[turbofan] Fix CheckedInt32Mod lowering for -0 case with negative left hand side.

Properly deoptimize if the left hand side of a CheckedInt32Mod is
negative and the result of the operation is zero.

R=jarin@chromium.org
BUG=v8:5286

Review-Url: https://codereview.chromium.org/2243803002
Cr-Commit-Position: refs/heads/master@{#38615}
This commit is contained in:
bmeurer 2016-08-12 05:13:38 -07:00 committed by Commit bot
parent 3494a3dcbc
commit 665f0e4020
2 changed files with 118 additions and 100 deletions

View File

@ -1315,131 +1315,108 @@ EffectControlLinearizer::LowerCheckedInt32Mod(Node* node, Node* frame_state,
Node* effect, Node* control) {
Node* zero = jsgraph()->Int32Constant(0);
Node* one = jsgraph()->Int32Constant(1);
Node* minusone = jsgraph()->Int32Constant(-1);
// General case for signed integer modulus, with optimization for (unknown)
// power of 2 right hand side.
//
// if 1 < rhs then
// msk = rhs - 1
// if rhs & msk == 0 then
// if lhs < 0 then
// -(-lhs & msk)
// else
// lhs & msk
// else
// lhs % rhs
// if rhs <= 0 then
// rhs = -rhs
// deopt if rhs == 0
// if lhs < 0 then
// let res = lhs % rhs in
// deopt if res == 0
// res
// else
// if rhs < -1 then
// lhs % rhs
// let msk = rhs - 1 in
// if rhs & msk == 0 then
// lhs & msk
// else
// deopt if rhs == 0
// deopt if lhs < 0
// zero
// lhs % rhs
//
Node* lhs = node->InputAt(0);
Node* rhs = node->InputAt(1);
// Check if {rhs} is strictly greater than one.
Node* check0 = graph()->NewNode(machine()->Int32LessThan(), one, rhs);
// Check if {rhs} is not strictly positive.
Node* check0 = graph()->NewNode(machine()->Int32LessThanOrEqual(), rhs, zero);
Node* branch0 =
graph()->NewNode(common()->Branch(BranchHint::kTrue), check0, control);
graph()->NewNode(common()->Branch(BranchHint::kFalse), check0, control);
Node* if_true0 = graph()->NewNode(common()->IfTrue(), branch0);
Node* etrue0 = effect;
Node* vtrue0;
{
Node* msk = graph()->NewNode(machine()->Int32Add(), rhs, minusone);
// Negate {rhs}, might still produce a negative result in case of
// -2^31, but that is handled safely below.
vtrue0 = graph()->NewNode(machine()->Int32Sub(), zero, rhs);
// Check if {rhs} minus one is a valid mask.
Node* check1 = graph()->NewNode(
machine()->Word32Equal(),
graph()->NewNode(machine()->Word32And(), rhs, msk), zero);
Node* branch1 = graph()->NewNode(common()->Branch(), check1, if_true0);
Node* if_true1 = graph()->NewNode(common()->IfTrue(), branch1);
Node* vtrue1;
{
// Check if {lhs} is negative.
Node* check2 = graph()->NewNode(machine()->Int32LessThan(), lhs, zero);
Node* branch2 = graph()->NewNode(common()->Branch(BranchHint::kFalse),
check2, if_true1);
// Compute the remainder as {-(-lhs & msk)}.
Node* if_true2 = graph()->NewNode(common()->IfTrue(), branch2);
Node* vtrue2 = graph()->NewNode(
machine()->Int32Sub(), zero,
graph()->NewNode(machine()->Word32And(),
graph()->NewNode(machine()->Int32Sub(), zero, lhs),
msk));
// Compute the remainder as {lhs & msk}.
Node* if_false2 = graph()->NewNode(common()->IfFalse(), branch2);
Node* vfalse2 = graph()->NewNode(machine()->Word32And(), lhs, msk);
if_true1 = graph()->NewNode(common()->Merge(2), if_true2, if_false2);
vtrue1 =
graph()->NewNode(common()->Phi(MachineRepresentation::kWord32, 2),
vtrue2, vfalse2, if_true1);
}
// Compute the remainder using the generic {lhs % rhs}.
Node* if_false1 = graph()->NewNode(common()->IfFalse(), branch1);
Node* vfalse1 =
graph()->NewNode(machine()->Int32Mod(), lhs, rhs, if_false1);
if_true0 = graph()->NewNode(common()->Merge(2), if_true1, if_false1);
vtrue0 = graph()->NewNode(common()->Phi(MachineRepresentation::kWord32, 2),
vtrue1, vfalse1, if_true0);
// Ensure that {rhs} is not zero, otherwise we'd have to return NaN.
Node* check = graph()->NewNode(machine()->Word32Equal(), vtrue0, zero);
if_true0 = etrue0 = graph()->NewNode(
common()->DeoptimizeIf(DeoptimizeReason::kDivisionByZero), check,
frame_state, etrue0, if_true0);
}
Node* if_false0 = graph()->NewNode(common()->IfFalse(), branch0);
Node* efalse0 = effect;
Node* vfalse0;
{
// Check if {rhs} is strictly less than -1.
Node* check1 = graph()->NewNode(machine()->Int32LessThan(), rhs, minusone);
Node* branch1 = graph()->NewNode(common()->Branch(BranchHint::kTrue),
check1, if_false0);
// Compute the remainder using the generic {lhs % rhs}.
