[assembler] Factor out Registers from assembler.h

This refactoring reduces the LoC after preprocessor expansion by 370,322

gen         (   21 files):    71,503 to    1,631,168 (   23x)
src         (  624 files):   367,639 to   53,231,764 (  145x)
test        (  392 files):   490,770 to   37,450,839 (   76x)
third_party (  432 files):   239,085 to    9,547,902 (   40x)
total       ( 1521 files): 1,183,681 to  102,836,194 (   87x)

gen         (   21 files):    71,503 to    1,613,222 (   23x)
src         (  624 files):   367,634 to   52,964,046 (  144x)
test        (  392 files):   490,771 to   37,366,181 (   76x)
third_party (  432 files):   239,085 to    9,547,902 (   40x)
total       ( 1521 files): 1,183,677 to  102,465,872 (   87x)

Bug: v8:8562
Change-Id: Ib4e771c37471a2ff19c5538e62c038943cc74eaf
Reviewed-on: https://chromium-review.googlesource.com/c/1382469
Reviewed-by: Jakob Gruber <jgruber@chromium.org>
Reviewed-by: Toon Verwaest <verwaest@chromium.org>
Reviewed-by: Leszek Swirski <leszeks@chromium.org>
Reviewed-by: Georg Neis <neis@chromium.org>
Reviewed-by: Clemens Hammacher <clemensh@chromium.org>
Commit-Queue: Sigurd Schneider <sigurds@chromium.org>
Cr-Commit-Position: refs/heads/master@{#58349}
This commit is contained in:
Sigurd Schneider 2018-12-18 16:02:38 +01:00 committed by Commit Bot
parent f2c2742c50
commit 5c38b47af5
63 changed files with 3448 additions and 3239 deletions

View File

@ -2527,8 +2527,10 @@ v8_source_set("v8_base") {
"src/regexp/regexp-stack.h",
"src/regexp/regexp-utils.cc",
"src/regexp/regexp-utils.h",
"src/register-arch.h",
"src/register-configuration.cc",
"src/register-configuration.h",
"src/register.h",
"src/reglist.h",
"src/reloc-info.cc",
"src/reloc-info.h",
@ -2812,6 +2814,7 @@ v8_source_set("v8_base") {
"src/ia32/interface-descriptors-ia32.cc",
"src/ia32/macro-assembler-ia32.cc",
"src/ia32/macro-assembler-ia32.h",
"src/ia32/register-ia32.h",
"src/ia32/simulator-ia32.cc",
"src/ia32/simulator-ia32.h",
"src/ia32/sse-instr.h",
@ -2846,6 +2849,7 @@ v8_source_set("v8_base") {
"src/x64/interface-descriptors-x64.cc",
"src/x64/macro-assembler-x64.cc",
"src/x64/macro-assembler-x64.h",
"src/x64/register-x64.h",
"src/x64/simulator-x64.cc",
"src/x64/simulator-x64.h",
"src/x64/sse-instr.h",
@ -2881,6 +2885,7 @@ v8_source_set("v8_base") {
"src/arm/interface-descriptors-arm.cc",
"src/arm/macro-assembler-arm.cc",
"src/arm/macro-assembler-arm.h",
"src/arm/register-arm.h",
"src/arm/simulator-arm.cc",
"src/arm/simulator-arm.h",
"src/compiler/backend/arm/code-generator-arm.cc",
@ -2920,6 +2925,8 @@ v8_source_set("v8_base") {
"src/arm64/macro-assembler-arm64-inl.h",
"src/arm64/macro-assembler-arm64.cc",
"src/arm64/macro-assembler-arm64.h",
"src/arm64/register-arm64.cc",
"src/arm64/register-arm64.h",
"src/arm64/simulator-arm64.cc",
"src/arm64/simulator-arm64.h",
"src/arm64/simulator-logic-arm64.cc",
@ -2964,6 +2971,7 @@ v8_source_set("v8_base") {
"src/mips/interface-descriptors-mips.cc",
"src/mips/macro-assembler-mips.cc",
"src/mips/macro-assembler-mips.h",
"src/mips/register-mips.h",
"src/mips/simulator-mips.cc",
"src/mips/simulator-mips.h",
"src/regexp/mips/regexp-macro-assembler-mips.cc",
@ -2991,6 +2999,7 @@ v8_source_set("v8_base") {
"src/mips64/interface-descriptors-mips64.cc",
"src/mips64/macro-assembler-mips64.cc",
"src/mips64/macro-assembler-mips64.h",
"src/mips64/register-mips64.h",
"src/mips64/simulator-mips64.cc",
"src/mips64/simulator-mips64.h",
"src/regexp/mips64/regexp-macro-assembler-mips64.cc",
@ -3019,6 +3028,7 @@ v8_source_set("v8_base") {
"src/ppc/interface-descriptors-ppc.cc",
"src/ppc/macro-assembler-ppc.cc",
"src/ppc/macro-assembler-ppc.h",
"src/ppc/register-ppc.h",
"src/ppc/simulator-ppc.cc",
"src/ppc/simulator-ppc.h",
"src/regexp/ppc/regexp-macro-assembler-ppc.cc",
@ -3049,6 +3059,7 @@ v8_source_set("v8_base") {
"src/s390/interface-descriptors-s390.cc",
"src/s390/macro-assembler-s390.cc",
"src/s390/macro-assembler-s390.h",
"src/s390/register-s390.h",
"src/s390/simulator-s390.cc",
"src/s390/simulator-s390.h",
"src/wasm/baseline/s390/liftoff-assembler-s390.h",

View File

@ -44,6 +44,7 @@
#include <vector>
#include "src/arm/constants-arm.h"
#include "src/arm/register-arm.h"
#include "src/assembler.h"
#include "src/boxed-float.h"
#include "src/constant-pool.h"
@ -52,324 +53,6 @@
namespace v8 {
namespace internal {
// clang-format off
#define GENERAL_REGISTERS(V) \
V(r0) V(r1) V(r2) V(r3) V(r4) V(r5) V(r6) V(r7) \
V(r8) V(r9) V(r10) V(fp) V(ip) V(sp) V(lr) V(pc)
#define ALLOCATABLE_GENERAL_REGISTERS(V) \
V(r0) V(r1) V(r2) V(r3) V(r4) V(r5) V(r6) V(r7) \
V(r8) V(r9)
#define FLOAT_REGISTERS(V) \
V(s0) V(s1) V(s2) V(s3) V(s4) V(s5) V(s6) V(s7) \
V(s8) V(s9) V(s10) V(s11) V(s12) V(s13) V(s14) V(s15) \
V(s16) V(s17) V(s18) V(s19) V(s20) V(s21) V(s22) V(s23) \
V(s24) V(s25) V(s26) V(s27) V(s28) V(s29) V(s30) V(s31)
#define LOW_DOUBLE_REGISTERS(V) \
V(d0) V(d1) V(d2) V(d3) V(d4) V(d5) V(d6) V(d7) \
V(d8) V(d9) V(d10) V(d11) V(d12) V(d13) V(d14) V(d15)
#define NON_LOW_DOUBLE_REGISTERS(V) \
V(d16) V(d17) V(d18) V(d19) V(d20) V(d21) V(d22) V(d23) \
V(d24) V(d25) V(d26) V(d27) V(d28) V(d29) V(d30) V(d31)
#define DOUBLE_REGISTERS(V) \
LOW_DOUBLE_REGISTERS(V) NON_LOW_DOUBLE_REGISTERS(V)
#define SIMD128_REGISTERS(V) \
V(q0) V(q1) V(q2) V(q3) V(q4) V(q5) V(q6) V(q7) \
V(q8) V(q9) V(q10) V(q11) V(q12) V(q13) V(q14) V(q15)
#define ALLOCATABLE_DOUBLE_REGISTERS(V) \
V(d0) V(d1) V(d2) V(d3) V(d4) V(d5) V(d6) V(d7) \
V(d8) V(d9) V(d10) V(d11) V(d12) \
V(d16) V(d17) V(d18) V(d19) V(d20) V(d21) V(d22) V(d23) \
V(d24) V(d25) V(d26) V(d27) V(d28) V(d29) V(d30) V(d31)
#define ALLOCATABLE_NO_VFP32_DOUBLE_REGISTERS(V) \
V(d0) V(d1) V(d2) V(d3) V(d4) V(d5) V(d6) V(d7) \
V(d8) V(d9) V(d10) V(d11) V(d12) V(d15)
#define C_REGISTERS(V) \
V(cr0) V(cr1) V(cr2) V(cr3) V(cr4) V(cr5) V(cr6) V(cr7) \
V(cr8) V(cr9) V(cr10) V(cr11) V(cr12) V(cr15)
// clang-format on
// The ARM ABI does not specify the usage of register r9, which may be reserved
// as the static base or thread register on some platforms, in which case we
// leave it alone. Adjust the value of kR9Available accordingly:
const int kR9Available = 1; // 1 if available to us, 0 if reserved
// Register list in load/store instructions
// Note that the bit values must match those used in actual instruction encoding
const int kNumRegs = 16;
// Caller-saved/arguments registers
const RegList kJSCallerSaved =
1 << 0 | // r0 a1
1 << 1 | // r1 a2
1 << 2 | // r2 a3
1 << 3; // r3 a4
const int kNumJSCallerSaved = 4;
// Callee-saved registers preserved when switching from C to JavaScript
const RegList kCalleeSaved =
1 << 4 | // r4 v1
1 << 5 | // r5 v2
1 << 6 | // r6 v3
1 << 7 | // r7 v4 (cp in JavaScript code)
1 << 8 | // r8 v5 (pp in JavaScript code)
kR9Available << 9 | // r9 v6
1 << 10 | // r10 v7
1 << 11; // r11 v8 (fp in JavaScript code)
// When calling into C++ (only for C++ calls that can't cause a GC).
// The call code will take care of lr, fp, etc.
const RegList kCallerSaved =
1 << 0 | // r0
1 << 1 | // r1
1 << 2 | // r2
1 << 3 | // r3
1 << 9; // r9
const int kNumCalleeSaved = 7 + kR9Available;
// Double registers d8 to d15 are callee-saved.
const int kNumDoubleCalleeSaved = 8;
// Number of registers for which space is reserved in safepoints. Must be a
// multiple of 8.
// TODO(regis): Only 8 registers may actually be sufficient. Revisit.
const int kNumSafepointRegisters = 16;
// Define the list of registers actually saved at safepoints.
// Note that the number of saved registers may be smaller than the reserved
// space, i.e. kNumSafepointSavedRegisters <= kNumSafepointRegisters.
const RegList kSafepointSavedRegisters = kJSCallerSaved | kCalleeSaved;
const int kNumSafepointSavedRegisters = kNumJSCallerSaved + kNumCalleeSaved;
enum RegisterCode {
#define REGISTER_CODE(R) kRegCode_##R,
GENERAL_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kRegAfterLast
};
class Register : public RegisterBase<Register, kRegAfterLast> {
friend class RegisterBase;
explicit constexpr Register(int code) : RegisterBase(code) {}
};
ASSERT_TRIVIALLY_COPYABLE(Register);
static_assert(sizeof(Register) == sizeof(int),
"Register can efficiently be passed by value");
// r7: context register
#define DECLARE_REGISTER(R) \
constexpr Register R = Register::from_code<kRegCode_##R>();
GENERAL_REGISTERS(DECLARE_REGISTER)
#undef DECLARE_REGISTER
constexpr Register no_reg = Register::no_reg();
constexpr bool kPadArguments = false;
constexpr bool kSimpleFPAliasing = false;
constexpr bool kSimdMaskRegisters = false;
enum SwVfpRegisterCode {
#define REGISTER_CODE(R) kSwVfpCode_##R,
FLOAT_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kSwVfpAfterLast
};
// Representation of a list of non-overlapping VFP registers. This list
// represents the data layout of VFP registers as a bitfield:
// S registers cover 1 bit
// D registers cover 2 bits
// Q registers cover 4 bits
//
// This way, we make sure no registers in the list ever overlap. However, a list
// may represent multiple different sets of registers,
// e.g. [d0 s2 s3] <=> [s0 s1 d1].
typedef uint64_t VfpRegList;
// Single word VFP register.
class SwVfpRegister : public RegisterBase<SwVfpRegister, kSwVfpAfterLast> {
public:
static constexpr int kSizeInBytes = 4;
static void split_code(int reg_code, int* vm, int* m) {
DCHECK(from_code(reg_code).is_valid());
*m = reg_code & 0x1;
*vm = reg_code >> 1;
}
void split_code(int* vm, int* m) const { split_code(code(), vm, m); }
VfpRegList ToVfpRegList() const {
DCHECK(is_valid());
// Each bit in the list corresponds to a S register.
return uint64_t{0x1} << code();
}
private:
friend class RegisterBase;
explicit constexpr SwVfpRegister(int code) : RegisterBase(code) {}
};
ASSERT_TRIVIALLY_COPYABLE(SwVfpRegister);
static_assert(sizeof(SwVfpRegister) == sizeof(int),
"SwVfpRegister can efficiently be passed by value");
typedef SwVfpRegister FloatRegister;
enum DoubleRegisterCode {
#define REGISTER_CODE(R) kDoubleCode_##R,
DOUBLE_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kDoubleAfterLast
};
// Double word VFP register.
class DwVfpRegister : public RegisterBase<DwVfpRegister, kDoubleAfterLast> {
public:
static constexpr int kSizeInBytes = 8;
inline static int NumRegisters();
static void split_code(int reg_code, int* vm, int* m) {
DCHECK(from_code(reg_code).is_valid());
*m = (reg_code & 0x10) >> 4;
*vm = reg_code & 0x0F;
}
void split_code(int* vm, int* m) const { split_code(code(), vm, m); }
VfpRegList ToVfpRegList() const {
DCHECK(is_valid());
// A D register overlaps two S registers.
return uint64_t{0x3} << (code() * 2);
}
private:
friend class RegisterBase;
friend class LowDwVfpRegister;
explicit constexpr DwVfpRegister(int code) : RegisterBase(code) {}
};
ASSERT_TRIVIALLY_COPYABLE(DwVfpRegister);
static_assert(sizeof(DwVfpRegister) == sizeof(int),
"DwVfpRegister can efficiently be passed by value");
typedef DwVfpRegister DoubleRegister;
// Double word VFP register d0-15.
class LowDwVfpRegister
: public RegisterBase<LowDwVfpRegister, kDoubleCode_d16> {
public:
constexpr operator DwVfpRegister() const { return DwVfpRegister(reg_code_); }
SwVfpRegister low() const { return SwVfpRegister::from_code(code() * 2); }
SwVfpRegister high() const {
return SwVfpRegister::from_code(code() * 2 + 1);
}
VfpRegList ToVfpRegList() const {
DCHECK(is_valid());
// A D register overlaps two S registers.
return uint64_t{0x3} << (code() * 2);
}
private:
friend class RegisterBase;
explicit constexpr LowDwVfpRegister(int code) : RegisterBase(code) {}
};
enum Simd128RegisterCode {
#define REGISTER_CODE(R) kSimd128Code_##R,
SIMD128_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kSimd128AfterLast
};
// Quad word NEON register.
class QwNeonRegister : public RegisterBase<QwNeonRegister, kSimd128AfterLast> {
public:
static void split_code(int reg_code, int* vm, int* m) {
DCHECK(from_code(reg_code).is_valid());
int encoded_code = reg_code << 1;
*m = (encoded_code & 0x10) >> 4;
*vm = encoded_code & 0x0F;
}
void split_code(int* vm, int* m) const { split_code(code(), vm, m); }
DwVfpRegister low() const { return DwVfpRegister::from_code(code() * 2); }
DwVfpRegister high() const {
return DwVfpRegister::from_code(code() * 2 + 1);
}
VfpRegList ToVfpRegList() const {
DCHECK(is_valid());
// A Q register overlaps four S registers.
return uint64_t{0xf} << (code() * 4);
}
private:
friend class RegisterBase;
explicit constexpr QwNeonRegister(int code) : RegisterBase(code) {}
};
typedef QwNeonRegister QuadRegister;
typedef QwNeonRegister Simd128Register;
enum CRegisterCode {
#define REGISTER_CODE(R) kCCode_##R,
C_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kCAfterLast
};
// Coprocessor register
class CRegister : public RegisterBase<CRegister, kCAfterLast> {
friend class RegisterBase;
explicit constexpr CRegister(int code) : RegisterBase(code) {}
};
// Support for the VFP registers s0 to s31 (d0 to d15).
// Note that "s(N):s(N+1)" is the same as "d(N/2)".
#define DECLARE_FLOAT_REGISTER(R) \
constexpr SwVfpRegister R = SwVfpRegister::from_code<kSwVfpCode_##R>();
FLOAT_REGISTERS(DECLARE_FLOAT_REGISTER)
#undef DECLARE_FLOAT_REGISTER
#define DECLARE_LOW_DOUBLE_REGISTER(R) \
constexpr LowDwVfpRegister R = LowDwVfpRegister::from_code<kDoubleCode_##R>();
LOW_DOUBLE_REGISTERS(DECLARE_LOW_DOUBLE_REGISTER)
#undef DECLARE_LOW_DOUBLE_REGISTER
#define DECLARE_DOUBLE_REGISTER(R) \
constexpr DwVfpRegister R = DwVfpRegister::from_code<kDoubleCode_##R>();
NON_LOW_DOUBLE_REGISTERS(DECLARE_DOUBLE_REGISTER)
#undef DECLARE_DOUBLE_REGISTER
constexpr DwVfpRegister no_dreg = DwVfpRegister::no_reg();
#define DECLARE_SIMD128_REGISTER(R) \
constexpr Simd128Register R = Simd128Register::from_code<kSimd128Code_##R>();
SIMD128_REGISTERS(DECLARE_SIMD128_REGISTER)
#undef DECLARE_SIMD128_REGISTER
// Aliases for double registers.
constexpr LowDwVfpRegister kFirstCalleeSavedDoubleReg = d8;
constexpr LowDwVfpRegister kLastCalleeSavedDoubleReg = d15;
constexpr LowDwVfpRegister kDoubleRegZero = d13;
constexpr CRegister no_creg = CRegister::no_reg();
#define DECLARE_C_REGISTER(R) \
constexpr CRegister R = CRegister::from_code<kCCode_##R>();
C_REGISTERS(DECLARE_C_REGISTER)
#undef DECLARE_C_REGISTER
// Coprocessor number
enum Coprocessor {
p0 = 0,
@ -1746,14 +1429,6 @@ class UseScratchRegisterScope {
VfpRegList old_available_vfp_;
};
// Define {RegisterName} methods for the register types.
DEFINE_REGISTER_NAMES(Register, GENERAL_REGISTERS);
DEFINE_REGISTER_NAMES(SwVfpRegister, FLOAT_REGISTERS);
DEFINE_REGISTER_NAMES(DwVfpRegister, DOUBLE_REGISTERS);
DEFINE_REGISTER_NAMES(LowDwVfpRegister, LOW_DOUBLE_REGISTERS);
DEFINE_REGISTER_NAMES(QwNeonRegister, SIMD128_REGISTERS);
DEFINE_REGISTER_NAMES(CRegister, C_REGISTERS);
} // namespace internal
} // namespace v8

View File

@ -30,11 +30,11 @@
#if V8_TARGET_ARCH_ARM
#include "src/arm/assembler-arm.h"
#include "src/arm/constants-arm.h"
#include "src/base/bits.h"
#include "src/base/platform/platform.h"
#include "src/disasm.h"
#include "src/macro-assembler.h"
namespace v8 {
namespace internal {

View File

@ -5,7 +5,8 @@
#if V8_TARGET_ARCH_ARM
#include "src/interface-descriptors.h"
#include "src/macro-assembler.h"
#include "src/frames.h"
namespace v8 {
namespace internal {

View File

@ -17,32 +17,6 @@
namespace v8 {
namespace internal {
// Give alias names to registers for calling conventions.
constexpr Register kReturnRegister0 = r0;
constexpr Register kReturnRegister1 = r1;
constexpr Register kReturnRegister2 = r2;
constexpr Register kJSFunctionRegister = r1;
constexpr Register kContextRegister = r7;
constexpr Register kAllocateSizeRegister = r1;
constexpr Register kSpeculationPoisonRegister = r9;
constexpr Register kInterpreterAccumulatorRegister = r0;
constexpr Register kInterpreterBytecodeOffsetRegister = r5;
constexpr Register kInterpreterBytecodeArrayRegister = r6;
constexpr Register kInterpreterDispatchTableRegister = r8;
constexpr Register kJavaScriptCallArgCountRegister = r0;
constexpr Register kJavaScriptCallCodeStartRegister = r2;
constexpr Register kJavaScriptCallTargetRegister = kJSFunctionRegister;
constexpr Register kJavaScriptCallNewTargetRegister = r3;
constexpr Register kJavaScriptCallExtraArg1Register = r2;
constexpr Register kOffHeapTrampolineRegister = ip;
constexpr Register kRuntimeCallFunctionRegister = r1;
constexpr Register kRuntimeCallArgCountRegister = r0;
constexpr Register kRuntimeCallArgvRegister = r2;
constexpr Register kWasmInstanceRegister = r3;
constexpr Register kWasmCompileLazyFuncIndexRegister = r4;
// ----------------------------------------------------------------------------
// Static helper functions
@ -51,11 +25,6 @@ inline MemOperand FieldMemOperand(Register object, int offset) {
return MemOperand(object, offset - kHeapObjectTag);
}
// Give alias names to registers
constexpr Register cp = r7; // JavaScript context pointer.
constexpr Register kRootRegister = r10; // Roots array pointer.
enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };

369
src/arm/register-arm.h Normal file
View File

@ -0,0 +1,369 @@
// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_ARM_REGISTER_ARM_H_
#define V8_ARM_REGISTER_ARM_H_
#include "src/register.h"
#include "src/reglist.h"
namespace v8 {
namespace internal {
// clang-format off
#define GENERAL_REGISTERS(V) \
V(r0) V(r1) V(r2) V(r3) V(r4) V(r5) V(r6) V(r7) \
V(r8) V(r9) V(r10) V(fp) V(ip) V(sp) V(lr) V(pc)
#define ALLOCATABLE_GENERAL_REGISTERS(V) \
V(r0) V(r1) V(r2) V(r3) V(r4) V(r5) V(r6) V(r7) \
V(r8) V(r9)
#define FLOAT_REGISTERS(V) \
V(s0) V(s1) V(s2) V(s3) V(s4) V(s5) V(s6) V(s7) \
V(s8) V(s9) V(s10) V(s11) V(s12) V(s13) V(s14) V(s15) \
V(s16) V(s17) V(s18) V(s19) V(s20) V(s21) V(s22) V(s23) \
V(s24) V(s25) V(s26) V(s27) V(s28) V(s29) V(s30) V(s31)
#define LOW_DOUBLE_REGISTERS(V) \
V(d0) V(d1) V(d2) V(d3) V(d4) V(d5) V(d6) V(d7) \
V(d8) V(d9) V(d10) V(d11) V(d12) V(d13) V(d14) V(d15)
#define NON_LOW_DOUBLE_REGISTERS(V) \
V(d16) V(d17) V(d18) V(d19) V(d20) V(d21) V(d22) V(d23) \
V(d24) V(d25) V(d26) V(d27) V(d28) V(d29) V(d30) V(d31)
#define DOUBLE_REGISTERS(V) \
LOW_DOUBLE_REGISTERS(V) NON_LOW_DOUBLE_REGISTERS(V)
#define SIMD128_REGISTERS(V) \
V(q0) V(q1) V(q2) V(q3) V(q4) V(q5) V(q6) V(q7) \
V(q8) V(q9) V(q10) V(q11) V(q12) V(q13) V(q14) V(q15)
#define ALLOCATABLE_DOUBLE_REGISTERS(V) \
V(d0) V(d1) V(d2) V(d3) V(d4) V(d5) V(d6) V(d7) \
V(d8) V(d9) V(d10) V(d11) V(d12) \
V(d16) V(d17) V(d18) V(d19) V(d20) V(d21) V(d22) V(d23) \
V(d24) V(d25) V(d26) V(d27) V(d28) V(d29) V(d30) V(d31)
#define ALLOCATABLE_NO_VFP32_DOUBLE_REGISTERS(V) \
V(d0) V(d1) V(d2) V(d3) V(d4) V(d5) V(d6) V(d7) \
V(d8) V(d9) V(d10) V(d11) V(d12) V(d15)
#define C_REGISTERS(V) \
V(cr0) V(cr1) V(cr2) V(cr3) V(cr4) V(cr5) V(cr6) V(cr7) \
V(cr8) V(cr9) V(cr10) V(cr11) V(cr12) V(cr15)
// clang-format on
// The ARM ABI does not specify the usage of register r9, which may be reserved
// as the static base or thread register on some platforms, in which case we
// leave it alone. Adjust the value of kR9Available accordingly:
const int kR9Available = 1; // 1 if available to us, 0 if reserved
// Register list in load/store instructions
// Note that the bit values must match those used in actual instruction encoding
const int kNumRegs = 16;
// Caller-saved/arguments registers
const RegList kJSCallerSaved = 1 << 0 | // r0 a1
1 << 1 | // r1 a2
1 << 2 | // r2 a3
1 << 3; // r3 a4
const int kNumJSCallerSaved = 4;
// Callee-saved registers preserved when switching from C to JavaScript
const RegList kCalleeSaved = 1 << 4 | // r4 v1
1 << 5 | // r5 v2
1 << 6 | // r6 v3
1 << 7 | // r7 v4 (cp in JavaScript code)
1 << 8 | // r8 v5 (pp in JavaScript code)
kR9Available << 9 | // r9 v6
1 << 10 | // r10 v7
1 << 11; // r11 v8 (fp in JavaScript code)
// When calling into C++ (only for C++ calls that can't cause a GC).
// The call code will take care of lr, fp, etc.
const RegList kCallerSaved = 1 << 0 | // r0
1 << 1 | // r1
1 << 2 | // r2
1 << 3 | // r3
1 << 9; // r9
const int kNumCalleeSaved = 7 + kR9Available;
// Double registers d8 to d15 are callee-saved.
const int kNumDoubleCalleeSaved = 8;
// Number of registers for which space is reserved in safepoints. Must be a
// multiple of 8.
// TODO(regis): Only 8 registers may actually be sufficient. Revisit.
const int kNumSafepointRegisters = 16;
// Define the list of registers actually saved at safepoints.
// Note that the number of saved registers may be smaller than the reserved
// space, i.e. kNumSafepointSavedRegisters <= kNumSafepointRegisters.
const RegList kSafepointSavedRegisters = kJSCallerSaved | kCalleeSaved;
const int kNumSafepointSavedRegisters = kNumJSCallerSaved + kNumCalleeSaved;
enum RegisterCode {
#define REGISTER_CODE(R) kRegCode_##R,
GENERAL_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kRegAfterLast
};
class Register : public RegisterBase<Register, kRegAfterLast> {
friend class RegisterBase;
explicit constexpr Register(int code) : RegisterBase(code) {}
};
ASSERT_TRIVIALLY_COPYABLE(Register);
static_assert(sizeof(Register) == sizeof(int),
"Register can efficiently be passed by value");
// r7: context register
#define DECLARE_REGISTER(R) \
constexpr Register R = Register::from_code<kRegCode_##R>();
GENERAL_REGISTERS(DECLARE_REGISTER)
#undef DECLARE_REGISTER
constexpr Register no_reg = Register::no_reg();
constexpr bool kPadArguments = false;
constexpr bool kSimpleFPAliasing = false;
constexpr bool kSimdMaskRegisters = false;
enum SwVfpRegisterCode {
#define REGISTER_CODE(R) kSwVfpCode_##R,
FLOAT_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kSwVfpAfterLast
};
// Representation of a list of non-overlapping VFP registers. This list
// represents the data layout of VFP registers as a bitfield:
// S registers cover 1 bit
// D registers cover 2 bits
// Q registers cover 4 bits
//
// This way, we make sure no registers in the list ever overlap. However, a list
// may represent multiple different sets of registers,
// e.g. [d0 s2 s3] <=> [s0 s1 d1].
typedef uint64_t VfpRegList;
// Single word VFP register.
class SwVfpRegister : public RegisterBase<SwVfpRegister, kSwVfpAfterLast> {
public:
static constexpr int kSizeInBytes = 4;
static void split_code(int reg_code, int* vm, int* m) {
DCHECK(from_code(reg_code).is_valid());
*m = reg_code & 0x1;
*vm = reg_code >> 1;
}
void split_code(int* vm, int* m) const { split_code(code(), vm, m); }
VfpRegList ToVfpRegList() const {
DCHECK(is_valid());
// Each bit in the list corresponds to a S register.
return uint64_t{0x1} << code();
}
private:
friend class RegisterBase;
explicit constexpr SwVfpRegister(int code) : RegisterBase(code) {}
};
ASSERT_TRIVIALLY_COPYABLE(SwVfpRegister);
static_assert(sizeof(SwVfpRegister) == sizeof(int),
"SwVfpRegister can efficiently be passed by value");
typedef SwVfpRegister FloatRegister;
enum DoubleRegisterCode {
#define REGISTER_CODE(R) kDoubleCode_##R,
DOUBLE_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kDoubleAfterLast
};
// Double word VFP register.
class DwVfpRegister : public RegisterBase<DwVfpRegister, kDoubleAfterLast> {
public:
static constexpr int kSizeInBytes = 8;
inline static int NumRegisters();
static void split_code(int reg_code, int* vm, int* m) {
DCHECK(from_code(reg_code).is_valid());
*m = (reg_code & 0x10) >> 4;
*vm = reg_code & 0x0F;
}
void split_code(int* vm, int* m) const { split_code(code(), vm, m); }
VfpRegList ToVfpRegList() const {
DCHECK(is_valid());
// A D register overlaps two S registers.
return uint64_t{0x3} << (code() * 2);
}
private:
friend class RegisterBase;
friend class LowDwVfpRegister;
explicit constexpr DwVfpRegister(int code) : RegisterBase(code) {}
};
ASSERT_TRIVIALLY_COPYABLE(DwVfpRegister);
static_assert(sizeof(DwVfpRegister) == sizeof(int),
"DwVfpRegister can efficiently be passed by value");
typedef DwVfpRegister DoubleRegister;
// Double word VFP register d0-15.
class LowDwVfpRegister
: public RegisterBase<LowDwVfpRegister, kDoubleCode_d16> {
public:
constexpr operator DwVfpRegister() const { return DwVfpRegister(reg_code_); }
SwVfpRegister low() const { return SwVfpRegister::from_code(code() * 2); }
SwVfpRegister high() const {
return SwVfpRegister::from_code(code() * 2 + 1);
}
VfpRegList ToVfpRegList() const {
DCHECK(is_valid());
// A D register overlaps two S registers.
return uint64_t{0x3} << (code() * 2);
}
private:
friend class RegisterBase;
explicit constexpr LowDwVfpRegister(int code) : RegisterBase(code) {}
};
enum Simd128RegisterCode {
#define REGISTER_CODE(R) kSimd128Code_##R,
SIMD128_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kSimd128AfterLast
};
// Quad word NEON register.
class QwNeonRegister : public RegisterBase<QwNeonRegister, kSimd128AfterLast> {
public:
static void split_code(int reg_code, int* vm, int* m) {
DCHECK(from_code(reg_code).is_valid());
int encoded_code = reg_code << 1;
*m = (encoded_code & 0x10) >> 4;
*vm = encoded_code & 0x0F;
}
void split_code(int* vm, int* m) const { split_code(code(), vm, m); }
DwVfpRegister low() const { return DwVfpRegister::from_code(code() * 2); }
DwVfpRegister high() const {
return DwVfpRegister::from_code(code() * 2 + 1);
}
VfpRegList ToVfpRegList() const {
DCHECK(is_valid());
// A Q register overlaps four S registers.
return uint64_t{0xf} << (code() * 4);
}
private:
friend class RegisterBase;
explicit constexpr QwNeonRegister(int code) : RegisterBase(code) {}
};
typedef QwNeonRegister QuadRegister;
typedef QwNeonRegister Simd128Register;
enum CRegisterCode {
#define REGISTER_CODE(R) kCCode_##R,
C_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kCAfterLast
};
// Coprocessor register
class CRegister : public RegisterBase<CRegister, kCAfterLast> {
friend class RegisterBase;
explicit constexpr CRegister(int code) : RegisterBase(code) {}
};
// Support for the VFP registers s0 to s31 (d0 to d15).
// Note that "s(N):s(N+1)" is the same as "d(N/2)".
#define DECLARE_FLOAT_REGISTER(R) \
constexpr SwVfpRegister R = SwVfpRegister::from_code<kSwVfpCode_##R>();
FLOAT_REGISTERS(DECLARE_FLOAT_REGISTER)
#undef DECLARE_FLOAT_REGISTER
#define DECLARE_LOW_DOUBLE_REGISTER(R) \
constexpr LowDwVfpRegister R = LowDwVfpRegister::from_code<kDoubleCode_##R>();
LOW_DOUBLE_REGISTERS(DECLARE_LOW_DOUBLE_REGISTER)
#undef DECLARE_LOW_DOUBLE_REGISTER
#define DECLARE_DOUBLE_REGISTER(R) \
constexpr DwVfpRegister R = DwVfpRegister::from_code<kDoubleCode_##R>();
NON_LOW_DOUBLE_REGISTERS(DECLARE_DOUBLE_REGISTER)
#undef DECLARE_DOUBLE_REGISTER
constexpr DwVfpRegister no_dreg = DwVfpRegister::no_reg();
#define DECLARE_SIMD128_REGISTER(R) \
constexpr Simd128Register R = Simd128Register::from_code<kSimd128Code_##R>();
SIMD128_REGISTERS(DECLARE_SIMD128_REGISTER)
#undef DECLARE_SIMD128_REGISTER
// Aliases for double registers.
constexpr LowDwVfpRegister kFirstCalleeSavedDoubleReg = d8;
constexpr LowDwVfpRegister kLastCalleeSavedDoubleReg = d15;
constexpr LowDwVfpRegister kDoubleRegZero = d13;
constexpr CRegister no_creg = CRegister::no_reg();
#define DECLARE_C_REGISTER(R) \
constexpr CRegister R = CRegister::from_code<kCCode_##R>();
C_REGISTERS(DECLARE_C_REGISTER)
#undef DECLARE_C_REGISTER
// Define {RegisterName} methods for the register types.
DEFINE_REGISTER_NAMES(Register, GENERAL_REGISTERS);
DEFINE_REGISTER_NAMES(SwVfpRegister, FLOAT_REGISTERS);
DEFINE_REGISTER_NAMES(DwVfpRegister, DOUBLE_REGISTERS);
DEFINE_REGISTER_NAMES(LowDwVfpRegister, LOW_DOUBLE_REGISTERS);
DEFINE_REGISTER_NAMES(QwNeonRegister, SIMD128_REGISTERS);
DEFINE_REGISTER_NAMES(CRegister, C_REGISTERS);
// Give alias names to registers for calling conventions.
constexpr Register kReturnRegister0 = r0;
constexpr Register kReturnRegister1 = r1;
constexpr Register kReturnRegister2 = r2;
constexpr Register kJSFunctionRegister = r1;
constexpr Register kContextRegister = r7;
constexpr Register kAllocateSizeRegister = r1;
constexpr Register kSpeculationPoisonRegister = r9;
constexpr Register kInterpreterAccumulatorRegister = r0;
constexpr Register kInterpreterBytecodeOffsetRegister = r5;
constexpr Register kInterpreterBytecodeArrayRegister = r6;
constexpr Register kInterpreterDispatchTableRegister = r8;
constexpr Register kJavaScriptCallArgCountRegister = r0;
constexpr Register kJavaScriptCallCodeStartRegister = r2;
constexpr Register kJavaScriptCallTargetRegister = kJSFunctionRegister;
constexpr Register kJavaScriptCallNewTargetRegister = r3;
constexpr Register kJavaScriptCallExtraArg1Register = r2;
constexpr Register kOffHeapTrampolineRegister = ip;
constexpr Register kRuntimeCallFunctionRegister = r1;
constexpr Register kRuntimeCallArgCountRegister = r0;
constexpr Register kRuntimeCallArgvRegister = r2;
constexpr Register kWasmInstanceRegister = r3;
constexpr Register kWasmCompileLazyFuncIndexRegister = r4;
// Give alias names to registers
constexpr Register cp = r7; // JavaScript context pointer.
constexpr Register kRootRegister = r10; // Roots array pointer.
} // namespace internal
} // namespace v8
#endif // V8_ARM_REGISTER_ARM_H_

