Break deserializer reservations into chunks that fit onto a page.

R=mvstanton@chromium.org

Review URL: https://codereview.chromium.org/653033002

git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@24639 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
This commit is contained in:
yangguo@chromium.org 2014-10-15 14:04:53 +00:00
parent 461a2f403e
commit 4f9fd83d85
11 changed files with 453 additions and 240 deletions

View File

@ -1177,7 +1177,12 @@ Handle<SharedFunctionInfo> Compiler::CompileScript(
compile_options == ScriptCompiler::kConsumeCodeCache && compile_options == ScriptCompiler::kConsumeCodeCache &&
!isolate->debug()->is_loaded()) { !isolate->debug()->is_loaded()) {
HistogramTimerScope timer(isolate->counters()->compile_deserialize()); HistogramTimerScope timer(isolate->counters()->compile_deserialize());
return CodeSerializer::Deserialize(isolate, *cached_data, source); Handle<SharedFunctionInfo> result;
if (CodeSerializer::Deserialize(isolate, *cached_data, source)
.ToHandle(&result)) {
return result;
}
// Deserializer failed. Fall through to compile.
} else { } else {
maybe_result = compilation_cache->LookupScript( maybe_result = compilation_cache->LookupScript(
source, script_name, line_offset, column_offset, source, script_name, line_offset, column_offset,

View File

@ -28,6 +28,7 @@
#include "src/natives.h" #include "src/natives.h"
#include "src/runtime-profiler.h" #include "src/runtime-profiler.h"
#include "src/scopeinfo.h" #include "src/scopeinfo.h"
#include "src/serialize.h"
#include "src/snapshot.h" #include "src/snapshot.h"
#include "src/utils.h" #include "src/utils.h"
#include "src/v8threads.h" #include "src/v8threads.h"
@ -919,33 +920,41 @@ static bool AbortIncrementalMarkingAndCollectGarbage(
} }
void Heap::ReserveSpace(int* sizes, Address* locations_out) { bool Heap::ReserveSpace(Reservation* reservations) {
bool gc_performed = true; bool gc_performed = true;
int counter = 0; int counter = 0;
static const int kThreshold = 20; static const int kThreshold = 20;
while (gc_performed && counter++ < kThreshold) { while (gc_performed && counter++ < kThreshold) {
gc_performed = false; gc_performed = false;
for (int space = NEW_SPACE; space < Serializer::kNumberOfSpaces; space++) { for (int space = NEW_SPACE; space < Serializer::kNumberOfSpaces; space++) {
if (sizes[space] == 0) continue; Reservation* reservation = &reservations[space];
DCHECK_LE(1, reservation->length());
if (reservation->at(0).size == 0) continue;
bool perform_gc = false; bool perform_gc = false;
if (space == LO_SPACE) { if (space == LO_SPACE) {
perform_gc = !lo_space()->CanAllocateSize(sizes[space]); DCHECK_EQ(1, reservation->length());
perform_gc = !lo_space()->CanAllocateSize(reservation->at(0).size);
} else { } else {
AllocationResult allocation; for (auto& chunk : *reservation) {
if (space == NEW_SPACE) { AllocationResult allocation;
allocation = new_space()->AllocateRaw(sizes[space]); int size = chunk.size;
} else { if (space == NEW_SPACE) {
allocation = paged_space(space)->AllocateRaw(sizes[space]); allocation = new_space()->AllocateRaw(size);
} } else {
FreeListNode* node; allocation = paged_space(space)->AllocateRaw(size);
if (allocation.To(&node)) { }
// Mark with a free list node, in case we have a GC before FreeListNode* node;
// deserializing. if (allocation.To(&node)) {
node->set_size(this, sizes[space]); // Mark with a free list node, in case we have a GC before
DCHECK(space < Serializer::kNumberOfPreallocatedSpaces); // deserializing.
locations_out[space] = node->address(); node->set_size(this, size);
} else { DCHECK(space < Serializer::kNumberOfPreallocatedSpaces);
perform_gc = true; chunk.start = node->address();
chunk.end = node->address() + size;
} else {
perform_gc = true;
break;
}
} }
} }
if (perform_gc) { if (perform_gc) {
@ -963,10 +972,7 @@ void Heap::ReserveSpace(int* sizes, Address* locations_out) {
} }
} }
if (gc_performed) { return !gc_performed;
// Failed to reserve the space after several attempts.
V8::FatalProcessOutOfMemory("Heap::ReserveSpace");
}
} }

View File

@ -1009,7 +1009,16 @@ class Heap {
// Support for partial snapshots. After calling this we have a linear // Support for partial snapshots. After calling this we have a linear
// space to write objects in each space. // space to write objects in each space.
void ReserveSpace(int* sizes, Address* addresses); struct Chunk {
uint32_t size;
Address start;
Address end;
};
typedef List<Chunk> Reservation;
// Returns false if not able to reserve.
bool ReserveSpace(Reservation* reservations);
// //
// Support for the API. // Support for the API.

View File

@ -80,7 +80,9 @@ class List {
Vector<T> ToVector() const { return Vector<T>(data_, length_); } Vector<T> ToVector() const { return Vector<T>(data_, length_); }
Vector<const T> ToConstVector() { return Vector<const T>(data_, length_); } Vector<const T> ToConstVector() const {
return Vector<const T>(data_, length_);
}
// Adds a copy of the given 'element' to the end of the list, // Adds a copy of the given 'element' to the end of the list,
// expanding the list if necessary. // expanding the list if necessary.

View File

@ -91,14 +91,25 @@ class SnapshotWriter {
i::byte* snapshot_bytes = snapshot_data.begin(); i::byte* snapshot_bytes = snapshot_data.begin();
sink.PutBlob(snapshot_bytes, snapshot_data.length(), "snapshot"); sink.PutBlob(snapshot_bytes, snapshot_data.length(), "snapshot");
for (size_t i = 0; i < arraysize(spaces); ++i) for (size_t i = 0; i < arraysize(spaces); ++i) {
sink.PutInt(serializer.CurrentAllocationAddress(spaces[i]), "spaces"); i::Vector<const uint32_t> chunks =
serializer.FinalAllocationChunks(spaces[i]);
// For the start-up snapshot, none of the reservations has more than
// one chunk (reservation for each space fits onto a single page).
CHECK_EQ(1, chunks.length());
sink.PutInt(chunks[0], "spaces");
}
i::byte* context_bytes = context_snapshot_data.begin(); i::byte* context_bytes = context_snapshot_data.begin();
sink.PutBlob(context_bytes, context_snapshot_data.length(), "context"); sink.PutBlob(context_bytes, context_snapshot_data.length(), "context");
for (size_t i = 0; i < arraysize(spaces); ++i) for (size_t i = 0; i < arraysize(spaces); ++i) {
sink.PutInt(context_serializer.CurrentAllocationAddress(spaces[i]), i::Vector<const uint32_t> chunks =
"spaces"); context_serializer.FinalAllocationChunks(spaces[i]);
// For the context snapshot, none of the reservations has more than
// one chunk (reservation for each space fits onto a single page).
CHECK_EQ(1, chunks.length());
sink.PutInt(chunks[0], "spaces");
}
size_t written = fwrite(startup_blob.begin(), 1, startup_blob.length(), size_t written = fwrite(startup_blob.begin(), 1, startup_blob.length(),
startup_blob_file_); startup_blob_file_);
@ -203,8 +214,12 @@ class SnapshotWriter {
void WriteSizeVar(const i::Serializer& ser, const char* prefix, void WriteSizeVar(const i::Serializer& ser, const char* prefix,
const char* name, int space) const { const char* name, int space) const {
fprintf(fp_, "const int Snapshot::%s%s_space_used_ = %d;\n", i::Vector<const uint32_t> chunks = ser.FinalAllocationChunks(space);
prefix, name, ser.CurrentAllocationAddress(space)); // For the start-up snapshot, none of the reservations has more than
// one chunk (total reservation fits into a single page).
CHECK_EQ(1, chunks.length());
fprintf(fp_, "const int Snapshot::%s%s_space_used_ = %d;\n", prefix, name,
chunks[0]);
} }
void WriteSnapshotData(const i::List<i::byte>* data) const { void WriteSnapshotData(const i::List<i::byte>* data) const {
@ -416,6 +431,9 @@ int main(int argc, char** argv) {
context_ser.Serialize(&raw_context); context_ser.Serialize(&raw_context);
ser.SerializeWeakReferences(); ser.SerializeWeakReferences();
context_ser.FinalizeAllocation();
ser.FinalizeAllocation();
{ {
SnapshotWriter writer(argv[1]); SnapshotWriter writer(argv[1]);
if (i::FLAG_raw_file && i::FLAG_raw_context_file) if (i::FLAG_raw_file && i::FLAG_raw_context_file)

