out_set()->Get(kInOverlay)
? included_
: excluded_;
if (*target == NULL) *target = new(zone_) ZoneList<CharacterRange>(2, zone_);
(*target)->Add(CharacterRange(entry.from(), entry.to()), zone_);
}
void CharacterRange::Split(ZoneList<CharacterRange>* base,
Vector<const int> overlay,
ZoneList<CharacterRange>** included,
ZoneList<CharacterRange>** excluded,
Zone* zone) {
DCHECK_NULL(*included);
DCHECK_NULL(*excluded);
DispatchTable table(zone);
for (int i = 0; i < base->length(); i++)
table.AddRange(base->at(i), CharacterRangeSplitter::kInBase, zone);
for (int i = 0; i < overlay.length(); i += 2) {
table.AddRange(CharacterRange(overlay[i], overlay[i + 1] - 1),
CharacterRangeSplitter::kInOverlay, zone);
}
CharacterRangeSplitter callback(included, excluded, zone);
table.ForEach(&callback);
}
void CharacterRange::AddCaseEquivalents(Isolate* isolate, Zone* zone,
ZoneList<CharacterRange>* ranges,
bool is_one_byte) {
uc32 bottom = from();
uc32 top = to();
// Nothing to be done for surrogates.
if (bottom >= kLeadSurrogateStart && top <= kTrailSurrogateEnd) return;
uc16 bottom = from();
uc16 top = to();
if (is_one_byte && !RangeContainsLatin1Equivalents(*this)) {
if (bottom > String::kMaxOneByteCharCode) return;
if (top > String::kMaxOneByteCharCode) top = String::kMaxOneByteCharCode;
@ -5856,7 +5599,7 @@ void CharacterRange::AddCaseEquivalents(Isolate* isolate, Zone* zone,
int pos = bottom;
while (pos <= top) {
int length = isolate->jsregexp_canonrange()->get(pos, '\0', range);
uc32 block_end;
uc16 block_end;
if (length == 0) {
block_end = pos;
} else {
@ -5867,8 +5610,8 @@ void CharacterRange::AddCaseEquivalents(Isolate* isolate, Zone* zone,
length = isolate->jsregexp_uncanonicalize()->get(block_end, '\0', range);
for (int i = 0; i < length; i++) {
uc32 c = range[i];
uc32 range_from = c - (block_end - pos);
uc32 range_to = c - (block_end - end);
uc16 range_from = c - (block_end - pos);
uc16 range_to = c - (block_end - end);
if (!(bottom <= range_from && range_to <= top)) {
ranges->Add(CharacterRange(range_from, range_to), zone);
}
@ -5929,8 +5672,8 @@ static int InsertRangeInCanonicalList(ZoneList<CharacterRange>* list,
// list[0..count] for the result. Returns the number of resulting
// canonicalized ranges. Inserting a range may collapse existing ranges into
// fewer ranges, so the return value can be anything in the range 1..count+1.
uc32 from = insert.from();
uc32 to = insert.to();
uc16 from = insert.from();
uc16 to = insert.to();
int start_pos = 0;
int end_pos = count;
for (int i = count - 1; i >= 0; i--) {
@ -6030,7 +5773,7 @@ void CharacterRange::Negate(ZoneList<CharacterRange>* ranges,
DCHECK(CharacterRange::IsCanonical(ranges));
DCHECK_EQ(0, negated_ranges->length());
int range_count = ranges->length();
uc32 from = 0;
uc16 from = 0;
int i = 0;
if (range_count > 0 && ranges->at(0).from() == 0) {
from = ranges->at(0).to();
@ -6042,8 +5785,9 @@ void CharacterRange::Negate(ZoneList<CharacterRange>* ranges,
from = range.to();
i++;
}
if (from < String::kMaxCodePoint) {
negated_ranges->Add(CharacterRange(from + 1, String::kMaxCodePoint), zone);
if (from < String::kMaxUtf16CodeUnit) {
negated_ranges->Add(CharacterRange(from + 1, String::kMaxUtf16CodeUnit),
zone);
}
}
@ -6094,7 +5838,7 @@ bool OutSet::Get(unsigned value) const {
}
const uc32 DispatchTable::Config::kNoKey = unibrow::Utf8::kBadChar;
const uc16 DispatchTable::Config::kNoKey = unibrow::Utf8::kBadChar;
void DispatchTable::AddRange(CharacterRange full_range, int value,
@ -6196,7 +5940,7 @@ void DispatchTable::AddRange(CharacterRange full_range, int value,
}
OutSet* DispatchTable::Get(uc32 value) {
OutSet* DispatchTable::Get(uc16 value) {
ZoneSplayTree<Config>::Locator loc;
if (!tree()->FindGreatestLessThan(value, &loc))
return empty();
@ -6514,16 +6258,13 @@ void DispatchTableConstructor::VisitAction(ActionNode* that) {
RegExpEngine::CompilationResult RegExpEngine::Compile(
Isolate* isolate, Zone* zone, RegExpCompileData* data,
JSRegExp::Flags flags, Handle<String> pattern,
Isolate* isolate, Zone* zone, RegExpCompileData* data, bool ignore_case,
bool is_global, bool is_multiline, bool is_sticky, Handle<String> pattern,
Handle<String> sample_subject, bool is_one_byte) {
if ((data->capture_count + 1) * 2 - 1 > RegExpMacroAssembler::kMaxRegister) {
return IrregexpRegExpTooBig(isolate);
}
bool ignore_case = flags & JSRegExp::kIgnoreCase;
bool is_sticky = flags & JSRegExp::kSticky;
bool is_global = flags & JSRegExp::kGlobal;
RegExpCompiler compiler(isolate, zone, data->capture_count, flags,
RegExpCompiler compiler(isolate, zone, data->capture_count, ignore_case,
is_one_byte);
if (compiler.optimize()) compiler.set_optimize(!TooMuchRegExpCode(pattern));