View File

@ -12,6 +12,7 @@
#include "src/arm64/constants-arm64.h"
#include "src/arm64/instructions-arm64.h"
#include "src/arm64/register-arm64.h"
#include "src/assembler.h"
#include "src/base/optional.h"
#include "src/constant-pool.h"
@ -27,663 +28,6 @@
namespace v8 {
namespace internal {
// -----------------------------------------------------------------------------
// Registers.
// clang-format off
#define GENERAL_REGISTER_CODE_LIST(R) \
R(0) R(1) R(2) R(3) R(4) R(5) R(6) R(7) \
R(8) R(9) R(10) R(11) R(12) R(13) R(14) R(15) \
R(16) R(17) R(18) R(19) R(20) R(21) R(22) R(23) \
R(24) R(25) R(26) R(27) R(28) R(29) R(30) R(31)
#define GENERAL_REGISTERS(R) \
R(x0) R(x1) R(x2) R(x3) R(x4) R(x5) R(x6) R(x7) \
R(x8) R(x9) R(x10) R(x11) R(x12) R(x13) R(x14) R(x15) \
R(x16) R(x17) R(x18) R(x19) R(x20) R(x21) R(x22) R(x23) \
R(x24) R(x25) R(x26) R(x27) R(x28) R(x29) R(x30) R(x31)
#if defined(V8_OS_WIN)
// x18 is reserved as platform register on Windows ARM64.
#define ALLOCATABLE_GENERAL_REGISTERS(R) \
R(x0) R(x1) R(x2) R(x3) R(x4) R(x5) R(x6) R(x7) \
R(x8) R(x9) R(x10) R(x11) R(x12) R(x13) R(x14) R(x15) \
R(x19) R(x20) R(x21) R(x22) R(x23) R(x24) R(x25) \
R(x27) R(x28)
#else
#define ALLOCATABLE_GENERAL_REGISTERS(R) \
R(x0) R(x1) R(x2) R(x3) R(x4) R(x5) R(x6) R(x7) \
R(x8) R(x9) R(x10) R(x11) R(x12) R(x13) R(x14) R(x15) \
R(x18) R(x19) R(x20) R(x21) R(x22) R(x23) R(x24) R(x25) \
R(x27) R(x28)
#endif
#define FLOAT_REGISTERS(V) \
V(s0) V(s1) V(s2) V(s3) V(s4) V(s5) V(s6) V(s7) \
V(s8) V(s9) V(s10) V(s11) V(s12) V(s13) V(s14) V(s15) \
V(s16) V(s17) V(s18) V(s19) V(s20) V(s21) V(s22) V(s23) \
V(s24) V(s25) V(s26) V(s27) V(s28) V(s29) V(s30) V(s31)
#define DOUBLE_REGISTERS(R) \
R(d0) R(d1) R(d2) R(d3) R(d4) R(d5) R(d6) R(d7) \
R(d8) R(d9) R(d10) R(d11) R(d12) R(d13) R(d14) R(d15) \
R(d16) R(d17) R(d18) R(d19) R(d20) R(d21) R(d22) R(d23) \
R(d24) R(d25) R(d26) R(d27) R(d28) R(d29) R(d30) R(d31)
#define SIMD128_REGISTERS(V) \
V(q0) V(q1) V(q2) V(q3) V(q4) V(q5) V(q6) V(q7) \
V(q8) V(q9) V(q10) V(q11) V(q12) V(q13) V(q14) V(q15) \
V(q16) V(q17) V(q18) V(q19) V(q20) V(q21) V(q22) V(q23) \
V(q24) V(q25) V(q26) V(q27) V(q28) V(q29) V(q30) V(q31)
// Register d29 could be allocated, but we keep an even length list here, in
// order to make stack alignment easier for save and restore.
#define ALLOCATABLE_DOUBLE_REGISTERS(R) \
R(d0) R(d1) R(d2) R(d3) R(d4) R(d5) R(d6) R(d7) \
R(d8) R(d9) R(d10) R(d11) R(d12) R(d13) R(d14) R(d16) \
R(d17) R(d18) R(d19) R(d20) R(d21) R(d22) R(d23) R(d24) \
R(d25) R(d26) R(d27) R(d28)
// clang-format on
constexpr int kRegListSizeInBits = sizeof(RegList) * kBitsPerByte;
const int kNumRegs = kNumberOfRegisters;
// Registers x0-x17 are caller-saved.
const int kNumJSCallerSaved = 18;
const RegList kJSCallerSaved = 0x3ffff;
// Number of registers for which space is reserved in safepoints. Must be a
// multiple of eight.
// TODO(all): Refine this number.
const int kNumSafepointRegisters = 32;
// Define the list of registers actually saved at safepoints.
// Note that the number of saved registers may be smaller than the reserved
// space, i.e. kNumSafepointSavedRegisters <= kNumSafepointRegisters.
#define kSafepointSavedRegisters CPURegList::GetSafepointSavedRegisters().list()
#define kNumSafepointSavedRegisters \
CPURegList::GetSafepointSavedRegisters().Count()
// Some CPURegister methods can return Register and VRegister types, so we
// need to declare them in advance.
class Register;
class VRegister;
enum RegisterCode {
#define REGISTER_CODE(R) kRegCode_##R,
GENERAL_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kRegAfterLast
};
class CPURegister : public RegisterBase<CPURegister, kRegAfterLast> {
public:
enum RegisterType {
kRegister,
kVRegister,
kNoRegister
};
static constexpr CPURegister no_reg() {
return CPURegister{0, 0, kNoRegister};
}
template <int code, int size, RegisterType type>
static constexpr CPURegister Create() {
static_assert(IsValid(code, size, type), "Cannot create invalid registers");
return CPURegister{code, size, type};
}
static CPURegister Create(int code, int size, RegisterType type) {
DCHECK(IsValid(code, size, type));
return CPURegister{code, size, type};
}
RegisterType type() const { return reg_type_; }
int SizeInBits() const {
DCHECK(IsValid());
return reg_size_;
}
int SizeInBytes() const {
DCHECK(IsValid());
DCHECK_EQ(SizeInBits() % 8, 0);
return reg_size_ / 8;
}
bool Is8Bits() const {
DCHECK(IsValid());
return reg_size_ == 8;
}
bool Is16Bits() const {
DCHECK(IsValid());
return reg_size_ == 16;
}
bool Is32Bits() const {
DCHECK(IsValid());
return reg_size_ == 32;
}
bool Is64Bits() const {
DCHECK(IsValid());
return reg_size_ == 64;
}
bool Is128Bits() const {
DCHECK(IsValid());
return reg_size_ == 128;
}
bool IsValid() const { return reg_type_ != kNoRegister; }
bool IsNone() const { return reg_type_ == kNoRegister; }
bool Is(const CPURegister& other) const {
return Aliases(other) && (reg_size_ == other.reg_size_);
}
bool Aliases(const CPURegister& other) const {
return (reg_code_ == other.reg_code_) && (reg_type_ == other.reg_type_);
}
bool IsZero() const;
bool IsSP() const;
bool IsRegister() const { return reg_type_ == kRegister; }
bool IsVRegister() const { return reg_type_ == kVRegister; }
bool IsFPRegister() const { return IsS() || IsD(); }
bool IsW() const { return IsRegister() && Is32Bits(); }
bool IsX() const { return IsRegister() && Is64Bits(); }
// These assertions ensure that the size and type of the register are as
// described. They do not consider the number of lanes that make up a vector.
// So, for example, Is8B() implies IsD(), and Is1D() implies IsD, but IsD()
// does not imply Is1D() or Is8B().
// Check the number of lanes, ie. the format of the vector, using methods such
// as Is8B(), Is1D(), etc. in the VRegister class.
bool IsV() const { return IsVRegister(); }
bool IsB() const { return IsV() && Is8Bits(); }
bool IsH() const { return IsV() && Is16Bits(); }
bool IsS() const { return IsV() && Is32Bits(); }
bool IsD() const { return IsV() && Is64Bits(); }
bool IsQ() const { return IsV() && Is128Bits(); }
Register Reg() const;
VRegister VReg() const;
Register X() const;
Register W() const;
VRegister V() const;
VRegister B() const;
VRegister H() const;
VRegister D() const;
VRegister S() const;
VRegister Q() const;
bool IsSameSizeAndType(const CPURegister& other) const;
bool is(const CPURegister& other) const { return Is(other); }
bool is_valid() const { return IsValid(); }
protected:
int reg_size_;
RegisterType reg_type_;
#if defined(V8_OS_WIN) && !defined(__clang__)
// MSVC has problem to parse template base class as friend class.
friend RegisterBase;
#else
friend class RegisterBase;
#endif
constexpr CPURegister(int code, int size, RegisterType type)
: RegisterBase(code), reg_size_(size), reg_type_(type) {}
static constexpr bool IsValidRegister(int code, int size) {
return (size == kWRegSizeInBits || size == kXRegSizeInBits) &&
(code < kNumberOfRegisters || code == kSPRegInternalCode);
}
static constexpr bool IsValidVRegister(int code, int size) {
return (size == kBRegSizeInBits || size == kHRegSizeInBits ||
size == kSRegSizeInBits || size == kDRegSizeInBits ||
size == kQRegSizeInBits) &&
code < kNumberOfVRegisters;
}
static constexpr bool IsValid(int code, int size, RegisterType type) {
return (type == kRegister && IsValidRegister(code, size)) ||
(type == kVRegister && IsValidVRegister(code, size));
}
static constexpr bool IsNone(int code, int size, RegisterType type) {
return type == kNoRegister && code == 0 && size == 0;
}
};
ASSERT_TRIVIALLY_COPYABLE(CPURegister);
class Register : public CPURegister {
public:
static constexpr Register no_reg() { return Register(CPURegister::no_reg()); }
template <int code, int size>
static constexpr Register Create() {
return Register(CPURegister::Create<code, size, CPURegister::kRegister>());
}
static Register Create(int code, int size) {
return Register(CPURegister::Create(code, size, CPURegister::kRegister));
}
static Register XRegFromCode(unsigned code);
static Register WRegFromCode(unsigned code);
static Register from_code(int code) {
// Always return an X register.
return Register::Create(code, kXRegSizeInBits);
}
template <int code>
static Register from_code() {
// Always return an X register.
return Register::Create<code, kXRegSizeInBits>();
}
private:
constexpr explicit Register(const CPURegister& r) : CPURegister(r) {}
};
ASSERT_TRIVIALLY_COPYABLE(Register);
constexpr bool kPadArguments = true;
constexpr bool kSimpleFPAliasing = true;
constexpr bool kSimdMaskRegisters = false;
enum DoubleRegisterCode {
#define REGISTER_CODE(R) kDoubleCode_##R,
DOUBLE_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kDoubleAfterLast
};
class VRegister : public CPURegister {
public:
static constexpr VRegister no_reg() {
return VRegister(CPURegister::no_reg(), 0);
}
template <int code, int size, int lane_count = 1>
static constexpr VRegister Create() {
static_assert(IsValidLaneCount(lane_count), "Invalid lane count");
return VRegister(CPURegister::Create<code, size, kVRegister>(), lane_count);
}
static VRegister Create(int code, int size, int lane_count = 1) {
DCHECK(IsValidLaneCount(lane_count));
return VRegister(CPURegister::Create(code, size, CPURegister::kVRegister),
lane_count);
}
static VRegister Create(int reg_code, VectorFormat format) {
int reg_size = RegisterSizeInBitsFromFormat(format);
int reg_count = IsVectorFormat(format) ? LaneCountFromFormat(format) : 1;
return VRegister::Create(reg_code, reg_size, reg_count);
}
static VRegister BRegFromCode(unsigned code);
static VRegister HRegFromCode(unsigned code);
static VRegister SRegFromCode(unsigned code);
static VRegister DRegFromCode(unsigned code);
static VRegister QRegFromCode(unsigned code);
static VRegister VRegFromCode(unsigned code);
VRegister V8B() const {
return VRegister::Create(code(), kDRegSizeInBits, 8);
}
VRegister V16B() const {
return VRegister::Create(code(), kQRegSizeInBits, 16);
}
VRegister V4H() const {
return VRegister::Create(code(), kDRegSizeInBits, 4);
}
VRegister V8H() const {
return VRegister::Create(code(), kQRegSizeInBits, 8);
}
VRegister V2S() const {
return VRegister::Create(code(), kDRegSizeInBits, 2);
}
VRegister V4S() const {
return VRegister::Create(code(), kQRegSizeInBits, 4);
}
VRegister V2D() const {
return VRegister::Create(code(), kQRegSizeInBits, 2);
}
VRegister V1D() const {
return VRegister::Create(code(), kDRegSizeInBits, 1);
}
bool Is8B() const { return (Is64Bits() && (lane_count_ == 8)); }
bool Is16B() const { return (Is128Bits() && (lane_count_ == 16)); }
bool Is4H() const { return (Is64Bits() && (lane_count_ == 4)); }
bool Is8H() const { return (Is128Bits() && (lane_count_ == 8)); }
bool Is2S() const { return (Is64Bits() && (lane_count_ == 2)); }
bool Is4S() const { return (Is128Bits() && (lane_count_ == 4)); }
bool Is1D() const { return (Is64Bits() && (lane_count_ == 1)); }
bool Is2D() const { return (Is128Bits() && (lane_count_ == 2)); }
// For consistency, we assert the number of lanes of these scalar registers,
// even though there are no vectors of equivalent total size with which they
// could alias.
bool Is1B() const {
DCHECK(!(Is8Bits() && IsVector()));
return Is8Bits();
}
bool Is1H() const {
DCHECK(!(Is16Bits() && IsVector()));
return Is16Bits();
}
bool Is1S() const {
DCHECK(!(Is32Bits() && IsVector()));
return Is32Bits();
}
bool IsLaneSizeB() const { return LaneSizeInBits() == kBRegSizeInBits; }
bool IsLaneSizeH() const { return LaneSizeInBits() == kHRegSizeInBits; }
bool IsLaneSizeS() const { return LaneSizeInBits() == kSRegSizeInBits; }
bool IsLaneSizeD() const { return LaneSizeInBits() == kDRegSizeInBits; }
bool IsScalar() const { return lane_count_ == 1; }
bool IsVector() const { return lane_count_ > 1; }
bool IsSameFormat(const VRegister& other) const {
return (reg_size_ == other.reg_size_) && (lane_count_ == other.lane_count_);
}
int LaneCount() const { return lane_count_; }
unsigned LaneSizeInBytes() const { return SizeInBytes() / lane_count_; }
unsigned LaneSizeInBits() const { return LaneSizeInBytes() * 8; }
static constexpr int kMaxNumRegisters = kNumberOfVRegisters;
STATIC_ASSERT(kMaxNumRegisters == kDoubleAfterLast);
static VRegister from_code(int code) {
// Always return a D register.
return VRegister::Create(code, kDRegSizeInBits);
}
private:
int lane_count_;
constexpr explicit VRegister(const CPURegister& r, int lane_count)
: CPURegister(r), lane_count_(lane_count) {}
static constexpr bool IsValidLaneCount(int lane_count) {
return base::bits::IsPowerOfTwo(lane_count) && lane_count <= 16;
}
};
ASSERT_TRIVIALLY_COPYABLE(VRegister);
// No*Reg is used to indicate an unused argument, or an error case. Note that
// these all compare equal (using the Is() method). The Register and VRegister
// variants are provided for convenience.
constexpr Register NoReg = Register::no_reg();
constexpr VRegister NoVReg = VRegister::no_reg();
constexpr CPURegister NoCPUReg = CPURegister::no_reg();
constexpr Register no_reg = NoReg;
constexpr VRegister no_dreg = NoVReg;
#define DEFINE_REGISTER(register_class, name, ...) \
constexpr register_class name = register_class::Create<__VA_ARGS__>()
#define ALIAS_REGISTER(register_class, alias, name) \
constexpr register_class alias = name
#define DEFINE_REGISTERS(N) \
DEFINE_REGISTER(Register, w##N, N, kWRegSizeInBits); \
DEFINE_REGISTER(Register, x##N, N, kXRegSizeInBits);
GENERAL_REGISTER_CODE_LIST(DEFINE_REGISTERS)
#undef DEFINE_REGISTERS
DEFINE_REGISTER(Register, wsp, kSPRegInternalCode, kWRegSizeInBits);
DEFINE_REGISTER(Register, sp, kSPRegInternalCode, kXRegSizeInBits);
#define DEFINE_VREGISTERS(N) \
DEFINE_REGISTER(VRegister, b##N, N, kBRegSizeInBits); \
DEFINE_REGISTER(VRegister, h##N, N, kHRegSizeInBits); \
DEFINE_REGISTER(VRegister, s##N, N, kSRegSizeInBits); \
DEFINE_REGISTER(VRegister, d##N, N, kDRegSizeInBits); \
DEFINE_REGISTER(VRegister, q##N, N, kQRegSizeInBits); \
DEFINE_REGISTER(VRegister, v##N, N, kQRegSizeInBits);
GENERAL_REGISTER_CODE_LIST(DEFINE_VREGISTERS)
#undef DEFINE_VREGISTERS
#undef DEFINE_REGISTER
// Registers aliases.
ALIAS_REGISTER(VRegister, v8_, v8); // Avoid conflicts with namespace v8.
ALIAS_REGISTER(Register, ip0, x16);
ALIAS_REGISTER(Register, ip1, x17);
ALIAS_REGISTER(Register, wip0, w16);
ALIAS_REGISTER(Register, wip1, w17);
// Root register.
ALIAS_REGISTER(Register, kRootRegister, x26);
ALIAS_REGISTER(Register, rr, x26);
// Context pointer register.
ALIAS_REGISTER(Register, cp, x27);
ALIAS_REGISTER(Register, fp, x29);
ALIAS_REGISTER(Register, lr, x30);
ALIAS_REGISTER(Register, xzr, x31);
ALIAS_REGISTER(Register, wzr, w31);
// Register used for padding stack slots.
ALIAS_REGISTER(Register, padreg, x31);
// Keeps the 0 double value.
ALIAS_REGISTER(VRegister, fp_zero, d15);
// MacroAssembler fixed V Registers.
ALIAS_REGISTER(VRegister, fp_fixed1, d28);
ALIAS_REGISTER(VRegister, fp_fixed2, d29);
// MacroAssembler scratch V registers.
ALIAS_REGISTER(VRegister, fp_scratch, d30);
ALIAS_REGISTER(VRegister, fp_scratch1, d30);
ALIAS_REGISTER(VRegister, fp_scratch2, d31);
#undef ALIAS_REGISTER
// AreAliased returns true if any of the named registers overlap. Arguments set
// to NoReg are ignored. The system stack pointer may be specified.
bool AreAliased(const CPURegister& reg1,
const CPURegister& reg2,
const CPURegister& reg3 = NoReg,
const CPURegister& reg4 = NoReg,
const CPURegister& reg5 = NoReg,
const CPURegister& reg6 = NoReg,
const CPURegister& reg7 = NoReg,
const CPURegister& reg8 = NoReg);
// AreSameSizeAndType returns true if all of the specified registers have the
// same size, and are of the same type. The system stack pointer may be
// specified. Arguments set to NoReg are ignored, as are any subsequent
// arguments. At least one argument (reg1) must be valid (not NoCPUReg).
bool AreSameSizeAndType(
const CPURegister& reg1, const CPURegister& reg2 = NoCPUReg,
const CPURegister& reg3 = NoCPUReg, const CPURegister& reg4 = NoCPUReg,
const CPURegister& reg5 = NoCPUReg, const CPURegister& reg6 = NoCPUReg,
const CPURegister& reg7 = NoCPUReg, const CPURegister& reg8 = NoCPUReg);
// AreSameFormat returns true if all of the specified VRegisters have the same
// vector format. Arguments set to NoVReg are ignored, as are any subsequent
// arguments. At least one argument (reg1) must be valid (not NoVReg).
bool AreSameFormat(const VRegister& reg1, const VRegister& reg2,
const VRegister& reg3 = NoVReg,
const VRegister& reg4 = NoVReg);
// AreConsecutive returns true if all of the specified VRegisters are
// consecutive in the register file. Arguments may be set to NoVReg, and if so,
// subsequent arguments must also be NoVReg. At least one argument (reg1) must
// be valid (not NoVReg).
bool AreConsecutive(const VRegister& reg1, const VRegister& reg2,
const VRegister& reg3 = NoVReg,
const VRegister& reg4 = NoVReg);
typedef VRegister FloatRegister;
typedef VRegister DoubleRegister;
typedef VRegister Simd128Register;
// -----------------------------------------------------------------------------
// Lists of registers.
class CPURegList {
public:
template <typename... CPURegisters>
explicit CPURegList(CPURegister reg0, CPURegisters... regs)
: list_(CPURegister::ListOf(reg0, regs...)),
size_(reg0.SizeInBits()),
type_(reg0.type()) {
DCHECK(AreSameSizeAndType(reg0, regs...));
DCHECK(IsValid());
}
CPURegList(CPURegister::RegisterType type, int size, RegList list)
: list_(list), size_(size), type_(type) {
DCHECK(IsValid());
}
CPURegList(CPURegister::RegisterType type, int size, int first_reg,
int last_reg)
: size_(size), type_(type) {
DCHECK(
((type == CPURegister::kRegister) && (last_reg < kNumberOfRegisters)) ||
((type == CPURegister::kVRegister) &&
(last_reg < kNumberOfVRegisters)));
DCHECK(last_reg >= first_reg);
list_ = (1ULL << (last_reg + 1)) - 1;
list_ &= ~((1ULL << first_reg) - 1);
DCHECK(IsValid());
}
CPURegister::RegisterType type() const {
DCHECK(IsValid());
return type_;
}
RegList list() const {
DCHECK(IsValid());
return list_;
}
inline void set_list(RegList new_list) {
DCHECK(IsValid());
list_ = new_list;
}
// Combine another CPURegList into this one. Registers that already exist in
// this list are left unchanged. The type and size of the registers in the
// 'other' list must match those in this list.
void Combine(const CPURegList& other);
// Remove every register in the other CPURegList from this one. Registers that
// do not exist in this list are ignored. The type of the registers in the
// 'other' list must match those in this list.
void Remove(const CPURegList& other);
// Variants of Combine and Remove which take CPURegisters.
void Combine(const CPURegister& other);
void Remove(const CPURegister& other1,
const CPURegister& other2 = NoCPUReg,
const CPURegister& other3 = NoCPUReg,
const CPURegister& other4 = NoCPUReg);
// Variants of Combine and Remove which take a single register by its code;
// the type and size of the register is inferred from this list.
void Combine(int code);
void Remove(int code);
// Remove all callee-saved registers from the list. This can be useful when
// preparing registers for an AAPCS64 function call, for example.
void RemoveCalleeSaved();
CPURegister PopLowestIndex();
CPURegister PopHighestIndex();
// AAPCS64 callee-saved registers.
static CPURegList GetCalleeSaved(int size = kXRegSizeInBits);
static CPURegList GetCalleeSavedV(int size = kDRegSizeInBits);
// AAPCS64 caller-saved registers. Note that this includes lr.
// TODO(all): Determine how we handle d8-d15 being callee-saved, but the top
// 64-bits being caller-saved.
static CPURegList GetCallerSaved(int size = kXRegSizeInBits);
static CPURegList GetCallerSavedV(int size = kDRegSizeInBits);
// Registers saved as safepoints.
static CPURegList GetSafepointSavedRegisters();
bool IsEmpty() const {
DCHECK(IsValid());
return list_ == 0;
}
bool IncludesAliasOf(const CPURegister& other1,
const CPURegister& other2 = NoCPUReg,
const CPURegister& other3 = NoCPUReg,
const CPURegister& other4 = NoCPUReg) const {
DCHECK(IsValid());
RegList list = 0;
if (!other1.IsNone() && (other1.type() == type_)) list |= other1.bit();
if (!other2.IsNone() && (other2.type() == type_)) list |= other2.bit();
if (!other3.IsNone() && (other3.type() == type_)) list |= other3.bit();
if (!other4.IsNone() && (other4.type() == type_)) list |= other4.bit();
return (list_ & list) != 0;
}
int Count() const {
DCHECK(IsValid());
return CountSetBits(list_, kRegListSizeInBits);
}
int RegisterSizeInBits() const {
DCHECK(IsValid());
return size_;
}
int RegisterSizeInBytes() const {
int size_in_bits = RegisterSizeInBits();
DCHECK_EQ(size_in_bits % kBitsPerByte, 0);
return size_in_bits / kBitsPerByte;
}
int TotalSizeInBytes() const {
DCHECK(IsValid());
return RegisterSizeInBytes() * Count();
}
private:
RegList list_;
int size_;
CPURegister::RegisterType type_;
bool IsValid() const {
constexpr RegList kValidRegisters{0x8000000ffffffff};
constexpr RegList kValidVRegisters{0x0000000ffffffff};
switch (type_) {
case CPURegister::kRegister:
return (list_ & kValidRegisters) == list_;
case CPURegister::kVRegister:
return (list_ & kValidVRegisters) == list_;
case CPURegister::kNoRegister:
return list_ == 0;
default:
UNREACHABLE();
}
}
};
// AAPCS64 callee-saved registers.
#define kCalleeSaved CPURegList::GetCalleeSaved()
#define kCalleeSavedV CPURegList::GetCalleeSavedV()
// AAPCS64 caller-saved registers. Note that this includes lr.
#define kCallerSaved CPURegList::GetCallerSaved()
#define kCallerSavedV CPURegList::GetCallerSavedV()
// -----------------------------------------------------------------------------
// Immediates.
class Immediate {
@ -2875,10 +2219,6 @@ class V8_EXPORT_PRIVATE Assembler : public AssemblerBase {
return reinterpret_cast<byte*>(instr) - buffer_;
}
static const char* GetSpecialRegisterName(int code) {
return (code == kSPRegInternalCode) ? "sp" : "UNKNOWN";
}
// Register encoding.
static Instr Rd(CPURegister rd) {
DCHECK_NE(rd.code(), kSPRegInternalCode);
@ -3632,9 +2972,6 @@ class EnsureSpace {
}
};
// Define a {RegisterName} method for {CPURegister}.
DEFINE_REGISTER_NAMES(CPURegister, GENERAL_REGISTERS);
} // namespace internal
} // namespace v8

View File

@ -14,7 +14,6 @@
#include "src/arm64/utils-arm64.h"
#include "src/base/platform/platform.h"
#include "src/disasm.h"
#include "src/macro-assembler.h"
namespace v8 {
namespace internal {