View File

@ -598,9 +598,7 @@ Deserializer::Deserializer(SnapshotByteSource* source)
source_(source), source_(source),
external_reference_decoder_(NULL), external_reference_decoder_(NULL),
deserialized_large_objects_(0) { deserialized_large_objects_(0) {
for (int i = 0; i < kNumberOfSpaces; i++) { for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) current_chunk_[i] = 0;
reservations_[i] = kUninitializedReservation;
}
} }
@ -613,10 +611,19 @@ void Deserializer::FlushICacheForNewCodeObjects() {
} }
bool Deserializer::ReserveSpace() {
if (!isolate_->heap()->ReserveSpace(reservations_)) return false;
for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) {
high_water_[i] = reservations_[i][0].start;
}
return true;
}
void Deserializer::Deserialize(Isolate* isolate) { void Deserializer::Deserialize(Isolate* isolate) {
isolate_ = isolate; isolate_ = isolate;
DCHECK(isolate_ != NULL); DCHECK(isolate_ != NULL);
isolate_->heap()->ReserveSpace(reservations_, high_water_); if (!ReserveSpace()) FatalProcessOutOfMemory("deserializing context");
// No active threads. // No active threads.
DCHECK_EQ(NULL, isolate_->thread_manager()->FirstThreadStateInUse()); DCHECK_EQ(NULL, isolate_->thread_manager()->FirstThreadStateInUse());
// No active handles. // No active handles.
@ -658,13 +665,17 @@ void Deserializer::Deserialize(Isolate* isolate) {
} }
void Deserializer::DeserializePartial(Isolate* isolate, Object** root) { void Deserializer::DeserializePartial(Isolate* isolate, Object** root,
OnOOM on_oom) {
isolate_ = isolate; isolate_ = isolate;
for (int i = NEW_SPACE; i < kNumberOfSpaces; i++) { for (int i = NEW_SPACE; i < kNumberOfSpaces; i++) {
DCHECK(reservations_[i] != kUninitializedReservation); DCHECK(reservations_[i].length() > 0);
}
if (!ReserveSpace()) {
if (on_oom == FATAL_ON_OOM) FatalProcessOutOfMemory("deserialize context");
*root = NULL;
return;
} }
Heap* heap = isolate->heap();
heap->ReserveSpace(reservations_, high_water_);
if (external_reference_decoder_ == NULL) { if (external_reference_decoder_ == NULL) {
external_reference_decoder_ = new ExternalReferenceDecoder(isolate); external_reference_decoder_ = new ExternalReferenceDecoder(isolate);
} }
@ -700,7 +711,7 @@ Deserializer::~Deserializer() {
void Deserializer::VisitPointers(Object** start, Object** end) { void Deserializer::VisitPointers(Object** start, Object** end) {
// The space must be new space. Any other space would cause ReadChunk to try // The space must be new space. Any other space would cause ReadChunk to try
// to update the remembered using NULL as the address. // to update the remembered using NULL as the address.
ReadChunk(start, end, NEW_SPACE, NULL); ReadData(start, end, NEW_SPACE, NULL);
} }
@ -788,7 +799,7 @@ void Deserializer::ReadObject(int space_number,
if (FLAG_log_snapshot_positions) { if (FLAG_log_snapshot_positions) {
LOG(isolate_, SnapshotPositionEvent(address, source_->position())); LOG(isolate_, SnapshotPositionEvent(address, source_->position()));
} }
ReadChunk(current, limit, space_number, address); ReadData(current, limit, space_number, address);
// TODO(mvstanton): consider treating the heap()->allocation_sites_list() // TODO(mvstanton): consider treating the heap()->allocation_sites_list()
// as a (weak) root. If this root is relocated correctly, // as a (weak) root. If this root is relocated correctly,
@ -813,6 +824,9 @@ void Deserializer::ReadObject(int space_number,
// pre-allocate that reserved space. During deserialization, all we need // pre-allocate that reserved space. During deserialization, all we need
// to do is to bump up the pointer for each space in the reserved // to do is to bump up the pointer for each space in the reserved
// space. This is also used for fixing back references. // space. This is also used for fixing back references.
// We may have to split up the pre-allocation into several chunks
// because it would not fit onto a single page, we have to keep track
// of when to move to the next chunk.
// Since multiple large objects cannot be folded into one large object // Since multiple large objects cannot be folded into one large object
// space allocation, we have to do an actual allocation when deserializing // space allocation, we have to do an actual allocation when deserializing
// each large object. Instead of tracking offset for back references, we // each large object. Instead of tracking offset for back references, we
@ -821,7 +835,7 @@ Address Deserializer::Allocate(int space_index, int size) {
if (space_index == LO_SPACE) { if (space_index == LO_SPACE) {
AlwaysAllocateScope scope(isolate_); AlwaysAllocateScope scope(isolate_);
LargeObjectSpace* lo_space = isolate_->heap()->lo_space(); LargeObjectSpace* lo_space = isolate_->heap()->lo_space();
Executability exec = static_cast<Executability>(source_->GetInt()); Executability exec = static_cast<Executability>(source_->Get());
AllocationResult result = lo_space->AllocateRaw(size, exec); AllocationResult result = lo_space->AllocateRaw(size, exec);
HeapObject* obj = HeapObject::cast(result.ToObjectChecked()); HeapObject* obj = HeapObject::cast(result.ToObjectChecked());
deserialized_large_objects_.Add(obj); deserialized_large_objects_.Add(obj);
@ -829,16 +843,28 @@ Address Deserializer::Allocate(int space_index, int size) {
} else { } else {
DCHECK(space_index < kNumberOfPreallocatedSpaces); DCHECK(space_index < kNumberOfPreallocatedSpaces);
Address address = high_water_[space_index]; Address address = high_water_[space_index];
DCHECK_NE(NULL, address);
const Heap::Reservation& reservation = reservations_[space_index];
int chunk_index = current_chunk_[space_index];
if (address + size > reservation[chunk_index].end) {
// The last chunk size matches exactly the already deserialized data.
DCHECK_EQ(address, reservation[chunk_index].end);
// Move to next reserved chunk.
chunk_index = ++current_chunk_[space_index];
DCHECK_LT(chunk_index, reservation.length());
// Prepare for next allocation in the next chunk.
address = reservation[chunk_index].start;
} else {
high_water_[space_index] = address + size;
}
high_water_[space_index] = address + size; high_water_[space_index] = address + size;
return address; return address;
} }
} }
void Deserializer::ReadChunk(Object** current, void Deserializer::ReadData(Object** current, Object** limit, int source_space,
Object** limit, Address current_object_address) {
int source_space,
Address current_object_address) {
Isolate* const isolate = isolate_; Isolate* const isolate = isolate_;
// Write barrier support costs around 1% in startup time. In fact there // Write barrier support costs around 1% in startup time. In fact there
// are no new space objects in current boot snapshots, so it's not needed, // are no new space objects in current boot snapshots, so it's not needed,
@ -890,7 +916,7 @@ void Deserializer::ReadChunk(Object** current,
new_object = reinterpret_cast<Object*>(address); \ new_object = reinterpret_cast<Object*>(address); \
} else if (where == kBackref) { \ } else if (where == kBackref) { \
emit_write_barrier = (space_number == NEW_SPACE); \ emit_write_barrier = (space_number == NEW_SPACE); \
new_object = GetAddressFromEnd(data & kSpaceMask); \ new_object = GetBackReferencedObject(data & kSpaceMask); \
if (deserializing_user_code()) { \ if (deserializing_user_code()) { \
new_object = ProcessBackRefInSerializedCode(new_object); \ new_object = ProcessBackRefInSerializedCode(new_object); \
} \ } \
@ -913,7 +939,7 @@ void Deserializer::ReadChunk(Object** current,
current = reinterpret_cast<Object**>( \ current = reinterpret_cast<Object**>( \
reinterpret_cast<Address>(current) + skip); \ reinterpret_cast<Address>(current) + skip); \
emit_write_barrier = (space_number == NEW_SPACE); \ emit_write_barrier = (space_number == NEW_SPACE); \
new_object = GetAddressFromEnd(data & kSpaceMask); \ new_object = GetBackReferencedObject(data & kSpaceMask); \
if (deserializing_user_code()) { \ if (deserializing_user_code()) { \
new_object = ProcessBackRefInSerializedCode(new_object); \ new_object = ProcessBackRefInSerializedCode(new_object); \
} \ } \
@ -1221,7 +1247,7 @@ Serializer::Serializer(Isolate* isolate, SnapshotByteSink* sink)
seen_large_objects_index_(0) { seen_large_objects_index_(0) {
// The serializer is meant to be used only to generate initial heap images // The serializer is meant to be used only to generate initial heap images
// from a context in which there is only one isolate. // from a context in which there is only one isolate.
for (int i = 0; i < kNumberOfSpaces; i++) fullness_[i] = 0; for (int i = 0; i < kNumberOfSpaces; i++) pending_chunk_[i] = 0;
} }
@ -1283,6 +1309,19 @@ void Serializer::VisitPointers(Object** start, Object** end) {
} }
void Serializer::FinalizeAllocation() {
DCHECK_EQ(0, completed_chunks_[LO_SPACE].length()); // Not yet finalized.
for (int i = 0; i < kNumberOfSpaces; i++) {
// Complete the last pending chunk and if there are no completed chunks,
// make sure there is at least one empty chunk.
if (pending_chunk_[i] > 0 || completed_chunks_[i].length() == 0) {
completed_chunks_[i].Add(pending_chunk_[i]);
pending_chunk_[i] = 0;
}
}
}