View File

@ -265,28 +265,28 @@ class DispatchTable : public ZoneObject {
class Entry {
public:
Entry() : from_(0), to_(0), out_set_(NULL) { }
Entry(uc32 from, uc32 to, OutSet* out_set)
: from_(from), to_(to), out_set_(out_set) {}
uc32 from() { return from_; }
uc32 to() { return to_; }
void set_to(uc32 value) { to_ = value; }
Entry(uc16 from, uc16 to, OutSet* out_set)
: from_(from), to_(to), out_set_(out_set) { }
uc16 from() { return from_; }
uc16 to() { return to_; }
void set_to(uc16 value) { to_ = value; }
void AddValue(int value, Zone* zone) {
out_set_ = out_set_->Extend(value, zone);
}
OutSet* out_set() { return out_set_; }
private:
uc32 from_;
uc32 to_;
uc16 from_;
uc16 to_;
OutSet* out_set_;
};
class Config {
public:
typedef uc32 Key;
typedef uc16 Key;
typedef Entry Value;
static const uc32 kNoKey;
static const uc16 kNoKey;
static const Entry NoValue() { return Value(); }
static inline int Compare(uc32 a, uc32 b) {
static inline int Compare(uc16 a, uc16 b) {
if (a == b)
return 0;
else if (a < b)
@ -297,7 +297,7 @@ class DispatchTable : public ZoneObject {
};
void AddRange(CharacterRange range, int value, Zone* zone);
OutSet* Get(uc32 value);
OutSet* Get(uc16 value);
void Dump();
template <typename Callback>
@ -315,34 +315,6 @@ class DispatchTable : public ZoneObject {
};
// Categorizes character ranges into BMP, non-BMP, lead, and trail surrogates.
class UnicodeRangeSplitter {
public:
UnicodeRangeSplitter(Zone* zone, ZoneList<CharacterRange>* base);
void Call(uc32 from, DispatchTable::Entry entry);
ZoneList<CharacterRange>* bmp() { return bmp_; }
ZoneList<CharacterRange>* lead_surrogates() { return lead_surrogates_; }
ZoneList<CharacterRange>* trail_surrogates() { return trail_surrogates_; }
ZoneList<CharacterRange>* non_bmp() const { return non_bmp_; }
private:
static const int kBase = 0;
// Separate ranges into
static const int kBmpCodePoints = 1;
static const int kLeadSurrogates = 2;
static const int kTrailSurrogates = 3;
static const int kNonBmpCodePoints = 4;
Zone* zone_;
DispatchTable table_;
ZoneList<CharacterRange>* bmp_;
ZoneList<CharacterRange>* lead_surrogates_;
ZoneList<CharacterRange>* trail_surrogates_;
ZoneList<CharacterRange>* non_bmp_;
};
#define FOR_EACH_NODE_TYPE(VISIT) \
VISIT(End) \
VISIT(Action) \
@ -718,17 +690,6 @@ class TextNode: public SeqRegExpNode {
read_backward_(read_backward) {
elms_->Add(TextElement::CharClass(that), zone());
}
// Create TextNode for a single character class for the given ranges.
static TextNode* CreateForCharacterRanges(Zone* zone,
ZoneList<CharacterRange>* ranges,
bool read_backward,
RegExpNode* on_success);
// Create TextNode for a surrogate pair with a range given for the
// lead and the trail surrogate each.
static TextNode* CreateForSurrogatePair(Zone* zone, CharacterRange lead,
CharacterRange trail,
bool read_backward,
RegExpNode* on_success);
virtual void Accept(NodeVisitor* visitor);
virtual void Emit(RegExpCompiler* compiler, Trace* trace);
virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
@ -852,7 +813,8 @@ class BackReferenceNode: public SeqRegExpNode {
class EndNode: public RegExpNode {
public:
enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS };
EndNode(Action action, Zone* zone) : RegExpNode(zone), action_(action) {}
explicit EndNode(Action action, Zone* zone)
: RegExpNode(zone), action_(action) { }
virtual void Accept(NodeVisitor* visitor);
virtual void Emit(RegExpCompiler* compiler, Trace* trace);
virtual int EatsAtLeast(int still_to_find,
@ -1543,8 +1505,8 @@ class RegExpEngine: public AllStatic {
};
static CompilationResult Compile(Isolate* isolate, Zone* zone,
RegExpCompileData* input,
JSRegExp::Flags flags,
RegExpCompileData* input, bool ignore_case,
bool global, bool multiline, bool sticky,
Handle<String> pattern,
Handle<String> sample_subject,
bool is_one_byte);

View File

@ -172,9 +172,9 @@ void* RegExpUnparser::VisitAlternative(RegExpAlternative* that, void* data) {
void RegExpUnparser::VisitCharacterRange(CharacterRange that) {
os_ << AsUC32(that.from());
os_ << AsUC16(that.from());
if (!that.IsSingleton()) {
os_ << "-" << AsUC32(that.to());
os_ << "-" << AsUC16(that.to());
}
}

View File

@ -5,7 +5,6 @@
#ifndef V8_REGEXP_REGEXP_AST_H_
#define V8_REGEXP_REGEXP_AST_H_
#include "src/objects.h"
#include "src/utils.h"
#include "src/zone.h"
@ -78,37 +77,33 @@ class CharacterRange {
CharacterRange() : from_(0), to_(0) {}
// For compatibility with the CHECK_OK macro
CharacterRange(void* null) { DCHECK_NULL(null); } // NOLINT
CharacterRange(uc32 from, uc32 to) : from_(from), to_(to) {}
CharacterRange(uc16 from, uc16 to) : from_(from), to_(to) {}
static void AddClassEscape(uc16 type, ZoneList<CharacterRange>* ranges,
Zone* zone);
static Vector<const int> GetWordBounds();
static inline CharacterRange Singleton(uc32 value) {
static inline CharacterRange Singleton(uc16 value) {
return CharacterRange(value, value);
}
static inline CharacterRange Range(uc32 from, uc32 to) {
static inline CharacterRange Range(uc16 from, uc16 to) {
DCHECK(from <= to);
return CharacterRange(from, to);
}
static inline CharacterRange Everything() {
return CharacterRange(0, String::kMaxCodePoint);
return CharacterRange(0, 0xFFFF);
}
static inline ZoneList<CharacterRange>* List(Zone* zone,
CharacterRange range) {
ZoneList<CharacterRange>* list =
new (zone) ZoneList<CharacterRange>(1, zone);
list->Add(range, zone);
return list;
}
bool Contains(uc32 i) { return from_ <= i && i <= to_; }
uc32 from() const { return from_; }
void set_from(uc32 value) { from_ = value; }
uc32 to() const { return to_; }
void set_to(uc32 value) { to_ = value; }
bool Contains(uc16 i) { return from_ <= i && i <= to_; }
uc16 from() const { return from_; }
void set_from(uc16 value) { from_ = value; }
uc16 to() const { return to_; }
void set_to(uc16 value) { to_ = value; }
bool is_valid() { return from_ <= to_; }
bool IsEverything(uc16 max) { return from_ == 0 && to_ >= max; }
bool IsSingleton() { return (from_ == to_); }
void AddCaseEquivalents(Isolate* isolate, Zone* zone,
ZoneList<CharacterRange>* ranges, bool is_one_byte);
static void Split(ZoneList<CharacterRange>* base, Vector<const int> overlay,
ZoneList<CharacterRange>** included,
ZoneList<CharacterRange>** excluded, Zone* zone);
// Whether a range list is in canonical form: Ranges ordered by from value,
// and ranges non-overlapping and non-adjacent.
static bool IsCanonical(ZoneList<CharacterRange>* ranges);
@ -124,8 +119,8 @@ class CharacterRange {
static const int kPayloadMask = (1 << 24) - 1;
private:
uc32 from_;
uc32 to_;
uc16 from_;
uc16 to_;
};
@ -292,7 +287,6 @@ class RegExpCharacterClass final : public RegExpTree {
RegExpCharacterClass* AsCharacterClass() override;
bool IsCharacterClass() override;
bool IsTextElement() override { return true; }
bool NeedsDesugaringForUnicode(Zone* zone);
int min_match() override { return 1; }
int max_match() override { return 1; }
void AppendToText(RegExpText* text, Zone* zone) override;
@ -457,22 +451,6 @@ class RegExpLookaround final : public RegExpTree {
int capture_from() { return capture_from_; }
Type type() { return type_; }
class Builder {
public:
Builder(bool is_positive, RegExpNode* on_success,
int stack_pointer_register, int position_register,
int capture_register_count = 0, int capture_register_start = 0);
RegExpNode* on_match_success() { return on_match_success_; }
RegExpNode* ForMatch(RegExpNode* match);
private:
bool is_positive_;
RegExpNode* on_match_success_;
RegExpNode* on_success_;
int stack_pointer_register_;
int position_register_;
};
private:
RegExpTree* body_;
bool is_positive_;