View File

@ -343,289 +343,6 @@ uint64_t InstructionSequence::InlineData() const {
return payload;
}
VectorFormat VectorFormatHalfWidth(VectorFormat vform) {
DCHECK(vform == kFormat8H || vform == kFormat4S || vform == kFormat2D ||
vform == kFormatH || vform == kFormatS || vform == kFormatD);
switch (vform) {
case kFormat8H:
return kFormat8B;
case kFormat4S:
return kFormat4H;
case kFormat2D:
return kFormat2S;
case kFormatH:
return kFormatB;
case kFormatS:
return kFormatH;
case kFormatD:
return kFormatS;
default:
UNREACHABLE();
}
}
VectorFormat VectorFormatDoubleWidth(VectorFormat vform) {
DCHECK(vform == kFormat8B || vform == kFormat4H || vform == kFormat2S ||
vform == kFormatB || vform == kFormatH || vform == kFormatS);
switch (vform) {
case kFormat8B:
return kFormat8H;
case kFormat4H:
return kFormat4S;
case kFormat2S:
return kFormat2D;
case kFormatB:
return kFormatH;
case kFormatH:
return kFormatS;
case kFormatS:
return kFormatD;
default:
UNREACHABLE();
}
}
VectorFormat VectorFormatFillQ(VectorFormat vform) {
switch (vform) {
case kFormatB:
case kFormat8B:
case kFormat16B:
return kFormat16B;
case kFormatH:
case kFormat4H:
case kFormat8H:
return kFormat8H;
case kFormatS:
case kFormat2S:
case kFormat4S:
return kFormat4S;
case kFormatD:
case kFormat1D:
case kFormat2D:
return kFormat2D;
default:
UNREACHABLE();
}
}
VectorFormat VectorFormatHalfWidthDoubleLanes(VectorFormat vform) {
switch (vform) {
case kFormat4H:
return kFormat8B;
case kFormat8H:
return kFormat16B;
case kFormat2S:
return kFormat4H;
case kFormat4S:
return kFormat8H;
case kFormat1D:
return kFormat2S;
case kFormat2D:
return kFormat4S;
default:
UNREACHABLE();
}
}
VectorFormat VectorFormatDoubleLanes(VectorFormat vform) {
DCHECK(vform == kFormat8B || vform == kFormat4H || vform == kFormat2S);
switch (vform) {
case kFormat8B:
return kFormat16B;
case kFormat4H:
return kFormat8H;
case kFormat2S:
return kFormat4S;
default:
UNREACHABLE();
}
}
VectorFormat VectorFormatHalfLanes(VectorFormat vform) {
DCHECK(vform == kFormat16B || vform == kFormat8H || vform == kFormat4S);
switch (vform) {
case kFormat16B:
return kFormat8B;
case kFormat8H:
return kFormat4H;
case kFormat4S:
return kFormat2S;
default:
UNREACHABLE();
}
}
VectorFormat ScalarFormatFromLaneSize(int laneSize) {
switch (laneSize) {
case 8:
return kFormatB;
case 16:
return kFormatH;
case 32:
return kFormatS;
case 64:
return kFormatD;
default:
UNREACHABLE();
}
}
VectorFormat ScalarFormatFromFormat(VectorFormat vform) {
return ScalarFormatFromLaneSize(LaneSizeInBitsFromFormat(vform));
}
unsigned RegisterSizeInBytesFromFormat(VectorFormat vform) {
return RegisterSizeInBitsFromFormat(vform) / 8;
}
unsigned RegisterSizeInBitsFromFormat(VectorFormat vform) {
DCHECK_NE(vform, kFormatUndefined);
switch (vform) {
case kFormatB:
return kBRegSizeInBits;
case kFormatH:
return kHRegSizeInBits;
case kFormatS:
return kSRegSizeInBits;
case kFormatD:
return kDRegSizeInBits;
case kFormat8B:
case kFormat4H:
case kFormat2S:
case kFormat1D:
return kDRegSizeInBits;
default:
return kQRegSizeInBits;
}
}
unsigned LaneSizeInBitsFromFormat(VectorFormat vform) {
DCHECK_NE(vform, kFormatUndefined);
switch (vform) {
case kFormatB:
case kFormat8B:
case kFormat16B:
return 8;
case kFormatH:
case kFormat4H:
case kFormat8H:
return 16;
case kFormatS:
case kFormat2S:
case kFormat4S:
return 32;
case kFormatD:
case kFormat1D:
case kFormat2D:
return 64;
default:
UNREACHABLE();
}
}
int LaneSizeInBytesFromFormat(VectorFormat vform) {
return LaneSizeInBitsFromFormat(vform) / 8;
}
int LaneSizeInBytesLog2FromFormat(VectorFormat vform) {
DCHECK_NE(vform, kFormatUndefined);
switch (vform) {
case kFormatB:
case kFormat8B:
case kFormat16B:
return 0;
case kFormatH:
case kFormat4H:
case kFormat8H:
return 1;
case kFormatS:
case kFormat2S:
case kFormat4S:
return 2;
case kFormatD:
case kFormat1D:
case kFormat2D:
return 3;
default:
UNREACHABLE();
}
}
int LaneCountFromFormat(VectorFormat vform) {
DCHECK_NE(vform, kFormatUndefined);
switch (vform) {
case kFormat16B:
return 16;
case kFormat8B:
case kFormat8H:
return 8;
case kFormat4H:
case kFormat4S:
return 4;
case kFormat2S:
case kFormat2D:
return 2;
case kFormat1D:
case kFormatB:
case kFormatH:
case kFormatS:
case kFormatD:
return 1;
default:
UNREACHABLE();
}
}
int MaxLaneCountFromFormat(VectorFormat vform) {
DCHECK_NE(vform, kFormatUndefined);
switch (vform) {
case kFormatB:
case kFormat8B:
case kFormat16B:
return 16;
case kFormatH:
case kFormat4H:
case kFormat8H:
return 8;
case kFormatS:
case kFormat2S:
case kFormat4S:
return 4;
case kFormatD:
case kFormat1D:
case kFormat2D:
return 2;
default:
UNREACHABLE();
}
}
// Does 'vform' indicate a vector format or a scalar format?
bool IsVectorFormat(VectorFormat vform) {
DCHECK_NE(vform, kFormatUndefined);
switch (vform) {
case kFormatB:
case kFormatH:
case kFormatS:
case kFormatD:
return false;
default:
return true;
}
}
int64_t MaxIntFromFormat(VectorFormat vform) {
return INT64_MAX >> (64 - LaneSizeInBitsFromFormat(vform));
}
int64_t MinIntFromFormat(VectorFormat vform) {
return INT64_MIN >> (64 - LaneSizeInBitsFromFormat(vform));
}
uint64_t MaxUintFromFormat(VectorFormat vform) {
return UINT64_MAX >> (64 - LaneSizeInBitsFromFormat(vform));
}
NEONFormatDecoder::NEONFormatDecoder(const Instruction* instr) {
instrbits_ = instr->InstructionBits();
SetFormatMaps(IntegerFormatMap());

View File

@ -6,6 +6,7 @@
#define V8_ARM64_INSTRUCTIONS_ARM64_H_
#include "src/arm64/constants-arm64.h"
#include "src/arm64/register-arm64.h"
#include "src/arm64/utils-arm64.h"
#include "src/globals.h"
#include "src/utils.h"
@ -453,49 +454,6 @@ class Instruction {
void SetBranchImmTarget(Instruction* target);
};
// Functions for handling NEON vector format information.
enum VectorFormat {
kFormatUndefined = 0xffffffff,
kFormat8B = NEON_8B,
kFormat16B = NEON_16B,
kFormat4H = NEON_4H,
kFormat8H = NEON_8H,
kFormat2S = NEON_2S,
kFormat4S = NEON_4S,
kFormat1D = NEON_1D,
kFormat2D = NEON_2D,
// Scalar formats. We add the scalar bit to distinguish between scalar and
// vector enumerations; the bit is always set in the encoding of scalar ops
// and always clear for vector ops. Although kFormatD and kFormat1D appear
// to be the same, their meaning is subtly different. The first is a scalar
// operation, the second a vector operation that only affects one lane.
kFormatB = NEON_B | NEONScalar,
kFormatH = NEON_H | NEONScalar,
kFormatS = NEON_S | NEONScalar,
kFormatD = NEON_D | NEONScalar
};
VectorFormat VectorFormatHalfWidth(VectorFormat vform);
VectorFormat VectorFormatDoubleWidth(VectorFormat vform);
VectorFormat VectorFormatDoubleLanes(VectorFormat vform);
VectorFormat VectorFormatHalfLanes(VectorFormat vform);
VectorFormat ScalarFormatFromLaneSize(int lanesize);
VectorFormat VectorFormatHalfWidthDoubleLanes(VectorFormat vform);
VectorFormat VectorFormatFillQ(VectorFormat vform);
VectorFormat ScalarFormatFromFormat(VectorFormat vform);
unsigned RegisterSizeInBitsFromFormat(VectorFormat vform);
unsigned RegisterSizeInBytesFromFormat(VectorFormat vform);
int LaneSizeInBytesFromFormat(VectorFormat vform);
unsigned LaneSizeInBitsFromFormat(VectorFormat vform);
int LaneSizeInBytesLog2FromFormat(VectorFormat vform);
int LaneCountFromFormat(VectorFormat vform);
int MaxLaneCountFromFormat(VectorFormat vform);
bool IsVectorFormat(VectorFormat vform);
int64_t MaxIntFromFormat(VectorFormat vform);
int64_t MinIntFromFormat(VectorFormat vform);
uint64_t MaxUintFromFormat(VectorFormat vform);
// Where Instruction looks at instructions generated by the Assembler,
// InstructionSequence looks at instructions sequences generated by the
// MacroAssembler.

View File

@ -5,7 +5,8 @@
#if V8_TARGET_ARCH_ARM64
#include "src/interface-descriptors.h"
#include "src/macro-assembler.h"
#include "src/frames.h"
namespace v8 {
namespace internal {

View File

@ -44,39 +44,6 @@
namespace v8 {
namespace internal {
// Give alias names to registers for calling conventions.
constexpr Register kReturnRegister0 = x0;
constexpr Register kReturnRegister1 = x1;
constexpr Register kReturnRegister2 = x2;
constexpr Register kJSFunctionRegister = x1;
constexpr Register kContextRegister = cp;
constexpr Register kAllocateSizeRegister = x1;
#if defined(V8_OS_WIN)
// x18 is reserved as platform register on Windows ARM64.
constexpr Register kSpeculationPoisonRegister = x23;
#else
constexpr Register kSpeculationPoisonRegister = x18;
#endif
constexpr Register kInterpreterAccumulatorRegister = x0;
constexpr Register kInterpreterBytecodeOffsetRegister = x19;
constexpr Register kInterpreterBytecodeArrayRegister = x20;
constexpr Register kInterpreterDispatchTableRegister = x21;
constexpr Register kJavaScriptCallArgCountRegister = x0;
constexpr Register kJavaScriptCallCodeStartRegister = x2;
constexpr Register kJavaScriptCallTargetRegister = kJSFunctionRegister;
constexpr Register kJavaScriptCallNewTargetRegister = x3;
constexpr Register kJavaScriptCallExtraArg1Register = x2;
constexpr Register kOffHeapTrampolineRegister = ip0;
constexpr Register kRuntimeCallFunctionRegister = x1;
constexpr Register kRuntimeCallArgCountRegister = x0;
constexpr Register kRuntimeCallArgvRegister = x11;
constexpr Register kWasmInstanceRegister = x7;
constexpr Register kWasmCompileLazyFuncIndexRegister = x8;
#define LS_MACRO_LIST(V) \
V(Ldrb, Register&, rt, LDRB_w) \
V(Strb, Register&, rt, STRB_w) \

298
src/arm64/register-arm64.cc Normal file
View File

@ -0,0 +1,298 @@
// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_ARM64
#include "src/arm64/register-arm64.h"
namespace v8 {
namespace internal {
VectorFormat VectorFormatHalfWidth(VectorFormat vform) {
DCHECK(vform == kFormat8H || vform == kFormat4S || vform == kFormat2D ||
vform == kFormatH || vform == kFormatS || vform == kFormatD);
switch (vform) {
case kFormat8H:
return kFormat8B;
case kFormat4S:
return kFormat4H;
case kFormat2D:
return kFormat2S;
case kFormatH:
return kFormatB;
case kFormatS:
return kFormatH;
case kFormatD:
return kFormatS;
default:
UNREACHABLE();
}
}
VectorFormat VectorFormatDoubleWidth(VectorFormat vform) {
DCHECK(vform == kFormat8B || vform == kFormat4H || vform == kFormat2S ||
vform == kFormatB || vform == kFormatH || vform == kFormatS);
switch (vform) {
case kFormat8B:
return kFormat8H;
case kFormat4H:
return kFormat4S;
case kFormat2S:
return kFormat2D;
case kFormatB:
return kFormatH;
case kFormatH:
return kFormatS;
case kFormatS:
return kFormatD;
default:
UNREACHABLE();
}
}
VectorFormat VectorFormatFillQ(VectorFormat vform) {
switch (vform) {
case kFormatB:
case kFormat8B:
case kFormat16B:
return kFormat16B;
case kFormatH:
case kFormat4H:
case kFormat8H:
return kFormat8H;
case kFormatS:
case kFormat2S:
case kFormat4S:
return kFormat4S;
case kFormatD:
case kFormat1D:
case kFormat2D:
return kFormat2D;
default:
UNREACHABLE();
}
}
VectorFormat VectorFormatHalfWidthDoubleLanes(VectorFormat vform) {
switch (vform) {
case kFormat4H:
return kFormat8B;
case kFormat8H:
return kFormat16B;
case kFormat2S:
return kFormat4H;
case kFormat4S:
return kFormat8H;
case kFormat1D:
return kFormat2S;
case kFormat2D:
return kFormat4S;
default:
UNREACHABLE();
}
}
VectorFormat VectorFormatDoubleLanes(VectorFormat vform) {
DCHECK(vform == kFormat8B || vform == kFormat4H || vform == kFormat2S);
switch (vform) {
case kFormat8B:
return kFormat16B;
case kFormat4H:
return kFormat8H;
case kFormat2S:
return kFormat4S;
default:
UNREACHABLE();
}
}
VectorFormat VectorFormatHalfLanes(VectorFormat vform) {
DCHECK(vform == kFormat16B || vform == kFormat8H || vform == kFormat4S);
switch (vform) {
case kFormat16B:
return kFormat8B;
case kFormat8H:
return kFormat4H;
case kFormat4S:
return kFormat2S;
default:
UNREACHABLE();
}
}
VectorFormat ScalarFormatFromLaneSize(int laneSize) {
switch (laneSize) {
case 8:
return kFormatB;
case 16:
return kFormatH;
case 32:
return kFormatS;
case 64:
return kFormatD;
default:
UNREACHABLE();
}
}
VectorFormat ScalarFormatFromFormat(VectorFormat vform) {
return ScalarFormatFromLaneSize(LaneSizeInBitsFromFormat(vform));
}
unsigned RegisterSizeInBytesFromFormat(VectorFormat vform) {
return RegisterSizeInBitsFromFormat(vform) / 8;
}
unsigned RegisterSizeInBitsFromFormat(VectorFormat vform) {
DCHECK_NE(vform, kFormatUndefined);
switch (vform) {
case kFormatB:
return kBRegSizeInBits;
case kFormatH:
return kHRegSizeInBits;
case kFormatS:
return kSRegSizeInBits;
case kFormatD:
return kDRegSizeInBits;
case kFormat8B:
case kFormat4H:
case kFormat2S:
case kFormat1D:
return kDRegSizeInBits;
default:
return kQRegSizeInBits;
}
}
unsigned LaneSizeInBitsFromFormat(VectorFormat vform) {
DCHECK_NE(vform, kFormatUndefined);
switch (vform) {
case kFormatB:
case kFormat8B:
case kFormat16B:
return 8;
case kFormatH:
case kFormat4H:
case kFormat8H:
return 16;
case kFormatS:
case kFormat2S:
case kFormat4S:
return 32;
case kFormatD:
case kFormat1D:
case kFormat2D:
return 64;
default:
UNREACHABLE();
}
}
int LaneSizeInBytesFromFormat(VectorFormat vform) {
return LaneSizeInBitsFromFormat(vform) / 8;
}
int LaneSizeInBytesLog2FromFormat(VectorFormat vform) {
DCHECK_NE(vform, kFormatUndefined);
switch (vform) {
case kFormatB:
case kFormat8B:
case kFormat16B:
return 0;
case kFormatH:
case kFormat4H:
case kFormat8H:
return 1;
case kFormatS:
case kFormat2S:
case kFormat4S:
return 2;
case kFormatD:
case kFormat1D:
case kFormat2D:
return 3;
default:
UNREACHABLE();
}
}
int LaneCountFromFormat(VectorFormat vform) {
DCHECK_NE(vform, kFormatUndefined);
switch (vform) {
case kFormat16B:
return 16;
case kFormat8B:
case kFormat8H:
return 8;
case kFormat4H:
case kFormat4S:
return 4;
case kFormat2S:
case kFormat2D:
return 2;
case kFormat1D:
case kFormatB:
case kFormatH:
case kFormatS:
case kFormatD:
return 1;
default:
UNREACHABLE();
}
}
int MaxLaneCountFromFormat(VectorFormat vform) {
DCHECK_NE(vform, kFormatUndefined);
switch (vform) {
case kFormatB:
case kFormat8B:
case kFormat16B:
return 16;
case kFormatH:
case kFormat4H:
case kFormat8H:
return 8;
case kFormatS:
case kFormat2S:
case kFormat4S:
return 4;
case kFormatD:
case kFormat1D:
case kFormat2D:
return 2;
default:
UNREACHABLE();
}
}
// Does 'vform' indicate a vector format or a scalar format?
bool IsVectorFormat(VectorFormat vform) {
DCHECK_NE(vform, kFormatUndefined);
switch (vform) {
case kFormatB:
case kFormatH:
case kFormatS:
case kFormatD:
return false;
default:
return true;
}
}
int64_t MaxIntFromFormat(VectorFormat vform) {
return INT64_MAX >> (64 - LaneSizeInBitsFromFormat(vform));
}
int64_t MinIntFromFormat(VectorFormat vform) {
return INT64_MIN >> (64 - LaneSizeInBitsFromFormat(vform));
}
uint64_t MaxUintFromFormat(VectorFormat vform) {
return UINT64_MAX >> (64 - LaneSizeInBitsFromFormat(vform));
}
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_ARM64

752
src/arm64/register-arm64.h Normal file
View File

@ -0,0 +1,752 @@
// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_ARM64_REGISTER_ARM64_H_
#define V8_ARM64_REGISTER_ARM64_H_
#include "src/arm64/utils-arm64.h"
#include "src/globals.h"
#include "src/register.h"
#include "src/reglist.h"
namespace v8 {
namespace internal {
// -----------------------------------------------------------------------------
// Registers.
// clang-format off
#define GENERAL_REGISTER_CODE_LIST(R) \
R(0) R(1) R(2) R(3) R(4) R(5) R(6) R(7) \
R(8) R(9) R(10) R(11) R(12) R(13) R(14) R(15) \
R(16) R(17) R(18) R(19) R(20) R(21) R(22) R(23) \
R(24) R(25) R(26) R(27) R(28) R(29) R(30) R(31)
#define GENERAL_REGISTERS(R) \
R(x0) R(x1) R(x2) R(x3) R(x4) R(x5) R(x6) R(x7) \
R(x8) R(x9) R(x10) R(x11) R(x12) R(x13) R(x14) R(x15) \
R(x16) R(x17) R(x18) R(x19) R(x20) R(x21) R(x22) R(x23) \
R(x24) R(x25) R(x26) R(x27) R(x28) R(x29) R(x30) R(x31)
#if defined(V8_OS_WIN)
// x18 is reserved as platform register on Windows ARM64.
#define ALLOCATABLE_GENERAL_REGISTERS(R) \
R(x0) R(x1) R(x2) R(x3) R(x4) R(x5) R(x6) R(x7) \
R(x8) R(x9) R(x10) R(x11) R(x12) R(x13) R(x14) R(x15) \
R(x19) R(x20) R(x21) R(x22) R(x23) R(x24) R(x25) \
R(x27) R(x28)
#else
#define ALLOCATABLE_GENERAL_REGISTERS(R) \
R(x0) R(x1) R(x2) R(x3) R(x4) R(x5) R(x6) R(x7) \
R(x8) R(x9) R(x10) R(x11) R(x12) R(x13) R(x14) R(x15) \
R(x18) R(x19) R(x20) R(x21) R(x22) R(x23) R(x24) R(x25) \
R(x27) R(x28)
#endif
#define FLOAT_REGISTERS(V) \
V(s0) V(s1) V(s2) V(s3) V(s4) V(s5) V(s6) V(s7) \
V(s8) V(s9) V(s10) V(s11) V(s12) V(s13) V(s14) V(s15) \
V(s16) V(s17) V(s18) V(s19) V(s20) V(s21) V(s22) V(s23) \
V(s24) V(s25) V(s26) V(s27) V(s28) V(s29) V(s30) V(s31)
#define DOUBLE_REGISTERS(R) \
R(d0) R(d1) R(d2) R(d3) R(d4) R(d5) R(d6) R(d7) \
R(d8) R(d9) R(d10) R(d11) R(d12) R(d13) R(d14) R(d15) \
R(d16) R(d17) R(d18) R(d19) R(d20) R(d21) R(d22) R(d23) \
R(d24) R(d25) R(d26) R(d27) R(d28) R(d29) R(d30) R(d31)
#define SIMD128_REGISTERS(V) \
V(q0) V(q1) V(q2) V(q3) V(q4) V(q5) V(q6) V(q7) \
V(q8) V(q9) V(q10) V(q11) V(q12) V(q13) V(q14) V(q15) \
V(q16) V(q17) V(q18) V(q19) V(q20) V(q21) V(q22) V(q23) \
V(q24) V(q25) V(q26) V(q27) V(q28) V(q29) V(q30) V(q31)
// Register d29 could be allocated, but we keep an even length list here, in
// order to make stack alignment easier for save and restore.
#define ALLOCATABLE_DOUBLE_REGISTERS(R) \
R(d0) R(d1) R(d2) R(d3) R(d4) R(d5) R(d6) R(d7) \
R(d8) R(d9) R(d10) R(d11) R(d12) R(d13) R(d14) R(d16) \
R(d17) R(d18) R(d19) R(d20) R(d21) R(d22) R(d23) R(d24) \
R(d25) R(d26) R(d27) R(d28)
// clang-format on
constexpr int kRegListSizeInBits = sizeof(RegList) * kBitsPerByte;
const int kNumRegs = kNumberOfRegisters;
// Registers x0-x17 are caller-saved.
const int kNumJSCallerSaved = 18;
const RegList kJSCallerSaved = 0x3ffff;
// Number of registers for which space is reserved in safepoints. Must be a
// multiple of eight.
// TODO(all): Refine this number.
const int kNumSafepointRegisters = 32;
// Define the list of registers actually saved at safepoints.
// Note that the number of saved registers may be smaller than the reserved
// space, i.e. kNumSafepointSavedRegisters <= kNumSafepointRegisters.
#define kSafepointSavedRegisters CPURegList::GetSafepointSavedRegisters().list()
#define kNumSafepointSavedRegisters \
CPURegList::GetSafepointSavedRegisters().Count()
// Some CPURegister methods can return Register and VRegister types, so we
// need to declare them in advance.
class Register;
class VRegister;
enum RegisterCode {
#define REGISTER_CODE(R) kRegCode_##R,
GENERAL_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kRegAfterLast
};
class CPURegister : public RegisterBase<CPURegister, kRegAfterLast> {
public:
enum RegisterType { kRegister, kVRegister, kNoRegister };
static constexpr CPURegister no_reg() {
return CPURegister{0, 0, kNoRegister};
}
template <int code, int size, RegisterType type>
static constexpr CPURegister Create() {
static_assert(IsValid(code, size, type), "Cannot create invalid registers");
return CPURegister{code, size, type};
}
static CPURegister Create(int code, int size, RegisterType type) {
DCHECK(IsValid(code, size, type));
return CPURegister{code, size, type};
}
RegisterType type() const { return reg_type_; }
int SizeInBits() const {
DCHECK(IsValid());
return reg_size_;
}
int SizeInBytes() const {
DCHECK(IsValid());
DCHECK_EQ(SizeInBits() % 8, 0);
return reg_size_ / 8;
}
bool Is8Bits() const {
DCHECK(IsValid());
return reg_size_ == 8;
}
bool Is16Bits() const {
DCHECK(IsValid());
return reg_size_ == 16;
}
bool Is32Bits() const {
DCHECK(IsValid());
return reg_size_ == 32;
}
bool Is64Bits() const {
DCHECK(IsValid());
return reg_size_ == 64;
}
bool Is128Bits() const {
DCHECK(IsValid());
return reg_size_ == 128;
}
bool IsValid() const { return reg_type_ != kNoRegister; }
bool IsNone() const { return reg_type_ == kNoRegister; }
bool Is(const CPURegister& other) const {
return Aliases(other) && (reg_size_ == other.reg_size_);
}
bool Aliases(const CPURegister& other) const {
return (reg_code_ == other.reg_code_) && (reg_type_ == other.reg_type_);
}
bool IsZero() const;
bool IsSP() const;
bool IsRegister() const { return reg_type_ == kRegister; }
bool IsVRegister() const { return reg_type_ == kVRegister; }
bool IsFPRegister() const { return IsS() || IsD(); }
bool IsW() const { return IsRegister() && Is32Bits(); }
bool IsX() const { return IsRegister() && Is64Bits(); }
// These assertions ensure that the size and type of the register are as
// described. They do not consider the number of lanes that make up a vector.
// So, for example, Is8B() implies IsD(), and Is1D() implies IsD, but IsD()
// does not imply Is1D() or Is8B().
// Check the number of lanes, ie. the format of the vector, using methods such
// as Is8B(), Is1D(), etc. in the VRegister class.
bool IsV() const { return IsVRegister(); }
bool IsB() const { return IsV() && Is8Bits(); }
bool IsH() const { return IsV() && Is16Bits(); }
bool IsS() const { return IsV() && Is32Bits(); }
bool IsD() const { return IsV() && Is64Bits(); }
bool IsQ() const { return IsV() && Is128Bits(); }
Register Reg() const;
VRegister VReg() const;
Register X() const;
Register W() const;
VRegister V() const;
VRegister B() const;
VRegister H() const;
VRegister D() const;
VRegister S() const;
VRegister Q() const;
bool IsSameSizeAndType(const CPURegister& other) const;
bool is(const CPURegister& other) const { return Is(other); }
bool is_valid() const { return IsValid(); }
protected:
int reg_size_;
RegisterType reg_type_;
#if defined(V8_OS_WIN) && !defined(__clang__)
// MSVC has problem to parse template base class as friend class.
friend RegisterBase;
#else
friend class RegisterBase;
#endif
constexpr CPURegister(int code, int size, RegisterType type)
: RegisterBase(code), reg_size_(size), reg_type_(type) {}
static constexpr bool IsValidRegister(int code, int size) {
return (size == kWRegSizeInBits || size == kXRegSizeInBits) &&
(code < kNumberOfRegisters || code == kSPRegInternalCode);
}
static constexpr bool IsValidVRegister(int code, int size) {
return (size == kBRegSizeInBits || size == kHRegSizeInBits ||
size == kSRegSizeInBits || size == kDRegSizeInBits ||
size == kQRegSizeInBits) &&
code < kNumberOfVRegisters;
}
static constexpr bool IsValid(int code, int size, RegisterType type) {
return (type == kRegister && IsValidRegister(code, size)) ||
(type == kVRegister && IsValidVRegister(code, size));
}
static constexpr bool IsNone(int code, int size, RegisterType type) {
return type == kNoRegister && code == 0 && size == 0;
}
};
ASSERT_TRIVIALLY_COPYABLE(CPURegister);
class Register : public CPURegister {
public:
static constexpr Register no_reg() { return Register(CPURegister::no_reg()); }
template <int code, int size>
static constexpr Register Create() {
return Register(CPURegister::Create<code, size, CPURegister::kRegister>());
}
static Register Create(int code, int size) {
return Register(CPURegister::Create(code, size, CPURegister::kRegister));
}
static Register XRegFromCode(unsigned code);
static Register WRegFromCode(unsigned code);
static Register from_code(int code) {
// Always return an X register.
return Register::Create(code, kXRegSizeInBits);
}
template <int code>
static Register from_code() {
// Always return an X register.
return Register::Create<code, kXRegSizeInBits>();
}
static const char* GetSpecialRegisterName(int code) {
return (code == kSPRegInternalCode) ? "sp" : "UNKNOWN";
}
private:
constexpr explicit Register(const CPURegister& r) : CPURegister(r) {}
};
ASSERT_TRIVIALLY_COPYABLE(Register);
constexpr bool kPadArguments = true;
constexpr bool kSimpleFPAliasing = true;
constexpr bool kSimdMaskRegisters = false;
enum DoubleRegisterCode {
#define REGISTER_CODE(R) kDoubleCode_##R,
DOUBLE_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kDoubleAfterLast
};
// Functions for handling NEON vector format information.
enum VectorFormat {
kFormatUndefined = 0xffffffff,
kFormat8B = NEON_8B,
kFormat16B = NEON_16B,
kFormat4H = NEON_4H,
kFormat8H = NEON_8H,
kFormat2S = NEON_2S,
kFormat4S = NEON_4S,
kFormat1D = NEON_1D,
kFormat2D = NEON_2D,
// Scalar formats. We add the scalar bit to distinguish between scalar and
// vector enumerations; the bit is always set in the encoding of scalar ops
// and always clear for vector ops. Although kFormatD and kFormat1D appear
// to be the same, their meaning is subtly different. The first is a scalar
// operation, the second a vector operation that only affects one lane.
kFormatB = NEON_B | NEONScalar,
kFormatH = NEON_H | NEONScalar,
kFormatS = NEON_S | NEONScalar,
kFormatD = NEON_D | NEONScalar
};
VectorFormat VectorFormatHalfWidth(VectorFormat vform);
VectorFormat VectorFormatDoubleWidth(VectorFormat vform);
VectorFormat VectorFormatDoubleLanes(VectorFormat vform);
VectorFormat VectorFormatHalfLanes(VectorFormat vform);
VectorFormat ScalarFormatFromLaneSize(int lanesize);
VectorFormat VectorFormatHalfWidthDoubleLanes(VectorFormat vform);
VectorFormat VectorFormatFillQ(VectorFormat vform);
VectorFormat ScalarFormatFromFormat(VectorFormat vform);
unsigned RegisterSizeInBitsFromFormat(VectorFormat vform);
unsigned RegisterSizeInBytesFromFormat(VectorFormat vform);
int LaneSizeInBytesFromFormat(VectorFormat vform);
unsigned LaneSizeInBitsFromFormat(VectorFormat vform);
int LaneSizeInBytesLog2FromFormat(VectorFormat vform);
int LaneCountFromFormat(VectorFormat vform);
int MaxLaneCountFromFormat(VectorFormat vform);
bool IsVectorFormat(VectorFormat vform);
int64_t MaxIntFromFormat(VectorFormat vform);
int64_t MinIntFromFormat(VectorFormat vform);
uint64_t MaxUintFromFormat(VectorFormat vform);
class VRegister : public CPURegister {
public:
static constexpr VRegister no_reg() {
return VRegister(CPURegister::no_reg(), 0);
}
template <int code, int size, int lane_count = 1>
static constexpr VRegister Create() {
static_assert(IsValidLaneCount(lane_count), "Invalid lane count");
return VRegister(CPURegister::Create<code, size, kVRegister>(), lane_count);
}
static VRegister Create(int code, int size, int lane_count = 1) {
DCHECK(IsValidLaneCount(lane_count));
return VRegister(CPURegister::Create(code, size, CPURegister::kVRegister),
lane_count);
}
static VRegister Create(int reg_code, VectorFormat format) {
int reg_size = RegisterSizeInBitsFromFormat(format);
int reg_count = IsVectorFormat(format) ? LaneCountFromFormat(format) : 1;
return VRegister::Create(reg_code, reg_size, reg_count);
}
static VRegister BRegFromCode(unsigned code);
static VRegister HRegFromCode(unsigned code);
static VRegister SRegFromCode(unsigned code);
static VRegister DRegFromCode(unsigned code);
static VRegister QRegFromCode(unsigned code);
static VRegister VRegFromCode(unsigned code);
VRegister V8B() const {
return VRegister::Create(code(), kDRegSizeInBits, 8);
}
VRegister V16B() const {
return VRegister::Create(code(), kQRegSizeInBits, 16);
}
VRegister V4H() const {
return VRegister::Create(code(), kDRegSizeInBits, 4);
}
VRegister V8H() const {
return VRegister::Create(code(), kQRegSizeInBits, 8);
}
VRegister V2S() const {
return VRegister::Create(code(), kDRegSizeInBits, 2);
}
VRegister V4S() const {
return VRegister::Create(code(), kQRegSizeInBits, 4);
}
VRegister V2D() const {
return VRegister::Create(code(), kQRegSizeInBits, 2);
}
VRegister V1D() const {
return VRegister::Create(code(), kDRegSizeInBits, 1);
}
bool Is8B() const { return (Is64Bits() && (lane_count_ == 8)); }
bool Is16B() const { return (Is128Bits() && (lane_count_ == 16)); }
bool Is4H() const { return (Is64Bits() && (lane_count_ == 4)); }
bool Is8H() const { return (Is128Bits() && (lane_count_ == 8)); }
bool Is2S() const { return (Is64Bits() && (lane_count_ == 2)); }
bool Is4S() const { return (Is128Bits() && (lane_count_ == 4)); }
bool Is1D() const { return (Is64Bits() && (lane_count_ == 1)); }
bool Is2D() const { return (Is128Bits() && (lane_count_ == 2)); }
// For consistency, we assert the number of lanes of these scalar registers,
// even though there are no vectors of equivalent total size with which they
// could alias.
bool Is1B() const {
DCHECK(!(Is8Bits() && IsVector()));
return Is8Bits();
}
bool Is1H() const {
DCHECK(!(Is16Bits() && IsVector()));
return Is16Bits();
}
bool Is1S() const {
DCHECK(!(Is32Bits() && IsVector()));
return Is32Bits();
}
bool IsLaneSizeB() const { return LaneSizeInBits() == kBRegSizeInBits; }
bool IsLaneSizeH() const { return LaneSizeInBits() == kHRegSizeInBits; }
bool IsLaneSizeS() const { return LaneSizeInBits() == kSRegSizeInBits; }
bool IsLaneSizeD() const { return LaneSizeInBits() == kDRegSizeInBits; }
bool IsScalar() const { return lane_count_ == 1; }
bool IsVector() const { return lane_count_ > 1; }
bool IsSameFormat(const VRegister& other) const {
return (reg_size_ == other.reg_size_) && (lane_count_ == other.lane_count_);
}
int LaneCount() const { return lane_count_; }
unsigned LaneSizeInBytes() const { return SizeInBytes() / lane_count_; }
unsigned LaneSizeInBits() const { return LaneSizeInBytes() * 8; }
static constexpr int kMaxNumRegisters = kNumberOfVRegisters;
STATIC_ASSERT(kMaxNumRegisters == kDoubleAfterLast);
static VRegister from_code(int code) {
// Always return a D register.
return VRegister::Create(code, kDRegSizeInBits);
}
private:
int lane_count_;
constexpr explicit VRegister(const CPURegister& r, int lane_count)
: CPURegister(r), lane_count_(lane_count) {}
static constexpr bool IsValidLaneCount(int lane_count) {
return base::bits::IsPowerOfTwo(lane_count) && lane_count <= 16;
}
};
ASSERT_TRIVIALLY_COPYABLE(VRegister);
// No*Reg is used to indicate an unused argument, or an error case. Note that
// these all compare equal (using the Is() method). The Register and VRegister
// variants are provided for convenience.
constexpr Register NoReg = Register::no_reg();
constexpr VRegister NoVReg = VRegister::no_reg();
constexpr CPURegister NoCPUReg = CPURegister::no_reg();
constexpr Register no_reg = NoReg;
constexpr VRegister no_dreg = NoVReg;
#define DEFINE_REGISTER(register_class, name, ...) \
constexpr register_class name = register_class::Create<__VA_ARGS__>()
#define ALIAS_REGISTER(register_class, alias, name) \
constexpr register_class alias = name
#define DEFINE_REGISTERS(N) \
DEFINE_REGISTER(Register, w##N, N, kWRegSizeInBits); \
DEFINE_REGISTER(Register, x##N, N, kXRegSizeInBits);
GENERAL_REGISTER_CODE_LIST(DEFINE_REGISTERS)
#undef DEFINE_REGISTERS
DEFINE_REGISTER(Register, wsp, kSPRegInternalCode, kWRegSizeInBits);
DEFINE_REGISTER(Register, sp, kSPRegInternalCode, kXRegSizeInBits);
#define DEFINE_VREGISTERS(N) \
DEFINE_REGISTER(VRegister, b##N, N, kBRegSizeInBits); \
DEFINE_REGISTER(VRegister, h##N, N, kHRegSizeInBits); \
DEFINE_REGISTER(VRegister, s##N, N, kSRegSizeInBits); \
DEFINE_REGISTER(VRegister, d##N, N, kDRegSizeInBits); \
DEFINE_REGISTER(VRegister, q##N, N, kQRegSizeInBits); \
DEFINE_REGISTER(VRegister, v##N, N, kQRegSizeInBits);
GENERAL_REGISTER_CODE_LIST(DEFINE_VREGISTERS)
#undef DEFINE_VREGISTERS
#undef DEFINE_REGISTER
// Registers aliases.
ALIAS_REGISTER(VRegister, v8_, v8); // Avoid conflicts with namespace v8.
ALIAS_REGISTER(Register, ip0, x16);
ALIAS_REGISTER(Register, ip1, x17);
ALIAS_REGISTER(Register, wip0, w16);
ALIAS_REGISTER(Register, wip1, w17);
// Root register.
ALIAS_REGISTER(Register, kRootRegister, x26);
ALIAS_REGISTER(Register, rr, x26);
// Context pointer register.
ALIAS_REGISTER(Register, cp, x27);
ALIAS_REGISTER(Register, fp, x29);
ALIAS_REGISTER(Register, lr, x30);
ALIAS_REGISTER(Register, xzr, x31);
ALIAS_REGISTER(Register, wzr, w31);
// Register used for padding stack slots.
ALIAS_REGISTER(Register, padreg, x31);
// Keeps the 0 double value.
ALIAS_REGISTER(VRegister, fp_zero, d15);
// MacroAssembler fixed V Registers.
ALIAS_REGISTER(VRegister, fp_fixed1, d28);
ALIAS_REGISTER(VRegister, fp_fixed2, d29);
// MacroAssembler scratch V registers.
ALIAS_REGISTER(VRegister, fp_scratch, d30);
ALIAS_REGISTER(VRegister, fp_scratch1, d30);
ALIAS_REGISTER(VRegister, fp_scratch2, d31);
#undef ALIAS_REGISTER
// AreAliased returns true if any of the named registers overlap. Arguments set
// to NoReg are ignored. The system stack pointer may be specified.
bool AreAliased(const CPURegister& reg1, const CPURegister& reg2,
const CPURegister& reg3 = NoReg,
const CPURegister& reg4 = NoReg,
const CPURegister& reg5 = NoReg,
const CPURegister& reg6 = NoReg,
const CPURegister& reg7 = NoReg,
const CPURegister& reg8 = NoReg);
// AreSameSizeAndType returns true if all of the specified registers have the
// same size, and are of the same type. The system stack pointer may be
// specified. Arguments set to NoReg are ignored, as are any subsequent
// arguments. At least one argument (reg1) must be valid (not NoCPUReg).
bool AreSameSizeAndType(
const CPURegister& reg1, const CPURegister& reg2 = NoCPUReg,
const CPURegister& reg3 = NoCPUReg, const CPURegister& reg4 = NoCPUReg,
const CPURegister& reg5 = NoCPUReg, const CPURegister& reg6 = NoCPUReg,
const CPURegister& reg7 = NoCPUReg, const CPURegister& reg8 = NoCPUReg);
// AreSameFormat returns true if all of the specified VRegisters have the same
// vector format. Arguments set to NoVReg are ignored, as are any subsequent
// arguments. At least one argument (reg1) must be valid (not NoVReg).
bool AreSameFormat(const VRegister& reg1, const VRegister& reg2,
const VRegister& reg3 = NoVReg,
const VRegister& reg4 = NoVReg);
// AreConsecutive returns true if all of the specified VRegisters are
// consecutive in the register file. Arguments may be set to NoVReg, and if so,
// subsequent arguments must also be NoVReg. At least one argument (reg1) must
// be valid (not NoVReg).
bool AreConsecutive(const VRegister& reg1, const VRegister& reg2,
const VRegister& reg3 = NoVReg,
const VRegister& reg4 = NoVReg);
typedef VRegister FloatRegister;
typedef VRegister DoubleRegister;
typedef VRegister Simd128Register;
// -----------------------------------------------------------------------------
// Lists of registers.
class CPURegList {
public:
template <typename... CPURegisters>
explicit CPURegList(CPURegister reg0, CPURegisters... regs)
: list_(CPURegister::ListOf(reg0, regs...)),
size_(reg0.SizeInBits()),
type_(reg0.type()) {
DCHECK(AreSameSizeAndType(reg0, regs...));
DCHECK(IsValid());
}
CPURegList(CPURegister::RegisterType type, int size, RegList list)
: list_(list), size_(size), type_(type) {
DCHECK(IsValid());
}
CPURegList(CPURegister::RegisterType type, int size, int first_reg,
int last_reg)
: size_(size), type_(type) {
DCHECK(
((type == CPURegister::kRegister) && (last_reg < kNumberOfRegisters)) ||
((type == CPURegister::kVRegister) &&
(last_reg < kNumberOfVRegisters)));
DCHECK(last_reg >= first_reg);
list_ = (1ULL << (last_reg + 1)) - 1;
list_ &= ~((1ULL << first_reg) - 1);
DCHECK(IsValid());
}
CPURegister::RegisterType type() const {
DCHECK(IsValid());
return type_;
}
RegList list() const {
DCHECK(IsValid());
return list_;
}
inline void set_list(RegList new_list) {
DCHECK(IsValid());
list_ = new_list;
}
// Combine another CPURegList into this one. Registers that already exist in
// this list are left unchanged. The type and size of the registers in the
// 'other' list must match those in this list.
void Combine(const CPURegList& other);
// Remove every register in the other CPURegList from this one. Registers that
// do not exist in this list are ignored. The type of the registers in the
// 'other' list must match those in this list.
void Remove(const CPURegList& other);
// Variants of Combine and Remove which take CPURegisters.
void Combine(const CPURegister& other);
void Remove(const CPURegister& other1, const CPURegister& other2 = NoCPUReg,
const CPURegister& other3 = NoCPUReg,
const CPURegister& other4 = NoCPUReg);
// Variants of Combine and Remove which take a single register by its code;
// the type and size of the register is inferred from this list.
void Combine(int code);
void Remove(int code);
// Remove all callee-saved registers from the list. This can be useful when
// preparing registers for an AAPCS64 function call, for example.
void RemoveCalleeSaved();
CPURegister PopLowestIndex();
CPURegister PopHighestIndex();
// AAPCS64 callee-saved registers.
static CPURegList GetCalleeSaved(int size = kXRegSizeInBits);
static CPURegList GetCalleeSavedV(int size = kDRegSizeInBits);
// AAPCS64 caller-saved registers. Note that this includes lr.
// TODO(all): Determine how we handle d8-d15 being callee-saved, but the top
// 64-bits being caller-saved.
static CPURegList GetCallerSaved(int size = kXRegSizeInBits);
static CPURegList GetCallerSavedV(int size = kDRegSizeInBits);
// Registers saved as safepoints.
static CPURegList GetSafepointSavedRegisters();
bool IsEmpty() const {
DCHECK(IsValid());
return list_ == 0;
}
bool IncludesAliasOf(const CPURegister& other1,
const CPURegister& other2 = NoCPUReg,
const CPURegister& other3 = NoCPUReg,
const CPURegister& other4 = NoCPUReg) const {
DCHECK(IsValid());
RegList list = 0;
if (!other1.IsNone() && (other1.type() == type_)) list |= other1.bit();
if (!other2.IsNone() && (other2.type() == type_)) list |= other2.bit();
if (!other3.IsNone() && (other3.type() == type_)) list |= other3.bit();
if (!other4.IsNone() && (other4.type() == type_)) list |= other4.bit();
return (list_ & list) != 0;
}
int Count() const {
DCHECK(IsValid());
return CountSetBits(list_, kRegListSizeInBits);
}
int RegisterSizeInBits() const {
DCHECK(IsValid());
return size_;
}
int RegisterSizeInBytes() const {
int size_in_bits = RegisterSizeInBits();
DCHECK_EQ(size_in_bits % kBitsPerByte, 0);
return size_in_bits / kBitsPerByte;
}
int TotalSizeInBytes() const {
DCHECK(IsValid());
return RegisterSizeInBytes() * Count();
}
private:
RegList list_;
int size_;
CPURegister::RegisterType type_;
bool IsValid() const {
constexpr RegList kValidRegisters{0x8000000ffffffff};
constexpr RegList kValidVRegisters{0x0000000ffffffff};
switch (type_) {
case CPURegister::kRegister:
return (list_ & kValidRegisters) == list_;
case CPURegister::kVRegister:
return (list_ & kValidVRegisters) == list_;
case CPURegister::kNoRegister:
return list_ == 0;
default:
UNREACHABLE();
}
}
};
// AAPCS64 callee-saved registers.
#define kCalleeSaved CPURegList::GetCalleeSaved()
#define kCalleeSavedV CPURegList::GetCalleeSavedV()
// AAPCS64 caller-saved registers. Note that this includes lr.
#define kCallerSaved CPURegList::GetCallerSaved()
#define kCallerSavedV CPURegList::GetCallerSavedV()
// Define a {RegisterName} method for {CPURegister}.
DEFINE_REGISTER_NAMES(CPURegister, GENERAL_REGISTERS);
// Give alias names to registers for calling conventions.
constexpr Register kReturnRegister0 = x0;
constexpr Register kReturnRegister1 = x1;
constexpr Register kReturnRegister2 = x2;
constexpr Register kJSFunctionRegister = x1;
constexpr Register kContextRegister = cp;
constexpr Register kAllocateSizeRegister = x1;
#if defined(V8_OS_WIN)
// x18 is reserved as platform register on Windows ARM64.
constexpr Register kSpeculationPoisonRegister = x23;
#else
constexpr Register kSpeculationPoisonRegister = x18;
#endif
constexpr Register kInterpreterAccumulatorRegister = x0;
constexpr Register kInterpreterBytecodeOffsetRegister = x19;
constexpr Register kInterpreterBytecodeArrayRegister = x20;
constexpr Register kInterpreterDispatchTableRegister = x21;
constexpr Register kJavaScriptCallArgCountRegister = x0;
constexpr Register kJavaScriptCallCodeStartRegister = x2;
constexpr Register kJavaScriptCallTargetRegister = kJSFunctionRegister;
constexpr Register kJavaScriptCallNewTargetRegister = x3;
constexpr Register kJavaScriptCallExtraArg1Register = x2;
constexpr Register kOffHeapTrampolineRegister = ip0;
constexpr Register kRuntimeCallFunctionRegister = x1;
constexpr Register kRuntimeCallArgCountRegister = x0;
constexpr Register kRuntimeCallArgvRegister = x11;
constexpr Register kWasmInstanceRegister = x7;
constexpr Register kWasmCompileLazyFuncIndexRegister = x8;
} // namespace internal
} // namespace v8
#endif // V8_ARM64_REGISTER_ARM64_H_