// This ensures that the partial snapshot cache keeps things alive during GC and // This ensures that the partial snapshot cache keeps things alive during GC and
// tracks their movement. When it is called during serialization of the startup // tracks their movement. When it is called during serialization of the startup
// snapshot nothing happens. When the partial (context) snapshot is created, // snapshot nothing happens. When the partial (context) snapshot is created,
@ -1369,11 +1408,10 @@ void Serializer::SerializeReferenceToPreviousObject(HeapObject* heap_object,
int index = address_mapper_.MappedTo(heap_object); int index = address_mapper_.MappedTo(heap_object);
sink_->PutInt(index, "large object index"); sink_->PutInt(index, "large object index");
} else { } else {
int address = address_mapper_.MappedTo(heap_object); uint32_t existing_allocation = address_mapper_.MappedTo(heap_object);
int offset = CurrentAllocationAddress(space) - address;
// Shift out the bits that are always 0. // Shift out the bits that are always 0.
offset >>= kObjectAlignmentBits; existing_allocation >>= kObjectAlignmentBits;
sink_->PutInt(offset, "offset"); sink_->PutInt(existing_allocation, "allocation");
} }
} }
@ -1533,15 +1571,15 @@ void Serializer::ObjectSerializer::SerializePrologue(int space, int size,
// Mark this object as already serialized. // Mark this object as already serialized.
if (space == LO_SPACE) { if (space == LO_SPACE) {
if (object_->IsCode()) { if (object_->IsCode()) {
sink_->PutInt(EXECUTABLE, "executable large object"); sink_->Put(EXECUTABLE, "executable large object");
} else { } else {
sink_->PutInt(NOT_EXECUTABLE, "not executable large object"); sink_->Put(NOT_EXECUTABLE, "not executable large object");
} }
int index = serializer_->AllocateLargeObject(size); int index = serializer_->AllocateLargeObject(size);
serializer_->address_mapper()->AddMapping(object_, index); serializer_->address_mapper()->AddMapping(object_, index);
} else { } else {
int offset = serializer_->Allocate(space, size); int allocation = serializer_->Allocate(space, size);
serializer_->address_mapper()->AddMapping(object_, offset); serializer_->address_mapper()->AddMapping(object_, allocation);
} }
// Serialize the map (first word of the object). // Serialize the map (first word of the object).
@ -1867,17 +1905,32 @@ int Serializer::SpaceOfObject(HeapObject* object) {
} }
int Serializer::AllocateLargeObject(int size) { uint32_t Serializer::AllocateLargeObject(int size) {
fullness_[LO_SPACE] += size; // Large objects are allocated one-by-one when deserializing. We do not
// have to keep track of multiple chunks.
pending_chunk_[LO_SPACE] += size;
return seen_large_objects_index_++; return seen_large_objects_index_++;
} }
int Serializer::Allocate(int space, int size) { uint32_t Serializer::Allocate(int space, int size) {
CHECK(space >= 0 && space < kNumberOfPreallocatedSpaces); CHECK(space >= 0 && space < kNumberOfPreallocatedSpaces);
int allocation_address = fullness_[space]; DCHECK(size > 0 && size < Page::kMaxRegularHeapObjectSize);
fullness_[space] = allocation_address + size; uint32_t new_chunk_size = pending_chunk_[space] + size;
return allocation_address; uint32_t allocation;
if (new_chunk_size > Page::kMaxRegularHeapObjectSize) {
// The new chunk size would not fit onto a single page. Complete the
// current chunk and start a new one.
completed_chunks_[space].Add(pending_chunk_[space]);
pending_chunk_[space] = 0;
new_chunk_size = size;
}
// For back-referencing, each allocation is encoded as a combination
// of chunk index and offset inside the chunk.
allocation = ChunkIndexBits::encode(completed_chunks_[space].length()) |
OffsetBits::encode(pending_chunk_[space]);
pending_chunk_[space] = new_chunk_size;
return allocation;
} }
@ -1923,6 +1976,7 @@ ScriptData* CodeSerializer::Serialize(Isolate* isolate,
Object** location = Handle<Object>::cast(info).location(); Object** location = Handle<Object>::cast(info).location();
cs.VisitPointer(location); cs.VisitPointer(location);
cs.Pad(); cs.Pad();
cs.FinalizeAllocation();
SerializedCodeData data(&payload, &cs); SerializedCodeData data(&payload, &cs);
ScriptData* script_data = data.GetScriptData(); ScriptData* script_data = data.GetScriptData();
@ -2093,9 +2147,8 @@ void CodeSerializer::SerializeSourceObject(HowToCode how_to_code,
} }
Handle<SharedFunctionInfo> CodeSerializer::Deserialize(Isolate* isolate, MaybeHandle<SharedFunctionInfo> CodeSerializer::Deserialize(
ScriptData* data, Isolate* isolate, ScriptData* data, Handle<String> source) {
Handle<String> source) {
base::ElapsedTimer timer; base::ElapsedTimer timer;
if (FLAG_profile_deserialization) timer.Start(); if (FLAG_profile_deserialization) timer.Start();
@ -2107,10 +2160,15 @@ Handle<SharedFunctionInfo> CodeSerializer::Deserialize(Isolate* isolate,
SerializedCodeData scd(data, *source); SerializedCodeData scd(data, *source);
SnapshotByteSource payload(scd.Payload(), scd.PayloadLength()); SnapshotByteSource payload(scd.Payload(), scd.PayloadLength());
Deserializer deserializer(&payload); Deserializer deserializer(&payload);
STATIC_ASSERT(NEW_SPACE == 0); STATIC_ASSERT(NEW_SPACE == 0);
for (int i = NEW_SPACE; i < kNumberOfSpaces; i++) { int current_space = NEW_SPACE;
deserializer.set_reservation(i, scd.GetReservation(i)); Vector<const SerializedCodeData::Reservation> res = scd.Reservations();
for (const auto& r : res) {
deserializer.AddReservation(current_space, r.chunk_size());
if (r.is_last_chunk()) current_space++;
} }
DCHECK_EQ(kNumberOfSpaces, current_space);
// Prepare and register list of attached objects. // Prepare and register list of attached objects.
Vector<const uint32_t> code_stub_keys = scd.CodeStubKeys(); Vector<const uint32_t> code_stub_keys = scd.CodeStubKeys();
@ -2124,7 +2182,12 @@ Handle<SharedFunctionInfo> CodeSerializer::Deserialize(Isolate* isolate,
deserializer.SetAttachedObjects(&attached_objects); deserializer.SetAttachedObjects(&attached_objects);
// Deserialize. // Deserialize.
deserializer.DeserializePartial(isolate, &root); deserializer.DeserializePartial(isolate, &root, Deserializer::NULL_ON_OOM);
if (root == NULL) {
// Deserializing may fail if the reservations cannot be fulfilled.
if (FLAG_profile_deserialization) PrintF("[Deserializing failed]\n");
return MaybeHandle<SharedFunctionInfo>();
}
deserializer.FlushICacheForNewCodeObjects(); deserializer.FlushICacheForNewCodeObjects();
} }
@ -2144,10 +2207,25 @@ SerializedCodeData::SerializedCodeData(List<byte>* payload, CodeSerializer* cs)
DisallowHeapAllocation no_gc; DisallowHeapAllocation no_gc;
List<uint32_t>* stub_keys = cs->stub_keys(); List<uint32_t>* stub_keys = cs->stub_keys();
// Gather reservation chunk sizes.
List<uint32_t> reservations(SerializerDeserializer::kNumberOfSpaces);
STATIC_ASSERT(NEW_SPACE == 0);
for (int i = 0; i < SerializerDeserializer::kNumberOfSpaces; i++) {
Vector<const uint32_t> chunks = cs->FinalAllocationChunks(i);
for (int j = 0; j < chunks.length(); j++) {
DCHECK(i == LO_SPACE || chunks[j] < Page::kMaxRegularHeapObjectSize);
uint32_t chunk = ChunkSizeBits::encode(chunks[j]) |
IsLastChunkBits::encode(j == chunks.length() - 1);
reservations.Add(chunk);
}
}
// Calculate sizes. // Calculate sizes.
int reservation_size = reservations.length() * kInt32Size;
int num_stub_keys = stub_keys->length(); int num_stub_keys = stub_keys->length();
int stub_keys_size = stub_keys->length() * kInt32Size; int stub_keys_size = stub_keys->length() * kInt32Size;
int data_length = kHeaderSize + stub_keys_size + payload->length(); int data_length =
kHeaderSize + reservation_size + stub_keys_size + payload->length();
// Allocate backing store and create result data. // Allocate backing store and create result data.
byte* data = NewArray<byte>(data_length); byte* data = NewArray<byte>(data_length);
@ -2157,20 +2235,21 @@ SerializedCodeData::SerializedCodeData(List<byte>* payload, CodeSerializer* cs)
// Set header values. // Set header values.
SetHeaderValue(kCheckSumOffset, CheckSum(cs->source())); SetHeaderValue(kCheckSumOffset, CheckSum(cs->source()));
SetHeaderValue(kReservationsOffset, reservations.length());
SetHeaderValue(kNumCodeStubKeysOffset, num_stub_keys); SetHeaderValue(kNumCodeStubKeysOffset, num_stub_keys);
SetHeaderValue(kPayloadLengthOffset, payload->length()); SetHeaderValue(kPayloadLengthOffset, payload->length());
STATIC_ASSERT(NEW_SPACE == 0);
for (int i = 0; i < SerializerDeserializer::kNumberOfSpaces; i++) { // Copy reservation chunk sizes.
SetHeaderValue(kReservationsOffset + i, cs->CurrentAllocationAddress(i)); CopyBytes(data + kHeaderSize, reinterpret_cast<byte*>(reservations.begin()),
} reservation_size);
// Copy code stub keys. // Copy code stub keys.
CopyBytes(data + kHeaderSize, reinterpret_cast<byte*>(stub_keys->begin()), CopyBytes(data + kHeaderSize + reservation_size,
stub_keys_size); reinterpret_cast<byte*>(stub_keys->begin()), stub_keys_size);
// Copy serialized data. // Copy serialized data.
CopyBytes(data + kHeaderSize + stub_keys_size, payload->begin(), CopyBytes(data + kHeaderSize + reservation_size + stub_keys_size,
static_cast<size_t>(payload->length())); payload->begin(), static_cast<size_t>(payload->length()));
} }