View File

@ -15,18 +15,20 @@ namespace v8 {
namespace internal {
RegExpParser::RegExpParser(FlatStringReader* in, Handle<String>* error,
JSRegExp::Flags flags, Isolate* isolate, Zone* zone)
bool multiline, bool unicode, Isolate* isolate,
Zone* zone)
: isolate_(isolate),
zone_(zone),
error_(error),
captures_(NULL),
in_(in),
current_(kEndMarker),
flags_(flags),
next_pos_(0),
captures_started_(0),
capture_count_(0),
has_more_(true),
multiline_(multiline),
unicode_(unicode),
simple_(false),
contains_anchor_(false),
is_scanned_for_captures_(false),
@ -35,28 +37,9 @@ RegExpParser::RegExpParser(FlatStringReader* in, Handle<String>* error,
}
template <bool update_position>
uc32 RegExpParser::ReadNext() {
int position = next_pos_;
uc32 c0 = in()->Get(position);
position++;
// Read the whole surrogate pair in case of unicode flag, if possible.
if (unicode() && position < in()->length() &&
unibrow::Utf16::IsLeadSurrogate(static_cast<uc16>(c0))) {
uc16 c1 = in()->Get(position);
if (unibrow::Utf16::IsTrailSurrogate(c1)) {
c0 = unibrow::Utf16::CombineSurrogatePair(static_cast<uc16>(c0), c1);
position++;
}
}
if (update_position) next_pos_ = position;
return c0;
}
uc32 RegExpParser::Next() {
if (has_next()) {
return ReadNext<false>();
return in()->Get(next_pos_);
} else {
return kEndMarker;
}
@ -64,14 +47,25 @@ uc32 RegExpParser::Next() {
void RegExpParser::Advance() {
if (has_next()) {
if (next_pos_ < in()->length()) {
StackLimitCheck check(isolate());
if (check.HasOverflowed()) {
ReportError(CStrVector(Isolate::kStackOverflowMessage));
} else if (zone()->excess_allocation()) {
ReportError(CStrVector("Regular expression too large"));
} else {
current_ = ReadNext<true>();
current_ = in()->Get(next_pos_);
next_pos_++;
// Read the whole surrogate pair in case of unicode flag, if possible.
if (unicode_ && next_pos_ < in()->length() &&
unibrow::Utf16::IsLeadSurrogate(static_cast<uc16>(current_))) {
uc16 trail = in()->Get(next_pos_);
if (unibrow::Utf16::IsTrailSurrogate(trail)) {
current_ = unibrow::Utf16::CombineSurrogatePair(
static_cast<uc16>(current_), trail);
next_pos_++;
}
}
}
} else {
current_ = kEndMarker;
@ -148,7 +142,7 @@ RegExpTree* RegExpParser::ParsePattern() {
RegExpTree* RegExpParser::ParseDisjunction() {
// Used to store current state while parsing subexpressions.
RegExpParserState initial_state(NULL, INITIAL, RegExpLookaround::LOOKAHEAD, 0,
flags_, zone());
zone());
RegExpParserState* state = &initial_state;
// Cache the builder in a local variable for quick access.
RegExpBuilder* builder = initial_state.builder();
@ -212,7 +206,7 @@ RegExpTree* RegExpParser::ParseDisjunction() {
return ReportError(CStrVector("Nothing to repeat"));
case '^': {
Advance();
if (multiline()) {
if (multiline_) {
builder->AddAssertion(
new (zone()) RegExpAssertion(RegExpAssertion::START_OF_LINE));
} else {
@ -225,8 +219,8 @@ RegExpTree* RegExpParser::ParseDisjunction() {
case '$': {
Advance();
RegExpAssertion::AssertionType assertion_type =
multiline() ? RegExpAssertion::END_OF_LINE
: RegExpAssertion::END_OF_INPUT;
multiline_ ? RegExpAssertion::END_OF_LINE
: RegExpAssertion::END_OF_INPUT;
builder->AddAssertion(new (zone()) RegExpAssertion(assertion_type));
continue;
}
@ -236,9 +230,8 @@ RegExpTree* RegExpParser::ParseDisjunction() {
ZoneList<CharacterRange>* ranges =
new (zone()) ZoneList<CharacterRange>(2, zone());
CharacterRange::AddClassEscape('.', ranges, zone());
RegExpCharacterClass* cc =
new (zone()) RegExpCharacterClass(ranges, false);
builder->AddCharacterClass(cc);
RegExpTree* atom = new (zone()) RegExpCharacterClass(ranges, false);
builder->AddAtom(atom);
break;
}
case '(': {
@ -283,15 +276,14 @@ RegExpTree* RegExpParser::ParseDisjunction() {
captures_started_++;
}
// Store current state and begin new disjunction parsing.
state =
new (zone()) RegExpParserState(state, subexpr_type, lookaround_type,
captures_started_, flags_, zone());
state = new (zone()) RegExpParserState(
state, subexpr_type, lookaround_type, captures_started_, zone());
builder = state->builder();
continue;
}
case '[': {
RegExpTree* cc = ParseCharacterClass(CHECK_FAILED);
builder->AddCharacterClass(cc->AsCharacterClass());
RegExpTree* atom = ParseCharacterClass(CHECK_FAILED);
builder->AddAtom(atom);
break;
}
// Atom ::
@ -326,9 +318,8 @@ RegExpTree* RegExpParser::ParseDisjunction() {
ZoneList<CharacterRange>* ranges =
new (zone()) ZoneList<CharacterRange>(2, zone());
CharacterRange::AddClassEscape(c, ranges, zone());
RegExpCharacterClass* cc =
new (zone()) RegExpCharacterClass(ranges, false);
builder->AddCharacterClass(cc);
RegExpTree* atom = new (zone()) RegExpCharacterClass(ranges, false);
builder->AddAtom(atom);
break;
}
case '1':
@ -362,7 +353,7 @@ RegExpTree* RegExpParser::ParseDisjunction() {
// escaped,
// no other identity escapes are allowed. If the 'u' flag is not
// present, all identity escapes are allowed.
if (!unicode()) {
if (!unicode_) {
builder->AddCharacter(first_digit);
Advance(2);
} else {
@ -423,7 +414,7 @@ RegExpTree* RegExpParser::ParseDisjunction() {
uc32 value;
if (ParseHexEscape(2, &value)) {
builder->AddCharacter(value);
} else if (!unicode()) {
} else if (!unicode_) {
builder->AddCharacter('x');
} else {
// If the 'u' flag is present, invalid escapes are not treated as
@ -437,7 +428,7 @@ RegExpTree* RegExpParser::ParseDisjunction() {
uc32 value;
if (ParseUnicodeEscape(&value)) {
builder->AddUnicodeCharacter(value);
} else if (!unicode()) {
} else if (!unicode_) {
builder->AddCharacter('u');
} else {
// If the 'u' flag is present, invalid escapes are not treated as
@ -453,7 +444,7 @@ RegExpTree* RegExpParser::ParseDisjunction() {
// other identity escapes are allowed. If the 'u' flag is not
// present,
// all identity escapes are allowed.
if (!unicode() || IsSyntaxCharacter(current())) {
if (!unicode_ || IsSyntaxCharacter(current())) {
builder->AddCharacter(current());
Advance();
} else {
@ -754,7 +745,7 @@ bool RegExpParser::ParseUnicodeEscape(uc32* value) {
// Accept both \uxxxx and \u{xxxxxx} (if harmony unicode escapes are
// allowed). In the latter case, the number of hex digits between { } is
// arbitrary. \ and u have already been read.
if (current() == '{' && unicode()) {
if (current() == '{' && unicode_) {