View File

@ -236,9 +236,6 @@ class V8_EXPORT_PRIVATE AssemblerBase : public Malloced {
return FlushICache(reinterpret_cast<void*>(start), size);
}
// Used to print the name of some special registers.
static const char* GetSpecialRegisterName(int code) { return "UNKNOWN"; }
// Record an inline code comment that can be used by a disassembler.
// Use --code-comments to enable.
void RecordComment(const char* msg) {
@ -385,114 +382,6 @@ double power_helper(double x, double y);
double power_double_int(double x, int y);
double power_double_double(double x, double y);
// Base type for CPU Registers.
//
// 1) We would prefer to use an enum for registers, but enum values are
// assignment-compatible with int, which has caused code-generation bugs.
//
// 2) By not using an enum, we are possibly preventing the compiler from
// doing certain constant folds, which may significantly reduce the
// code generated for some assembly instructions (because they boil down
// to a few constants). If this is a problem, we could change the code
// such that we use an enum in optimized mode, and the class in debug
// mode. This way we get the compile-time error checking in debug mode
// and best performance in optimized code.
template <typename SubType, int kAfterLastRegister>
class RegisterBase {
// Internal enum class; used for calling constexpr methods, where we need to
// pass an integral type as template parameter.
enum class RegisterCode : int { kFirst = 0, kAfterLast = kAfterLastRegister };
public:
static constexpr int kCode_no_reg = -1;
static constexpr int kNumRegisters = kAfterLastRegister;
static constexpr SubType no_reg() { return SubType{kCode_no_reg}; }
template <int code>
static constexpr SubType from_code() {
static_assert(code >= 0 && code < kNumRegisters, "must be valid reg code");
return SubType{code};
}
constexpr operator RegisterCode() const {
return static_cast<RegisterCode>(reg_code_);
}
template <RegisterCode reg_code>
static constexpr int code() {
static_assert(
reg_code >= RegisterCode::kFirst && reg_code < RegisterCode::kAfterLast,
"must be valid reg");
return static_cast<int>(reg_code);
}
template <RegisterCode reg_code>
static constexpr int is_valid() {
return static_cast<int>(reg_code) != kCode_no_reg;
}
template <RegisterCode reg_code>
static constexpr RegList bit() {
return is_valid<reg_code>() ? RegList{1} << code<reg_code>() : RegList{};
}
static SubType from_code(int code) {
DCHECK_LE(0, code);
DCHECK_GT(kNumRegisters, code);
return SubType{code};
}
// Constexpr version (pass registers as template parameters).
template <RegisterCode... reg_codes>
static constexpr RegList ListOf() {
return CombineRegLists(RegisterBase::bit<reg_codes>()...);
}
// Non-constexpr version (pass registers as method parameters).
template <typename... Register>
static RegList ListOf(Register... regs) {
return CombineRegLists(regs.bit()...);
}
constexpr bool is_valid() const { return reg_code_ != kCode_no_reg; }
int code() const {
DCHECK(is_valid());
return reg_code_;
}
RegList bit() const { return is_valid() ? RegList{1} << code() : RegList{}; }
inline constexpr bool operator==(SubType other) const {
return reg_code_ == other.reg_code_;
}
inline constexpr bool operator!=(SubType other) const {
return reg_code_ != other.reg_code_;
}
protected:
explicit constexpr RegisterBase(int code) : reg_code_(code) {}
int reg_code_;
};
// Helper macros to define a {RegisterName} method based on a macro list
// containing all names.
#define DEFINE_REGISTER_NAMES_NAME(name) #name,
#define DEFINE_REGISTER_NAMES(RegType, LIST) \
inline const char* RegisterName(RegType reg) { \
static constexpr const char* Names[] = {LIST(DEFINE_REGISTER_NAMES_NAME)}; \
STATIC_ASSERT(arraysize(Names) == RegType::kNumRegisters); \
return reg.is_valid() ? Names[reg.code()] : "invalid"; \
}
template <typename RegType,
typename = decltype(RegisterName(std::declval<RegType>()))>
inline std::ostream& operator<<(std::ostream& os, RegType reg) {
return os << RegisterName(reg);
}
} // namespace internal
} // namespace v8
#endif // V8_ASSEMBLER_H_

View File

@ -11,7 +11,6 @@
#include "src/compiler/backend/unwinding-info-writer.h"
#include "src/compiler/osr.h"
#include "src/deoptimizer.h"
#include "src/macro-assembler.h"
#include "src/safepoint-table.h"
#include "src/source-position-table.h"
#include "src/trap-handler/trap-handler.h"

View File

@ -13,6 +13,7 @@
#include "src/compiler/linkage.h"
#include "src/compiler/machine-operator.h"
#include "src/compiler/node.h"
#include "src/cpu-features.h"
#include "src/globals.h"
#include "src/zone/zone-containers.h"

View File

@ -178,7 +178,7 @@ std::ostream& operator<<(std::ostream& os, const InstructionOperand& op) {
const char* name =
allocated.register_code() < Register::kNumRegisters
? RegisterName(Register::from_code(allocated.register_code()))
: Assembler::GetSpecialRegisterName(allocated.register_code());
: Register::GetSpecialRegisterName(allocated.register_code());
os << "[" << name << "|R";
} else if (op.IsDoubleRegister()) {
os << "[" << DoubleRegister::from_code(allocated.register_code())

View File

@ -16,8 +16,9 @@
#include "src/compiler/frame.h"
#include "src/compiler/opcodes.h"
#include "src/double.h"
#include "src/external-reference.h"
#include "src/globals.h"
#include "src/macro-assembler.h"
#include "src/register-arch.h"
#include "src/source-position.h"
#include "src/zone/zone-allocator.h"

View File

@ -3,6 +3,7 @@
// found in the LICENSE file.
#include "src/compiler/backend/instruction-scheduler.h"
#include "src/macro-assembler.h"
namespace v8 {
namespace internal {

View File

@ -9,7 +9,6 @@
#include "src/compiler/node-matchers.h"
#include "src/compiler/node-properties.h"
#include "src/roots-inl.h"
#include "src/turbo-assembler.h"
namespace v8 {
namespace internal {

View File

@ -34,6 +34,7 @@ namespace internal {
// Forward declarations.
class AsmWasmData;
class AsyncGeneratorRequest;
struct AssemblerOptions;
class BigInt;
class CallInterfaceDescriptor;
class Callable;

View File

@ -5,7 +5,6 @@
#include "src/compiler/frame.h"
#include "src/compiler/linkage.h"
#include "src/macro-assembler.h"
namespace v8 {
namespace internal {

View File

@ -1065,7 +1065,7 @@ std::ostream& operator<<(std::ostream& os, const InstructionOperandAsJSON& o) {
if (allocated->register_code() < Register::kNumRegisters) {
os << Register::from_code(allocated->register_code());
} else {
os << Assembler::GetSpecialRegisterName(allocated->register_code());
os << Register::GetSpecialRegisterName(allocated->register_code());
}
} else if (op->IsDoubleRegister()) {
os << DoubleRegister::from_code(allocated->register_code());

View File

@ -12,10 +12,10 @@
#include "src/globals.h"
#include "src/interface-descriptors.h"
#include "src/machine-type.h"
#include "src/register-arch.h"
#include "src/reglist.h"
#include "src/runtime/runtime.h"
#include "src/signature.h"
#include "src/turbo-assembler.h"
#include "src/zone/zone.h"
namespace v8 {

View File

@ -41,6 +41,7 @@
#include "src/assembler.h"
#include "src/ia32/constants-ia32.h"
#include "src/ia32/register-ia32.h"
#include "src/ia32/sse-instr.h"
#include "src/isolate.h"
#include "src/label.h"
@ -50,114 +51,6 @@
namespace v8 {
namespace internal {
#define GENERAL_REGISTERS(V) \
V(eax) \
V(ecx) \
V(edx) \
V(ebx) \
V(esp) \
V(ebp) \
V(esi) \
V(edi)
#define ALLOCATABLE_GENERAL_REGISTERS(V) \
V(eax) \
V(ecx) \
V(edx) \
V(esi) \
V(edi)
#define DOUBLE_REGISTERS(V) \
V(xmm0) \
V(xmm1) \
V(xmm2) \
V(xmm3) \
V(xmm4) \
V(xmm5) \
V(xmm6) \
V(xmm7)
#define FLOAT_REGISTERS DOUBLE_REGISTERS
#define SIMD128_REGISTERS DOUBLE_REGISTERS
#define ALLOCATABLE_DOUBLE_REGISTERS(V) \
V(xmm1) \
V(xmm2) \
V(xmm3) \
V(xmm4) \
V(xmm5) \
V(xmm6) \
V(xmm7)
enum RegisterCode {
#define REGISTER_CODE(R) kRegCode_##R,
GENERAL_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kRegAfterLast
};
class Register : public RegisterBase<Register, kRegAfterLast> {
public:
bool is_byte_register() const { return reg_code_ <= 3; }
private:
friend class RegisterBase<Register, kRegAfterLast>;
explicit constexpr Register(int code) : RegisterBase(code) {}
};
ASSERT_TRIVIALLY_COPYABLE(Register);
static_assert(sizeof(Register) == sizeof(int),
"Register can efficiently be passed by value");
#define DEFINE_REGISTER(R) \
constexpr Register R = Register::from_code<kRegCode_##R>();
GENERAL_REGISTERS(DEFINE_REGISTER)
#undef DEFINE_REGISTER
constexpr Register no_reg = Register::no_reg();
constexpr bool kPadArguments = false;
constexpr bool kSimpleFPAliasing = true;
constexpr bool kSimdMaskRegisters = false;
enum DoubleCode {
#define REGISTER_CODE(R) kDoubleCode_##R,
DOUBLE_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kDoubleAfterLast
};
class XMMRegister : public RegisterBase<XMMRegister, kDoubleAfterLast> {
friend class RegisterBase<XMMRegister, kDoubleAfterLast>;
explicit constexpr XMMRegister(int code) : RegisterBase(code) {}
};
typedef XMMRegister FloatRegister;
typedef XMMRegister DoubleRegister;
typedef XMMRegister Simd128Register;
#define DEFINE_REGISTER(R) \
constexpr DoubleRegister R = DoubleRegister::from_code<kDoubleCode_##R>();
DOUBLE_REGISTERS(DEFINE_REGISTER)
#undef DEFINE_REGISTER
constexpr DoubleRegister no_dreg = DoubleRegister::no_reg();
// Note that the bit values must match those used in actual instruction encoding
constexpr int kNumRegs = 8;
// Caller-saved registers
constexpr RegList kJSCallerSaved =
Register::ListOf<eax, ecx, edx,
ebx, // used as a caller-saved register in JavaScript code
edi // callee function
>();
constexpr int kNumJSCallerSaved = 5;
// Number of registers for which space is reserved in safepoints.
constexpr int kNumSafepointRegisters = 8;
enum Condition {
// any value < 0 is considered no_condition
no_condition = -1,
@ -1890,10 +1783,6 @@ class EnsureSpace {
#endif
};
// Define {RegisterName} methods for the register types.
DEFINE_REGISTER_NAMES(Register, GENERAL_REGISTERS)
DEFINE_REGISTER_NAMES(XMMRegister, DOUBLE_REGISTERS)
} // namespace internal
} // namespace v8

View File

@ -5,7 +5,8 @@
#if V8_TARGET_ARCH_IA32
#include "src/interface-descriptors.h"
#include "src/macro-assembler.h"
#include "src/frames.h"
namespace v8 {
namespace internal {

View File

@ -17,43 +17,6 @@
namespace v8 {
namespace internal {
// Give alias names to registers for calling conventions.
constexpr Register kReturnRegister0 = eax;
constexpr Register kReturnRegister1 = edx;
constexpr Register kReturnRegister2 = edi;
constexpr Register kJSFunctionRegister = edi;
constexpr Register kContextRegister = esi;
constexpr Register kAllocateSizeRegister = edx;
constexpr Register kInterpreterAccumulatorRegister = eax;
constexpr Register kInterpreterBytecodeOffsetRegister = edx;
constexpr Register kInterpreterBytecodeArrayRegister = edi;
constexpr Register kInterpreterDispatchTableRegister = esi;
constexpr Register kJavaScriptCallArgCountRegister = eax;
constexpr Register kJavaScriptCallCodeStartRegister = ecx;
constexpr Register kJavaScriptCallTargetRegister = kJSFunctionRegister;
constexpr Register kJavaScriptCallNewTargetRegister = edx;
// The ExtraArg1Register not part of the real JS calling convention and is
// mostly there to simplify consistent interface descriptor definitions across
// platforms. Note that on ia32 it aliases kJavaScriptCallCodeStartRegister.
constexpr Register kJavaScriptCallExtraArg1Register = ecx;
// The off-heap trampoline does not need a register on ia32 (it uses a
// pc-relative call instead).
constexpr Register kOffHeapTrampolineRegister = no_reg;
constexpr Register kRuntimeCallFunctionRegister = edx;
constexpr Register kRuntimeCallArgCountRegister = eax;
constexpr Register kRuntimeCallArgvRegister = ecx;
constexpr Register kWasmInstanceRegister = esi;
constexpr Register kWasmCompileLazyFuncIndexRegister = edi;
constexpr Register kRootRegister = ebx;
// TODO(860429): Remove remaining poisoning infrastructure on ia32.
constexpr Register kSpeculationPoisonRegister = no_reg;
// Convenience for platform-independent signatures. We do not normally
// distinguish memory operands from other operands on ia32.
typedef Operand MemOperand;

166
src/ia32/register-ia32.h Normal file
View File

@ -0,0 +1,166 @@
// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_IA32_REGISTER_IA32_H_
#define V8_IA32_REGISTER_IA32_H_
#include "src/register.h"
#include "src/reglist.h"
namespace v8 {
namespace internal {
#define GENERAL_REGISTERS(V) \
V(eax) \
V(ecx) \
V(edx) \
V(ebx) \
V(esp) \
V(ebp) \
V(esi) \
V(edi)
#define ALLOCATABLE_GENERAL_REGISTERS(V) \
V(eax) \
V(ecx) \
V(edx) \
V(esi) \
V(edi)
#define DOUBLE_REGISTERS(V) \
V(xmm0) \
V(xmm1) \
V(xmm2) \
V(xmm3) \
V(xmm4) \
V(xmm5) \
V(xmm6) \
V(xmm7)
#define FLOAT_REGISTERS DOUBLE_REGISTERS
#define SIMD128_REGISTERS DOUBLE_REGISTERS
#define ALLOCATABLE_DOUBLE_REGISTERS(V) \
V(xmm1) \
V(xmm2) \
V(xmm3) \
V(xmm4) \
V(xmm5) \
V(xmm6) \
V(xmm7)
enum RegisterCode {
#define REGISTER_CODE(R) kRegCode_##R,
GENERAL_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kRegAfterLast
};
class Register : public RegisterBase<Register, kRegAfterLast> {
public:
bool is_byte_register() const { return reg_code_ <= 3; }
private:
friend class RegisterBase<Register, kRegAfterLast>;
explicit constexpr Register(int code) : RegisterBase(code) {}
};
ASSERT_TRIVIALLY_COPYABLE(Register);
static_assert(sizeof(Register) == sizeof(int),
"Register can efficiently be passed by value");
#define DEFINE_REGISTER(R) \
constexpr Register R = Register::from_code<kRegCode_##R>();
GENERAL_REGISTERS(DEFINE_REGISTER)
#undef DEFINE_REGISTER
constexpr Register no_reg = Register::no_reg();
constexpr bool kPadArguments = false;
constexpr bool kSimpleFPAliasing = true;
constexpr bool kSimdMaskRegisters = false;
enum DoubleCode {
#define REGISTER_CODE(R) kDoubleCode_##R,
DOUBLE_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kDoubleAfterLast
};
class XMMRegister : public RegisterBase<XMMRegister, kDoubleAfterLast> {
friend class RegisterBase<XMMRegister, kDoubleAfterLast>;
explicit constexpr XMMRegister(int code) : RegisterBase(code) {}
};
typedef XMMRegister FloatRegister;
typedef XMMRegister DoubleRegister;
typedef XMMRegister Simd128Register;
#define DEFINE_REGISTER(R) \
constexpr DoubleRegister R = DoubleRegister::from_code<kDoubleCode_##R>();
DOUBLE_REGISTERS(DEFINE_REGISTER)
#undef DEFINE_REGISTER
constexpr DoubleRegister no_dreg = DoubleRegister::no_reg();
// Note that the bit values must match those used in actual instruction encoding
constexpr int kNumRegs = 8;
// Caller-saved registers
constexpr RegList kJSCallerSaved =
Register::ListOf<eax, ecx, edx,
ebx, // used as a caller-saved register in JavaScript code
edi // callee function
>();
constexpr int kNumJSCallerSaved = 5;
// Number of registers for which space is reserved in safepoints.
constexpr int kNumSafepointRegisters = 8;
// Define {RegisterName} methods for the register types.
DEFINE_REGISTER_NAMES(Register, GENERAL_REGISTERS)
DEFINE_REGISTER_NAMES(XMMRegister, DOUBLE_REGISTERS)
// Give alias names to registers for calling conventions.
constexpr Register kReturnRegister0 = eax;
constexpr Register kReturnRegister1 = edx;
constexpr Register kReturnRegister2 = edi;
constexpr Register kJSFunctionRegister = edi;
constexpr Register kContextRegister = esi;
constexpr Register kAllocateSizeRegister = edx;
constexpr Register kInterpreterAccumulatorRegister = eax;
constexpr Register kInterpreterBytecodeOffsetRegister = edx;
constexpr Register kInterpreterBytecodeArrayRegister = edi;
constexpr Register kInterpreterDispatchTableRegister = esi;
constexpr Register kJavaScriptCallArgCountRegister = eax;
constexpr Register kJavaScriptCallCodeStartRegister = ecx;
constexpr Register kJavaScriptCallTargetRegister = kJSFunctionRegister;
constexpr Register kJavaScriptCallNewTargetRegister = edx;
// The ExtraArg1Register not part of the real JS calling convention and is
// mostly there to simplify consistent interface descriptor definitions across
// platforms. Note that on ia32 it aliases kJavaScriptCallCodeStartRegister.
constexpr Register kJavaScriptCallExtraArg1Register = ecx;
// The off-heap trampoline does not need a register on ia32 (it uses a
// pc-relative call instead).
constexpr Register kOffHeapTrampolineRegister = no_reg;
constexpr Register kRuntimeCallFunctionRegister = edx;
constexpr Register kRuntimeCallArgCountRegister = eax;
constexpr Register kRuntimeCallArgvRegister = ecx;
constexpr Register kWasmInstanceRegister = esi;
constexpr Register kWasmCompileLazyFuncIndexRegister = edi;
constexpr Register kRootRegister = ebx;
// TODO(860429): Remove remaining poisoning infrastructure on ia32.
constexpr Register kSpeculationPoisonRegister = no_reg;
} // namespace internal
} // namespace v8
#endif // V8_IA32_REGISTER_IA32_H_