View File

@ -152,6 +152,11 @@ class SerializerDeserializer: public ObjectVisitor {
static const int kNumberOfPreallocatedSpaces = LO_SPACE; static const int kNumberOfPreallocatedSpaces = LO_SPACE;
static const int kNumberOfSpaces = INVALID_SPACE; static const int kNumberOfSpaces = INVALID_SPACE;
// To encode object for back-references.
class OffsetBits : public BitField<uint32_t, 0, kPageSizeBits> {};
class ChunkIndexBits
: public BitField<uint32_t, kPageSizeBits, 32 - kPageSizeBits> {};
protected: protected:
// Where the pointed-to object can be found: // Where the pointed-to object can be found:
enum Where { enum Where {
@ -248,13 +253,18 @@ class Deserializer: public SerializerDeserializer {
// Deserialize the snapshot into an empty heap. // Deserialize the snapshot into an empty heap.
void Deserialize(Isolate* isolate); void Deserialize(Isolate* isolate);
// Deserialize a single object and the objects reachable from it. enum OnOOM { FATAL_ON_OOM, NULL_ON_OOM };
void DeserializePartial(Isolate* isolate, Object** root);
void set_reservation(int space_number, int reservation) { // Deserialize a single object and the objects reachable from it.
DCHECK(space_number >= 0); // We may want to abort gracefully even if deserialization fails.
DCHECK(space_number < kNumberOfSpaces); void DeserializePartial(Isolate* isolate, Object** root,
reservations_[space_number] = reservation; OnOOM on_oom = FATAL_ON_OOM);
void AddReservation(int space, uint32_t chunk) {
DCHECK(space >= 0);
DCHECK(space < kNumberOfSpaces);
DCHECK(space == LO_SPACE || chunk < Page::kMaxRegularHeapObjectSize);
reservations_[space].Add({chunk, NULL, NULL});
} }
void FlushICacheForNewCodeObjects(); void FlushICacheForNewCodeObjects();
@ -274,6 +284,8 @@ class Deserializer: public SerializerDeserializer {
UNREACHABLE(); UNREACHABLE();
} }
bool ReserveSpace();
// Allocation sites are present in the snapshot, and must be linked into // Allocation sites are present in the snapshot, and must be linked into
// a list at deserialization time. // a list at deserialization time.
void RelinkAllocationSite(AllocationSite* site); void RelinkAllocationSite(AllocationSite* site);
@ -283,8 +295,8 @@ class Deserializer: public SerializerDeserializer {
// of the object we are writing into, or NULL if we are not writing into an // of the object we are writing into, or NULL if we are not writing into an
// object, i.e. if we are writing a series of tagged values that are not on // object, i.e. if we are writing a series of tagged values that are not on
// the heap. // the heap.
void ReadChunk( void ReadData(Object** start, Object** end, int space,
Object** start, Object** end, int space, Address object_address); Address object_address);
void ReadObject(int space_number, Object** write_back); void ReadObject(int space_number, Object** write_back);
Address Allocate(int space_index, int size); Address Allocate(int space_index, int size);
@ -293,13 +305,20 @@ class Deserializer: public SerializerDeserializer {
Object* ProcessBackRefInSerializedCode(Object* obj); Object* ProcessBackRefInSerializedCode(Object* obj);
// This returns the address of an object that has been described in the // This returns the address of an object that has been described in the
// snapshot as being offset bytes back in a particular space. // snapshot by chunk index and offset.
HeapObject* GetAddressFromEnd(int space) { HeapObject* GetBackReferencedObject(int space) {
int offset = source_->GetInt(); if (space == LO_SPACE) {
if (space == LO_SPACE) return deserialized_large_objects_[offset]; uint32_t index = source_->GetInt();
DCHECK(space < kNumberOfPreallocatedSpaces); return deserialized_large_objects_[index];
offset <<= kObjectAlignmentBits; } else {
return HeapObject::FromAddress(high_water_[space] - offset); uint32_t allocation = source_->GetInt() << kObjectAlignmentBits;
DCHECK(space < kNumberOfPreallocatedSpaces);
uint32_t chunk_index = ChunkIndexBits::decode(allocation);
uint32_t offset = OffsetBits::decode(allocation);
DCHECK_LE(chunk_index, current_chunk_[space]);
return HeapObject::FromAddress(reservations_[space][chunk_index].start +
offset);
}
} }
// Cached current isolate. // Cached current isolate.
@ -309,13 +328,14 @@ class Deserializer: public SerializerDeserializer {
Vector<Handle<Object> >* attached_objects_; Vector<Handle<Object> >* attached_objects_;
SnapshotByteSource* source_; SnapshotByteSource* source_;
// This is the address of the next object that will be allocated in each // The address of the next object that will be allocated in each space.
// space. It is used to calculate the addresses of back-references. // Each space has a number of chunks reserved by the GC, with each chunk
// fitting into a page. Deserialized objects are allocated into the
// current chunk of the target space by bumping up high water mark.
Heap::Reservation reservations_[kNumberOfSpaces];
uint32_t current_chunk_[kNumberOfPreallocatedSpaces];
Address high_water_[kNumberOfPreallocatedSpaces]; Address high_water_[kNumberOfPreallocatedSpaces];
int reservations_[kNumberOfSpaces];
static const intptr_t kUninitializedReservation = -1;
ExternalReferenceDecoder* external_reference_decoder_; ExternalReferenceDecoder* external_reference_decoder_;
List<HeapObject*> deserialized_large_objects_; List<HeapObject*> deserialized_large_objects_;
@ -380,11 +400,13 @@ class Serializer : public SerializerDeserializer {
Serializer(Isolate* isolate, SnapshotByteSink* sink); Serializer(Isolate* isolate, SnapshotByteSink* sink);
~Serializer(); ~Serializer();
void VisitPointers(Object** start, Object** end); void VisitPointers(Object** start, Object** end);
// You can call this after serialization to find out how much space was used
// in each space. void FinalizeAllocation();
int CurrentAllocationAddress(int space) const {
DCHECK(space < kNumberOfSpaces); Vector<const uint32_t> FinalAllocationChunks(int space) const {
return fullness_[space]; DCHECK_EQ(1, completed_chunks_[LO_SPACE].length()); // Already finalized.
DCHECK_EQ(0, pending_chunk_[space]); // No pending chunks.
return completed_chunks_[space].ToConstVector();
} }
Isolate* isolate() const { return isolate_; } Isolate* isolate() const { return isolate_; }
@ -470,8 +492,8 @@ class Serializer : public SerializerDeserializer {
void InitializeAllocators(); void InitializeAllocators();
// This will return the space for an object. // This will return the space for an object.
static int SpaceOfObject(HeapObject* object); static int SpaceOfObject(HeapObject* object);
int AllocateLargeObject(int size); uint32_t AllocateLargeObject(int size);
int Allocate(int space, int size); uint32_t Allocate(int space, int size);
int EncodeExternalReference(Address addr) { int EncodeExternalReference(Address addr) {
return external_reference_encoder_->Encode(addr); return external_reference_encoder_->Encode(addr);
} }
@ -483,9 +505,14 @@ class Serializer : public SerializerDeserializer {
bool ShouldBeSkipped(Object** current); bool ShouldBeSkipped(Object** current);
Isolate* isolate_; Isolate* isolate_;
// Keep track of the fullness of each space in order to generate
// relative addresses for back references. // Objects from the same space are put into chunks for bulk-allocation
int fullness_[kNumberOfSpaces]; // when deserializing. We have to make sure that each chunk fits into a
// page. So we track the chunk size in pending_chunk_ of a space, but
// when it exceeds a page, we complete the current chunk and start a new one.
uint32_t pending_chunk_[kNumberOfSpaces];
List<uint32_t> completed_chunks_[kNumberOfSpaces];
SnapshotByteSink* sink_; SnapshotByteSink* sink_;
ExternalReferenceEncoder* external_reference_encoder_; ExternalReferenceEncoder* external_reference_encoder_;
@ -503,7 +530,7 @@ class Serializer : public SerializerDeserializer {
private: private:
CodeAddressMap* code_address_map_; CodeAddressMap* code_address_map_;
// We map serialized large objects to indexes for back-referencing. // We map serialized large objects to indexes for back-referencing.
int seen_large_objects_index_; uint32_t seen_large_objects_index_;
DISALLOW_COPY_AND_ASSIGN(Serializer); DISALLOW_COPY_AND_ASSIGN(Serializer);
}; };
@ -585,9 +612,8 @@ class CodeSerializer : public Serializer {
Handle<SharedFunctionInfo> info, Handle<SharedFunctionInfo> info,
Handle<String> source); Handle<String> source);
static Handle<SharedFunctionInfo> Deserialize(Isolate* isolate, MUST_USE_RESULT static MaybeHandle<SharedFunctionInfo> Deserialize(
ScriptData* data, Isolate* isolate, ScriptData* data, Handle<String> source);
Handle<String> source);
static const int kSourceObjectIndex = 0; static const int kSourceObjectIndex = 0;
static const int kCodeStubsBaseIndex = 1; static const int kCodeStubsBaseIndex = 1;
@ -654,15 +680,35 @@ class SerializedCodeData {
return result; return result;
} }
class Reservation {
public:
uint32_t chunk_size() const { return ChunkSizeBits::decode(reservation); }
bool is_last_chunk() const { return IsLastChunkBits::decode(reservation); }
private:
uint32_t reservation;
DISALLOW_COPY_AND_ASSIGN(Reservation);
};
Vector<const Reservation> Reservations() const {
return Vector<const Reservation>(reinterpret_cast<const Reservation*>(
script_data_->data() + kHeaderSize),
GetHeaderValue(kReservationsOffset));
}
Vector<const uint32_t> CodeStubKeys() const { Vector<const uint32_t> CodeStubKeys() const {
return Vector<const uint32_t>( int reservations_size = GetHeaderValue(kReservationsOffset) * kInt32Size;
reinterpret_cast<const uint32_t*>(script_data_->data() + kHeaderSize), const byte* start = script_data_->data() + kHeaderSize + reservations_size;
GetHeaderValue(kNumCodeStubKeysOffset)); return Vector<const uint32_t>(reinterpret_cast<const uint32_t*>(start),
GetHeaderValue(kNumCodeStubKeysOffset));
} }
const byte* Payload() const { const byte* Payload() const {
int reservations_size = GetHeaderValue(kReservationsOffset) * kInt32Size;
int code_stubs_size = GetHeaderValue(kNumCodeStubKeysOffset) * kInt32Size; int code_stubs_size = GetHeaderValue(kNumCodeStubKeysOffset) * kInt32Size;
return script_data_->data() + kHeaderSize + code_stubs_size; return script_data_->data() + kHeaderSize + reservations_size +
code_stubs_size;
} }
int PayloadLength() const { int PayloadLength() const {
@ -672,10 +718,6 @@ class SerializedCodeData {
return payload_length; return payload_length;
} }
int GetReservation(int space) const {
return GetHeaderValue(kReservationsOffset + space);
}
private: private:
void SetHeaderValue(int offset, int value) { void SetHeaderValue(int offset, int value) {
reinterpret_cast<int*>(const_cast<byte*>(script_data_->data()))[offset] = reinterpret_cast<int*>(const_cast<byte*>(script_data_->data()))[offset] =
@ -696,13 +738,13 @@ class SerializedCodeData {
// [2] payload length // [2] payload length
// [3..9] reservation sizes for spaces from NEW_SPACE to PROPERTY_CELL_SPACE. // [3..9] reservation sizes for spaces from NEW_SPACE to PROPERTY_CELL_SPACE.
static const int kCheckSumOffset = 0; static const int kCheckSumOffset = 0;
static const int kNumCodeStubKeysOffset = 1; static const int kReservationsOffset = 1;
static const int kPayloadLengthOffset = 2; static const int kNumCodeStubKeysOffset = 2;
static const int kReservationsOffset = 3; static const int kPayloadLengthOffset = 3;
static const int kHeaderSize = (kPayloadLengthOffset + 1) * kIntSize;
static const int kHeaderEntries = class ChunkSizeBits : public BitField<uint32_t, 0, 31> {};
kReservationsOffset + SerializerDeserializer::kNumberOfSpaces; class IsLastChunkBits : public BitField<bool, 31, 1> {};
static const int kHeaderSize = kHeaderEntries * kIntSize;
// Following the header, we store, in sequential order // Following the header, we store, in sequential order
// - code stub keys // - code stub keys