Node* if_true1 = graph()->NewNode(common()->IfTrue(), branch1);
Node* etrue1 = efalse0;
Node* vtrue1 = graph()->NewNode(machine()->Int32Mod(), lhs, rhs, if_true1);
Node* if_false1 = graph()->NewNode(common()->IfFalse(), branch1);
Node* efalse1 = efalse0;
Node* vfalse1;
{
// Ensure that {rhs} is not zero.
Node* check2 = graph()->NewNode(machine()->Word32Equal(), rhs, zero);
if_false1 = efalse1 = graph()->NewNode(
common()->DeoptimizeIf(DeoptimizeReason::kDivisionByZero), check2,
frame_state, efalse1, if_false1);
// Now we know that {rhs} is -1, so make sure {lhs} is >= 0, as we would
// otherwise have to return -0.
Node* check3 = graph()->NewNode(machine()->Int32LessThan(), lhs, zero);
if_false1 = efalse1 =
graph()->NewNode(common()->DeoptimizeIf(DeoptimizeReason::kMinusZero),
check3, frame_state, efalse1, if_false1);
// The remainder is zero.
vfalse1 = zero;
}
if_false0 = graph()->NewNode(common()->Merge(2), if_true1, if_false1);
efalse0 =
graph()->NewNode(common()->EffectPhi(2), etrue1, efalse1, if_false0);
vfalse0 = graph()->NewNode(common()->Phi(MachineRepresentation::kWord32, 2),
vtrue1, vfalse1, if_false0);
}
Node* vfalse0 = rhs;
// At this point {rhs} is either greater than zero or -2^31, both are
// fine for the code that follows.
control = graph()->NewNode(common()->Merge(2), if_true0, if_false0);
effect = graph()->NewNode(common()->EffectPhi(2), etrue0, efalse0, control);
rhs = graph()->NewNode(common()->Phi(MachineRepresentation::kWord32, 2),
vtrue0, vfalse0, control);
// Check if {lhs} is negative.
Node* check1 = graph()->NewNode(machine()->Int32LessThan(), lhs, zero);
Node* branch1 =
graph()->NewNode(common()->Branch(BranchHint::kFalse), check1, control);
Node* if_true1 = graph()->NewNode(common()->IfTrue(), branch1);
Node* etrue1 = effect;
Node* vtrue1;
{
// Compute the remainder using {lhs % msk}.
vtrue1 = graph()->NewNode(machine()->Int32Mod(), lhs, rhs, if_true1);
// Check if we would have to return -0.
Node* check = graph()->NewNode(machine()->Word32Equal(), vtrue1, zero);
if_true1 = etrue1 =
graph()->NewNode(common()->DeoptimizeIf(DeoptimizeReason::kMinusZero),
check, frame_state, etrue1, if_true1);
}
Node* if_false1 = graph()->NewNode(common()->IfFalse(), branch1);
Node* efalse1 = effect;
Node* vfalse1;
{
Node* msk = graph()->NewNode(machine()->Int32Sub(), rhs, one);
// Check if {rhs} minus one is a valid mask.
Node* check2 = graph()->NewNode(
machine()->Word32Equal(),
graph()->NewNode(machine()->Word32And(), rhs, msk), zero);
Node* branch2 = graph()->NewNode(common()->Branch(), check2, if_false1);
// Compute the remainder using {lhs & msk}.
Node* if_true2 = graph()->NewNode(common()->IfTrue(), branch2);
Node* vtrue2 = graph()->NewNode(machine()->Word32And(), lhs, msk);
// Compute the remainder using the generic {lhs % rhs}.
Node* if_false2 = graph()->NewNode(common()->IfFalse(), branch2);
Node* vfalse2 =
graph()->NewNode(machine()->Int32Mod(), lhs, rhs, if_false2);
if_false1 = graph()->NewNode(common()->Merge(2), if_true2, if_false2);
vfalse1 = graph()->NewNode(common()->Phi(MachineRepresentation::kWord32, 2),
vtrue2, vfalse2, if_false1);
}
control = graph()->NewNode(common()->Merge(2), if_true1, if_false1);
effect = graph()->NewNode(common()->EffectPhi(2), etrue1, efalse1, control);
Node* value =
graph()->NewNode(common()->Phi(MachineRepresentation::kWord32, 2), vtrue0,
vfalse0, control);
graph()->NewNode(common()->Phi(MachineRepresentation::kWord32, 2), vtrue1,
vfalse1, control);
return ValueEffectControl(value, effect, control);
}

View File

@ -0,0 +1,41 @@
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Flags: --allow-natives-syntax
(function() {
function foo(x, y) { return x % y; }
assertEquals(0, foo(2, 2));
assertEquals(0, foo(4, 4));
%OptimizeFunctionOnNextCall(foo);
assertEquals(-0, foo(-8, 8));
})();
(function() {
function foo(x, y) { return x % y; }
assertEquals(0, foo(1, 1));
assertEquals(0, foo(2, 2));
%OptimizeFunctionOnNextCall(foo);
assertEquals(-0, foo(-3, 3));
})();
(function() {
function foo(x, y) { return x % y; }
assertEquals(0, foo(1, 1));
assertEquals(0, foo(2, 2));
%OptimizeFunctionOnNextCall(foo);
assertEquals(-0, foo(-2147483648, -1));
})();
(function() {
function foo(x, y) { return x % y; }
assertEquals(0, foo(1, 1));
assertEquals(0, foo(2, 2));
%OptimizeFunctionOnNextCall(foo);
assertEquals(-0, foo(-2147483648, -2147483648));
})();