View File

@ -6,7 +6,6 @@
#define V8_IC_CALL_OPTIMIZATION_H_
#include "src/api-arguments.h"
#include "src/macro-assembler.h"
#include "src/objects.h"
namespace v8 {

View File

@ -22,7 +22,6 @@
#include "src/ic/ic-stats.h"
#include "src/ic/stub-cache.h"
#include "src/isolate-inl.h"
#include "src/macro-assembler.h"
#include "src/objects/api-callbacks.h"
#include "src/objects/data-handler-inl.h"
#include "src/objects/hash-table-inl.h"

View File

@ -7,10 +7,10 @@
#include <memory>
#include "src/assembler-arch.h"
#include "src/globals.h"
#include "src/isolate.h"
#include "src/machine-type.h"
#include "src/register-arch.h"
namespace v8 {
namespace internal {

View File

@ -13,7 +13,6 @@
#include "src/interpreter/bytecodes.h"
#include "src/interpreter/interpreter.h"
#include "src/machine-type.h"
#include "src/macro-assembler.h"
#include "src/objects-inl.h"
#include "src/zone/zone.h"

View File

@ -44,345 +44,12 @@
#include "src/external-reference.h"
#include "src/label.h"
#include "src/mips/constants-mips.h"
#include "src/mips/register-mips.h"
#include "src/objects/smi.h"
namespace v8 {
namespace internal {
// clang-format off
#define GENERAL_REGISTERS(V) \
V(zero_reg) V(at) V(v0) V(v1) V(a0) V(a1) V(a2) V(a3) \
V(t0) V(t1) V(t2) V(t3) V(t4) V(t5) V(t6) V(t7) \
V(s0) V(s1) V(s2) V(s3) V(s4) V(s5) V(s6) V(s7) V(t8) V(t9) \
V(k0) V(k1) V(gp) V(sp) V(fp) V(ra)
#define ALLOCATABLE_GENERAL_REGISTERS(V) \
V(a0) V(a1) V(a2) V(a3) \
V(t0) V(t1) V(t2) V(t3) V(t4) V(t5) V(t6) V(s7) \
V(v0) V(v1)
#define DOUBLE_REGISTERS(V) \
V(f0) V(f1) V(f2) V(f3) V(f4) V(f5) V(f6) V(f7) \
V(f8) V(f9) V(f10) V(f11) V(f12) V(f13) V(f14) V(f15) \
V(f16) V(f17) V(f18) V(f19) V(f20) V(f21) V(f22) V(f23) \
V(f24) V(f25) V(f26) V(f27) V(f28) V(f29) V(f30) V(f31)
#define FLOAT_REGISTERS DOUBLE_REGISTERS
#define SIMD128_REGISTERS(V) \
V(w0) V(w1) V(w2) V(w3) V(w4) V(w5) V(w6) V(w7) \
V(w8) V(w9) V(w10) V(w11) V(w12) V(w13) V(w14) V(w15) \
V(w16) V(w17) V(w18) V(w19) V(w20) V(w21) V(w22) V(w23) \
V(w24) V(w25) V(w26) V(w27) V(w28) V(w29) V(w30) V(w31)
#define ALLOCATABLE_DOUBLE_REGISTERS(V) \
V(f0) V(f2) V(f4) V(f6) V(f8) V(f10) V(f12) V(f14) \
V(f16) V(f18) V(f20) V(f22) V(f24)
// clang-format on
// Register lists.
// Note that the bit values must match those used in actual instruction
// encoding.
const int kNumRegs = 32;
const RegList kJSCallerSaved = 1 << 2 | // v0
1 << 3 | // v1
1 << 4 | // a0
1 << 5 | // a1
1 << 6 | // a2
1 << 7 | // a3
1 << 8 | // t0
1 << 9 | // t1
1 << 10 | // t2
1 << 11 | // t3
1 << 12 | // t4
1 << 13 | // t5
1 << 14 | // t6
1 << 15; // t7
const int kNumJSCallerSaved = 14;
// Callee-saved registers preserved when switching from C to JavaScript.
const RegList kCalleeSaved = 1 << 16 | // s0
1 << 17 | // s1
1 << 18 | // s2
1 << 19 | // s3
1 << 20 | // s4
1 << 21 | // s5
1 << 22 | // s6 (roots in Javascript code)
1 << 23 | // s7 (cp in Javascript code)
1 << 30; // fp/s8
const int kNumCalleeSaved = 9;
const RegList kCalleeSavedFPU = 1 << 20 | // f20
1 << 22 | // f22
1 << 24 | // f24
1 << 26 | // f26
1 << 28 | // f28
1 << 30; // f30
const int kNumCalleeSavedFPU = 6;
const RegList kCallerSavedFPU = 1 << 0 | // f0
1 << 2 | // f2
1 << 4 | // f4
1 << 6 | // f6
1 << 8 | // f8
1 << 10 | // f10
1 << 12 | // f12
1 << 14 | // f14
1 << 16 | // f16
1 << 18; // f18
// Number of registers for which space is reserved in safepoints. Must be a
// multiple of 8.
const int kNumSafepointRegisters = 24;
// Define the list of registers actually saved at safepoints.
// Note that the number of saved registers may be smaller than the reserved
// space, i.e. kNumSafepointSavedRegisters <= kNumSafepointRegisters.
const RegList kSafepointSavedRegisters = kJSCallerSaved | kCalleeSaved;
const int kNumSafepointSavedRegisters = kNumJSCallerSaved + kNumCalleeSaved;
const int kUndefIndex = -1;
// Map with indexes on stack that corresponds to codes of saved registers.
const int kSafepointRegisterStackIndexMap[kNumRegs] = {kUndefIndex, // zero_reg
kUndefIndex, // at
0, // v0
1, // v1
2, // a0
3, // a1
4, // a2
5, // a3
6, // t0
7, // t1
8, // t2
9, // t3
10, // t4
11, // t5
12, // t6
13, // t7
14, // s0
15, // s1
16, // s2
17, // s3
18, // s4
19, // s5
20, // s6
21, // s7
kUndefIndex, // t8
kUndefIndex, // t9
kUndefIndex, // k0
kUndefIndex, // k1
kUndefIndex, // gp
kUndefIndex, // sp
22, // fp
kUndefIndex};
// CPU Registers.
//
// 1) We would prefer to use an enum, but enum values are assignment-
// compatible with int, which has caused code-generation bugs.
//
// 2) We would prefer to use a class instead of a struct but we don't like
// the register initialization to depend on the particular initialization
// order (which appears to be different on OS X, Linux, and Windows for the
// installed versions of C++ we tried). Using a struct permits C-style
// "initialization". Also, the Register objects cannot be const as this
// forces initialization stubs in MSVC, making us dependent on initialization
// order.
//
// 3) By not using an enum, we are possibly preventing the compiler from
// doing certain constant folds, which may significantly reduce the
// code generated for some assembly instructions (because they boil down
// to a few constants). If this is a problem, we could change the code
// such that we use an enum in optimized mode, and the struct in debug
// mode. This way we get the compile-time error checking in debug mode
// and best performance in optimized code.
// -----------------------------------------------------------------------------
// Implementation of Register and FPURegister.
enum RegisterCode {
#define REGISTER_CODE(R) kRegCode_##R,
GENERAL_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kRegAfterLast
};
class Register : public RegisterBase<Register, kRegAfterLast> {
public:
#if defined(V8_TARGET_LITTLE_ENDIAN)
static constexpr int kMantissaOffset = 0;
static constexpr int kExponentOffset = 4;
#elif defined(V8_TARGET_BIG_ENDIAN)
static constexpr int kMantissaOffset = 4;
static constexpr int kExponentOffset = 0;
#else
#error Unknown endianness
#endif
private:
friend class RegisterBase;
explicit constexpr Register(int code) : RegisterBase(code) {}
};
// s7: context register
// s3: scratch register
// s4: scratch register 2
#define DECLARE_REGISTER(R) \
constexpr Register R = Register::from_code<kRegCode_##R>();
GENERAL_REGISTERS(DECLARE_REGISTER)
#undef DECLARE_REGISTER
constexpr Register no_reg = Register::no_reg();
int ToNumber(Register reg);
Register ToRegister(int num);
constexpr bool kPadArguments = false;
constexpr bool kSimpleFPAliasing = true;
constexpr bool kSimdMaskRegisters = false;
enum DoubleRegisterCode {
#define REGISTER_CODE(R) kDoubleCode_##R,
DOUBLE_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kDoubleAfterLast
};
// Coprocessor register.
class FPURegister : public RegisterBase<FPURegister, kDoubleAfterLast> {
public:
FPURegister low() const {
// Find low reg of a Double-reg pair, which is the reg itself.
DCHECK_EQ(code() % 2, 0); // Specified Double reg must be even.
return FPURegister::from_code(code());
}
FPURegister high() const {
// Find high reg of a Doubel-reg pair, which is reg + 1.
DCHECK_EQ(code() % 2, 0); // Specified Double reg must be even.
return FPURegister::from_code(code() + 1);
}
private:
friend class RegisterBase;
explicit constexpr FPURegister(int code) : RegisterBase(code) {}
};
enum MSARegisterCode {
#define REGISTER_CODE(R) kMsaCode_##R,
SIMD128_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kMsaAfterLast
};
// MIPS SIMD (MSA) register
class MSARegister : public RegisterBase<MSARegister, kMsaAfterLast> {
friend class RegisterBase;
explicit constexpr MSARegister(int code) : RegisterBase(code) {}
};
// A few double registers are reserved: one as a scratch register and one to
// hold 0.0.
// f28: 0.0
// f30: scratch register.
// V8 now supports the O32 ABI, and the FPU Registers are organized as 32
// 32-bit registers, f0 through f31. When used as 'double' they are used
// in pairs, starting with the even numbered register. So a double operation
// on f0 really uses f0 and f1.
// (Modern mips hardware also supports 32 64-bit registers, via setting
// (priviledged) Status Register FR bit to 1. This is used by the N32 ABI,
// but it is not in common use. Someday we will want to support this in v8.)
// For O32 ABI, Floats and Doubles refer to same set of 32 32-bit registers.
typedef FPURegister FloatRegister;
typedef FPURegister DoubleRegister;
#define DECLARE_DOUBLE_REGISTER(R) \
constexpr DoubleRegister R = DoubleRegister::from_code<kDoubleCode_##R>();
DOUBLE_REGISTERS(DECLARE_DOUBLE_REGISTER)
#undef DECLARE_DOUBLE_REGISTER
constexpr DoubleRegister no_dreg = DoubleRegister::no_reg();
// SIMD registers.
typedef MSARegister Simd128Register;
#define DECLARE_SIMD128_REGISTER(R) \
constexpr Simd128Register R = Simd128Register::from_code<kMsaCode_##R>();
SIMD128_REGISTERS(DECLARE_SIMD128_REGISTER)
#undef DECLARE_SIMD128_REGISTER
const Simd128Register no_msareg = Simd128Register::no_reg();
// Register aliases.
// cp is assumed to be a callee saved register.
constexpr Register kRootRegister = s6;
constexpr Register cp = s7;
constexpr Register kScratchReg = s3;
constexpr Register kScratchReg2 = s4;
constexpr DoubleRegister kScratchDoubleReg = f30;
constexpr DoubleRegister kDoubleRegZero = f28;
// Used on mips32r6 for compare operations.
constexpr DoubleRegister kDoubleCompareReg = f26;
// MSA zero and scratch regs must have the same numbers as FPU zero and scratch
constexpr Simd128Register kSimd128RegZero = w28;
constexpr Simd128Register kSimd128ScratchReg = w30;
// FPU (coprocessor 1) control registers.
// Currently only FCSR (#31) is implemented.
struct FPUControlRegister {
bool is_valid() const { return reg_code == kFCSRRegister; }
bool is(FPUControlRegister creg) const { return reg_code == creg.reg_code; }
int code() const {
DCHECK(is_valid());
return reg_code;
}
int bit() const {
DCHECK(is_valid());
return 1 << reg_code;
}
void setcode(int f) {
reg_code = f;
DCHECK(is_valid());
}
// Unfortunately we can't make this private in a struct.
int reg_code;
};
constexpr FPUControlRegister no_fpucreg = {kInvalidFPUControlRegister};
constexpr FPUControlRegister FCSR = {kFCSRRegister};
// MSA control registers
struct MSAControlRegister {
bool is_valid() const {
return (reg_code == kMSAIRRegister) || (reg_code == kMSACSRRegister);
}
bool is(MSAControlRegister creg) const { return reg_code == creg.reg_code; }
int code() const {
DCHECK(is_valid());
return reg_code;
}
int bit() const {
DCHECK(is_valid());
return 1 << reg_code;
}
void setcode(int f) {
reg_code = f;
DCHECK(is_valid());
}
// Unfortunately we can't make this private in a struct.
int reg_code;
};
constexpr MSAControlRegister no_msacreg = {kInvalidMSAControlRegister};
constexpr MSAControlRegister MSAIR = {kMSAIRRegister};
constexpr MSAControlRegister MSACSR = {kMSACSRRegister};
// Allow programmer to use Branch Delay Slot of Branches, Jumps, Calls.
enum BranchDelaySlot { USE_DELAY_SLOT, PROTECT };
@ -2254,10 +1921,6 @@ class UseScratchRegisterScope {
RegList old_available_;
};
// Define {RegisterName} methods for the register types.
DEFINE_REGISTER_NAMES(Register, GENERAL_REGISTERS)
DEFINE_REGISTER_NAMES(FPURegister, DOUBLE_REGISTERS)
DEFINE_REGISTER_NAMES(MSARegister, SIMD128_REGISTERS)
} // namespace internal
} // namespace v8

View File

@ -5,7 +5,8 @@
#if V8_TARGET_ARCH_MIPS
#include "src/interface-descriptors.h"
#include "src/macro-assembler.h"
#include "src/frames.h"
namespace v8 {
namespace internal {

View File

@ -17,32 +17,6 @@
namespace v8 {
namespace internal {
// Give alias names to registers for calling conventions.
constexpr Register kReturnRegister0 = v0;
constexpr Register kReturnRegister1 = v1;
constexpr Register kReturnRegister2 = a0;
constexpr Register kJSFunctionRegister = a1;
constexpr Register kContextRegister = s7;
constexpr Register kAllocateSizeRegister = a0;
constexpr Register kSpeculationPoisonRegister = t3;
constexpr Register kInterpreterAccumulatorRegister = v0;
constexpr Register kInterpreterBytecodeOffsetRegister = t4;
constexpr Register kInterpreterBytecodeArrayRegister = t5;
constexpr Register kInterpreterDispatchTableRegister = t6;
constexpr Register kJavaScriptCallArgCountRegister = a0;
constexpr Register kJavaScriptCallCodeStartRegister = a2;
constexpr Register kJavaScriptCallTargetRegister = kJSFunctionRegister;
constexpr Register kJavaScriptCallNewTargetRegister = a3;
constexpr Register kJavaScriptCallExtraArg1Register = a2;
constexpr Register kOffHeapTrampolineRegister = at;
constexpr Register kRuntimeCallFunctionRegister = a1;
constexpr Register kRuntimeCallArgCountRegister = a0;
constexpr Register kRuntimeCallArgvRegister = a2;
constexpr Register kWasmInstanceRegister = a0;
constexpr Register kWasmCompileLazyFuncIndexRegister = t0;
// Forward declarations
enum class AbortReason : uint8_t;

382
src/mips/register-mips.h Normal file
View File

@ -0,0 +1,382 @@
// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_MIPS_REGISTER_MIPS_H_
#define V8_MIPS_REGISTER_MIPS_H_
#include "src/mips/constants-mips.h"
#include "src/register.h"
#include "src/reglist.h"
namespace v8 {
namespace internal {
// clang-format off
#define GENERAL_REGISTERS(V) \
V(zero_reg) V(at) V(v0) V(v1) V(a0) V(a1) V(a2) V(a3) \
V(t0) V(t1) V(t2) V(t3) V(t4) V(t5) V(t6) V(t7) \
V(s0) V(s1) V(s2) V(s3) V(s4) V(s5) V(s6) V(s7) V(t8) V(t9) \
V(k0) V(k1) V(gp) V(sp) V(fp) V(ra)
#define ALLOCATABLE_GENERAL_REGISTERS(V) \
V(a0) V(a1) V(a2) V(a3) \
V(t0) V(t1) V(t2) V(t3) V(t4) V(t5) V(t6) V(s7) \
V(v0) V(v1)
#define DOUBLE_REGISTERS(V) \
V(f0) V(f1) V(f2) V(f3) V(f4) V(f5) V(f6) V(f7) \
V(f8) V(f9) V(f10) V(f11) V(f12) V(f13) V(f14) V(f15) \
V(f16) V(f17) V(f18) V(f19) V(f20) V(f21) V(f22) V(f23) \
V(f24) V(f25) V(f26) V(f27) V(f28) V(f29) V(f30) V(f31)
#define FLOAT_REGISTERS DOUBLE_REGISTERS
#define SIMD128_REGISTERS(V) \
V(w0) V(w1) V(w2) V(w3) V(w4) V(w5) V(w6) V(w7) \
V(w8) V(w9) V(w10) V(w11) V(w12) V(w13) V(w14) V(w15) \
V(w16) V(w17) V(w18) V(w19) V(w20) V(w21) V(w22) V(w23) \
V(w24) V(w25) V(w26) V(w27) V(w28) V(w29) V(w30) V(w31)
#define ALLOCATABLE_DOUBLE_REGISTERS(V) \
V(f0) V(f2) V(f4) V(f6) V(f8) V(f10) V(f12) V(f14) \
V(f16) V(f18) V(f20) V(f22) V(f24)
// clang-format on
// Register lists.
// Note that the bit values must match those used in actual instruction
// encoding.
const int kNumRegs = 32;
const RegList kJSCallerSaved = 1 << 2 | // v0
1 << 3 | // v1
1 << 4 | // a0
1 << 5 | // a1
1 << 6 | // a2
1 << 7 | // a3
1 << 8 | // t0
1 << 9 | // t1
1 << 10 | // t2
1 << 11 | // t3
1 << 12 | // t4
1 << 13 | // t5
1 << 14 | // t6
1 << 15; // t7
const int kNumJSCallerSaved = 14;
// Callee-saved registers preserved when switching from C to JavaScript.
const RegList kCalleeSaved = 1 << 16 | // s0
1 << 17 | // s1
1 << 18 | // s2
1 << 19 | // s3
1 << 20 | // s4
1 << 21 | // s5
1 << 22 | // s6 (roots in Javascript code)
1 << 23 | // s7 (cp in Javascript code)
1 << 30; // fp/s8
const int kNumCalleeSaved = 9;
const RegList kCalleeSavedFPU = 1 << 20 | // f20
1 << 22 | // f22
1 << 24 | // f24
1 << 26 | // f26
1 << 28 | // f28
1 << 30; // f30
const int kNumCalleeSavedFPU = 6;
const RegList kCallerSavedFPU = 1 << 0 | // f0
1 << 2 | // f2
1 << 4 | // f4
1 << 6 | // f6
1 << 8 | // f8
1 << 10 | // f10
1 << 12 | // f12
1 << 14 | // f14
1 << 16 | // f16
1 << 18; // f18
// Number of registers for which space is reserved in safepoints. Must be a
// multiple of 8.
const int kNumSafepointRegisters = 24;
// Define the list of registers actually saved at safepoints.
// Note that the number of saved registers may be smaller than the reserved
// space, i.e. kNumSafepointSavedRegisters <= kNumSafepointRegisters.
const RegList kSafepointSavedRegisters = kJSCallerSaved | kCalleeSaved;
const int kNumSafepointSavedRegisters = kNumJSCallerSaved + kNumCalleeSaved;
const int kUndefIndex = -1;
// Map with indexes on stack that corresponds to codes of saved registers.
const int kSafepointRegisterStackIndexMap[kNumRegs] = {kUndefIndex, // zero_reg
kUndefIndex, // at
0, // v0
1, // v1
2, // a0
3, // a1
4, // a2
5, // a3
6, // t0
7, // t1
8, // t2
9, // t3
10, // t4
11, // t5
12, // t6
13, // t7
14, // s0
15, // s1
16, // s2
17, // s3
18, // s4
19, // s5
20, // s6
21, // s7
kUndefIndex, // t8
kUndefIndex, // t9
kUndefIndex, // k0
kUndefIndex, // k1
kUndefIndex, // gp
kUndefIndex, // sp
22, // fp
kUndefIndex};
// CPU Registers.
//
// 1) We would prefer to use an enum, but enum values are assignment-
// compatible with int, which has caused code-generation bugs.
//
// 2) We would prefer to use a class instead of a struct but we don't like
// the register initialization to depend on the particular initialization
// order (which appears to be different on OS X, Linux, and Windows for the
// installed versions of C++ we tried). Using a struct permits C-style
// "initialization". Also, the Register objects cannot be const as this
// forces initialization stubs in MSVC, making us dependent on initialization
// order.
//
// 3) By not using an enum, we are possibly preventing the compiler from
// doing certain constant folds, which may significantly reduce the
// code generated for some assembly instructions (because they boil down
// to a few constants). If this is a problem, we could change the code
// such that we use an enum in optimized mode, and the struct in debug
// mode. This way we get the compile-time error checking in debug mode
// and best performance in optimized code.
// -----------------------------------------------------------------------------
// Implementation of Register and FPURegister.
enum RegisterCode {
#define REGISTER_CODE(R) kRegCode_##R,
GENERAL_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kRegAfterLast
};
class Register : public RegisterBase<Register, kRegAfterLast> {
public:
#if defined(V8_TARGET_LITTLE_ENDIAN)
static constexpr int kMantissaOffset = 0;
static constexpr int kExponentOffset = 4;
#elif defined(V8_TARGET_BIG_ENDIAN)
static constexpr int kMantissaOffset = 4;
static constexpr int kExponentOffset = 0;
#else
#error Unknown endianness
#endif
private:
friend class RegisterBase;
explicit constexpr Register(int code) : RegisterBase(code) {}
};
// s7: context register
// s3: scratch register
// s4: scratch register 2
#define DECLARE_REGISTER(R) \
constexpr Register R = Register::from_code<kRegCode_##R>();
GENERAL_REGISTERS(DECLARE_REGISTER)
#undef DECLARE_REGISTER
constexpr Register no_reg = Register::no_reg();
int ToNumber(Register reg);
Register ToRegister(int num);
constexpr bool kPadArguments = false;
constexpr bool kSimpleFPAliasing = true;
constexpr bool kSimdMaskRegisters = false;
enum DoubleRegisterCode {
#define REGISTER_CODE(R) kDoubleCode_##R,
DOUBLE_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kDoubleAfterLast
};
// Coprocessor register.
class FPURegister : public RegisterBase<FPURegister, kDoubleAfterLast> {
public:
FPURegister low() const {
// Find low reg of a Double-reg pair, which is the reg itself.
DCHECK_EQ(code() % 2, 0); // Specified Double reg must be even.
return FPURegister::from_code(code());
}
FPURegister high() const {
// Find high reg of a Doubel-reg pair, which is reg + 1.
DCHECK_EQ(code() % 2, 0); // Specified Double reg must be even.
return FPURegister::from_code(code() + 1);
}
private:
friend class RegisterBase;
explicit constexpr FPURegister(int code) : RegisterBase(code) {}
};
enum MSARegisterCode {
#define REGISTER_CODE(R) kMsaCode_##R,
SIMD128_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kMsaAfterLast
};
// MIPS SIMD (MSA) register
class MSARegister : public RegisterBase<MSARegister, kMsaAfterLast> {
friend class RegisterBase;
explicit constexpr MSARegister(int code) : RegisterBase(code) {}
};
// A few double registers are reserved: one as a scratch register and one to
// hold 0.0.
// f28: 0.0
// f30: scratch register.
// V8 now supports the O32 ABI, and the FPU Registers are organized as 32
// 32-bit registers, f0 through f31. When used as 'double' they are used
// in pairs, starting with the even numbered register. So a double operation
// on f0 really uses f0 and f1.
// (Modern mips hardware also supports 32 64-bit registers, via setting
// (priviledged) Status Register FR bit to 1. This is used by the N32 ABI,
// but it is not in common use. Someday we will want to support this in v8.)
// For O32 ABI, Floats and Doubles refer to same set of 32 32-bit registers.
typedef FPURegister FloatRegister;
typedef FPURegister DoubleRegister;
#define DECLARE_DOUBLE_REGISTER(R) \
constexpr DoubleRegister R = DoubleRegister::from_code<kDoubleCode_##R>();
DOUBLE_REGISTERS(DECLARE_DOUBLE_REGISTER)
#undef DECLARE_DOUBLE_REGISTER
constexpr DoubleRegister no_dreg = DoubleRegister::no_reg();
// SIMD registers.
typedef MSARegister Simd128Register;
#define DECLARE_SIMD128_REGISTER(R) \
constexpr Simd128Register R = Simd128Register::from_code<kMsaCode_##R>();
SIMD128_REGISTERS(DECLARE_SIMD128_REGISTER)
#undef DECLARE_SIMD128_REGISTER
const Simd128Register no_msareg = Simd128Register::no_reg();
// Register aliases.
// cp is assumed to be a callee saved register.
constexpr Register kRootRegister = s6;
constexpr Register cp = s7;
constexpr Register kScratchReg = s3;
constexpr Register kScratchReg2 = s4;
constexpr DoubleRegister kScratchDoubleReg = f30;
constexpr DoubleRegister kDoubleRegZero = f28;
// Used on mips32r6 for compare operations.
constexpr DoubleRegister kDoubleCompareReg = f26;
// MSA zero and scratch regs must have the same numbers as FPU zero and scratch
constexpr Simd128Register kSimd128RegZero = w28;
constexpr Simd128Register kSimd128ScratchReg = w30;
// FPU (coprocessor 1) control registers.
// Currently only FCSR (#31) is implemented.
struct FPUControlRegister {
bool is_valid() const { return reg_code == kFCSRRegister; }
bool is(FPUControlRegister creg) const { return reg_code == creg.reg_code; }
int code() const {
DCHECK(is_valid());
return reg_code;
}
int bit() const {
DCHECK(is_valid());
return 1 << reg_code;
}
void setcode(int f) {
reg_code = f;
DCHECK(is_valid());
}
// Unfortunately we can't make this private in a struct.
int reg_code;
};
constexpr FPUControlRegister no_fpucreg = {kInvalidFPUControlRegister};
constexpr FPUControlRegister FCSR = {kFCSRRegister};
// MSA control registers
struct MSAControlRegister {
bool is_valid() const {
return (reg_code == kMSAIRRegister) || (reg_code == kMSACSRRegister);
}
bool is(MSAControlRegister creg) const { return reg_code == creg.reg_code; }
int code() const {
DCHECK(is_valid());
return reg_code;
}
int bit() const {
DCHECK(is_valid());
return 1 << reg_code;
}
void setcode(int f) {
reg_code = f;
DCHECK(is_valid());
}
// Unfortunately we can't make this private in a struct.
int reg_code;
};
constexpr MSAControlRegister no_msacreg = {kInvalidMSAControlRegister};
constexpr MSAControlRegister MSAIR = {kMSAIRRegister};
constexpr MSAControlRegister MSACSR = {kMSACSRRegister};
// Define {RegisterName} methods for the register types.
DEFINE_REGISTER_NAMES(Register, GENERAL_REGISTERS)
DEFINE_REGISTER_NAMES(FPURegister, DOUBLE_REGISTERS)
DEFINE_REGISTER_NAMES(MSARegister, SIMD128_REGISTERS)
// Give alias names to registers for calling conventions.
constexpr Register kReturnRegister0 = v0;
constexpr Register kReturnRegister1 = v1;
constexpr Register kReturnRegister2 = a0;
constexpr Register kJSFunctionRegister = a1;
constexpr Register kContextRegister = s7;
constexpr Register kAllocateSizeRegister = a0;
constexpr Register kSpeculationPoisonRegister = t3;
constexpr Register kInterpreterAccumulatorRegister = v0;
constexpr Register kInterpreterBytecodeOffsetRegister = t4;
constexpr Register kInterpreterBytecodeArrayRegister = t5;
constexpr Register kInterpreterDispatchTableRegister = t6;
constexpr Register kJavaScriptCallArgCountRegister = a0;
constexpr Register kJavaScriptCallCodeStartRegister = a2;
constexpr Register kJavaScriptCallTargetRegister = kJSFunctionRegister;
constexpr Register kJavaScriptCallNewTargetRegister = a3;
constexpr Register kJavaScriptCallExtraArg1Register = a2;
constexpr Register kOffHeapTrampolineRegister = at;
constexpr Register kRuntimeCallFunctionRegister = a1;
constexpr Register kRuntimeCallArgCountRegister = a0;
constexpr Register kRuntimeCallArgvRegister = a2;
constexpr Register kWasmInstanceRegister = a0;
constexpr Register kWasmCompileLazyFuncIndexRegister = t0;
} // namespace internal
} // namespace v8
#endif // V8_MIPS_REGISTER_MIPS_H_