int start = position();
Advance();
if (ParseUnlimitedLengthHexNumber(0x10ffff, value)) {
@ -849,7 +840,7 @@ uc32 RegExpParser::ParseClassCharacterEscape() {
if (ParseHexEscape(2, &value)) {
return value;
}
if (!unicode()) {
if (!unicode_) {
// If \x is not followed by a two-digit hexadecimal, treat it
// as an identity escape.
return 'x';
@ -865,7 +856,7 @@ uc32 RegExpParser::ParseClassCharacterEscape() {
if (ParseUnicodeEscape(&value)) {
return value;
}
if (!unicode()) {
if (!unicode_) {
return 'u';
}
// If the 'u' flag is present, invalid escapes are not treated as
@ -878,7 +869,7 @@ uc32 RegExpParser::ParseClassCharacterEscape() {
// If the 'u' flag is present, only syntax characters can be escaped, no
// other identity escapes are allowed. If the 'u' flag is not present, all
// identity escapes are allowed.
if (!unicode() || IsSyntaxCharacter(result)) {
if (!unicode_ || IsSyntaxCharacter(result)) {
Advance();
return result;
}
@ -908,29 +899,13 @@ CharacterRange RegExpParser::ParseClassAtom(uc16* char_class) {
case kEndMarker:
return ReportError(CStrVector("\\ at end of pattern"));
default:
first = ParseClassCharacterEscape(CHECK_FAILED);
uc32 c = ParseClassCharacterEscape(CHECK_FAILED);
return CharacterRange::Singleton(c);
}
} else {
Advance();
return CharacterRange::Singleton(first);
}
if (unicode() && unibrow::Utf16::IsLeadSurrogate(first)) {
// Combine with possibly following trail surrogate.
int start = position();
uc32 second = current();
if (second == '\\') {
second = ParseClassCharacterEscape(CHECK_FAILED);
} else {
Advance();
}
if (unibrow::Utf16::IsTrailSurrogate(second)) {
first = unibrow::Utf16::CombineSurrogatePair(first, second);
} else {
Reset(start);
}
}
return CharacterRange::Singleton(first);
}
@ -1010,10 +985,10 @@ RegExpTree* RegExpParser::ParseCharacterClass() {
bool RegExpParser::ParseRegExp(Isolate* isolate, Zone* zone,
FlatStringReader* input, JSRegExp::Flags flags,
RegExpCompileData* result) {
FlatStringReader* input, bool multiline,
bool unicode, RegExpCompileData* result) {
DCHECK(result != NULL);
RegExpParser parser(input, &result->error, flags, isolate, zone);
RegExpParser parser(input, &result->error, multiline, unicode, isolate, zone);
RegExpTree* tree = parser.ParsePattern();
if (parser.failed()) {
DCHECK(tree == NULL);
@ -1036,12 +1011,10 @@ bool RegExpParser::ParseRegExp(Isolate* isolate, Zone* zone,
}
RegExpBuilder::RegExpBuilder(Zone* zone, JSRegExp::Flags flags)
RegExpBuilder::RegExpBuilder(Zone* zone)
: zone_(zone),
pending_empty_(false),
flags_(flags),
characters_(NULL),
pending_surrogate_(kNoPendingSurrogate),
terms_(),
alternatives_()
#ifdef DEBUG
@ -1052,48 +1025,7 @@ RegExpBuilder::RegExpBuilder(Zone* zone, JSRegExp::Flags flags)
}
void RegExpBuilder::AddLeadSurrogate(uc16 lead_surrogate) {
DCHECK(unibrow::Utf16::IsLeadSurrogate(lead_surrogate));
FlushPendingSurrogate();
// Hold onto the lead surrogate, waiting for a trail surrogate to follow.
pending_surrogate_ = lead_surrogate;
}
void RegExpBuilder::AddTrailSurrogate(uc16 trail_surrogate) {
DCHECK(unibrow::Utf16::IsTrailSurrogate(trail_surrogate));
if (pending_surrogate_ != kNoPendingSurrogate) {
uc16 lead_surrogate = pending_surrogate_;
DCHECK(unibrow::Utf16::IsLeadSurrogate(lead_surrogate));
ZoneList<uc16> surrogate_pair(2, zone());
surrogate_pair.Add(lead_surrogate, zone());
surrogate_pair.Add(trail_surrogate, zone());
RegExpAtom* atom = new (zone()) RegExpAtom(surrogate_pair.ToConstVector());
pending_surrogate_ = kNoPendingSurrogate;
AddAtom(atom);
} else {
pending_surrogate_ = trail_surrogate;
FlushPendingSurrogate();
}
}
void RegExpBuilder::FlushPendingSurrogate() {
if (pending_surrogate_ != kNoPendingSurrogate) {
// Use character class to desugar lone surrogate matching.
RegExpCharacterClass* cc = new (zone()) RegExpCharacterClass(
CharacterRange::List(zone(),
CharacterRange::Singleton(pending_surrogate_)),
false);
pending_surrogate_ = kNoPendingSurrogate;
DCHECK(unicode());
AddCharacterClass(cc);
}
}
void RegExpBuilder::FlushCharacters() {
FlushPendingSurrogate();
pending_empty_ = false;
if (characters_ != NULL) {
RegExpTree* atom = new (zone()) RegExpAtom(characters_->ToConstVector());
@ -1121,7 +1053,6 @@ void RegExpBuilder::FlushText() {
void RegExpBuilder::AddCharacter(uc16 c) {
FlushPendingSurrogate();
pending_empty_ = false;
if (characters_ == NULL) {
characters_ = new (zone()) ZoneList<uc16>(4, zone());
@ -1133,13 +1064,11 @@ void RegExpBuilder::AddCharacter(uc16 c) {
void RegExpBuilder::AddUnicodeCharacter(uc32 c) {
if (c > unibrow::Utf16::kMaxNonSurrogateCharCode) {
DCHECK(unicode());
AddLeadSurrogate(unibrow::Utf16::LeadSurrogate(c));
AddTrailSurrogate(unibrow::Utf16::TrailSurrogate(c));
} else if (unicode() && unibrow::Utf16::IsLeadSurrogate(c)) {
AddLeadSurrogate(c);
} else if (unicode() && unibrow::Utf16::IsTrailSurrogate(c)) {
AddTrailSurrogate(c);
ZoneList<uc16> surrogate_pair(2, zone());
surrogate_pair.Add(unibrow::Utf16::LeadSurrogate(c), zone());
surrogate_pair.Add(unibrow::Utf16::TrailSurrogate(c), zone());
RegExpAtom* atom = new (zone()) RegExpAtom(surrogate_pair.ToConstVector());
AddAtom(atom);
} else {
AddCharacter(static_cast<uc16>(c));
}
@ -1149,17 +1078,6 @@ void RegExpBuilder::AddUnicodeCharacter(uc32 c) {
void RegExpBuilder::AddEmpty() { pending_empty_ = true; }
void RegExpBuilder::AddCharacterClass(RegExpCharacterClass* cc) {
if (unicode() && cc->NeedsDesugaringForUnicode(zone())) {
// In unicode mode, character class needs to be desugared, so it
// must be a standalone term instead of being part of a RegExpText.
AddTerm(cc);
} else {
AddAtom(cc);
}
}
void RegExpBuilder::AddAtom(RegExpTree* term) {
if (term->IsEmpty()) {
AddEmpty();
@ -1176,13 +1094,6 @@ void RegExpBuilder::AddAtom(RegExpTree* term) {
}
void RegExpBuilder::AddTerm(RegExpTree* term) {
FlushText();
terms_.Add(term, zone());
LAST(ADD_ATOM);
}
void RegExpBuilder::AddAssertion(RegExpTree* assert) {
FlushText();
terms_.Add(assert, zone());
@ -1221,7 +1132,6 @@ RegExpTree* RegExpBuilder::ToRegExp() {
void RegExpBuilder::AddQuantifierToAtom(
int min, int max, RegExpQuantifier::QuantifierType quantifier_type) {
FlushPendingSurrogate();
if (pending_empty_) {
pending_empty_ = false;
return;