View File

@ -15,14 +15,14 @@ namespace v8 {
namespace internal { namespace internal {
void Snapshot::ReserveSpaceForLinkedInSnapshot(Deserializer* deserializer) { void Snapshot::ReserveSpaceForLinkedInSnapshot(Deserializer* deserializer) {
deserializer->set_reservation(NEW_SPACE, new_space_used_); deserializer->AddReservation(NEW_SPACE, new_space_used_);
deserializer->set_reservation(OLD_POINTER_SPACE, pointer_space_used_); deserializer->AddReservation(OLD_POINTER_SPACE, pointer_space_used_);
deserializer->set_reservation(OLD_DATA_SPACE, data_space_used_); deserializer->AddReservation(OLD_DATA_SPACE, data_space_used_);
deserializer->set_reservation(CODE_SPACE, code_space_used_); deserializer->AddReservation(CODE_SPACE, code_space_used_);
deserializer->set_reservation(MAP_SPACE, map_space_used_); deserializer->AddReservation(MAP_SPACE, map_space_used_);
deserializer->set_reservation(CELL_SPACE, cell_space_used_); deserializer->AddReservation(CELL_SPACE, cell_space_used_);
deserializer->set_reservation(PROPERTY_CELL_SPACE, property_cell_space_used_); deserializer->AddReservation(PROPERTY_CELL_SPACE, property_cell_space_used_);
deserializer->set_reservation(LO_SPACE, lo_space_used_); deserializer->AddReservation(LO_SPACE, lo_space_used_);
} }
@ -59,15 +59,15 @@ Handle<Context> Snapshot::NewContextFromSnapshot(Isolate* isolate) {
context_raw_size_); context_raw_size_);
Deserializer deserializer(&source); Deserializer deserializer(&source);
Object* root; Object* root;
deserializer.set_reservation(NEW_SPACE, context_new_space_used_); deserializer.AddReservation(NEW_SPACE, context_new_space_used_);
deserializer.set_reservation(OLD_POINTER_SPACE, context_pointer_space_used_); deserializer.AddReservation(OLD_POINTER_SPACE, context_pointer_space_used_);
deserializer.set_reservation(OLD_DATA_SPACE, context_data_space_used_); deserializer.AddReservation(OLD_DATA_SPACE, context_data_space_used_);
deserializer.set_reservation(CODE_SPACE, context_code_space_used_); deserializer.AddReservation(CODE_SPACE, context_code_space_used_);
deserializer.set_reservation(MAP_SPACE, context_map_space_used_); deserializer.AddReservation(MAP_SPACE, context_map_space_used_);
deserializer.set_reservation(CELL_SPACE, context_cell_space_used_); deserializer.AddReservation(CELL_SPACE, context_cell_space_used_);
deserializer.set_reservation(PROPERTY_CELL_SPACE, deserializer.AddReservation(PROPERTY_CELL_SPACE,
context_property_cell_space_used_); context_property_cell_space_used_);
deserializer.set_reservation(LO_SPACE, context_lo_space_used_); deserializer.AddReservation(LO_SPACE, context_lo_space_used_);
deserializer.DeserializePartial(isolate, &root); deserializer.DeserializePartial(isolate, &root);
CHECK(root->IsContext()); CHECK(root->IsContext());
return Handle<Context>(Context::cast(root)); return Handle<Context>(Context::cast(root));