View File

@ -44,352 +44,12 @@
#include "src/external-reference.h"
#include "src/label.h"
#include "src/mips64/constants-mips64.h"
#include "src/mips64/register-mips64.h"
#include "src/objects/smi.h"
namespace v8 {
namespace internal {
// clang-format off
#define GENERAL_REGISTERS(V) \
V(zero_reg) V(at) V(v0) V(v1) V(a0) V(a1) V(a2) V(a3) \
V(a4) V(a5) V(a6) V(a7) V(t0) V(t1) V(t2) V(t3) \
V(s0) V(s1) V(s2) V(s3) V(s4) V(s5) V(s6) V(s7) V(t8) V(t9) \
V(k0) V(k1) V(gp) V(sp) V(fp) V(ra)
#define ALLOCATABLE_GENERAL_REGISTERS(V) \
V(a0) V(a1) V(a2) V(a3) \
V(a4) V(a5) V(a6) V(a7) V(t0) V(t1) V(t2) V(s7) \
V(v0) V(v1)
#define DOUBLE_REGISTERS(V) \
V(f0) V(f1) V(f2) V(f3) V(f4) V(f5) V(f6) V(f7) \
V(f8) V(f9) V(f10) V(f11) V(f12) V(f13) V(f14) V(f15) \
V(f16) V(f17) V(f18) V(f19) V(f20) V(f21) V(f22) V(f23) \
V(f24) V(f25) V(f26) V(f27) V(f28) V(f29) V(f30) V(f31)
#define FLOAT_REGISTERS DOUBLE_REGISTERS
#define SIMD128_REGISTERS(V) \
V(w0) V(w1) V(w2) V(w3) V(w4) V(w5) V(w6) V(w7) \
V(w8) V(w9) V(w10) V(w11) V(w12) V(w13) V(w14) V(w15) \
V(w16) V(w17) V(w18) V(w19) V(w20) V(w21) V(w22) V(w23) \
V(w24) V(w25) V(w26) V(w27) V(w28) V(w29) V(w30) V(w31)
#define ALLOCATABLE_DOUBLE_REGISTERS(V) \
V(f0) V(f2) V(f4) V(f6) V(f8) V(f10) V(f12) V(f14) \
V(f16) V(f18) V(f20) V(f22) V(f24) V(f26)
// clang-format on
// Note that the bit values must match those used in actual instruction
// encoding.
const int kNumRegs = 32;
const RegList kJSCallerSaved = 1 << 2 | // v0
1 << 3 | // v1
1 << 4 | // a0
1 << 5 | // a1
1 << 6 | // a2
1 << 7 | // a3
1 << 8 | // a4
1 << 9 | // a5
1 << 10 | // a6
1 << 11 | // a7
1 << 12 | // t0
1 << 13 | // t1
1 << 14 | // t2
1 << 15; // t3
const int kNumJSCallerSaved = 14;
// Callee-saved registers preserved when switching from C to JavaScript.
const RegList kCalleeSaved = 1 << 16 | // s0
1 << 17 | // s1
1 << 18 | // s2
1 << 19 | // s3
1 << 20 | // s4
1 << 21 | // s5
1 << 22 | // s6 (roots in Javascript code)
1 << 23 | // s7 (cp in Javascript code)
1 << 30; // fp/s8
const int kNumCalleeSaved = 9;
const RegList kCalleeSavedFPU = 1 << 20 | // f20
1 << 22 | // f22
1 << 24 | // f24
1 << 26 | // f26
1 << 28 | // f28
1 << 30; // f30
const int kNumCalleeSavedFPU = 6;
const RegList kCallerSavedFPU = 1 << 0 | // f0
1 << 2 | // f2
1 << 4 | // f4
1 << 6 | // f6
1 << 8 | // f8
1 << 10 | // f10
1 << 12 | // f12
1 << 14 | // f14
1 << 16 | // f16
1 << 18; // f18
// Number of registers for which space is reserved in safepoints. Must be a
// multiple of 8.
const int kNumSafepointRegisters = 24;
// Define the list of registers actually saved at safepoints.
// Note that the number of saved registers may be smaller than the reserved
// space, i.e. kNumSafepointSavedRegisters <= kNumSafepointRegisters.
const RegList kSafepointSavedRegisters = kJSCallerSaved | kCalleeSaved;
const int kNumSafepointSavedRegisters = kNumJSCallerSaved + kNumCalleeSaved;
const int kUndefIndex = -1;
// Map with indexes on stack that corresponds to codes of saved registers.
const int kSafepointRegisterStackIndexMap[kNumRegs] = {kUndefIndex, // zero_reg
kUndefIndex, // at
0, // v0
1, // v1
2, // a0
3, // a1
4, // a2
5, // a3
6, // a4
7, // a5
8, // a6
9, // a7
10, // t0
11, // t1
12, // t2
13, // t3
14, // s0
15, // s1
16, // s2
17, // s3
18, // s4
19, // s5
20, // s6
21, // s7
kUndefIndex, // t8
kUndefIndex, // t9
kUndefIndex, // k0
kUndefIndex, // k1
kUndefIndex, // gp
kUndefIndex, // sp
22, // fp
kUndefIndex};
// CPU Registers.
//
// 1) We would prefer to use an enum, but enum values are assignment-
// compatible with int, which has caused code-generation bugs.
//
// 2) We would prefer to use a class instead of a struct but we don't like
// the register initialization to depend on the particular initialization
// order (which appears to be different on OS X, Linux, and Windows for the
// installed versions of C++ we tried). Using a struct permits C-style
// "initialization". Also, the Register objects cannot be const as this
// forces initialization stubs in MSVC, making us dependent on initialization
// order.
//
// 3) By not using an enum, we are possibly preventing the compiler from
// doing certain constant folds, which may significantly reduce the
// code generated for some assembly instructions (because they boil down
// to a few constants). If this is a problem, we could change the code
// such that we use an enum in optimized mode, and the struct in debug
// mode. This way we get the compile-time error checking in debug mode
// and best performance in optimized code.
// -----------------------------------------------------------------------------
// Implementation of Register and FPURegister.
enum RegisterCode {
#define REGISTER_CODE(R) kRegCode_##R,
GENERAL_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kRegAfterLast
};
class Register : public RegisterBase<Register, kRegAfterLast> {
public:
#if defined(V8_TARGET_LITTLE_ENDIAN)
static constexpr int kMantissaOffset = 0;
static constexpr int kExponentOffset = 4;
#elif defined(V8_TARGET_BIG_ENDIAN)
static constexpr int kMantissaOffset = 4;
static constexpr int kExponentOffset = 0;
#else
#error Unknown endianness
#endif
private:
friend class RegisterBase;
explicit constexpr Register(int code) : RegisterBase(code) {}
};
// s7: context register
// s3: scratch register
// s4: scratch register 2
#define DECLARE_REGISTER(R) \
constexpr Register R = Register::from_code<kRegCode_##R>();
GENERAL_REGISTERS(DECLARE_REGISTER)
#undef DECLARE_REGISTER
constexpr Register no_reg = Register::no_reg();
int ToNumber(Register reg);
Register ToRegister(int num);
constexpr bool kPadArguments = false;
constexpr bool kSimpleFPAliasing = true;
constexpr bool kSimdMaskRegisters = false;
enum DoubleRegisterCode {
#define REGISTER_CODE(R) kDoubleCode_##R,
DOUBLE_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kDoubleAfterLast
};
// Coprocessor register.
class FPURegister : public RegisterBase<FPURegister, kDoubleAfterLast> {
public:
// TODO(plind): Warning, inconsistent numbering here. kNumFPURegisters refers
// to number of 32-bit FPU regs, but kNumAllocatableRegisters refers to
// number of Double regs (64-bit regs, or FPU-reg-pairs).
FPURegister low() const {
// TODO(plind): Create DCHECK for FR=0 mode. This usage suspect for FR=1.
// Find low reg of a Double-reg pair, which is the reg itself.
DCHECK_EQ(code() % 2, 0); // Specified Double reg must be even.
return FPURegister::from_code(code());
}
FPURegister high() const {
// TODO(plind): Create DCHECK for FR=0 mode. This usage illegal in FR=1.
// Find high reg of a Doubel-reg pair, which is reg + 1.
DCHECK_EQ(code() % 2, 0); // Specified Double reg must be even.
return FPURegister::from_code(code() + 1);
}
private:
friend class RegisterBase;
explicit constexpr FPURegister(int code) : RegisterBase(code) {}
};
enum MSARegisterCode {
#define REGISTER_CODE(R) kMsaCode_##R,
SIMD128_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kMsaAfterLast
};
// MIPS SIMD (MSA) register
class MSARegister : public RegisterBase<MSARegister, kMsaAfterLast> {
friend class RegisterBase;
explicit constexpr MSARegister(int code) : RegisterBase(code) {}
};
// A few double registers are reserved: one as a scratch register and one to
// hold 0.0.
// f28: 0.0
// f30: scratch register.
// V8 now supports the O32 ABI, and the FPU Registers are organized as 32
// 32-bit registers, f0 through f31. When used as 'double' they are used
// in pairs, starting with the even numbered register. So a double operation
// on f0 really uses f0 and f1.
// (Modern mips hardware also supports 32 64-bit registers, via setting
// (privileged) Status Register FR bit to 1. This is used by the N32 ABI,
// but it is not in common use. Someday we will want to support this in v8.)
// For O32 ABI, Floats and Doubles refer to same set of 32 32-bit registers.
typedef FPURegister FloatRegister;
typedef FPURegister DoubleRegister;
#define DECLARE_DOUBLE_REGISTER(R) \
constexpr DoubleRegister R = DoubleRegister::from_code<kDoubleCode_##R>();
DOUBLE_REGISTERS(DECLARE_DOUBLE_REGISTER)
#undef DECLARE_DOUBLE_REGISTER
constexpr DoubleRegister no_dreg = DoubleRegister::no_reg();
// SIMD registers.
typedef MSARegister Simd128Register;
#define DECLARE_SIMD128_REGISTER(R) \
constexpr Simd128Register R = Simd128Register::from_code<kMsaCode_##R>();
SIMD128_REGISTERS(DECLARE_SIMD128_REGISTER)
#undef DECLARE_SIMD128_REGISTER
const Simd128Register no_msareg = Simd128Register::no_reg();
// Register aliases.
// cp is assumed to be a callee saved register.
constexpr Register kRootRegister = s6;
constexpr Register cp = s7;
constexpr Register kScratchReg = s3;
constexpr Register kScratchReg2 = s4;
constexpr DoubleRegister kScratchDoubleReg = f30;
constexpr DoubleRegister kDoubleRegZero = f28;
// Used on mips64r6 for compare operations.
// We use the last non-callee saved odd register for N64 ABI
constexpr DoubleRegister kDoubleCompareReg = f23;
// MSA zero and scratch regs must have the same numbers as FPU zero and scratch
constexpr Simd128Register kSimd128RegZero = w28;
constexpr Simd128Register kSimd128ScratchReg = w30;
// FPU (coprocessor 1) control registers.
// Currently only FCSR (#31) is implemented.
struct FPUControlRegister {
bool is_valid() const { return reg_code == kFCSRRegister; }
bool is(FPUControlRegister creg) const { return reg_code == creg.reg_code; }
int code() const {
DCHECK(is_valid());
return reg_code;
}
int bit() const {
DCHECK(is_valid());
return 1 << reg_code;
}
void setcode(int f) {
reg_code = f;
DCHECK(is_valid());
}
// Unfortunately we can't make this private in a struct.
int reg_code;
};
constexpr FPUControlRegister no_fpucreg = {kInvalidFPUControlRegister};
constexpr FPUControlRegister FCSR = {kFCSRRegister};
// MSA control registers
struct MSAControlRegister {
bool is_valid() const {
return (reg_code == kMSAIRRegister) || (reg_code == kMSACSRRegister);
}
bool is(MSAControlRegister creg) const { return reg_code == creg.reg_code; }
int code() const {
DCHECK(is_valid());
return reg_code;
}
int bit() const {
DCHECK(is_valid());
return 1 << reg_code;
}
void setcode(int f) {
reg_code = f;
DCHECK(is_valid());
}
// Unfortunately we can't make this private in a struct.
int reg_code;
};
constexpr MSAControlRegister no_msacreg = {kInvalidMSAControlRegister};
constexpr MSAControlRegister MSAIR = {kMSAIRRegister};
constexpr MSAControlRegister MSACSR = {kMSACSRRegister};
// -----------------------------------------------------------------------------
// Machine instruction Operands.
constexpr int kSmiShift = kSmiTagSize + kSmiShiftSize;
@ -2289,11 +1949,6 @@ class UseScratchRegisterScope {
RegList old_available_;
};
// Define {RegisterName} methods for the register types.
DEFINE_REGISTER_NAMES(Register, GENERAL_REGISTERS)
DEFINE_REGISTER_NAMES(FPURegister, DOUBLE_REGISTERS)
DEFINE_REGISTER_NAMES(MSARegister, SIMD128_REGISTERS)
} // namespace internal
} // namespace v8

View File

@ -5,7 +5,8 @@
#if V8_TARGET_ARCH_MIPS64
#include "src/interface-descriptors.h"
#include "src/macro-assembler.h"
#include "src/frames.h"
namespace v8 {
namespace internal {

View File

@ -16,32 +16,6 @@
namespace v8 {
namespace internal {
// Give alias names to registers for calling conventions.
constexpr Register kReturnRegister0 = v0;
constexpr Register kReturnRegister1 = v1;
constexpr Register kReturnRegister2 = a0;
constexpr Register kJSFunctionRegister = a1;
constexpr Register kContextRegister = s7;
constexpr Register kAllocateSizeRegister = a0;
constexpr Register kSpeculationPoisonRegister = a7;
constexpr Register kInterpreterAccumulatorRegister = v0;
constexpr Register kInterpreterBytecodeOffsetRegister = t0;
constexpr Register kInterpreterBytecodeArrayRegister = t1;
constexpr Register kInterpreterDispatchTableRegister = t2;
constexpr Register kJavaScriptCallArgCountRegister = a0;
constexpr Register kJavaScriptCallCodeStartRegister = a2;
constexpr Register kJavaScriptCallTargetRegister = kJSFunctionRegister;
constexpr Register kJavaScriptCallNewTargetRegister = a3;
constexpr Register kJavaScriptCallExtraArg1Register = a2;
constexpr Register kOffHeapTrampolineRegister = at;
constexpr Register kRuntimeCallFunctionRegister = a1;
constexpr Register kRuntimeCallArgCountRegister = a0;
constexpr Register kRuntimeCallArgvRegister = a2;
constexpr Register kWasmInstanceRegister = a0;
constexpr Register kWasmCompileLazyFuncIndexRegister = t0;
// Forward declarations.
enum class AbortReason : uint8_t;

View File

@ -0,0 +1,389 @@
// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_MIPS64_REGISTER_MIPS64_H_
#define V8_MIPS64_REGISTER_MIPS64_H_
#include "src/mips64/constants-mips64.h"
#include "src/register.h"
#include "src/reglist.h"
namespace v8 {
namespace internal {
// clang-format off
#define GENERAL_REGISTERS(V) \
V(zero_reg) V(at) V(v0) V(v1) V(a0) V(a1) V(a2) V(a3) \
V(a4) V(a5) V(a6) V(a7) V(t0) V(t1) V(t2) V(t3) \
V(s0) V(s1) V(s2) V(s3) V(s4) V(s5) V(s6) V(s7) V(t8) V(t9) \
V(k0) V(k1) V(gp) V(sp) V(fp) V(ra)
#define ALLOCATABLE_GENERAL_REGISTERS(V) \
V(a0) V(a1) V(a2) V(a3) \
V(a4) V(a5) V(a6) V(a7) V(t0) V(t1) V(t2) V(s7) \
V(v0) V(v1)
#define DOUBLE_REGISTERS(V) \
V(f0) V(f1) V(f2) V(f3) V(f4) V(f5) V(f6) V(f7) \
V(f8) V(f9) V(f10) V(f11) V(f12) V(f13) V(f14) V(f15) \
V(f16) V(f17) V(f18) V(f19) V(f20) V(f21) V(f22) V(f23) \
V(f24) V(f25) V(f26) V(f27) V(f28) V(f29) V(f30) V(f31)
#define FLOAT_REGISTERS DOUBLE_REGISTERS
#define SIMD128_REGISTERS(V) \
V(w0) V(w1) V(w2) V(w3) V(w4) V(w5) V(w6) V(w7) \
V(w8) V(w9) V(w10) V(w11) V(w12) V(w13) V(w14) V(w15) \
V(w16) V(w17) V(w18) V(w19) V(w20) V(w21) V(w22) V(w23) \
V(w24) V(w25) V(w26) V(w27) V(w28) V(w29) V(w30) V(w31)
#define ALLOCATABLE_DOUBLE_REGISTERS(V) \
V(f0) V(f2) V(f4) V(f6) V(f8) V(f10) V(f12) V(f14) \
V(f16) V(f18) V(f20) V(f22) V(f24) V(f26)
// clang-format on
// Note that the bit values must match those used in actual instruction
// encoding.
const int kNumRegs = 32;
const RegList kJSCallerSaved = 1 << 2 | // v0
1 << 3 | // v1
1 << 4 | // a0
1 << 5 | // a1
1 << 6 | // a2
1 << 7 | // a3
1 << 8 | // a4
1 << 9 | // a5
1 << 10 | // a6
1 << 11 | // a7
1 << 12 | // t0
1 << 13 | // t1
1 << 14 | // t2
1 << 15; // t3
const int kNumJSCallerSaved = 14;
// Callee-saved registers preserved when switching from C to JavaScript.
const RegList kCalleeSaved = 1 << 16 | // s0
1 << 17 | // s1
1 << 18 | // s2
1 << 19 | // s3
1 << 20 | // s4
1 << 21 | // s5
1 << 22 | // s6 (roots in Javascript code)
1 << 23 | // s7 (cp in Javascript code)
1 << 30; // fp/s8
const int kNumCalleeSaved = 9;
const RegList kCalleeSavedFPU = 1 << 20 | // f20
1 << 22 | // f22
1 << 24 | // f24
1 << 26 | // f26
1 << 28 | // f28
1 << 30; // f30
const int kNumCalleeSavedFPU = 6;
const RegList kCallerSavedFPU = 1 << 0 | // f0
1 << 2 | // f2
1 << 4 | // f4
1 << 6 | // f6
1 << 8 | // f8
1 << 10 | // f10
1 << 12 | // f12
1 << 14 | // f14
1 << 16 | // f16
1 << 18; // f18
// Number of registers for which space is reserved in safepoints. Must be a
// multiple of 8.
const int kNumSafepointRegisters = 24;
// Define the list of registers actually saved at safepoints.
// Note that the number of saved registers may be smaller than the reserved
// space, i.e. kNumSafepointSavedRegisters <= kNumSafepointRegisters.
const RegList kSafepointSavedRegisters = kJSCallerSaved | kCalleeSaved;
const int kNumSafepointSavedRegisters = kNumJSCallerSaved + kNumCalleeSaved;
const int kUndefIndex = -1;
// Map with indexes on stack that corresponds to codes of saved registers.
const int kSafepointRegisterStackIndexMap[kNumRegs] = {kUndefIndex, // zero_reg
kUndefIndex, // at
0, // v0
1, // v1
2, // a0
3, // a1
4, // a2
5, // a3
6, // a4
7, // a5
8, // a6
9, // a7
10, // t0
11, // t1
12, // t2
13, // t3
14, // s0
15, // s1
16, // s2
17, // s3
18, // s4
19, // s5
20, // s6
21, // s7
kUndefIndex, // t8
kUndefIndex, // t9
kUndefIndex, // k0
kUndefIndex, // k1
kUndefIndex, // gp
kUndefIndex, // sp
22, // fp
kUndefIndex};
// CPU Registers.
//
// 1) We would prefer to use an enum, but enum values are assignment-
// compatible with int, which has caused code-generation bugs.
//
// 2) We would prefer to use a class instead of a struct but we don't like
// the register initialization to depend on the particular initialization
// order (which appears to be different on OS X, Linux, and Windows for the
// installed versions of C++ we tried). Using a struct permits C-style
// "initialization". Also, the Register objects cannot be const as this
// forces initialization stubs in MSVC, making us dependent on initialization
// order.
//
// 3) By not using an enum, we are possibly preventing the compiler from
// doing certain constant folds, which may significantly reduce the
// code generated for some assembly instructions (because they boil down
// to a few constants). If this is a problem, we could change the code
// such that we use an enum in optimized mode, and the struct in debug
// mode. This way we get the compile-time error checking in debug mode
// and best performance in optimized code.
// -----------------------------------------------------------------------------
// Implementation of Register and FPURegister.
enum RegisterCode {
#define REGISTER_CODE(R) kRegCode_##R,
GENERAL_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kRegAfterLast
};
class Register : public RegisterBase<Register, kRegAfterLast> {
public:
#if defined(V8_TARGET_LITTLE_ENDIAN)
static constexpr int kMantissaOffset = 0;
static constexpr int kExponentOffset = 4;
#elif defined(V8_TARGET_BIG_ENDIAN)
static constexpr int kMantissaOffset = 4;
static constexpr int kExponentOffset = 0;
#else
#error Unknown endianness
#endif
private:
friend class RegisterBase;
explicit constexpr Register(int code) : RegisterBase(code) {}
};
// s7: context register
// s3: scratch register
// s4: scratch register 2
#define DECLARE_REGISTER(R) \
constexpr Register R = Register::from_code<kRegCode_##R>();
GENERAL_REGISTERS(DECLARE_REGISTER)
#undef DECLARE_REGISTER
constexpr Register no_reg = Register::no_reg();
int ToNumber(Register reg);
Register ToRegister(int num);
constexpr bool kPadArguments = false;
constexpr bool kSimpleFPAliasing = true;
constexpr bool kSimdMaskRegisters = false;
enum DoubleRegisterCode {
#define REGISTER_CODE(R) kDoubleCode_##R,
DOUBLE_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kDoubleAfterLast
};
// Coprocessor register.
class FPURegister : public RegisterBase<FPURegister, kDoubleAfterLast> {
public:
// TODO(plind): Warning, inconsistent numbering here. kNumFPURegisters refers
// to number of 32-bit FPU regs, but kNumAllocatableRegisters refers to
// number of Double regs (64-bit regs, or FPU-reg-pairs).
FPURegister low() const {
// TODO(plind): Create DCHECK for FR=0 mode. This usage suspect for FR=1.
// Find low reg of a Double-reg pair, which is the reg itself.
DCHECK_EQ(code() % 2, 0); // Specified Double reg must be even.
return FPURegister::from_code(code());
}
FPURegister high() const {
// TODO(plind): Create DCHECK for FR=0 mode. This usage illegal in FR=1.
// Find high reg of a Doubel-reg pair, which is reg + 1.
DCHECK_EQ(code() % 2, 0); // Specified Double reg must be even.
return FPURegister::from_code(code() + 1);
}
private:
friend class RegisterBase;
explicit constexpr FPURegister(int code) : RegisterBase(code) {}
};
enum MSARegisterCode {
#define REGISTER_CODE(R) kMsaCode_##R,
SIMD128_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kMsaAfterLast
};
// MIPS SIMD (MSA) register
class MSARegister : public RegisterBase<MSARegister, kMsaAfterLast> {
friend class RegisterBase;
explicit constexpr MSARegister(int code) : RegisterBase(code) {}
};
// A few double registers are reserved: one as a scratch register and one to
// hold 0.0.
// f28: 0.0
// f30: scratch register.
// V8 now supports the O32 ABI, and the FPU Registers are organized as 32
// 32-bit registers, f0 through f31. When used as 'double' they are used
// in pairs, starting with the even numbered register. So a double operation
// on f0 really uses f0 and f1.
// (Modern mips hardware also supports 32 64-bit registers, via setting
// (privileged) Status Register FR bit to 1. This is used by the N32 ABI,
// but it is not in common use. Someday we will want to support this in v8.)
// For O32 ABI, Floats and Doubles refer to same set of 32 32-bit registers.
typedef FPURegister FloatRegister;
typedef FPURegister DoubleRegister;
#define DECLARE_DOUBLE_REGISTER(R) \
constexpr DoubleRegister R = DoubleRegister::from_code<kDoubleCode_##R>();
DOUBLE_REGISTERS(DECLARE_DOUBLE_REGISTER)
#undef DECLARE_DOUBLE_REGISTER
constexpr DoubleRegister no_dreg = DoubleRegister::no_reg();
// SIMD registers.
typedef MSARegister Simd128Register;
#define DECLARE_SIMD128_REGISTER(R) \
constexpr Simd128Register R = Simd128Register::from_code<kMsaCode_##R>();
SIMD128_REGISTERS(DECLARE_SIMD128_REGISTER)
#undef DECLARE_SIMD128_REGISTER
const Simd128Register no_msareg = Simd128Register::no_reg();
// Register aliases.
// cp is assumed to be a callee saved register.
constexpr Register kRootRegister = s6;
constexpr Register cp = s7;
constexpr Register kScratchReg = s3;
constexpr Register kScratchReg2 = s4;
constexpr DoubleRegister kScratchDoubleReg = f30;
constexpr DoubleRegister kDoubleRegZero = f28;
// Used on mips64r6 for compare operations.
// We use the last non-callee saved odd register for N64 ABI
constexpr DoubleRegister kDoubleCompareReg = f23;
// MSA zero and scratch regs must have the same numbers as FPU zero and scratch
constexpr Simd128Register kSimd128RegZero = w28;
constexpr Simd128Register kSimd128ScratchReg = w30;
// FPU (coprocessor 1) control registers.
// Currently only FCSR (#31) is implemented.
struct FPUControlRegister {
bool is_valid() const { return reg_code == kFCSRRegister; }
bool is(FPUControlRegister creg) const { return reg_code == creg.reg_code; }
int code() const {
DCHECK(is_valid());
return reg_code;
}
int bit() const {
DCHECK(is_valid());
return 1 << reg_code;
}
void setcode(int f) {
reg_code = f;
DCHECK(is_valid());
}
// Unfortunately we can't make this private in a struct.
int reg_code;
};
constexpr FPUControlRegister no_fpucreg = {kInvalidFPUControlRegister};
constexpr FPUControlRegister FCSR = {kFCSRRegister};
// MSA control registers
struct MSAControlRegister {
bool is_valid() const {
return (reg_code == kMSAIRRegister) || (reg_code == kMSACSRRegister);
}
bool is(MSAControlRegister creg) const { return reg_code == creg.reg_code; }
int code() const {
DCHECK(is_valid());
return reg_code;
}
int bit() const {
DCHECK(is_valid());
return 1 << reg_code;
}
void setcode(int f) {
reg_code = f;
DCHECK(is_valid());
}
// Unfortunately we can't make this private in a struct.
int reg_code;
};
constexpr MSAControlRegister no_msacreg = {kInvalidMSAControlRegister};
constexpr MSAControlRegister MSAIR = {kMSAIRRegister};
constexpr MSAControlRegister MSACSR = {kMSACSRRegister};
// Define {RegisterName} methods for the register types.
DEFINE_REGISTER_NAMES(Register, GENERAL_REGISTERS)
DEFINE_REGISTER_NAMES(FPURegister, DOUBLE_REGISTERS)
DEFINE_REGISTER_NAMES(MSARegister, SIMD128_REGISTERS)
// Give alias names to registers for calling conventions.
constexpr Register kReturnRegister0 = v0;
constexpr Register kReturnRegister1 = v1;
constexpr Register kReturnRegister2 = a0;
constexpr Register kJSFunctionRegister = a1;
constexpr Register kContextRegister = s7;
constexpr Register kAllocateSizeRegister = a0;
constexpr Register kSpeculationPoisonRegister = a7;
constexpr Register kInterpreterAccumulatorRegister = v0;
constexpr Register kInterpreterBytecodeOffsetRegister = t0;
constexpr Register kInterpreterBytecodeArrayRegister = t1;
constexpr Register kInterpreterDispatchTableRegister = t2;
constexpr Register kJavaScriptCallArgCountRegister = a0;
constexpr Register kJavaScriptCallCodeStartRegister = a2;
constexpr Register kJavaScriptCallTargetRegister = kJSFunctionRegister;
constexpr Register kJavaScriptCallNewTargetRegister = a3;
constexpr Register kJavaScriptCallExtraArg1Register = a2;
constexpr Register kOffHeapTrampolineRegister = at;
constexpr Register kRuntimeCallFunctionRegister = a1;
constexpr Register kRuntimeCallArgCountRegister = a0;
constexpr Register kRuntimeCallArgvRegister = a2;
constexpr Register kWasmInstanceRegister = a0;
constexpr Register kWasmCompileLazyFuncIndexRegister = t0;
} // namespace internal
} // namespace v8
#endif // V8_MIPS64_REGISTER_MIPS64_H_

View File

@ -13,7 +13,6 @@
#include "src/elements.h"
#include "src/field-type.h"
#include "src/layout-descriptor.h"
#include "src/macro-assembler.h"
#include "src/objects-inl.h"
#include "src/objects/arguments-inl.h"
#include "src/objects/bigint.h"

View File

@ -50,317 +50,13 @@
#include "src/label.h"
#include "src/objects/smi.h"
#include "src/ppc/constants-ppc.h"
#if V8_HOST_ARCH_PPC && \
(V8_OS_AIX || (V8_TARGET_ARCH_PPC64 && V8_TARGET_BIG_ENDIAN))
#define ABI_USES_FUNCTION_DESCRIPTORS 1
#else
#define ABI_USES_FUNCTION_DESCRIPTORS 0
#endif
#if !V8_HOST_ARCH_PPC || V8_OS_AIX || V8_TARGET_ARCH_PPC64
#define ABI_PASSES_HANDLES_IN_REGS 1
#else
#define ABI_PASSES_HANDLES_IN_REGS 0
#endif
#if !V8_HOST_ARCH_PPC || !V8_TARGET_ARCH_PPC64 || V8_TARGET_LITTLE_ENDIAN
#define ABI_RETURNS_OBJECT_PAIRS_IN_REGS 1
#else
#define ABI_RETURNS_OBJECT_PAIRS_IN_REGS 0
#endif
#if !V8_HOST_ARCH_PPC || (V8_TARGET_ARCH_PPC64 && V8_TARGET_LITTLE_ENDIAN)
#define ABI_CALL_VIA_IP 1
#else
#define ABI_CALL_VIA_IP 0
#endif
#if !V8_HOST_ARCH_PPC || V8_OS_AIX || V8_TARGET_ARCH_PPC64
#define ABI_TOC_REGISTER 2
#else
#define ABI_TOC_REGISTER 13
#endif
#include "src/ppc/register-ppc.h"
#define INSTR_AND_DATA_CACHE_COHERENCY LWSYNC
namespace v8 {
namespace internal {
// clang-format off
#define GENERAL_REGISTERS(V) \
V(r0) V(sp) V(r2) V(r3) V(r4) V(r5) V(r6) V(r7) \
V(r8) V(r9) V(r10) V(r11) V(ip) V(r13) V(r14) V(r15) \
V(r16) V(r17) V(r18) V(r19) V(r20) V(r21) V(r22) V(r23) \
V(r24) V(r25) V(r26) V(r27) V(r28) V(r29) V(r30) V(fp)
#if V8_EMBEDDED_CONSTANT_POOL
#define ALLOCATABLE_GENERAL_REGISTERS(V) \
V(r3) V(r4) V(r5) V(r6) V(r7) \
V(r8) V(r9) V(r10) V(r14) V(r15) \
V(r16) V(r17) V(r18) V(r19) V(r20) V(r21) V(r22) V(r23) \
V(r24) V(r25) V(r26) V(r27) V(r30)
#else
#define ALLOCATABLE_GENERAL_REGISTERS(V) \
V(r3) V(r4) V(r5) V(r6) V(r7) \
V(r8) V(r9) V(r10) V(r14) V(r15) \
V(r16) V(r17) V(r18) V(r19) V(r20) V(r21) V(r22) V(r23) \
V(r24) V(r25) V(r26) V(r27) V(r28) V(r30)
#endif
#define LOW_DOUBLE_REGISTERS(V) \
V(d0) V(d1) V(d2) V(d3) V(d4) V(d5) V(d6) V(d7) \
V(d8) V(d9) V(d10) V(d11) V(d12) V(d13) V(d14) V(d15)
#define NON_LOW_DOUBLE_REGISTERS(V) \
V(d16) V(d17) V(d18) V(d19) V(d20) V(d21) V(d22) V(d23) \
V(d24) V(d25) V(d26) V(d27) V(d28) V(d29) V(d30) V(d31)
#define DOUBLE_REGISTERS(V) \
LOW_DOUBLE_REGISTERS(V) NON_LOW_DOUBLE_REGISTERS(V)
#define FLOAT_REGISTERS DOUBLE_REGISTERS
#define SIMD128_REGISTERS DOUBLE_REGISTERS
#define ALLOCATABLE_DOUBLE_REGISTERS(V) \
V(d1) V(d2) V(d3) V(d4) V(d5) V(d6) V(d7) \
V(d8) V(d9) V(d10) V(d11) V(d12) V(d15) \
V(d16) V(d17) V(d18) V(d19) V(d20) V(d21) V(d22) V(d23) \
V(d24) V(d25) V(d26) V(d27) V(d28) V(d29) V(d30) V(d31)
#define C_REGISTERS(V) \
V(cr0) V(cr1) V(cr2) V(cr3) V(cr4) V(cr5) V(cr6) V(cr7) \
V(cr8) V(cr9) V(cr10) V(cr11) V(cr12) V(cr15)
// clang-format on
// Register list in load/store instructions
// Note that the bit values must match those used in actual instruction encoding
const int kNumRegs = 32;
// Caller-saved/arguments registers
const RegList kJSCallerSaved = 1 << 3 | // r3 a1
1 << 4 | // r4 a2
1 << 5 | // r5 a3
1 << 6 | // r6 a4
1 << 7 | // r7 a5
1 << 8 | // r8 a6
1 << 9 | // r9 a7
1 << 10 | // r10 a8
1 << 11;
const int kNumJSCallerSaved = 9;
// Return the code of the n-th caller-saved register available to JavaScript
// e.g. JSCallerSavedReg(0) returns r0.code() == 0
int JSCallerSavedCode(int n);
// Callee-saved registers preserved when switching from C to JavaScript
const RegList kCalleeSaved = 1 << 14 | // r14
1 << 15 | // r15
1 << 16 | // r16
1 << 17 | // r17
1 << 18 | // r18
1 << 19 | // r19
1 << 20 | // r20
1 << 21 | // r21
1 << 22 | // r22
1 << 23 | // r23
1 << 24 | // r24
1 << 25 | // r25
1 << 26 | // r26
1 << 27 | // r27
1 << 28 | // r28
1 << 29 | // r29
1 << 30 | // r20
1 << 31; // r31
const int kNumCalleeSaved = 18;
const RegList kCallerSavedDoubles = 1 << 0 | // d0
1 << 1 | // d1
1 << 2 | // d2
1 << 3 | // d3
1 << 4 | // d4
1 << 5 | // d5
1 << 6 | // d6
1 << 7 | // d7
1 << 8 | // d8
1 << 9 | // d9
1 << 10 | // d10
1 << 11 | // d11
1 << 12 | // d12
1 << 13; // d13
const int kNumCallerSavedDoubles = 14;
const RegList kCalleeSavedDoubles = 1 << 14 | // d14
1 << 15 | // d15
1 << 16 | // d16
1 << 17 | // d17
1 << 18 | // d18
1 << 19 | // d19
1 << 20 | // d20
1 << 21 | // d21
1 << 22 | // d22
1 << 23 | // d23
1 << 24 | // d24
1 << 25 | // d25
1 << 26 | // d26
1 << 27 | // d27
1 << 28 | // d28
1 << 29 | // d29
1 << 30 | // d30
1 << 31; // d31
const int kNumCalleeSavedDoubles = 18;
// Number of registers for which space is reserved in safepoints. Must be a
// multiple of 8.
const int kNumSafepointRegisters = 32;
// The following constants describe the stack frame linkage area as
// defined by the ABI. Note that kNumRequiredStackFrameSlots must
// satisfy alignment requirements (rounding up if required).
#if V8_TARGET_ARCH_PPC64 && V8_TARGET_LITTLE_ENDIAN // ppc64le linux
// [0] back chain
// [1] condition register save area
// [2] link register save area
// [3] TOC save area
// [4] Parameter1 save area
// ...
// [11] Parameter8 save area
// [12] Parameter9 slot (if necessary)
// ...
const int kNumRequiredStackFrameSlots = 12;
const int kStackFrameLRSlot = 2;
const int kStackFrameExtraParamSlot = 12;
#else // AIX
// [0] back chain
// [1] condition register save area
// [2] link register save area
// [3] reserved for compiler
// [4] reserved by binder
// [5] TOC save area
// [6] Parameter1 save area
// ...
// [13] Parameter8 save area
// [14] Parameter9 slot (if necessary)
// ...
const int kNumRequiredStackFrameSlots = 14;
const int kStackFrameLRSlot = 2;
const int kStackFrameExtraParamSlot = 14;
#endif
// Define the list of registers actually saved at safepoints.
// Note that the number of saved registers may be smaller than the reserved
// space, i.e. kNumSafepointSavedRegisters <= kNumSafepointRegisters.
const RegList kSafepointSavedRegisters = kJSCallerSaved | kCalleeSaved;
const int kNumSafepointSavedRegisters = kNumJSCallerSaved + kNumCalleeSaved;
enum RegisterCode {
#define REGISTER_CODE(R) kRegCode_##R,
GENERAL_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kRegAfterLast
};
class Register : public RegisterBase<Register, kRegAfterLast> {
public:
#if V8_TARGET_LITTLE_ENDIAN
static constexpr int kMantissaOffset = 0;
static constexpr int kExponentOffset = 4;
#else
static constexpr int kMantissaOffset = 4;
static constexpr int kExponentOffset = 0;
#endif
private:
friend class RegisterBase;
explicit constexpr Register(int code) : RegisterBase(code) {}
};
ASSERT_TRIVIALLY_COPYABLE(Register);
static_assert(sizeof(Register) == sizeof(int),
"Register can efficiently be passed by value");
#define DEFINE_REGISTER(R) \
constexpr Register R = Register::from_code<kRegCode_##R>();
GENERAL_REGISTERS(DEFINE_REGISTER)
#undef DEFINE_REGISTER
constexpr Register no_reg = Register::no_reg();
// Aliases
constexpr Register kConstantPoolRegister = r28; // Constant pool.
constexpr Register kRootRegister = r29; // Roots array pointer.
constexpr Register cp = r30; // JavaScript context pointer.
constexpr bool kPadArguments = false;
constexpr bool kSimpleFPAliasing = true;
constexpr bool kSimdMaskRegisters = false;
enum DoubleRegisterCode {
#define REGISTER_CODE(R) kDoubleCode_##R,
DOUBLE_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kDoubleAfterLast
};
// Double word FP register.
class DoubleRegister : public RegisterBase<DoubleRegister, kDoubleAfterLast> {
public:
// A few double registers are reserved: one as a scratch register and one to
// hold 0.0, that does not fit in the immediate field of vmov instructions.
// d14: 0.0
// d15: scratch register.
static constexpr int kSizeInBytes = 8;
inline static int NumRegisters();
private:
friend class RegisterBase;
explicit constexpr DoubleRegister(int code) : RegisterBase(code) {}
};
ASSERT_TRIVIALLY_COPYABLE(DoubleRegister);
static_assert(sizeof(DoubleRegister) == sizeof(int),
"DoubleRegister can efficiently be passed by value");
typedef DoubleRegister FloatRegister;
// TODO(ppc) Define SIMD registers.
typedef DoubleRegister Simd128Register;
#define DEFINE_REGISTER(R) \
constexpr DoubleRegister R = DoubleRegister::from_code<kDoubleCode_##R>();
DOUBLE_REGISTERS(DEFINE_REGISTER)
#undef DEFINE_REGISTER
constexpr DoubleRegister no_dreg = DoubleRegister::no_reg();
constexpr DoubleRegister kFirstCalleeSavedDoubleReg = d14;
constexpr DoubleRegister kLastCalleeSavedDoubleReg = d31;
constexpr DoubleRegister kDoubleRegZero = d14;
constexpr DoubleRegister kScratchDoubleReg = d13;
Register ToRegister(int num);
enum CRegisterCode {
#define REGISTER_CODE(R) kCCode_##R,
C_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kCAfterLast
};
// Coprocessor register
class CRegister : public RegisterBase<CRegister, kCAfterLast> {
friend class RegisterBase;
explicit constexpr CRegister(int code) : RegisterBase(code) {}
};
constexpr CRegister no_creg = CRegister::no_reg();
#define DECLARE_C_REGISTER(R) \
constexpr CRegister R = CRegister::from_code<kCCode_##R>();
C_REGISTERS(DECLARE_C_REGISTER)
#undef DECLARE_C_REGISTER
// -----------------------------------------------------------------------------
// Machine instruction Operands
@ -1638,11 +1334,6 @@ class PatchingAssembler : public Assembler {
~PatchingAssembler();
};
// Define {RegisterName} methods for the register types.
DEFINE_REGISTER_NAMES(Register, GENERAL_REGISTERS);
DEFINE_REGISTER_NAMES(DoubleRegister, DOUBLE_REGISTERS);
} // namespace internal
} // namespace v8