View File

@ -99,15 +99,13 @@ class BufferedZoneList {
// Accumulates RegExp atoms and assertions into lists of terms and alternatives.
class RegExpBuilder : public ZoneObject {
public:
RegExpBuilder(Zone* zone, JSRegExp::Flags flags);
explicit RegExpBuilder(Zone* zone);
void AddCharacter(uc16 character);
void AddUnicodeCharacter(uc32 character);
// "Adds" an empty expression. Does nothing except consume a
// following quantifier
void AddEmpty();
void AddCharacterClass(RegExpCharacterClass* cc);
void AddAtom(RegExpTree* tree);
void AddTerm(RegExpTree* tree);
void AddAssertion(RegExpTree* tree);
void NewAlternative(); // '|'
void AddQuantifierToAtom(int min, int max,
@ -115,21 +113,14 @@ class RegExpBuilder : public ZoneObject {
RegExpTree* ToRegExp();
private:
static const uc16 kNoPendingSurrogate = 0;
void AddLeadSurrogate(uc16 lead_surrogate);
void AddTrailSurrogate(uc16 trail_surrogate);
void FlushPendingSurrogate();
void FlushCharacters();
void FlushText();
void FlushTerms();
Zone* zone() const { return zone_; }
bool unicode() const { return (flags_ & JSRegExp::kUnicode) != 0; }
Zone* zone_;
bool pending_empty_;
JSRegExp::Flags flags_;
ZoneList<uc16>* characters_;
uc16 pending_surrogate_;
BufferedZoneList<RegExpTree, 2> terms_;
BufferedZoneList<RegExpTree, 2> text_;
BufferedZoneList<RegExpTree, 2> alternatives_;
@ -144,11 +135,12 @@ class RegExpBuilder : public ZoneObject {
class RegExpParser BASE_EMBEDDED {
public:
RegExpParser(FlatStringReader* in, Handle<String>* error,
JSRegExp::Flags flags, Isolate* isolate, Zone* zone);
RegExpParser(FlatStringReader* in, Handle<String>* error, bool multiline_mode,
bool unicode, Isolate* isolate, Zone* zone);
static bool ParseRegExp(Isolate* isolate, Zone* zone, FlatStringReader* input,
JSRegExp::Flags flags, RegExpCompileData* result);
bool multiline, bool unicode,
RegExpCompileData* result);
RegExpTree* ParsePattern();
RegExpTree* ParseDisjunction();
@ -191,8 +183,6 @@ class RegExpParser BASE_EMBEDDED {
int captures_started() { return captures_started_; }
int position() { return next_pos_ - 1; }
bool failed() { return failed_; }
bool unicode() const { return (flags_ & JSRegExp::kUnicode) != 0; }
bool multiline() const { return (flags_ & JSRegExp::kMultiline) != 0; }
static bool IsSyntaxCharacter(uc32 c);
@ -213,10 +203,9 @@ class RegExpParser BASE_EMBEDDED {
RegExpParserState(RegExpParserState* previous_state,
SubexpressionType group_type,
RegExpLookaround::Type lookaround_type,
int disjunction_capture_index, JSRegExp::Flags flags,
Zone* zone)
int disjunction_capture_index, Zone* zone)
: previous_state_(previous_state),
builder_(new (zone) RegExpBuilder(zone, flags)),
builder_(new (zone) RegExpBuilder(zone)),
group_type_(group_type),
lookaround_type_(lookaround_type),
disjunction_capture_index_(disjunction_capture_index) {}
@ -260,8 +249,6 @@ class RegExpParser BASE_EMBEDDED {
bool has_more() { return has_more_; }
bool has_next() { return next_pos_ < in()->length(); }
uc32 Next();
template <bool update_position>
uc32 ReadNext();
FlatStringReader* in() { return in_; }
void ScanForCaptures();
@ -271,12 +258,13 @@ class RegExpParser BASE_EMBEDDED {
ZoneList<RegExpCapture*>* captures_;
FlatStringReader* in_;
uc32 current_;
JSRegExp::Flags flags_;
int next_pos_;
int captures_started_;
// The capture count is only valid after we have scanned for captures.
int capture_count_;
bool has_more_;
bool multiline_;
bool unicode_;
bool simple_;
bool contains_anchor_;
bool is_scanned_for_captures_;