View File

@ -58,17 +58,16 @@ bool Snapshot::Initialize(Isolate* isolate) {
} }
SnapshotByteSource source(snapshot_impl_->data, snapshot_impl_->size); SnapshotByteSource source(snapshot_impl_->data, snapshot_impl_->size);
Deserializer deserializer(&source); Deserializer deserializer(&source);
deserializer.set_reservation(NEW_SPACE, snapshot_impl_->new_space_used); deserializer.AddReservation(NEW_SPACE, snapshot_impl_->new_space_used);
deserializer.set_reservation(OLD_POINTER_SPACE, deserializer.AddReservation(OLD_POINTER_SPACE,
snapshot_impl_->pointer_space_used); snapshot_impl_->pointer_space_used);
deserializer.set_reservation(OLD_DATA_SPACE, deserializer.AddReservation(OLD_DATA_SPACE, snapshot_impl_->data_space_used);
snapshot_impl_->data_space_used); deserializer.AddReservation(CODE_SPACE, snapshot_impl_->code_space_used);
deserializer.set_reservation(CODE_SPACE, snapshot_impl_->code_space_used); deserializer.AddReservation(MAP_SPACE, snapshot_impl_->map_space_used);
deserializer.set_reservation(MAP_SPACE, snapshot_impl_->map_space_used); deserializer.AddReservation(CELL_SPACE, snapshot_impl_->cell_space_used);
deserializer.set_reservation(CELL_SPACE, snapshot_impl_->cell_space_used); deserializer.AddReservation(PROPERTY_CELL_SPACE,
deserializer.set_reservation(PROPERTY_CELL_SPACE, snapshot_impl_->property_cell_space_used);
snapshot_impl_->property_cell_space_used); deserializer.AddReservation(LO_SPACE, snapshot_impl_->lo_space_used);
deserializer.set_reservation(LO_SPACE, snapshot_impl_->lo_space_used);
bool success = isolate->Init(&deserializer); bool success = isolate->Init(&deserializer);
if (FLAG_profile_deserialization) { if (FLAG_profile_deserialization) {
double ms = timer.Elapsed().InMillisecondsF(); double ms = timer.Elapsed().InMillisecondsF();
@ -85,22 +84,21 @@ Handle<Context> Snapshot::NewContextFromSnapshot(Isolate* isolate) {
SnapshotByteSource source(snapshot_impl_->context_data, SnapshotByteSource source(snapshot_impl_->context_data,
snapshot_impl_->context_size); snapshot_impl_->context_size);
Deserializer deserializer(&source); Deserializer deserializer(&source);
deserializer.set_reservation(NEW_SPACE, deserializer.AddReservation(NEW_SPACE,
snapshot_impl_->context_new_space_used); snapshot_impl_->context_new_space_used);
deserializer.set_reservation(OLD_POINTER_SPACE, deserializer.AddReservation(OLD_POINTER_SPACE,
snapshot_impl_->context_pointer_space_used); snapshot_impl_->context_pointer_space_used);
deserializer.set_reservation(OLD_DATA_SPACE, deserializer.AddReservation(OLD_DATA_SPACE,
snapshot_impl_->context_data_space_used); snapshot_impl_->context_data_space_used);
deserializer.set_reservation(CODE_SPACE, deserializer.AddReservation(CODE_SPACE,
snapshot_impl_->context_code_space_used); snapshot_impl_->context_code_space_used);
deserializer.set_reservation(MAP_SPACE, deserializer.AddReservation(MAP_SPACE,
snapshot_impl_->context_map_space_used); snapshot_impl_->context_map_space_used);
deserializer.set_reservation(CELL_SPACE, deserializer.AddReservation(CELL_SPACE,
snapshot_impl_->context_cell_space_used); snapshot_impl_->context_cell_space_used);
deserializer.set_reservation(PROPERTY_CELL_SPACE, deserializer.AddReservation(PROPERTY_CELL_SPACE,
snapshot_impl_-> snapshot_impl_->context_property_cell_space_used);
context_property_cell_space_used); deserializer.AddReservation(LO_SPACE, snapshot_impl_->context_lo_space_used);
deserializer.set_reservation(LO_SPACE, snapshot_impl_->context_lo_space_used);
Object* root; Object* root;
deserializer.DeserializePartial(isolate, &root); deserializer.DeserializePartial(isolate, &root);
CHECK(root->IsContext()); CHECK(root->IsContext());

View File

@ -58,6 +58,10 @@ class Vector {
T& last() { return start_[length_ - 1]; } T& last() { return start_[length_ - 1]; }
typedef T* iterator;
inline iterator begin() const { return &start_[0]; }
inline iterator end() const { return &start_[length_]; }
// Returns a clone of this vector with a new backing store. // Returns a clone of this vector with a new backing store.
Vector<T> Clone() const { Vector<T> Clone() const {
T* result = NewArray<T>(length_); T* result = NewArray<T>(length_);