View File

@ -20,6 +20,36 @@
#define UNIMPLEMENTED_PPC()
#endif
#if V8_HOST_ARCH_PPC && \
(V8_OS_AIX || (V8_TARGET_ARCH_PPC64 && V8_TARGET_BIG_ENDIAN))
#define ABI_USES_FUNCTION_DESCRIPTORS 1
#else
#define ABI_USES_FUNCTION_DESCRIPTORS 0
#endif
#if !V8_HOST_ARCH_PPC || V8_OS_AIX || V8_TARGET_ARCH_PPC64
#define ABI_PASSES_HANDLES_IN_REGS 1
#else
#define ABI_PASSES_HANDLES_IN_REGS 0
#endif
#if !V8_HOST_ARCH_PPC || !V8_TARGET_ARCH_PPC64 || V8_TARGET_LITTLE_ENDIAN
#define ABI_RETURNS_OBJECT_PAIRS_IN_REGS 1
#else
#define ABI_RETURNS_OBJECT_PAIRS_IN_REGS 0
#endif
#if !V8_HOST_ARCH_PPC || (V8_TARGET_ARCH_PPC64 && V8_TARGET_LITTLE_ENDIAN)
#define ABI_CALL_VIA_IP 1
#else
#define ABI_CALL_VIA_IP 0
#endif
#if !V8_HOST_ARCH_PPC || V8_OS_AIX || V8_TARGET_ARCH_PPC64
#define ABI_TOC_REGISTER 2
#else
#define ABI_TOC_REGISTER 13
#endif
namespace v8 {
namespace internal {

View File

@ -5,7 +5,8 @@
#if V8_TARGET_ARCH_PPC
#include "src/interface-descriptors.h"
#include "src/macro-assembler.h"
#include "src/frames.h"
namespace v8 {
namespace internal {

View File

@ -18,32 +18,6 @@
namespace v8 {
namespace internal {
// Give alias names to registers for calling conventions.
constexpr Register kReturnRegister0 = r3;
constexpr Register kReturnRegister1 = r4;
constexpr Register kReturnRegister2 = r5;
constexpr Register kJSFunctionRegister = r4;
constexpr Register kContextRegister = r30;
constexpr Register kAllocateSizeRegister = r4;
constexpr Register kSpeculationPoisonRegister = r14;
constexpr Register kInterpreterAccumulatorRegister = r3;
constexpr Register kInterpreterBytecodeOffsetRegister = r15;
constexpr Register kInterpreterBytecodeArrayRegister = r16;
constexpr Register kInterpreterDispatchTableRegister = r17;
constexpr Register kJavaScriptCallArgCountRegister = r3;
constexpr Register kJavaScriptCallCodeStartRegister = r5;
constexpr Register kJavaScriptCallTargetRegister = kJSFunctionRegister;
constexpr Register kJavaScriptCallNewTargetRegister = r6;
constexpr Register kJavaScriptCallExtraArg1Register = r5;
constexpr Register kOffHeapTrampolineRegister = ip;
constexpr Register kRuntimeCallFunctionRegister = r4;
constexpr Register kRuntimeCallArgCountRegister = r3;
constexpr Register kRuntimeCallArgvRegister = r5;
constexpr Register kWasmInstanceRegister = r10;
constexpr Register kWasmCompileLazyFuncIndexRegister = r15;
// ----------------------------------------------------------------------------
// Static helper functions

321
src/ppc/register-ppc.h Normal file
View File

@ -0,0 +1,321 @@
// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_PPC_REGISTER_PPC_H_
#define V8_PPC_REGISTER_PPC_H_
#include "src/register.h"
#include "src/reglist.h"
namespace v8 {
namespace internal {
// clang-format off
#define GENERAL_REGISTERS(V) \
V(r0) V(sp) V(r2) V(r3) V(r4) V(r5) V(r6) V(r7) \
V(r8) V(r9) V(r10) V(r11) V(ip) V(r13) V(r14) V(r15) \
V(r16) V(r17) V(r18) V(r19) V(r20) V(r21) V(r22) V(r23) \
V(r24) V(r25) V(r26) V(r27) V(r28) V(r29) V(r30) V(fp)
#if V8_EMBEDDED_CONSTANT_POOL
#define ALLOCATABLE_GENERAL_REGISTERS(V) \
V(r3) V(r4) V(r5) V(r6) V(r7) \
V(r8) V(r9) V(r10) V(r14) V(r15) \
V(r16) V(r17) V(r18) V(r19) V(r20) V(r21) V(r22) V(r23) \
V(r24) V(r25) V(r26) V(r27) V(r30)
#else
#define ALLOCATABLE_GENERAL_REGISTERS(V) \
V(r3) V(r4) V(r5) V(r6) V(r7) \
V(r8) V(r9) V(r10) V(r14) V(r15) \
V(r16) V(r17) V(r18) V(r19) V(r20) V(r21) V(r22) V(r23) \
V(r24) V(r25) V(r26) V(r27) V(r28) V(r30)
#endif
#define LOW_DOUBLE_REGISTERS(V) \
V(d0) V(d1) V(d2) V(d3) V(d4) V(d5) V(d6) V(d7) \
V(d8) V(d9) V(d10) V(d11) V(d12) V(d13) V(d14) V(d15)
#define NON_LOW_DOUBLE_REGISTERS(V) \
V(d16) V(d17) V(d18) V(d19) V(d20) V(d21) V(d22) V(d23) \
V(d24) V(d25) V(d26) V(d27) V(d28) V(d29) V(d30) V(d31)
#define DOUBLE_REGISTERS(V) \
LOW_DOUBLE_REGISTERS(V) NON_LOW_DOUBLE_REGISTERS(V)
#define FLOAT_REGISTERS DOUBLE_REGISTERS
#define SIMD128_REGISTERS DOUBLE_REGISTERS
#define ALLOCATABLE_DOUBLE_REGISTERS(V) \
V(d1) V(d2) V(d3) V(d4) V(d5) V(d6) V(d7) \
V(d8) V(d9) V(d10) V(d11) V(d12) V(d15) \
V(d16) V(d17) V(d18) V(d19) V(d20) V(d21) V(d22) V(d23) \
V(d24) V(d25) V(d26) V(d27) V(d28) V(d29) V(d30) V(d31)
#define C_REGISTERS(V) \
V(cr0) V(cr1) V(cr2) V(cr3) V(cr4) V(cr5) V(cr6) V(cr7) \
V(cr8) V(cr9) V(cr10) V(cr11) V(cr12) V(cr15)
// clang-format on
// Register list in load/store instructions
// Note that the bit values must match those used in actual instruction encoding
const int kNumRegs = 32;
// Caller-saved/arguments registers
const RegList kJSCallerSaved = 1 << 3 | // r3 a1
1 << 4 | // r4 a2
1 << 5 | // r5 a3
1 << 6 | // r6 a4
1 << 7 | // r7 a5
1 << 8 | // r8 a6
1 << 9 | // r9 a7
1 << 10 | // r10 a8
1 << 11;
const int kNumJSCallerSaved = 9;
// Return the code of the n-th caller-saved register available to JavaScript
// e.g. JSCallerSavedReg(0) returns r0.code() == 0
int JSCallerSavedCode(int n);
// Callee-saved registers preserved when switching from C to JavaScript
const RegList kCalleeSaved = 1 << 14 | // r14
1 << 15 | // r15
1 << 16 | // r16
1 << 17 | // r17
1 << 18 | // r18
1 << 19 | // r19
1 << 20 | // r20
1 << 21 | // r21
1 << 22 | // r22
1 << 23 | // r23
1 << 24 | // r24
1 << 25 | // r25
1 << 26 | // r26
1 << 27 | // r27
1 << 28 | // r28
1 << 29 | // r29
1 << 30 | // r20
1 << 31; // r31
const int kNumCalleeSaved = 18;
const RegList kCallerSavedDoubles = 1 << 0 | // d0
1 << 1 | // d1
1 << 2 | // d2
1 << 3 | // d3
1 << 4 | // d4
1 << 5 | // d5
1 << 6 | // d6
1 << 7 | // d7
1 << 8 | // d8
1 << 9 | // d9
1 << 10 | // d10
1 << 11 | // d11
1 << 12 | // d12
1 << 13; // d13
const int kNumCallerSavedDoubles = 14;
const RegList kCalleeSavedDoubles = 1 << 14 | // d14
1 << 15 | // d15
1 << 16 | // d16
1 << 17 | // d17
1 << 18 | // d18
1 << 19 | // d19
1 << 20 | // d20
1 << 21 | // d21
1 << 22 | // d22
1 << 23 | // d23
1 << 24 | // d24
1 << 25 | // d25
1 << 26 | // d26
1 << 27 | // d27
1 << 28 | // d28
1 << 29 | // d29
1 << 30 | // d30
1 << 31; // d31
const int kNumCalleeSavedDoubles = 18;
// Number of registers for which space is reserved in safepoints. Must be a
// multiple of 8.
const int kNumSafepointRegisters = 32;
// The following constants describe the stack frame linkage area as
// defined by the ABI. Note that kNumRequiredStackFrameSlots must
// satisfy alignment requirements (rounding up if required).
#if V8_TARGET_ARCH_PPC64 && V8_TARGET_LITTLE_ENDIAN // ppc64le linux
// [0] back chain
// [1] condition register save area
// [2] link register save area
// [3] TOC save area
// [4] Parameter1 save area
// ...
// [11] Parameter8 save area
// [12] Parameter9 slot (if necessary)
// ...
const int kNumRequiredStackFrameSlots = 12;
const int kStackFrameLRSlot = 2;
const int kStackFrameExtraParamSlot = 12;
#else // AIX
// [0] back chain
// [1] condition register save area
// [2] link register save area
// [3] reserved for compiler
// [4] reserved by binder
// [5] TOC save area
// [6] Parameter1 save area
// ...
// [13] Parameter8 save area
// [14] Parameter9 slot (if necessary)
// ...
const int kNumRequiredStackFrameSlots = 14;
const int kStackFrameLRSlot = 2;
const int kStackFrameExtraParamSlot = 14;
#endif
// Define the list of registers actually saved at safepoints.
// Note that the number of saved registers may be smaller than the reserved
// space, i.e. kNumSafepointSavedRegisters <= kNumSafepointRegisters.
const RegList kSafepointSavedRegisters = kJSCallerSaved | kCalleeSaved;
const int kNumSafepointSavedRegisters = kNumJSCallerSaved + kNumCalleeSaved;
enum RegisterCode {
#define REGISTER_CODE(R) kRegCode_##R,
GENERAL_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kRegAfterLast
};
class Register : public RegisterBase<Register, kRegAfterLast> {
public:
#if V8_TARGET_LITTLE_ENDIAN
static constexpr int kMantissaOffset = 0;
static constexpr int kExponentOffset = 4;
#else
static constexpr int kMantissaOffset = 4;
static constexpr int kExponentOffset = 0;
#endif
private:
friend class RegisterBase;
explicit constexpr Register(int code) : RegisterBase(code) {}
};
ASSERT_TRIVIALLY_COPYABLE(Register);
static_assert(sizeof(Register) == sizeof(int),
"Register can efficiently be passed by value");
#define DEFINE_REGISTER(R) \
constexpr Register R = Register::from_code<kRegCode_##R>();
GENERAL_REGISTERS(DEFINE_REGISTER)
#undef DEFINE_REGISTER
constexpr Register no_reg = Register::no_reg();
// Aliases
constexpr Register kConstantPoolRegister = r28; // Constant pool.
constexpr Register kRootRegister = r29; // Roots array pointer.
constexpr Register cp = r30; // JavaScript context pointer.
constexpr bool kPadArguments = false;
constexpr bool kSimpleFPAliasing = true;
constexpr bool kSimdMaskRegisters = false;
enum DoubleRegisterCode {
#define REGISTER_CODE(R) kDoubleCode_##R,
DOUBLE_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kDoubleAfterLast
};
// Double word FP register.
class DoubleRegister : public RegisterBase<DoubleRegister, kDoubleAfterLast> {
public:
// A few double registers are reserved: one as a scratch register and one to
// hold 0.0, that does not fit in the immediate field of vmov instructions.
// d14: 0.0
// d15: scratch register.
static constexpr int kSizeInBytes = 8;
inline static int NumRegisters();
private:
friend class RegisterBase;
explicit constexpr DoubleRegister(int code) : RegisterBase(code) {}
};
ASSERT_TRIVIALLY_COPYABLE(DoubleRegister);
static_assert(sizeof(DoubleRegister) == sizeof(int),
"DoubleRegister can efficiently be passed by value");
typedef DoubleRegister FloatRegister;
// TODO(ppc) Define SIMD registers.
typedef DoubleRegister Simd128Register;
#define DEFINE_REGISTER(R) \
constexpr DoubleRegister R = DoubleRegister::from_code<kDoubleCode_##R>();
DOUBLE_REGISTERS(DEFINE_REGISTER)
#undef DEFINE_REGISTER
constexpr DoubleRegister no_dreg = DoubleRegister::no_reg();
constexpr DoubleRegister kFirstCalleeSavedDoubleReg = d14;
constexpr DoubleRegister kLastCalleeSavedDoubleReg = d31;
constexpr DoubleRegister kDoubleRegZero = d14;
constexpr DoubleRegister kScratchDoubleReg = d13;
Register ToRegister(int num);
enum CRegisterCode {
#define REGISTER_CODE(R) kCCode_##R,
C_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kCAfterLast
};
// Coprocessor register
class CRegister : public RegisterBase<CRegister, kCAfterLast> {
friend class RegisterBase;
explicit constexpr CRegister(int code) : RegisterBase(code) {}
};
constexpr CRegister no_creg = CRegister::no_reg();
#define DECLARE_C_REGISTER(R) \
constexpr CRegister R = CRegister::from_code<kCCode_##R>();
C_REGISTERS(DECLARE_C_REGISTER)
#undef DECLARE_C_REGISTER
// Define {RegisterName} methods for the register types.
DEFINE_REGISTER_NAMES(Register, GENERAL_REGISTERS);
DEFINE_REGISTER_NAMES(DoubleRegister, DOUBLE_REGISTERS);
// Give alias names to registers for calling conventions.
constexpr Register kReturnRegister0 = r3;
constexpr Register kReturnRegister1 = r4;
constexpr Register kReturnRegister2 = r5;
constexpr Register kJSFunctionRegister = r4;
constexpr Register kContextRegister = r30;
constexpr Register kAllocateSizeRegister = r4;
constexpr Register kSpeculationPoisonRegister = r14;
constexpr Register kInterpreterAccumulatorRegister = r3;
constexpr Register kInterpreterBytecodeOffsetRegister = r15;
constexpr Register kInterpreterBytecodeArrayRegister = r16;
constexpr Register kInterpreterDispatchTableRegister = r17;
constexpr Register kJavaScriptCallArgCountRegister = r3;
constexpr Register kJavaScriptCallCodeStartRegister = r5;
constexpr Register kJavaScriptCallTargetRegister = kJSFunctionRegister;
constexpr Register kJavaScriptCallNewTargetRegister = r6;
constexpr Register kJavaScriptCallExtraArg1Register = r5;
constexpr Register kOffHeapTrampolineRegister = ip;
constexpr Register kRuntimeCallFunctionRegister = r4;
constexpr Register kRuntimeCallArgCountRegister = r3;
constexpr Register kRuntimeCallArgvRegister = r5;
constexpr Register kWasmInstanceRegister = r10;
constexpr Register kWasmCompileLazyFuncIndexRegister = r15;
} // namespace internal
} // namespace v8
#endif // V8_PPC_REGISTER_PPC_H_

31
src/register-arch.h Normal file
View File

@ -0,0 +1,31 @@
// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_REGISTER_ARCH_H_
#define V8_REGISTER_ARCH_H_
#include "src/register.h"
#include "src/reglist.h"
#if V8_TARGET_ARCH_IA32
#include "src/ia32/register-ia32.h"
#elif V8_TARGET_ARCH_X64
#include "src/x64/register-x64.h"
#elif V8_TARGET_ARCH_ARM64
#include "src/arm64/register-arm64.h"
#elif V8_TARGET_ARCH_ARM
#include "src/arm/register-arm.h"
#elif V8_TARGET_ARCH_PPC
#include "src/ppc/register-ppc.h"
#elif V8_TARGET_ARCH_MIPS
#include "src/mips/register-mips.h"
#elif V8_TARGET_ARCH_MIPS64
#include "src/mips64/register-mips64.h"
#elif V8_TARGET_ARCH_S390
#include "src/s360/register-s360.h"
#else
#error Unknown architecture.
#endif
#endif // V8_REGISTER_ARCH_H_

View File

@ -3,8 +3,10 @@
// found in the LICENSE file.
#include "src/register-configuration.h"
#include "src/base/lazy-instance.h"
#include "src/cpu-features.h"
#include "src/globals.h"
#include "src/macro-assembler.h"
#include "src/register-arch.h"
namespace v8 {
namespace internal {

126
src/register.h Normal file
View File

@ -0,0 +1,126 @@
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_REGISTER_H_
#define V8_REGISTER_H_
#include "src/reglist.h"
namespace v8 {
namespace internal {
// Base type for CPU Registers.
//
// 1) We would prefer to use an enum for registers, but enum values are
// assignment-compatible with int, which has caused code-generation bugs.
//
// 2) By not using an enum, we are possibly preventing the compiler from
// doing certain constant folds, which may significantly reduce the
// code generated for some assembly instructions (because they boil down
// to a few constants). If this is a problem, we could change the code
// such that we use an enum in optimized mode, and the class in debug
// mode. This way we get the compile-time error checking in debug mode
// and best performance in optimized code.
template <typename SubType, int kAfterLastRegister>
class RegisterBase {
// Internal enum class; used for calling constexpr methods, where we need to
// pass an integral type as template parameter.
enum class RegisterCode : int { kFirst = 0, kAfterLast = kAfterLastRegister };
public:
static constexpr int kCode_no_reg = -1;
static constexpr int kNumRegisters = kAfterLastRegister;
static constexpr SubType no_reg() { return SubType{kCode_no_reg}; }
template <int code>
static constexpr SubType from_code() {
static_assert(code >= 0 && code < kNumRegisters, "must be valid reg code");
return SubType{code};
}
constexpr operator RegisterCode() const {
return static_cast<RegisterCode>(reg_code_);
}
template <RegisterCode reg_code>
static constexpr int code() {
static_assert(
reg_code >= RegisterCode::kFirst && reg_code < RegisterCode::kAfterLast,
"must be valid reg");
return static_cast<int>(reg_code);
}
template <RegisterCode reg_code>
static constexpr int is_valid() {
return static_cast<int>(reg_code) != kCode_no_reg;
}
template <RegisterCode reg_code>
static constexpr RegList bit() {
return is_valid<reg_code>() ? RegList{1} << code<reg_code>() : RegList{};
}
static SubType from_code(int code) {
DCHECK_LE(0, code);
DCHECK_GT(kNumRegisters, code);
return SubType{code};
}
// Constexpr version (pass registers as template parameters).
template <RegisterCode... reg_codes>
static constexpr RegList ListOf() {
return CombineRegLists(RegisterBase::bit<reg_codes>()...);
}
// Non-constexpr version (pass registers as method parameters).
template <typename... Register>
static RegList ListOf(Register... regs) {
return CombineRegLists(regs.bit()...);
}
constexpr bool is_valid() const { return reg_code_ != kCode_no_reg; }
int code() const {
DCHECK(is_valid());
return reg_code_;
}
RegList bit() const { return is_valid() ? RegList{1} << code() : RegList{}; }
inline constexpr bool operator==(SubType other) const {
return reg_code_ == other.reg_code_;
}
inline constexpr bool operator!=(SubType other) const {
return reg_code_ != other.reg_code_;
}
// Used to print the name of some special registers.
static const char* GetSpecialRegisterName(int code) { return "UNKNOWN"; }
protected:
explicit constexpr RegisterBase(int code) : reg_code_(code) {}
int reg_code_;
};
template <typename RegType,
typename = decltype(RegisterName(std::declval<RegType>()))>
inline std::ostream& operator<<(std::ostream& os, RegType reg) {
return os << RegisterName(reg);
}
// Helper macros to define a {RegisterName} method based on a macro list
// containing all names.
#define DEFINE_REGISTER_NAMES_NAME(name) #name,
#define DEFINE_REGISTER_NAMES(RegType, LIST) \
inline const char* RegisterName(RegType reg) { \
static constexpr const char* Names[] = {LIST(DEFINE_REGISTER_NAMES_NAME)}; \
STATIC_ASSERT(arraysize(Names) == RegType::kNumRegisters); \
return reg.is_valid() ? Names[reg.code()] : "invalid"; \
}
} // namespace internal
} // namespace v8
#endif // V8_REGISTER_H_

View File

@ -82,268 +82,6 @@
namespace v8 {
namespace internal {
// clang-format off
#define GENERAL_REGISTERS(V) \
V(r0) V(r1) V(r2) V(r3) V(r4) V(r5) V(r6) V(r7) \
V(r8) V(r9) V(r10) V(fp) V(ip) V(r13) V(r14) V(sp)
#define ALLOCATABLE_GENERAL_REGISTERS(V) \
V(r2) V(r3) V(r4) V(r5) V(r6) V(r7) \
V(r8) V(r9) V(r13)
#define DOUBLE_REGISTERS(V) \
V(d0) V(d1) V(d2) V(d3) V(d4) V(d5) V(d6) V(d7) \
V(d8) V(d9) V(d10) V(d11) V(d12) V(d13) V(d14) V(d15)
#define FLOAT_REGISTERS DOUBLE_REGISTERS
#define SIMD128_REGISTERS DOUBLE_REGISTERS
#define ALLOCATABLE_DOUBLE_REGISTERS(V) \
V(d1) V(d2) V(d3) V(d4) V(d5) V(d6) V(d7) \
V(d8) V(d9) V(d10) V(d11) V(d12) V(d15) V(d0)
#define C_REGISTERS(V) \
V(cr0) V(cr1) V(cr2) V(cr3) V(cr4) V(cr5) V(cr6) V(cr7) \
V(cr8) V(cr9) V(cr10) V(cr11) V(cr12) V(cr15)
// clang-format on
// Register list in load/store instructions
// Note that the bit values must match those used in actual instruction encoding
const int kNumRegs = 16;
// Caller-saved/arguments registers
const RegList kJSCallerSaved = 1 << 1 | 1 << 2 | // r2 a1
1 << 3 | // r3 a2
1 << 4 | // r4 a3
1 << 5; // r5 a4
const int kNumJSCallerSaved = 5;
// Callee-saved registers preserved when switching from C to JavaScript
const RegList kCalleeSaved =
1 << 6 | // r6 (argument passing in CEntryStub)
// (HandleScope logic in MacroAssembler)
1 << 7 | // r7 (argument passing in CEntryStub)
// (HandleScope logic in MacroAssembler)
1 << 8 | // r8 (argument passing in CEntryStub)
// (HandleScope logic in MacroAssembler)
1 << 9 | // r9 (HandleScope logic in MacroAssembler)
1 << 10 | // r10 (Roots register in Javascript)
1 << 11 | // r11 (fp in Javascript)
1 << 12 | // r12 (ip in Javascript)
1 << 13; // r13 (cp in Javascript)
// 1 << 15; // r15 (sp in Javascript)
const int kNumCalleeSaved = 8;
#ifdef V8_TARGET_ARCH_S390X
const RegList kCallerSavedDoubles = 1 << 0 | // d0
1 << 1 | // d1
1 << 2 | // d2
1 << 3 | // d3
1 << 4 | // d4
1 << 5 | // d5
1 << 6 | // d6
1 << 7; // d7
const int kNumCallerSavedDoubles = 8;
const RegList kCalleeSavedDoubles = 1 << 8 | // d8
1 << 9 | // d9
1 << 10 | // d10
1 << 11 | // d11
1 << 12 | // d12
1 << 13 | // d12
1 << 14 | // d12
1 << 15; // d13
const int kNumCalleeSavedDoubles = 8;
#else
const RegList kCallerSavedDoubles = 1 << 14 | // d14
1 << 15 | // d15
1 << 0 | // d0
1 << 1 | // d1
1 << 2 | // d2
1 << 3 | // d3
1 << 5 | // d5
1 << 7 | // d7
1 << 8 | // d8
1 << 9 | // d9
1 << 10 | // d10
1 << 11 | // d10
1 << 12 | // d10
1 << 13; // d11
const int kNumCallerSavedDoubles = 14;
const RegList kCalleeSavedDoubles = 1 << 4 | // d4
1 << 6; // d6
const int kNumCalleeSavedDoubles = 2;
#endif
// Number of registers for which space is reserved in safepoints. Must be a
// multiple of 8.
// TODO(regis): Only 8 registers may actually be sufficient. Revisit.
const int kNumSafepointRegisters = 16;
// Define the list of registers actually saved at safepoints.
// Note that the number of saved registers may be smaller than the reserved
// space, i.e. kNumSafepointSavedRegisters <= kNumSafepointRegisters.
const RegList kSafepointSavedRegisters = kJSCallerSaved | kCalleeSaved;
const int kNumSafepointSavedRegisters = kNumJSCallerSaved + kNumCalleeSaved;
// The following constants describe the stack frame linkage area as
// defined by the ABI.
#if V8_TARGET_ARCH_S390X
// [0] Back Chain
// [1] Reserved for compiler use
// [2] GPR 2
// [3] GPR 3
// ...
// [15] GPR 15
// [16] FPR 0
// [17] FPR 2
// [18] FPR 4
// [19] FPR 6
const int kNumRequiredStackFrameSlots = 20;
const int kStackFrameRASlot = 14;
const int kStackFrameSPSlot = 15;
const int kStackFrameExtraParamSlot = 20;
#else
// [0] Back Chain
// [1] Reserved for compiler use
// [2] GPR 2
// [3] GPR 3
// ...
// [15] GPR 15
// [16..17] FPR 0
// [18..19] FPR 2
// [20..21] FPR 4
// [22..23] FPR 6
const int kNumRequiredStackFrameSlots = 24;
const int kStackFrameRASlot = 14;
const int kStackFrameSPSlot = 15;
const int kStackFrameExtraParamSlot = 24;
#endif
// zLinux ABI requires caller frames to include sufficient space for
// callee preserved register save area.
#if V8_TARGET_ARCH_S390X
const int kCalleeRegisterSaveAreaSize = 160;
#elif V8_TARGET_ARCH_S390
const int kCalleeRegisterSaveAreaSize = 96;
#else
const int kCalleeRegisterSaveAreaSize = 0;
#endif
enum RegisterCode {
#define REGISTER_CODE(R) kRegCode_##R,
GENERAL_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kRegAfterLast
};
class Register : public RegisterBase<Register, kRegAfterLast> {
public:
#if V8_TARGET_LITTLE_ENDIAN
static constexpr int kMantissaOffset = 0;
static constexpr int kExponentOffset = 4;
#else
static constexpr int kMantissaOffset = 4;
static constexpr int kExponentOffset = 0;
#endif
private:
friend class RegisterBase;
explicit constexpr Register(int code) : RegisterBase(code) {}
};
ASSERT_TRIVIALLY_COPYABLE(Register);
static_assert(sizeof(Register) == sizeof(int),
"Register can efficiently be passed by value");
#define DEFINE_REGISTER(R) \
constexpr Register R = Register::from_code<kRegCode_##R>();
GENERAL_REGISTERS(DEFINE_REGISTER)
#undef DEFINE_REGISTER
constexpr Register no_reg = Register::no_reg();
// Register aliases
constexpr Register kRootRegister = r10; // Roots array pointer.
constexpr Register cp = r13; // JavaScript context pointer.
constexpr bool kPadArguments = false;
constexpr bool kSimpleFPAliasing = true;
constexpr bool kSimdMaskRegisters = false;
enum DoubleRegisterCode {
#define REGISTER_CODE(R) kDoubleCode_##R,
DOUBLE_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kDoubleAfterLast
};
// Double word VFP register.
class DoubleRegister : public RegisterBase<DoubleRegister, kDoubleAfterLast> {
public:
// A few double registers are reserved: one as a scratch register and one to
// hold 0.0, that does not fit in the immediate field of vmov instructions.
// d14: 0.0
// d15: scratch register.
static constexpr int kSizeInBytes = 8;
inline static int NumRegisters();
private:
friend class RegisterBase;
explicit constexpr DoubleRegister(int code) : RegisterBase(code) {}
};
ASSERT_TRIVIALLY_COPYABLE(DoubleRegister);
static_assert(sizeof(DoubleRegister) == sizeof(int),
"DoubleRegister can efficiently be passed by value");
typedef DoubleRegister FloatRegister;
// TODO(john.yan) Define SIMD registers.
typedef DoubleRegister Simd128Register;
#define DEFINE_REGISTER(R) \
constexpr DoubleRegister R = DoubleRegister::from_code<kDoubleCode_##R>();
DOUBLE_REGISTERS(DEFINE_REGISTER)
#undef DEFINE_REGISTER
constexpr DoubleRegister no_dreg = DoubleRegister::no_reg();
constexpr DoubleRegister kDoubleRegZero = d14;
constexpr DoubleRegister kScratchDoubleReg = d13;
Register ToRegister(int num);
enum CRegisterCode {
#define REGISTER_CODE(R) kCCode_##R,
C_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kCAfterLast
};
// Coprocessor register
class CRegister : public RegisterBase<CRegister, kCAfterLast> {
friend class RegisterBase;
explicit constexpr CRegister(int code) : RegisterBase(code) {}
};
constexpr CRegister no_creg = CRegister::no_reg();
#define DECLARE_C_REGISTER(R) \
constexpr CRegister R = CRegister::from_code<kCCode_##R>();
C_REGISTERS(DECLARE_C_REGISTER)
#undef DECLARE_C_REGISTER
// -----------------------------------------------------------------------------
// Machine instruction Operands
@ -1663,11 +1401,6 @@ class EnsureSpace {
explicit EnsureSpace(Assembler* assembler) { assembler->CheckBuffer(); }
};
// Define {RegisterName} methods for the register types.
DEFINE_REGISTER_NAMES(Register, GENERAL_REGISTERS);
DEFINE_REGISTER_NAMES(DoubleRegister, DOUBLE_REGISTERS);
} // namespace internal
} // namespace v8

View File

@ -5,7 +5,8 @@
#if V8_TARGET_ARCH_S390
#include "src/interface-descriptors.h"
#include "src/macro-assembler.h"
#include "src/frames.h"
namespace v8 {
namespace internal {

View File

@ -17,32 +17,6 @@
namespace v8 {
namespace internal {
// Give alias names to registers for calling conventions.
constexpr Register kReturnRegister0 = r2;
constexpr Register kReturnRegister1 = r3;
constexpr Register kReturnRegister2 = r4;
constexpr Register kJSFunctionRegister = r3;
constexpr Register kContextRegister = r13;
constexpr Register kAllocateSizeRegister = r3;
constexpr Register kSpeculationPoisonRegister = r9;
constexpr Register kInterpreterAccumulatorRegister = r2;
constexpr Register kInterpreterBytecodeOffsetRegister = r6;
constexpr Register kInterpreterBytecodeArrayRegister = r7;
constexpr Register kInterpreterDispatchTableRegister = r8;
constexpr Register kJavaScriptCallArgCountRegister = r2;
constexpr Register kJavaScriptCallCodeStartRegister = r4;
constexpr Register kJavaScriptCallTargetRegister = kJSFunctionRegister;
constexpr Register kJavaScriptCallNewTargetRegister = r5;
constexpr Register kJavaScriptCallExtraArg1Register = r4;
constexpr Register kOffHeapTrampolineRegister = ip;
constexpr Register kRuntimeCallFunctionRegister = r3;
constexpr Register kRuntimeCallArgCountRegister = r2;
constexpr Register kRuntimeCallArgvRegister = r4;
constexpr Register kWasmInstanceRegister = r6;
constexpr Register kWasmCompileLazyFuncIndexRegister = r7;
// ----------------------------------------------------------------------------
// Static helper functions

309
src/s390/register-s390.h Normal file
View File

@ -0,0 +1,309 @@
// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_S390_REGISTER_S390_H_
#define V8_S390_REGISTER_S390_H_
#include "src/register.h"
#include "src/reglist.h"
namespace v8 {
namespace internal {
// clang-format off
#define GENERAL_REGISTERS(V) \
V(r0) V(r1) V(r2) V(r3) V(r4) V(r5) V(r6) V(r7) \
V(r8) V(r9) V(r10) V(fp) V(ip) V(r13) V(r14) V(sp)
#define ALLOCATABLE_GENERAL_REGISTERS(V) \
V(r2) V(r3) V(r4) V(r5) V(r6) V(r7) \
V(r8) V(r9) V(r13)
#define DOUBLE_REGISTERS(V) \
V(d0) V(d1) V(d2) V(d3) V(d4) V(d5) V(d6) V(d7) \
V(d8) V(d9) V(d10) V(d11) V(d12) V(d13) V(d14) V(d15)
#define FLOAT_REGISTERS DOUBLE_REGISTERS
#define SIMD128_REGISTERS DOUBLE_REGISTERS
#define ALLOCATABLE_DOUBLE_REGISTERS(V) \
V(d1) V(d2) V(d3) V(d4) V(d5) V(d6) V(d7) \
V(d8) V(d9) V(d10) V(d11) V(d12) V(d15) V(d0)
#define C_REGISTERS(V) \
V(cr0) V(cr1) V(cr2) V(cr3) V(cr4) V(cr5) V(cr6) V(cr7) \
V(cr8) V(cr9) V(cr10) V(cr11) V(cr12) V(cr15)
// clang-format on
// Register list in load/store instructions
// Note that the bit values must match those used in actual instruction encoding
const int kNumRegs = 16;
// Caller-saved/arguments registers
const RegList kJSCallerSaved = 1 << 1 | 1 << 2 | // r2 a1
1 << 3 | // r3 a2
1 << 4 | // r4 a3
1 << 5; // r5 a4
const int kNumJSCallerSaved = 5;
// Callee-saved registers preserved when switching from C to JavaScript
const RegList kCalleeSaved =
1 << 6 | // r6 (argument passing in CEntryStub)
// (HandleScope logic in MacroAssembler)
1 << 7 | // r7 (argument passing in CEntryStub)
// (HandleScope logic in MacroAssembler)
1 << 8 | // r8 (argument passing in CEntryStub)
// (HandleScope logic in MacroAssembler)
1 << 9 | // r9 (HandleScope logic in MacroAssembler)
1 << 10 | // r10 (Roots register in Javascript)
1 << 11 | // r11 (fp in Javascript)
1 << 12 | // r12 (ip in Javascript)
1 << 13; // r13 (cp in Javascript)
// 1 << 15; // r15 (sp in Javascript)
const int kNumCalleeSaved = 8;
#ifdef V8_TARGET_ARCH_S390X
const RegList kCallerSavedDoubles = 1 << 0 | // d0
1 << 1 | // d1
1 << 2 | // d2
1 << 3 | // d3
1 << 4 | // d4
1 << 5 | // d5
1 << 6 | // d6
1 << 7; // d7
const int kNumCallerSavedDoubles = 8;
const RegList kCalleeSavedDoubles = 1 << 8 | // d8
1 << 9 | // d9
1 << 10 | // d10
1 << 11 | // d11
1 << 12 | // d12
1 << 13 | // d12
1 << 14 | // d12
1 << 15; // d13
const int kNumCalleeSavedDoubles = 8;
#else
const RegList kCallerSavedDoubles = 1 << 14 | // d14
1 << 15 | // d15
1 << 0 | // d0
1 << 1 | // d1
1 << 2 | // d2
1 << 3 | // d3
1 << 5 | // d5
1 << 7 | // d7
1 << 8 | // d8
1 << 9 | // d9
1 << 10 | // d10
1 << 11 | // d10
1 << 12 | // d10
1 << 13; // d11
const int kNumCallerSavedDoubles = 14;
const RegList kCalleeSavedDoubles = 1 << 4 | // d4
1 << 6; // d6
const int kNumCalleeSavedDoubles = 2;
#endif
// Number of registers for which space is reserved in safepoints. Must be a
// multiple of 8.
// TODO(regis): Only 8 registers may actually be sufficient. Revisit.
const int kNumSafepointRegisters = 16;
// Define the list of registers actually saved at safepoints.
// Note that the number of saved registers may be smaller than the reserved
// space, i.e. kNumSafepointSavedRegisters <= kNumSafepointRegisters.
const RegList kSafepointSavedRegisters = kJSCallerSaved | kCalleeSaved;
const int kNumSafepointSavedRegisters = kNumJSCallerSaved + kNumCalleeSaved;
// The following constants describe the stack frame linkage area as
// defined by the ABI.
#if V8_TARGET_ARCH_S390X
// [0] Back Chain
// [1] Reserved for compiler use
// [2] GPR 2
// [3] GPR 3
// ...
// [15] GPR 15
// [16] FPR 0
// [17] FPR 2
// [18] FPR 4
// [19] FPR 6
const int kNumRequiredStackFrameSlots = 20;
const int kStackFrameRASlot = 14;
const int kStackFrameSPSlot = 15;
const int kStackFrameExtraParamSlot = 20;
#else
// [0] Back Chain
// [1] Reserved for compiler use
// [2] GPR 2
// [3] GPR 3
// ...
// [15] GPR 15
// [16..17] FPR 0
// [18..19] FPR 2
// [20..21] FPR 4
// [22..23] FPR 6
const int kNumRequiredStackFrameSlots = 24;
const int kStackFrameRASlot = 14;
const int kStackFrameSPSlot = 15;
const int kStackFrameExtraParamSlot = 24;
#endif
// zLinux ABI requires caller frames to include sufficient space for
// callee preserved register save area.
#if V8_TARGET_ARCH_S390X
const int kCalleeRegisterSaveAreaSize = 160;
#elif V8_TARGET_ARCH_S390
const int kCalleeRegisterSaveAreaSize = 96;
#else
const int kCalleeRegisterSaveAreaSize = 0;
#endif
enum RegisterCode {
#define REGISTER_CODE(R) kRegCode_##R,
GENERAL_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kRegAfterLast
};
class Register : public RegisterBase<Register, kRegAfterLast> {
public:
#if V8_TARGET_LITTLE_ENDIAN
static constexpr int kMantissaOffset = 0;
static constexpr int kExponentOffset = 4;
#else
static constexpr int kMantissaOffset = 4;
static constexpr int kExponentOffset = 0;
#endif
private:
friend class RegisterBase;
explicit constexpr Register(int code) : RegisterBase(code) {}
};
ASSERT_TRIVIALLY_COPYABLE(Register);
static_assert(sizeof(Register) == sizeof(int),
"Register can efficiently be passed by value");
#define DEFINE_REGISTER(R) \
constexpr Register R = Register::from_code<kRegCode_##R>();
GENERAL_REGISTERS(DEFINE_REGISTER)
#undef DEFINE_REGISTER
constexpr Register no_reg = Register::no_reg();
// Register aliases
constexpr Register kRootRegister = r10; // Roots array pointer.
constexpr Register cp = r13; // JavaScript context pointer.
constexpr bool kPadArguments = false;
constexpr bool kSimpleFPAliasing = true;
constexpr bool kSimdMaskRegisters = false;
enum DoubleRegisterCode {
#define REGISTER_CODE(R) kDoubleCode_##R,
DOUBLE_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kDoubleAfterLast
};
// Double word VFP register.
class DoubleRegister : public RegisterBase<DoubleRegister, kDoubleAfterLast> {
public:
// A few double registers are reserved: one as a scratch register and one to
// hold 0.0, that does not fit in the immediate field of vmov instructions.
// d14: 0.0
// d15: scratch register.
static constexpr int kSizeInBytes = 8;
inline static int NumRegisters();
private:
friend class RegisterBase;
explicit constexpr DoubleRegister(int code) : RegisterBase(code) {}
};
ASSERT_TRIVIALLY_COPYABLE(DoubleRegister);
static_assert(sizeof(DoubleRegister) == sizeof(int),
"DoubleRegister can efficiently be passed by value");
typedef DoubleRegister FloatRegister;
// TODO(john.yan) Define SIMD registers.
typedef DoubleRegister Simd128Register;
#define DEFINE_REGISTER(R) \
constexpr DoubleRegister R = DoubleRegister::from_code<kDoubleCode_##R>();
DOUBLE_REGISTERS(DEFINE_REGISTER)
#undef DEFINE_REGISTER
constexpr DoubleRegister no_dreg = DoubleRegister::no_reg();
constexpr DoubleRegister kDoubleRegZero = d14;
constexpr DoubleRegister kScratchDoubleReg = d13;
Register ToRegister(int num);
enum CRegisterCode {
#define REGISTER_CODE(R) kCCode_##R,
C_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kCAfterLast
};
// Coprocessor register
class CRegister : public RegisterBase<CRegister, kCAfterLast> {
friend class RegisterBase;
explicit constexpr CRegister(int code) : RegisterBase(code) {}
};
constexpr CRegister no_creg = CRegister::no_reg();
#define DECLARE_C_REGISTER(R) \
constexpr CRegister R = CRegister::from_code<kCCode_##R>();
C_REGISTERS(DECLARE_C_REGISTER)
#undef DECLARE_C_REGISTER
// Define {RegisterName} methods for the register types.
DEFINE_REGISTER_NAMES(Register, GENERAL_REGISTERS);
DEFINE_REGISTER_NAMES(DoubleRegister, DOUBLE_REGISTERS);
// Give alias names to registers for calling conventions.
constexpr Register kReturnRegister0 = r2;
constexpr Register kReturnRegister1 = r3;
constexpr Register kReturnRegister2 = r4;
constexpr Register kJSFunctionRegister = r3;
constexpr Register kContextRegister = r13;
constexpr Register kAllocateSizeRegister = r3;
constexpr Register kSpeculationPoisonRegister = r9;
constexpr Register kInterpreterAccumulatorRegister = r2;
constexpr Register kInterpreterBytecodeOffsetRegister = r6;
constexpr Register kInterpreterBytecodeArrayRegister = r7;
constexpr Register kInterpreterDispatchTableRegister = r8;
constexpr Register kJavaScriptCallArgCountRegister = r2;
constexpr Register kJavaScriptCallCodeStartRegister = r4;
constexpr Register kJavaScriptCallTargetRegister = kJSFunctionRegister;
constexpr Register kJavaScriptCallNewTargetRegister = r5;
constexpr Register kJavaScriptCallExtraArg1Register = r4;
constexpr Register kOffHeapTrampolineRegister = ip;
constexpr Register kRuntimeCallFunctionRegister = r3;
constexpr Register kRuntimeCallArgCountRegister = r2;
constexpr Register kRuntimeCallArgvRegister = r4;
constexpr Register kWasmInstanceRegister = r6;
constexpr Register kWasmCompileLazyFuncIndexRegister = r7;
} // namespace internal
} // namespace v8
#endif // V8_S390_REGISTER_S390_H_

View File

@ -6,7 +6,6 @@
#include "src/assembler-inl.h"
#include "src/callable.h"
#include "src/macro-assembler.h"
#include "src/objects-inl.h"
#include "src/snapshot/snapshot.h"

View File

@ -9,7 +9,6 @@
#include "src/base/template-utils.h"
#include "src/counters.h"
#include "src/flags.h"
#include "src/macro-assembler.h"
#include "src/objects-inl.h"
#include "src/ostreams.h"
#include "src/v8.h"

View File

@ -45,6 +45,7 @@
#include "src/label.h"
#include "src/objects/smi.h"
#include "src/x64/constants-x64.h"
#include "src/x64/register-x64.h"
#include "src/x64/sse-instr.h"
namespace v8 {
@ -52,177 +53,6 @@ namespace internal {
// Utility functions
#define GENERAL_REGISTERS(V) \
V(rax) \
V(rcx) \
V(rdx) \
V(rbx) \
V(rsp) \
V(rbp) \
V(rsi) \
V(rdi) \
V(r8) \
V(r9) \
V(r10) \
V(r11) \
V(r12) \
V(r13) \
V(r14) \
V(r15)
#define ALLOCATABLE_GENERAL_REGISTERS(V) \
V(rax) \
V(rbx) \
V(rdx) \
V(rcx) \
V(rsi) \
V(rdi) \
V(r8) \
V(r9) \
V(r11) \
V(r12) \
V(r14) \
V(r15)
enum RegisterCode {
#define REGISTER_CODE(R) kRegCode_##R,
GENERAL_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kRegAfterLast
};
class Register : public RegisterBase<Register, kRegAfterLast> {
public:
bool is_byte_register() const { return reg_code_ <= 3; }
// Return the high bit of the register code as a 0 or 1. Used often
// when constructing the REX prefix byte.
int high_bit() const { return reg_code_ >> 3; }
// Return the 3 low bits of the register code. Used when encoding registers
// in modR/M, SIB, and opcode bytes.
int low_bits() const { return reg_code_ & 0x7; }
private:
friend class RegisterBase<Register, kRegAfterLast>;
explicit constexpr Register(int code) : RegisterBase(code) {}
};
ASSERT_TRIVIALLY_COPYABLE(Register);
static_assert(sizeof(Register) == sizeof(int),
"Register can efficiently be passed by value");
#define DECLARE_REGISTER(R) \
constexpr Register R = Register::from_code<kRegCode_##R>();
GENERAL_REGISTERS(DECLARE_REGISTER)
#undef DECLARE_REGISTER
constexpr Register no_reg = Register::no_reg();
constexpr int kNumRegs = 16;
constexpr RegList kJSCallerSaved =
Register::ListOf<rax, rcx, rdx,
rbx, // used as a caller-saved register in JavaScript code
rdi // callee function
>();
constexpr int kNumJSCallerSaved = 5;
// Number of registers for which space is reserved in safepoints.
constexpr int kNumSafepointRegisters = 16;
#ifdef _WIN64
// Windows calling convention
constexpr Register arg_reg_1 = rcx;
constexpr Register arg_reg_2 = rdx;
constexpr Register arg_reg_3 = r8;
constexpr Register arg_reg_4 = r9;
#else
// AMD64 calling convention
constexpr Register arg_reg_1 = rdi;
constexpr Register arg_reg_2 = rsi;
constexpr Register arg_reg_3 = rdx;
constexpr Register arg_reg_4 = rcx;
#endif // _WIN64
#define DOUBLE_REGISTERS(V) \
V(xmm0) \
V(xmm1) \
V(xmm2) \
V(xmm3) \
V(xmm4) \
V(xmm5) \
V(xmm6) \
V(xmm7) \
V(xmm8) \
V(xmm9) \
V(xmm10) \
V(xmm11) \
V(xmm12) \
V(xmm13) \
V(xmm14) \
V(xmm15)
#define FLOAT_REGISTERS DOUBLE_REGISTERS
#define SIMD128_REGISTERS DOUBLE_REGISTERS
#define ALLOCATABLE_DOUBLE_REGISTERS(V) \
V(xmm0) \
V(xmm1) \
V(xmm2) \
V(xmm3) \
V(xmm4) \
V(xmm5) \
V(xmm6) \
V(xmm7) \
V(xmm8) \
V(xmm9) \
V(xmm10) \
V(xmm11) \
V(xmm12) \
V(xmm13) \
V(xmm14)
constexpr bool kPadArguments = false;
constexpr bool kSimpleFPAliasing = true;
constexpr bool kSimdMaskRegisters = false;
enum DoubleRegisterCode {
#define REGISTER_CODE(R) kDoubleCode_##R,
DOUBLE_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kDoubleAfterLast
};
class XMMRegister : public RegisterBase<XMMRegister, kDoubleAfterLast> {
public:
// Return the high bit of the register code as a 0 or 1. Used often
// when constructing the REX prefix byte.
int high_bit() const { return reg_code_ >> 3; }
// Return the 3 low bits of the register code. Used when encoding registers
// in modR/M, SIB, and opcode bytes.
int low_bits() const { return reg_code_ & 0x7; }
private:
friend class RegisterBase<XMMRegister, kDoubleAfterLast>;
explicit constexpr XMMRegister(int code) : RegisterBase(code) {}
};
ASSERT_TRIVIALLY_COPYABLE(XMMRegister);
static_assert(sizeof(XMMRegister) == sizeof(int),
"XMMRegister can efficiently be passed by value");
typedef XMMRegister FloatRegister;
typedef XMMRegister DoubleRegister;
typedef XMMRegister Simd128Register;
#define DECLARE_REGISTER(R) \
constexpr DoubleRegister R = DoubleRegister::from_code<kDoubleCode_##R>();
DOUBLE_REGISTERS(DECLARE_REGISTER)
#undef DECLARE_REGISTER
constexpr DoubleRegister no_dreg = DoubleRegister::no_reg();
enum Condition {
// any value < 0 is considered no_condition
no_condition = -1,
@ -2450,10 +2280,6 @@ class EnsureSpace {
#endif
};
// Define {RegisterName} methods for the register types.
DEFINE_REGISTER_NAMES(Register, GENERAL_REGISTERS)
DEFINE_REGISTER_NAMES(XMMRegister, DOUBLE_REGISTERS)
} // namespace internal
} // namespace v8

View File

@ -12,7 +12,7 @@
#include "src/base/lazy-instance.h"
#include "src/base/v8-fallthrough.h"
#include "src/disasm.h"
#include "src/macro-assembler.h"
#include "src/x64/register-x64.h"
#include "src/x64/sse-instr.h"
namespace disasm {

View File

@ -5,7 +5,8 @@
#if V8_TARGET_ARCH_X64
#include "src/interface-descriptors.h"
#include "src/macro-assembler.h"
#include "src/frames.h"
namespace v8 {
namespace internal {

View File

@ -18,39 +18,6 @@
namespace v8 {
namespace internal {
// Give alias names to registers for calling conventions.
constexpr Register kReturnRegister0 = rax;
constexpr Register kReturnRegister1 = rdx;
constexpr Register kReturnRegister2 = r8;
constexpr Register kJSFunctionRegister = rdi;
constexpr Register kContextRegister = rsi;
constexpr Register kAllocateSizeRegister = rdx;
constexpr Register kSpeculationPoisonRegister = r12;
constexpr Register kInterpreterAccumulatorRegister = rax;
constexpr Register kInterpreterBytecodeOffsetRegister = r9;
constexpr Register kInterpreterBytecodeArrayRegister = r14;
constexpr Register kInterpreterDispatchTableRegister = r15;
constexpr Register kJavaScriptCallArgCountRegister = rax;
constexpr Register kJavaScriptCallCodeStartRegister = rcx;
constexpr Register kJavaScriptCallTargetRegister = kJSFunctionRegister;
constexpr Register kJavaScriptCallNewTargetRegister = rdx;
constexpr Register kJavaScriptCallExtraArg1Register = rbx;
constexpr Register kRuntimeCallFunctionRegister = rbx;
constexpr Register kRuntimeCallArgCountRegister = rax;
constexpr Register kRuntimeCallArgvRegister = r15;
constexpr Register kWasmInstanceRegister = rsi;
// Default scratch register used by MacroAssembler (and other code that needs
// a spare register). The register isn't callee save, and not used by the
// function calling convention.
constexpr Register kScratchRegister = r10;
constexpr XMMRegister kScratchDoubleReg = xmm15;
constexpr Register kRootRegister = r13; // callee save
constexpr Register kOffHeapTrampolineRegister = kScratchRegister;
// Convenience for platform-independent signatures.
typedef Operand MemOperand;

224
src/x64/register-x64.h Normal file
View File

@ -0,0 +1,224 @@
// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_X64_REGISTER_X64_H_
#define V8_X64_REGISTER_X64_H_
#include "src/register.h"
#include "src/reglist.h"
namespace v8 {
namespace internal {
#define GENERAL_REGISTERS(V) \
V(rax) \
V(rcx) \
V(rdx) \
V(rbx) \
V(rsp) \
V(rbp) \
V(rsi) \
V(rdi) \
V(r8) \
V(r9) \
V(r10) \
V(r11) \
V(r12) \
V(r13) \
V(r14) \
V(r15)
#define ALLOCATABLE_GENERAL_REGISTERS(V) \
V(rax) \
V(rbx) \
V(rdx) \
V(rcx) \
V(rsi) \
V(rdi) \
V(r8) \
V(r9) \
V(r11) \
V(r12) \
V(r14) \
V(r15)
enum RegisterCode {
#define REGISTER_CODE(R) kRegCode_##R,
GENERAL_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kRegAfterLast
};
class Register : public RegisterBase<Register, kRegAfterLast> {
public:
bool is_byte_register() const { return reg_code_ <= 3; }
// Return the high bit of the register code as a 0 or 1. Used often
// when constructing the REX prefix byte.
int high_bit() const { return reg_code_ >> 3; }
// Return the 3 low bits of the register code. Used when encoding registers
// in modR/M, SIB, and opcode bytes.
int low_bits() const { return reg_code_ & 0x7; }
private:
friend class RegisterBase<Register, kRegAfterLast>;
explicit constexpr Register(int code) : RegisterBase(code) {}
};
ASSERT_TRIVIALLY_COPYABLE(Register);
static_assert(sizeof(Register) == sizeof(int),
"Register can efficiently be passed by value");
#define DECLARE_REGISTER(R) \
constexpr Register R = Register::from_code<kRegCode_##R>();
GENERAL_REGISTERS(DECLARE_REGISTER)
#undef DECLARE_REGISTER
constexpr Register no_reg = Register::no_reg();
constexpr int kNumRegs = 16;
constexpr RegList kJSCallerSaved =
Register::ListOf<rax, rcx, rdx,
rbx, // used as a caller-saved register in JavaScript code
rdi // callee function
>();
constexpr int kNumJSCallerSaved = 5;
// Number of registers for which space is reserved in safepoints.
constexpr int kNumSafepointRegisters = 16;
#ifdef _WIN64
// Windows calling convention
constexpr Register arg_reg_1 = rcx;
constexpr Register arg_reg_2 = rdx;
constexpr Register arg_reg_3 = r8;
constexpr Register arg_reg_4 = r9;
#else
// AMD64 calling convention
constexpr Register arg_reg_1 = rdi;
constexpr Register arg_reg_2 = rsi;
constexpr Register arg_reg_3 = rdx;
constexpr Register arg_reg_4 = rcx;
#endif // _WIN64
#define DOUBLE_REGISTERS(V) \
V(xmm0) \
V(xmm1) \
V(xmm2) \
V(xmm3) \
V(xmm4) \
V(xmm5) \
V(xmm6) \
V(xmm7) \
V(xmm8) \
V(xmm9) \
V(xmm10) \
V(xmm11) \
V(xmm12) \
V(xmm13) \
V(xmm14) \
V(xmm15)
#define FLOAT_REGISTERS DOUBLE_REGISTERS
#define SIMD128_REGISTERS DOUBLE_REGISTERS
#define ALLOCATABLE_DOUBLE_REGISTERS(V) \
V(xmm0) \
V(xmm1) \
V(xmm2) \
V(xmm3) \
V(xmm4) \
V(xmm5) \
V(xmm6) \
V(xmm7) \
V(xmm8) \
V(xmm9) \
V(xmm10) \
V(xmm11) \
V(xmm12) \
V(xmm13) \
V(xmm14)
constexpr bool kPadArguments = false;
constexpr bool kSimpleFPAliasing = true;
constexpr bool kSimdMaskRegisters = false;
enum DoubleRegisterCode {
#define REGISTER_CODE(R) kDoubleCode_##R,
DOUBLE_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kDoubleAfterLast
};
class XMMRegister : public RegisterBase<XMMRegister, kDoubleAfterLast> {
public:
// Return the high bit of the register code as a 0 or 1. Used often
// when constructing the REX prefix byte.
int high_bit() const { return reg_code_ >> 3; }
// Return the 3 low bits of the register code. Used when encoding registers
// in modR/M, SIB, and opcode bytes.
int low_bits() const { return reg_code_ & 0x7; }
private:
friend class RegisterBase<XMMRegister, kDoubleAfterLast>;
explicit constexpr XMMRegister(int code) : RegisterBase(code) {}
};
ASSERT_TRIVIALLY_COPYABLE(XMMRegister);
static_assert(sizeof(XMMRegister) == sizeof(int),
"XMMRegister can efficiently be passed by value");
typedef XMMRegister FloatRegister;
typedef XMMRegister DoubleRegister;
typedef XMMRegister Simd128Register;
#define DECLARE_REGISTER(R) \
constexpr DoubleRegister R = DoubleRegister::from_code<kDoubleCode_##R>();
DOUBLE_REGISTERS(DECLARE_REGISTER)
#undef DECLARE_REGISTER
constexpr DoubleRegister no_dreg = DoubleRegister::no_reg();
// Define {RegisterName} methods for the register types.
DEFINE_REGISTER_NAMES(Register, GENERAL_REGISTERS)
DEFINE_REGISTER_NAMES(XMMRegister, DOUBLE_REGISTERS)
// Give alias names to registers for calling conventions.
constexpr Register kReturnRegister0 = rax;
constexpr Register kReturnRegister1 = rdx;
constexpr Register kReturnRegister2 = r8;
constexpr Register kJSFunctionRegister = rdi;
constexpr Register kContextRegister = rsi;
constexpr Register kAllocateSizeRegister = rdx;
constexpr Register kSpeculationPoisonRegister = r12;
constexpr Register kInterpreterAccumulatorRegister = rax;
constexpr Register kInterpreterBytecodeOffsetRegister = r9;
constexpr Register kInterpreterBytecodeArrayRegister = r14;
constexpr Register kInterpreterDispatchTableRegister = r15;
constexpr Register kJavaScriptCallArgCountRegister = rax;
constexpr Register kJavaScriptCallCodeStartRegister = rcx;
constexpr Register kJavaScriptCallTargetRegister = kJSFunctionRegister;
constexpr Register kJavaScriptCallNewTargetRegister = rdx;
constexpr Register kJavaScriptCallExtraArg1Register = rbx;
constexpr Register kRuntimeCallFunctionRegister = rbx;
constexpr Register kRuntimeCallArgCountRegister = rax;
constexpr Register kRuntimeCallArgvRegister = r15;
constexpr Register kWasmInstanceRegister = rsi;
// Default scratch register used by MacroAssembler (and other code that needs
// a spare register). The register isn't callee save, and not used by the
// function calling convention.
constexpr Register kScratchRegister = r10;
constexpr XMMRegister kScratchDoubleReg = xmm15;
constexpr Register kRootRegister = r13; // callee save
constexpr Register kOffHeapTrampolineRegister = kScratchRegister;
} // namespace internal
} // namespace v8
#endif // V8_X64_REGISTER_X64_H_

View File

@ -5,6 +5,7 @@
#include "test/cctest/compiler/function-tester.h"
#include "src/api-inl.h"
#include "src/assembler.h"
#include "src/compiler.h"
#include "src/compiler/linkage.h"
#include "src/compiler/pipeline.h"

View File

@ -5,6 +5,7 @@
#ifndef V8_CCTEST_COMPILER_GRAPH_BUILDER_TESTER_H_
#define V8_CCTEST_COMPILER_GRAPH_BUILDER_TESTER_H_
#include "src/assembler.h"
#include "src/compiler/backend/instruction-selector.h"
#include "src/compiler/common-operator.h"
#include "src/compiler/linkage.h"