View File

@ -96,7 +96,7 @@ static bool CheckParse(const char* input) {
FlatStringReader reader(CcTest::i_isolate(), CStrVector(input));
RegExpCompileData result;
return v8::internal::RegExpParser::ParseRegExp(
CcTest::i_isolate(), &zone, &reader, JSRegExp::kNone, &result);
CcTest::i_isolate(), &zone, &reader, false, false, &result);
}
@ -106,10 +106,8 @@ static void CheckParseEq(const char* input, const char* expected,
Zone zone;
FlatStringReader reader(CcTest::i_isolate(), CStrVector(input));
RegExpCompileData result;
JSRegExp::Flags flags = JSRegExp::kNone;
if (unicode) flags |= JSRegExp::kUnicode;
CHECK(v8::internal::RegExpParser::ParseRegExp(CcTest::i_isolate(), &zone,
&reader, flags, &result));
CHECK(v8::internal::RegExpParser::ParseRegExp(
CcTest::i_isolate(), &zone, &reader, false, unicode, &result));
CHECK(result.tree != NULL);
CHECK(result.error.is_null());
std::ostringstream os;
@ -127,7 +125,7 @@ static bool CheckSimple(const char* input) {
FlatStringReader reader(CcTest::i_isolate(), CStrVector(input));
RegExpCompileData result;
CHECK(v8::internal::RegExpParser::ParseRegExp(
CcTest::i_isolate(), &zone, &reader, JSRegExp::kNone, &result));
CcTest::i_isolate(), &zone, &reader, false, false, &result));
CHECK(result.tree != NULL);
CHECK(result.error.is_null());
return result.simple;
@ -145,7 +143,7 @@ static MinMaxPair CheckMinMaxMatch(const char* input) {
FlatStringReader reader(CcTest::i_isolate(), CStrVector(input));
RegExpCompileData result;
CHECK(v8::internal::RegExpParser::ParseRegExp(
CcTest::i_isolate(), &zone, &reader, JSRegExp::kNone, &result));
CcTest::i_isolate(), &zone, &reader, false, false, &result));
CHECK(result.tree != NULL);
CHECK(result.error.is_null());
int min_match = result.tree->min_match();
@ -208,8 +206,8 @@ void TestRegExpParser(bool lookbehind) {
}
CheckParseEq("()", "(^ %)");
CheckParseEq("(?=)", "(-> + %)");
CheckParseEq("[]", "^[\\x00-\\u{10ffff}]"); // Doesn't compile on windows
CheckParseEq("[^]", "[\\x00-\\u{10ffff}]"); // \uffff isn't in codepage 1252
CheckParseEq("[]", "^[\\x00-\\uffff]"); // Doesn't compile on windows
CheckParseEq("[^]", "[\\x00-\\uffff]"); // \uffff isn't in codepage 1252
CheckParseEq("[x]", "[x]");
CheckParseEq("[xyz]", "[x y z]");
CheckParseEq("[a-zA-Z0-9]", "[a-z A-Z 0-9]");
@ -318,10 +316,6 @@ void TestRegExpParser(bool lookbehind) {
CheckParseEq("\\u{12345}{3}", "(# 3 3 g '\\ud808\\udf45')", true);
CheckParseEq("\\u{12345}*", "(# 0 - g '\\ud808\\udf45')", true);
CheckParseEq("\\ud808\\udf45*", "(# 0 - g '\\ud808\\udf45')", true);
CheckParseEq("[\\ud808\\udf45-\\ud809\\udccc]", "[\\u{012345}-\\u{0124cc}]",
true);
CHECK_SIMPLE("", false);
CHECK_SIMPLE("a", true);
CHECK_SIMPLE("a|b", false);
@ -460,7 +454,7 @@ static void ExpectError(const char* input,
FlatStringReader reader(CcTest::i_isolate(), CStrVector(input));
RegExpCompileData result;
CHECK(!v8::internal::RegExpParser::ParseRegExp(
CcTest::i_isolate(), &zone, &reader, JSRegExp::kNone, &result));
CcTest::i_isolate(), &zone, &reader, false, false, &result));
CHECK(result.tree == NULL);
CHECK(!result.error.is_null());
v8::base::SmartArrayPointer<char> str = result.error->ToCString(ALLOW_NULLS);
@ -529,7 +523,7 @@ static void TestCharacterClassEscapes(uc16 c, bool (pred)(uc16 c)) {
ZoneList<CharacterRange>* ranges =
new(&zone) ZoneList<CharacterRange>(2, &zone);
CharacterRange::AddClassEscape(c, ranges, &zone);
for (uc32 i = 0; i < (1 << 16); i++) {
for (unsigned i = 0; i < (1 << 16); i++) {
bool in_class = false;
for (int j = 0; !in_class && j < ranges->length(); j++) {
CharacterRange& range = ranges->at(j);
@ -556,19 +550,17 @@ static RegExpNode* Compile(const char* input, bool multiline, bool unicode,
Isolate* isolate = CcTest::i_isolate();
FlatStringReader reader(isolate, CStrVector(input));
RegExpCompileData compile_data;
JSRegExp::Flags flags = JSRegExp::kNone;
if (multiline) flags = JSRegExp::kMultiline;
if (unicode) flags = JSRegExp::kUnicode;
if (!v8::internal::RegExpParser::ParseRegExp(CcTest::i_isolate(), zone,
&reader, flags, &compile_data))
&reader, multiline, unicode,
&compile_data))
return NULL;
Handle<String> pattern = isolate->factory()
->NewStringFromUtf8(CStrVector(input))
.ToHandleChecked();
Handle<String> sample_subject =
isolate->factory()->NewStringFromUtf8(CStrVector("")).ToHandleChecked();
RegExpEngine::Compile(isolate, zone, &compile_data, flags, pattern,
sample_subject, is_one_byte);
RegExpEngine::Compile(isolate, zone, &compile_data, false, false, multiline,
false, pattern, sample_subject, is_one_byte);
return compile_data.node;
}
@ -1677,7 +1669,7 @@ TEST(CharacterRangeCaseIndependence) {
}
static bool InClass(uc32 c, ZoneList<CharacterRange>* ranges) {
static bool InClass(uc16 c, ZoneList<CharacterRange>* ranges) {
if (ranges == NULL)
return false;
for (int i = 0; i < ranges->length(); i++) {
@ -1689,46 +1681,29 @@ static bool InClass(uc32 c, ZoneList<CharacterRange>* ranges) {
}
TEST(UnicodeRangeSplitter) {
TEST(CharClassDifference) {
Zone zone;
ZoneList<CharacterRange>* base =
new(&zone) ZoneList<CharacterRange>(1, &zone);
base->Add(CharacterRange::Everything(), &zone);
UnicodeRangeSplitter splitter(&zone, base);
// BMP
for (uc32 c = 0; c < 0xd800; c++) {
CHECK(InClass(c, splitter.bmp()));
CHECK(!InClass(c, splitter.lead_surrogates()));
CHECK(!InClass(c, splitter.trail_surrogates()));
CHECK(!InClass(c, splitter.non_bmp()));
}
// Lead surrogates
for (uc32 c = 0xd800; c < 0xdbff; c++) {
CHECK(!InClass(c, splitter.bmp()));
CHECK(InClass(c, splitter.lead_surrogates()));
CHECK(!InClass(c, splitter.trail_surrogates()));
CHECK(!InClass(c, splitter.non_bmp()));
}
// Trail surrogates
for (uc32 c = 0xdc00; c < 0xdfff; c++) {
CHECK(!InClass(c, splitter.bmp()));
CHECK(!InClass(c, splitter.lead_surrogates()));
CHECK(InClass(c, splitter.trail_surrogates()));
CHECK(!InClass(c, splitter.non_bmp()));
}
// BMP
for (uc32 c = 0xe000; c < 0xffff; c++) {
CHECK(InClass(c, splitter.bmp()));
CHECK(!InClass(c, splitter.lead_surrogates()));
CHECK(!InClass(c, splitter.trail_surrogates()));
CHECK(!InClass(c, splitter.non_bmp()));
}
// Non-BMP
for (uc32 c = 0x10000; c < 0x10ffff; c++) {
CHECK(!InClass(c, splitter.bmp()));
CHECK(!InClass(c, splitter.lead_surrogates()));
CHECK(!InClass(c, splitter.trail_surrogates()));
CHECK(InClass(c, splitter.non_bmp()));
Vector<const int> overlay = CharacterRange::GetWordBounds();
ZoneList<CharacterRange>* included = NULL;
ZoneList<CharacterRange>* excluded = NULL;
CharacterRange::Split(base, overlay, &included, &excluded, &zone);
for (int i = 0; i < (1 << 16); i++) {
bool in_base = InClass(i, base);
if (in_base) {
bool in_overlay = false;
for (int j = 0; !in_overlay && j < overlay.length(); j += 2) {
if (overlay[j] <= i && i < overlay[j+1])
in_overlay = true;
}
CHECK_EQ(in_overlay, InClass(i, included));
CHECK_EQ(!in_overlay, InClass(i, excluded));
} else {
CHECK(!InClass(i, included));
CHECK(!InClass(i, excluded));
}
}
}

View File

@ -1,149 +0,0 @@
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Flags: --harmony-unicode-regexps --harmony-regexp-lookbehind
function execl(expectation, regexp, subject) {
if (regexp instanceof String) regexp = new RegExp(regexp, "u");
assertEquals(expectation, regexp.exec(subject));
}
function execs(expectation, regexp_source, subject) {
execl(expectation, new RegExp(regexp_source, "u"), subject);
}
// Character ranges.
execl(["A"], /[A-D]/u, "A");
execs(["A"], "[A-D]", "A");
execl(["ABCD"], /[A-D]+/u, "ZABCDEF");
execs(["ABCD"], "[A-D]+", "ZABCDEF");
execl(["\u{12345}"], /[\u1234-\u{12345}]/u, "\u{12345}");
execs(["\u{12345}"], "[\u1234-\u{12345}]", "\u{12345}");
execl(null, /[^\u1234-\u{12345}]/u, "\u{12345}");
execs(null, "[^\u1234-\u{12345}]", "\u{12345}");
execl(["\u{1234}"], /[\u1234-\u{12345}]/u, "\u{1234}");
execs(["\u{1234}"], "[\u1234-\u{12345}]", "\u{1234}");
execl(null, /[^\u1234-\u{12345}]/u, "\u{1234}");
execs(null, "[^\u1234-\u{12345}]", "\u{1234}");
execl(null, /[\u1234-\u{12345}]/u, "\u{1233}");
execs(null, "[\u1234-\u{12345}]", "\u{1233}");
execl(["\u{1233}"], /[^\u1234-\u{12345}]/u, "\u{1233}");
execs(["\u{1233}"], "[^\u1234-\u{12345}]", "\u{1233}");
execl(["\u{12346}"], /[^\u1234-\u{12345}]/u, "\u{12346}");
execs(["\u{12346}"], "[^\u1234-\u{12345}]", "\u{12346}");
execl(null, /[\u1234-\u{12345}]/u, "\u{12346}");
execs(null, "[\u1234-\u{12345}]", "\u{12346}");
execl(["\u{12342}"], /[\u{12340}-\u{12345}]/u, "\u{12342}");
execs(["\u{12342}"], "[\u{12340}-\u{12345}]", "\u{12342}");
execl(null, /[^\u{12340}-\u{12345}]/u, "\u{12342}");
execs(null, "[^\u{12340}-\u{12345}]", "\u{12342}");
execl(["\u{ffff}"], /[\u{ff80}-\u{12345}]/u, "\u{ffff}");
execs(["\u{ffff}"], "[\u{ff80}-\u{12345}]", "\u{ffff}");
execl(null, /[^\u{ff80}-\u{12345}]/u, "\u{ffff}");
execs(null, "[^\u{ff80}-\u{12345}]", "\u{ffff}");
// Lone surrogate
execl(["\ud800"], /[^\u{ff80}-\u{12345}]/u, "\uff99\u{d800}A");
execs(["\udc00"], "[^\u{ff80}-\u{12345}]", "\uff99\u{dc00}A");
execl(["\udc01"], /[\u0100-\u{10ffff}]/u, "A\udc01");
execl(["\udc03"], /[\udc01-\udc03]/u, "\ud801\udc02\udc03");
execl(["\ud801"], /[\ud801-\ud803]/u, "\ud802\udc01\ud801");
// Paired sorrogate.
execl(null, /[^\u{ff80}-\u{12345}]/u, "\u{d800}\u{dc00}");
execs(null, "[^\u{ff80}-\u{12345}]", "\u{d800}\u{dc00}");
execl(["\ud800\udc00"], /[\u{ff80}-\u{12345}]/u, "\u{d800}\u{dc00}");
execs(["\ud800\udc00"], "[\u{ff80}-\u{12345}]", "\u{d800}\u{dc00}");
execl(["foo\u{10e6d}bar"], /foo\ud803\ude6dbar/u, "foo\u{10e6d}bar");
// Lone surrogates
execl(["\ud801\ud801"], /\ud801+/u, "\ud801\udc01\ud801\ud801");
execl(["\udc01\udc01"], /\udc01+/u, "\ud801\ud801\udc01\udc01\udc01");
execl(["\udc02\udc03A"], /\W\WA/u, "\ud801\udc01A\udc02\udc03A");
execl(["\ud801\ud802"], /\ud801./u, "\ud801\udc01\ud801\ud802");
execl(["\udc02\udc03A"], /[\ud800-\udfff][\ud800-\udfff]A/u,
"\ud801\udc01A\udc02\udc03A");
// Character classes
execl(null, /\w/u, "\ud801\udc01");
execl(["\ud801"], /[^\w]/, "\ud801\udc01");
execl(["\ud801\udc01"], /[^\w]/u, "\ud801\udc01");
execl(["\ud801"], /\W/, "\ud801\udc01");
execl(["\ud801\udc01"], /\W/u, "\ud801\udc01");
execl(["\ud800X"], /.X/u, "\ud800XaX");
execl(["aX"], /.(?<!\ud800)X/u, "\ud800XaX");
execl(["aX"], /.(?<![\ud800-\ud900])X/u, "\ud800XaX");
execl(null, /[]/u, "\u1234");
execl(["0abc"], /[^]abc/u, "0abc");
execl(["\u1234abc"], /[^]abc/u, "\u1234abc");
execl(["\u{12345}abc"], /[^]abc/u, "\u{12345}abc");
// Backward matches of lone surrogates.
execl(["B", "\ud803A"], /(?<=([\ud800-\ud900]A))B/u,
"\ud801\udc00AB\udc00AB\ud802\ud803AB");
execl(["B", "\udc00A"], /(?<=([\ud800-\u{10300}]A))B/u,
"\ud801\udc00AB\udc00AB\ud802\ud803AB");
execl(["B", "\udc11A"], /(?<=([\udc00-\udd00]A))B/u,
"\ud801\udc00AB\udc11AB\ud802\ud803AB");
execl(["X", "\ud800C"], /(?<=(\ud800\w))X/u,
"\ud800\udc00AX\udc11BX\ud800\ud800CX");
execl(["C", "\ud800\ud800"], /(?<=(\ud800.))\w/u,
"\ud800\udc00AX\udc11BX\ud800\ud800CX");
execl(["X", "\udc01C"], /(?<=(\udc01\w))X/u,
"\ud800\udc01AX\udc11BX\udc01\udc01CX");
execl(["C", "\udc01\udc01"], /(?<=(\udc01.))./u,
"\ud800\udc01AX\udc11BX\udc01\udc01CX");
var L = "\ud800";
var T = "\udc00";
var X = "X";
// Test string contains only match.
function testw(expect, src, subject) {
var re = new RegExp("^" + src + "$", "u");
assertEquals(expect, re.test(subject));
}
// Test string starts with match.
function tests(expect, src, subject) {
var re = new RegExp("^" + src, "u");
assertEquals(expect, re.test(subject));
}
testw(true, X, X);
testw(true, L, L);
testw(true, T, T);
testw(true, L + T, L + T);
testw(true, T + L, T + L);
testw(false, T, L + T);
testw(false, L, L + T);
testw(true, ".(?<=" + L + ")", L);
testw(true, ".(?<=" + T + ")", T);
testw(true, ".(?<=" + L + T + ")", L + T);
testw(true, ".(?<=" + L + T + ")", L + T);
tests(true, ".(?<=" + T + ")", T + L);
tests(false, ".(?<=" + L + ")", L + T);
tests(false, ".(?<=" + T + ")", L + T);
tests(true, "..(?<=" + T + ")", T + T + L);
tests(true, "..(?<=" + T + ")", X + T + L);
tests(true, "...(?<=" + L + ")", X + T + L);
tests(false, "...(?<=" + T + ")", X + L + T)
tests(true, "..(?<=" + L + T + ")", X + L + T)
tests(true, "..(?<=" + L + T + "(?<=" + L + T + "))", X + L + T);
tests(false, "..(?<=" + L + "(" + T + "))", X + L + T);
tests(false, ".*" + L, X + L + T);
tests(true, ".*" + L, X + L + L + T);
tests(false, ".*" + L, X + L + T + L + T);
tests(false, ".*" + T, X + L + T + L + T);
tests(true, ".*" + T, X + L + T + T + L + T);

View File

@ -252,30 +252,6 @@ assertFalse(/(\u{12345}|\u{23456}).\1/u.test("\u{12345}b\u{23456}"));
assertTrue(new RegExp("\u{12345}{3}", "u").test("\u{12345}\u{12345}\u{12345}"));
assertTrue(/\u{12345}{3}/u.test("\u{12345}\u{12345}\u{12345}"));
assertTrue(new RegExp("\u{12345}{3}").test("\u{12345}\udf45\udf45"));
assertFalse(/\ud808\udf45{3}/u.test("\u{12345}\udf45\udf45"));
assertTrue(/\ud808\udf45{3}/u.test("\u{12345}\u{12345}\u{12345}"));
assertTrue(/\ud808\udf45{3}/u.test("\u{12345}\udf45\udf45"));
assertFalse(new RegExp("\u{12345}{3}", "u").test("\u{12345}\udf45\udf45"));
assertFalse(/\u{12345}{3}/u.test("\u{12345}\udf45\udf45"));
// Mixed escapes and literal surrogates.
assertEquals(["\u{10000}\u{10000}"],
new RegExp("\ud800\udc00+", "u").exec("\u{10000}\u{10000}"));
assertEquals(["\u{10000}\u{10000}"],
new RegExp("\\ud800\\udc00+", "u").exec("\u{10000}\u{10000}"));
assertEquals(["\u{10000}\u{10000}"],
new RegExp("\\ud800\udc00+", "u").exec("\u{10000}\u{10000}"));
assertEquals(["\u{10000}\u{10000}"],
new RegExp("\ud800\\udc00+", "u").exec("\u{10000}\u{10000}"));
assertEquals(["\u{10003}\u{50001}"],
new RegExp("[\\ud800\\udc03-\\ud900\\udc01\]+", "u").exec(
"\u{10003}\u{50001}"));
assertEquals(["\u{10003}\u{50001}"],
new RegExp("[\\ud800\udc03-\ud900\\udc01\]+", "u").exec(
"\u{10003}\u{50001}"));
assertEquals(["\u{50001}"],
new RegExp("[\\ud800\udc03-\ud900\\udc01\]+", "u").exec(
"\u{10002}\u{50001}"));
assertEquals(["\u{10003}\u{50001}"],
new RegExp("[\ud800\udc03-\u{50001}\]+", "u").exec(
"\u{10003}\u{50001}"));