View File

@ -137,10 +137,7 @@ class FileByteSink : public SnapshotByteSink {
virtual int Position() { virtual int Position() {
return ftell(fp_); return ftell(fp_);
} }
void WriteSpaceUsed(int new_space_used, int pointer_space_used, void WriteSpaceUsed(Serializer* serializer);
int data_space_used, int code_space_used,
int map_space_used, int cell_space_used,
int property_cell_space_used, int lo_space_used);
private: private:
FILE* fp_; FILE* fp_;
@ -148,24 +145,37 @@ class FileByteSink : public SnapshotByteSink {
}; };
void FileByteSink::WriteSpaceUsed(int new_space_used, int pointer_space_used, void FileByteSink::WriteSpaceUsed(Serializer* ser) {
int data_space_used, int code_space_used,
int map_space_used, int cell_space_used,
int property_cell_space_used,
int lo_space_used) {
int file_name_length = StrLength(file_name_) + 10; int file_name_length = StrLength(file_name_) + 10;
Vector<char> name = Vector<char>::New(file_name_length + 1); Vector<char> name = Vector<char>::New(file_name_length + 1);
SNPrintF(name, "%s.size", file_name_); SNPrintF(name, "%s.size", file_name_);
FILE* fp = v8::base::OS::FOpen(name.start(), "w"); FILE* fp = v8::base::OS::FOpen(name.start(), "w");
name.Dispose(); name.Dispose();
fprintf(fp, "new %d\n", new_space_used);
fprintf(fp, "pointer %d\n", pointer_space_used); Vector<const uint32_t> chunks = ser->FinalAllocationChunks(NEW_SPACE);
fprintf(fp, "data %d\n", data_space_used); CHECK_EQ(1, chunks.length());
fprintf(fp, "code %d\n", code_space_used); fprintf(fp, "new %d\n", chunks[0]);
fprintf(fp, "map %d\n", map_space_used); chunks = ser->FinalAllocationChunks(OLD_POINTER_SPACE);
fprintf(fp, "cell %d\n", cell_space_used); CHECK_EQ(1, chunks.length());
fprintf(fp, "property cell %d\n", property_cell_space_used); fprintf(fp, "pointer %d\n", chunks[0]);
fprintf(fp, "lo %d\n", lo_space_used); chunks = ser->FinalAllocationChunks(OLD_DATA_SPACE);
CHECK_EQ(1, chunks.length());
fprintf(fp, "data %d\n", chunks[0]);
chunks = ser->FinalAllocationChunks(CODE_SPACE);
CHECK_EQ(1, chunks.length());
fprintf(fp, "code %d\n", chunks[0]);
chunks = ser->FinalAllocationChunks(MAP_SPACE);
CHECK_EQ(1, chunks.length());
fprintf(fp, "map %d\n", chunks[0]);
chunks = ser->FinalAllocationChunks(CELL_SPACE);
CHECK_EQ(1, chunks.length());
fprintf(fp, "cell %d\n", chunks[0]);
chunks = ser->FinalAllocationChunks(PROPERTY_CELL_SPACE);
CHECK_EQ(1, chunks.length());
fprintf(fp, "property cell %d\n", chunks[0]);
chunks = ser->FinalAllocationChunks(LO_SPACE);
CHECK_EQ(1, chunks.length());
fprintf(fp, "lo %d\n", chunks[0]);
fclose(fp); fclose(fp);
} }
@ -174,15 +184,9 @@ static bool WriteToFile(Isolate* isolate, const char* snapshot_file) {
FileByteSink file(snapshot_file); FileByteSink file(snapshot_file);
StartupSerializer ser(isolate, &file); StartupSerializer ser(isolate, &file);
ser.Serialize(); ser.Serialize();
ser.FinalizeAllocation();
file.WriteSpaceUsed(ser.CurrentAllocationAddress(NEW_SPACE), file.WriteSpaceUsed(&ser);
ser.CurrentAllocationAddress(OLD_POINTER_SPACE),
ser.CurrentAllocationAddress(OLD_DATA_SPACE),
ser.CurrentAllocationAddress(CODE_SPACE),
ser.CurrentAllocationAddress(MAP_SPACE),
ser.CurrentAllocationAddress(CELL_SPACE),
ser.CurrentAllocationAddress(PROPERTY_CELL_SPACE),
ser.CurrentAllocationAddress(LO_SPACE));
return true; return true;
} }
@ -258,14 +262,14 @@ static void ReserveSpaceForSnapshot(Deserializer* deserializer,
#undef fscanf #undef fscanf
#endif #endif
fclose(fp); fclose(fp);
deserializer->set_reservation(NEW_SPACE, new_size); deserializer->AddReservation(NEW_SPACE, new_size);
deserializer->set_reservation(OLD_POINTER_SPACE, pointer_size); deserializer->AddReservation(OLD_POINTER_SPACE, pointer_size);
deserializer->set_reservation(OLD_DATA_SPACE, data_size); deserializer->AddReservation(OLD_DATA_SPACE, data_size);
deserializer->set_reservation(CODE_SPACE, code_size); deserializer->AddReservation(CODE_SPACE, code_size);
deserializer->set_reservation(MAP_SPACE, map_size); deserializer->AddReservation(MAP_SPACE, map_size);
deserializer->set_reservation(CELL_SPACE, cell_size); deserializer->AddReservation(CELL_SPACE, cell_size);
deserializer->set_reservation(PROPERTY_CELL_SPACE, property_cell_size); deserializer->AddReservation(PROPERTY_CELL_SPACE, property_cell_size);
deserializer->set_reservation(LO_SPACE, lo_size); deserializer->AddReservation(LO_SPACE, lo_size);
} }
@ -445,25 +449,12 @@ UNINITIALIZED_TEST(PartialSerialization) {
p_ser.Serialize(&raw_foo); p_ser.Serialize(&raw_foo);
startup_serializer.SerializeWeakReferences(); startup_serializer.SerializeWeakReferences();
partial_sink.WriteSpaceUsed( p_ser.FinalizeAllocation();
p_ser.CurrentAllocationAddress(NEW_SPACE), startup_serializer.FinalizeAllocation();
p_ser.CurrentAllocationAddress(OLD_POINTER_SPACE),
p_ser.CurrentAllocationAddress(OLD_DATA_SPACE),
p_ser.CurrentAllocationAddress(CODE_SPACE),
p_ser.CurrentAllocationAddress(MAP_SPACE),
p_ser.CurrentAllocationAddress(CELL_SPACE),
p_ser.CurrentAllocationAddress(PROPERTY_CELL_SPACE),
p_ser.CurrentAllocationAddress(LO_SPACE));
startup_sink.WriteSpaceUsed( partial_sink.WriteSpaceUsed(&p_ser);
startup_serializer.CurrentAllocationAddress(NEW_SPACE),
startup_serializer.CurrentAllocationAddress(OLD_POINTER_SPACE), startup_sink.WriteSpaceUsed(&startup_serializer);
startup_serializer.CurrentAllocationAddress(OLD_DATA_SPACE),
startup_serializer.CurrentAllocationAddress(CODE_SPACE),
startup_serializer.CurrentAllocationAddress(MAP_SPACE),
startup_serializer.CurrentAllocationAddress(CELL_SPACE),
startup_serializer.CurrentAllocationAddress(PROPERTY_CELL_SPACE),
startup_serializer.CurrentAllocationAddress(LO_SPACE));
startup_name.Dispose(); startup_name.Dispose();
} }
v8_isolate->Exit(); v8_isolate->Exit();
@ -570,25 +561,12 @@ UNINITIALIZED_TEST(ContextSerialization) {
p_ser.Serialize(&raw_context); p_ser.Serialize(&raw_context);
startup_serializer.SerializeWeakReferences(); startup_serializer.SerializeWeakReferences();
partial_sink.WriteSpaceUsed( p_ser.FinalizeAllocation();
p_ser.CurrentAllocationAddress(NEW_SPACE), startup_serializer.FinalizeAllocation();
p_ser.CurrentAllocationAddress(OLD_POINTER_SPACE),
p_ser.CurrentAllocationAddress(OLD_DATA_SPACE),
p_ser.CurrentAllocationAddress(CODE_SPACE),
p_ser.CurrentAllocationAddress(MAP_SPACE),
p_ser.CurrentAllocationAddress(CELL_SPACE),
p_ser.CurrentAllocationAddress(PROPERTY_CELL_SPACE),
p_ser.CurrentAllocationAddress(LO_SPACE));
startup_sink.WriteSpaceUsed( partial_sink.WriteSpaceUsed(&p_ser);
startup_serializer.CurrentAllocationAddress(NEW_SPACE),
startup_serializer.CurrentAllocationAddress(OLD_POINTER_SPACE), startup_sink.WriteSpaceUsed(&startup_serializer);
startup_serializer.CurrentAllocationAddress(OLD_DATA_SPACE),
startup_serializer.CurrentAllocationAddress(CODE_SPACE),
startup_serializer.CurrentAllocationAddress(MAP_SPACE),
startup_serializer.CurrentAllocationAddress(CELL_SPACE),
startup_serializer.CurrentAllocationAddress(PROPERTY_CELL_SPACE),
startup_serializer.CurrentAllocationAddress(LO_SPACE));
startup_name.Dispose(); startup_name.Dispose();
} }
v8_isolate->Dispose(); v8_isolate->Dispose();
@ -901,6 +879,78 @@ TEST(SerializeToplevelLargeString) {
} }
TEST(SerializeToplevelThreeBigStrings) {
FLAG_serialize_toplevel = true;
LocalContext context;
Isolate* isolate = CcTest::i_isolate();
Factory* f = isolate->factory();
isolate->compilation_cache()->Disable(); // Disable same-isolate code cache.
v8::HandleScope scope(CcTest::isolate());
Vector<const uint8_t> source_a =
ConstructSource(STATIC_CHAR_VECTOR("var a = \""), STATIC_CHAR_VECTOR("a"),
STATIC_CHAR_VECTOR("\";"), 700000);
Handle<String> source_a_str =
f->NewStringFromOneByte(source_a).ToHandleChecked();
Vector<const uint8_t> source_b =
ConstructSource(STATIC_CHAR_VECTOR("var b = \""), STATIC_CHAR_VECTOR("b"),
STATIC_CHAR_VECTOR("\";"), 600000);
Handle<String> source_b_str =
f->NewStringFromOneByte(source_b).ToHandleChecked();
Vector<const uint8_t> source_c =
ConstructSource(STATIC_CHAR_VECTOR("var c = \""), STATIC_CHAR_VECTOR("c"),
STATIC_CHAR_VECTOR("\";"), 500000);
Handle<String> source_c_str =
f->NewStringFromOneByte(source_c).ToHandleChecked();
Handle<String> source_str =
f->NewConsString(
f->NewConsString(source_a_str, source_b_str).ToHandleChecked(),
source_c_str).ToHandleChecked();
Handle<JSObject> global(isolate->context()->global_object());
ScriptData* cache = NULL;
Handle<SharedFunctionInfo> orig = Compiler::CompileScript(
source_str, Handle<String>(), 0, 0, false,
Handle<Context>(isolate->native_context()), NULL, &cache,
v8::ScriptCompiler::kProduceCodeCache, NOT_NATIVES_CODE);
Handle<SharedFunctionInfo> copy;
{
DisallowCompilation no_compile_expected(isolate);
copy = Compiler::CompileScript(
source_str, Handle<String>(), 0, 0, false,
Handle<Context>(isolate->native_context()), NULL, &cache,
v8::ScriptCompiler::kConsumeCodeCache, NOT_NATIVES_CODE);
}
CHECK_NE(*orig, *copy);
Handle<JSFunction> copy_fun =
isolate->factory()->NewFunctionFromSharedFunctionInfo(
copy, isolate->native_context());
Execution::Call(isolate, copy_fun, global, 0, NULL);
CHECK_EQ(600000 + 700000, CompileRun("(a + b).length")->Int32Value());
CHECK_EQ(500000 + 600000, CompileRun("(b + c).length")->Int32Value());
Heap* heap = isolate->heap();
CHECK(heap->InSpace(*v8::Utils::OpenHandle(*CompileRun("a")->ToString()),
OLD_DATA_SPACE));
CHECK(heap->InSpace(*v8::Utils::OpenHandle(*CompileRun("b")->ToString()),
OLD_DATA_SPACE));
CHECK(heap->InSpace(*v8::Utils::OpenHandle(*CompileRun("c")->ToString()),
OLD_DATA_SPACE));
delete cache;
source_a.Dispose();
source_b.Dispose();
}
class SerializerOneByteResource class SerializerOneByteResource
: public v8::String::ExternalOneByteStringResource { : public v8::String::ExternalOneByteStringResource {
public: public: