[builtins][interpreter] Move BinaryOpAssembler to its own file.
This CL also 1) turns (Add/Subtract)WithFeedbackStub into builtins 2) makes interpreter use BinaryOpAssembler directly 3) drops unused (Multipy/Divide/Modulus)WithFeedbackStubs BUG=v8:6116 Change-Id: I994aba6442f173535c13dfbaaafae1033de3f2ce Reviewed-on: https://chromium-review.googlesource.com/458438 Reviewed-by: Ross McIlroy <rmcilroy@chromium.org> Reviewed-by: Jakob Kummerow <jkummerow@chromium.org> Commit-Queue: Igor Sheludko <ishell@chromium.org> Cr-Commit-Position: refs/heads/master@{#44042}
This commit is contained in:
parent
04440d2869
commit
681e3312f0
2
BUILD.gn
2
BUILD.gn
@ -937,6 +937,8 @@ v8_source_set("v8_builtins_generators") {
|
||||
"src/builtins/builtins-wasm-gen.cc",
|
||||
"src/ic/accessor-assembler.cc",
|
||||
"src/ic/accessor-assembler.h",
|
||||
"src/ic/binary-op-assembler.cc",
|
||||
"src/ic/binary-op-assembler.h",
|
||||
"src/ic/keyed-store-generic.cc",
|
||||
"src/ic/keyed-store-generic.h",
|
||||
"src/interpreter/interpreter-assembler.cc",
|
||||
|
@ -5,6 +5,7 @@
|
||||
#include "src/builtins/builtins-utils-gen.h"
|
||||
#include "src/builtins/builtins.h"
|
||||
#include "src/code-stub-assembler.h"
|
||||
#include "src/ic/binary-op-assembler.h"
|
||||
|
||||
namespace v8 {
|
||||
namespace internal {
|
||||
@ -1392,5 +1393,27 @@ TF_BUILTIN(StrictEqual, CodeStubAssembler) {
|
||||
Return(StrictEqual(lhs, rhs));
|
||||
}
|
||||
|
||||
TF_BUILTIN(AddWithFeedback, BinaryOpAssembler) {
|
||||
Node* context = Parameter(Descriptor::kContext);
|
||||
Node* left = Parameter(Descriptor::kLeft);
|
||||
Node* right = Parameter(Descriptor::kRight);
|
||||
Node* slot = Parameter(Descriptor::kSlot);
|
||||
Node* vector = Parameter(Descriptor::kVector);
|
||||
|
||||
Return(Generate_AddWithFeedback(context, left, right,
|
||||
ChangeUint32ToWord(slot), vector));
|
||||
}
|
||||
|
||||
TF_BUILTIN(SubtractWithFeedback, BinaryOpAssembler) {
|
||||
Node* context = Parameter(Descriptor::kContext);
|
||||
Node* left = Parameter(Descriptor::kLeft);
|
||||
Node* right = Parameter(Descriptor::kRight);
|
||||
Node* slot = Parameter(Descriptor::kSlot);
|
||||
Node* vector = Parameter(Descriptor::kVector);
|
||||
|
||||
Return(Generate_SubtractWithFeedback(context, left, right,
|
||||
ChangeUint32ToWord(slot), vector));
|
||||
}
|
||||
|
||||
} // namespace internal
|
||||
} // namespace v8
|
||||
|
@ -635,6 +635,8 @@ class Isolate;
|
||||
TFS(GreaterThanOrEqual, BUILTIN, kNoExtraICState, Compare, 1) \
|
||||
TFS(Equal, BUILTIN, kNoExtraICState, Compare, 1) \
|
||||
TFS(StrictEqual, BUILTIN, kNoExtraICState, Compare, 1) \
|
||||
TFS(AddWithFeedback, BUILTIN, kNoExtraICState, BinaryOpWithVector, 1) \
|
||||
TFS(SubtractWithFeedback, BUILTIN, kNoExtraICState, BinaryOpWithVector, 1) \
|
||||
\
|
||||
/* Object */ \
|
||||
CPP(ObjectAssign) \
|
||||
|
@ -491,906 +491,6 @@ TF_STUB(StringLengthStub, CodeStubAssembler) {
|
||||
Return(result);
|
||||
}
|
||||
|
||||
// TODO(ishell): Move to appropriate file.
|
||||
class BinaryOpAssembler : public CodeStubAssembler {
|
||||
public:
|
||||
typedef compiler::Node Node;
|
||||
|
||||
explicit BinaryOpAssembler(compiler::CodeAssemblerState* state)
|
||||
: CodeStubAssembler(state) {}
|
||||
|
||||
void GenerateConstructor(Node* context, Node* array_function, Node* array_map,
|
||||
Node* array_size, Node* allocation_site,
|
||||
ElementsKind elements_kind, AllocationSiteMode mode);
|
||||
|
||||
Node* Generate_AddWithFeedback(Node* context, Node* lhs, Node* rhs,
|
||||
Node* slot_id, Node* feedback_vector);
|
||||
|
||||
Node* Generate_SubtractWithFeedback(Node* context, Node* lhs, Node* rhs,
|
||||
Node* slot_id, Node* feedback_vector);
|
||||
|
||||
Node* Generate_MultiplyWithFeedback(Node* context, Node* lhs, Node* rhs,
|
||||
Node* slot_id, Node* feedback_vector);
|
||||
|
||||
Node* Generate_DivideWithFeedback(Node* context, Node* dividend,
|
||||
Node* divisor, Node* slot_id,
|
||||
Node* feedback_vector);
|
||||
|
||||
Node* Generate_ModulusWithFeedback(Node* context, Node* dividend,
|
||||
Node* divisor, Node* slot_id,
|
||||
Node* feedback_vector);
|
||||
};
|
||||
|
||||
compiler::Node* BinaryOpAssembler::Generate_AddWithFeedback(
|
||||
Node* context, Node* lhs, Node* rhs, Node* slot_id, Node* feedback_vector) {
|
||||
// Shared entry for floating point addition.
|
||||
Label do_fadd(this), if_lhsisnotnumber(this, Label::kDeferred),
|
||||
check_rhsisoddball(this, Label::kDeferred),
|
||||
call_with_oddball_feedback(this), call_with_any_feedback(this),
|
||||
call_add_stub(this), end(this);
|
||||
Variable var_fadd_lhs(this, MachineRepresentation::kFloat64),
|
||||
var_fadd_rhs(this, MachineRepresentation::kFloat64),
|
||||
var_type_feedback(this, MachineRepresentation::kTaggedSigned),
|
||||
var_result(this, MachineRepresentation::kTagged);
|
||||
|
||||
// Check if the {lhs} is a Smi or a HeapObject.
|
||||
Label if_lhsissmi(this), if_lhsisnotsmi(this);
|
||||
Branch(TaggedIsSmi(lhs), &if_lhsissmi, &if_lhsisnotsmi);
|
||||
|
||||
Bind(&if_lhsissmi);
|
||||
{
|
||||
// Check if the {rhs} is also a Smi.
|
||||
Label if_rhsissmi(this), if_rhsisnotsmi(this);
|
||||
Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi);
|
||||
|
||||
Bind(&if_rhsissmi);
|
||||
{
|
||||
// Try fast Smi addition first.
|
||||
Node* pair = IntPtrAddWithOverflow(BitcastTaggedToWord(lhs),
|
||||
BitcastTaggedToWord(rhs));
|
||||
Node* overflow = Projection(1, pair);
|
||||
|
||||
// Check if the Smi additon overflowed.
|
||||
Label if_overflow(this), if_notoverflow(this);
|
||||
Branch(overflow, &if_overflow, &if_notoverflow);
|
||||
|
||||
Bind(&if_overflow);
|
||||
{
|
||||
var_fadd_lhs.Bind(SmiToFloat64(lhs));
|
||||
var_fadd_rhs.Bind(SmiToFloat64(rhs));
|
||||
Goto(&do_fadd);
|
||||
}
|
||||
|
||||
Bind(&if_notoverflow);
|
||||
{
|
||||
var_type_feedback.Bind(
|
||||
SmiConstant(BinaryOperationFeedback::kSignedSmall));
|
||||
var_result.Bind(BitcastWordToTaggedSigned(Projection(0, pair)));
|
||||
Goto(&end);
|
||||
}
|
||||
}
|
||||
|
||||
Bind(&if_rhsisnotsmi);
|
||||
{
|
||||
// Load the map of {rhs}.
|
||||
Node* rhs_map = LoadMap(rhs);
|
||||
|
||||
// Check if the {rhs} is a HeapNumber.
|
||||
GotoIfNot(IsHeapNumberMap(rhs_map), &check_rhsisoddball);
|
||||
|
||||
var_fadd_lhs.Bind(SmiToFloat64(lhs));
|
||||
var_fadd_rhs.Bind(LoadHeapNumberValue(rhs));
|
||||
Goto(&do_fadd);
|
||||
}
|
||||
}
|
||||
|
||||
Bind(&if_lhsisnotsmi);
|
||||
{
|
||||
// Load the map of {lhs}.
|
||||
Node* lhs_map = LoadMap(lhs);
|
||||
|
||||
// Check if {lhs} is a HeapNumber.
|
||||
GotoIfNot(IsHeapNumberMap(lhs_map), &if_lhsisnotnumber);
|
||||
|
||||
// Check if the {rhs} is Smi.
|
||||
Label if_rhsissmi(this), if_rhsisnotsmi(this);
|
||||
Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi);
|
||||
|
||||
Bind(&if_rhsissmi);
|
||||
{
|
||||
var_fadd_lhs.Bind(LoadHeapNumberValue(lhs));
|
||||
var_fadd_rhs.Bind(SmiToFloat64(rhs));
|
||||
Goto(&do_fadd);
|
||||
}
|
||||
|
||||
Bind(&if_rhsisnotsmi);
|
||||
{
|
||||
// Load the map of {rhs}.
|
||||
Node* rhs_map = LoadMap(rhs);
|
||||
|
||||
// Check if the {rhs} is a HeapNumber.
|
||||
GotoIfNot(IsHeapNumberMap(rhs_map), &check_rhsisoddball);
|
||||
|
||||
var_fadd_lhs.Bind(LoadHeapNumberValue(lhs));
|
||||
var_fadd_rhs.Bind(LoadHeapNumberValue(rhs));
|
||||
Goto(&do_fadd);
|
||||
}
|
||||
}
|
||||
|
||||
Bind(&do_fadd);
|
||||
{
|
||||
var_type_feedback.Bind(SmiConstant(BinaryOperationFeedback::kNumber));
|
||||
Node* value = Float64Add(var_fadd_lhs.value(), var_fadd_rhs.value());
|
||||
Node* result = AllocateHeapNumberWithValue(value);
|
||||
var_result.Bind(result);
|
||||
Goto(&end);
|
||||
}
|
||||
|
||||
Bind(&if_lhsisnotnumber);
|
||||
{
|
||||
// No checks on rhs are done yet. We just know lhs is not a number or Smi.
|
||||
Label if_lhsisoddball(this), if_lhsisnotoddball(this);
|
||||
Node* lhs_instance_type = LoadInstanceType(lhs);
|
||||
Node* lhs_is_oddball =
|
||||
Word32Equal(lhs_instance_type, Int32Constant(ODDBALL_TYPE));
|
||||
Branch(lhs_is_oddball, &if_lhsisoddball, &if_lhsisnotoddball);
|
||||
|
||||
Bind(&if_lhsisoddball);
|
||||
{
|
||||
GotoIf(TaggedIsSmi(rhs), &call_with_oddball_feedback);
|
||||
|
||||
// Load the map of the {rhs}.
|
||||
Node* rhs_map = LoadMap(rhs);
|
||||
|
||||
// Check if {rhs} is a HeapNumber.
|
||||
Branch(IsHeapNumberMap(rhs_map), &call_with_oddball_feedback,
|
||||
&check_rhsisoddball);
|
||||
}
|
||||
|
||||
Bind(&if_lhsisnotoddball);
|
||||
{
|
||||
// Exit unless {lhs} is a string
|
||||
GotoIfNot(IsStringInstanceType(lhs_instance_type),
|
||||
&call_with_any_feedback);
|
||||
|
||||
// Check if the {rhs} is a smi, and exit the string check early if it is.
|
||||
GotoIf(TaggedIsSmi(rhs), &call_with_any_feedback);
|
||||
|
||||
Node* rhs_instance_type = LoadInstanceType(rhs);
|
||||
|
||||
// Exit unless {rhs} is a string. Since {lhs} is a string we no longer
|
||||
// need an Oddball check.
|
||||
GotoIfNot(IsStringInstanceType(rhs_instance_type),
|
||||
&call_with_any_feedback);
|
||||
|
||||
var_type_feedback.Bind(SmiConstant(BinaryOperationFeedback::kString));
|
||||
Callable callable =
|
||||
CodeFactory::StringAdd(isolate(), STRING_ADD_CHECK_NONE, NOT_TENURED);
|
||||
var_result.Bind(CallStub(callable, context, lhs, rhs));
|
||||
|
||||
Goto(&end);
|
||||
}
|
||||
}
|
||||
|
||||
Bind(&check_rhsisoddball);
|
||||
{
|
||||
// Check if rhs is an oddball. At this point we know lhs is either a
|
||||
// Smi or number or oddball and rhs is not a number or Smi.
|
||||
Node* rhs_instance_type = LoadInstanceType(rhs);
|
||||
Node* rhs_is_oddball =
|
||||
Word32Equal(rhs_instance_type, Int32Constant(ODDBALL_TYPE));
|
||||
Branch(rhs_is_oddball, &call_with_oddball_feedback,
|
||||
&call_with_any_feedback);
|
||||
}
|
||||
|
||||
Bind(&call_with_oddball_feedback);
|
||||
{
|
||||
var_type_feedback.Bind(
|
||||
SmiConstant(BinaryOperationFeedback::kNumberOrOddball));
|
||||
Goto(&call_add_stub);
|
||||
}
|
||||
|
||||
Bind(&call_with_any_feedback);
|
||||
{
|
||||
var_type_feedback.Bind(SmiConstant(BinaryOperationFeedback::kAny));
|
||||
Goto(&call_add_stub);
|
||||
}
|
||||
|
||||
Bind(&call_add_stub);
|
||||
{
|
||||
Callable callable = CodeFactory::Add(isolate());
|
||||
var_result.Bind(CallStub(callable, context, lhs, rhs));
|
||||
Goto(&end);
|
||||
}
|
||||
|
||||
Bind(&end);
|
||||
UpdateFeedback(var_type_feedback.value(), feedback_vector, slot_id);
|
||||
return var_result.value();
|
||||
}
|
||||
|
||||
compiler::Node* BinaryOpAssembler::Generate_SubtractWithFeedback(
|
||||
Node* context, Node* lhs, Node* rhs, Node* slot_id, Node* feedback_vector) {
|
||||
// Shared entry for floating point subtraction.
|
||||
Label do_fsub(this), end(this), call_subtract_stub(this),
|
||||
if_lhsisnotnumber(this), check_rhsisoddball(this),
|
||||
call_with_any_feedback(this);
|
||||
Variable var_fsub_lhs(this, MachineRepresentation::kFloat64),
|
||||
var_fsub_rhs(this, MachineRepresentation::kFloat64),
|
||||
var_type_feedback(this, MachineRepresentation::kTaggedSigned),
|
||||
var_result(this, MachineRepresentation::kTagged);
|
||||
|
||||
// Check if the {lhs} is a Smi or a HeapObject.
|
||||
Label if_lhsissmi(this), if_lhsisnotsmi(this);
|
||||
Branch(TaggedIsSmi(lhs), &if_lhsissmi, &if_lhsisnotsmi);
|
||||
|
||||
Bind(&if_lhsissmi);
|
||||
{
|
||||
// Check if the {rhs} is also a Smi.
|
||||
Label if_rhsissmi(this), if_rhsisnotsmi(this);
|
||||
Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi);
|
||||
|
||||
Bind(&if_rhsissmi);
|
||||
{
|
||||
// Try a fast Smi subtraction first.
|
||||
Node* pair = IntPtrSubWithOverflow(BitcastTaggedToWord(lhs),
|
||||
BitcastTaggedToWord(rhs));
|
||||
Node* overflow = Projection(1, pair);
|
||||
|
||||
// Check if the Smi subtraction overflowed.
|
||||
Label if_overflow(this), if_notoverflow(this);
|
||||
Branch(overflow, &if_overflow, &if_notoverflow);
|
||||
|
||||
Bind(&if_overflow);
|
||||
{
|
||||
// lhs, rhs - smi and result - number. combined - number.
|
||||
// The result doesn't fit into Smi range.
|
||||
var_fsub_lhs.Bind(SmiToFloat64(lhs));
|
||||
var_fsub_rhs.Bind(SmiToFloat64(rhs));
|
||||
Goto(&do_fsub);
|
||||
}
|
||||
|
||||
Bind(&if_notoverflow);
|
||||
// lhs, rhs, result smi. combined - smi.
|
||||
var_type_feedback.Bind(
|
||||
SmiConstant(BinaryOperationFeedback::kSignedSmall));
|
||||
var_result.Bind(BitcastWordToTaggedSigned(Projection(0, pair)));
|
||||
Goto(&end);
|
||||
}
|
||||
|
||||
Bind(&if_rhsisnotsmi);
|
||||
{
|
||||
// Load the map of the {rhs}.
|
||||
Node* rhs_map = LoadMap(rhs);
|
||||
|
||||
// Check if {rhs} is a HeapNumber.
|
||||
GotoIfNot(IsHeapNumberMap(rhs_map), &check_rhsisoddball);
|
||||
|
||||
// Perform a floating point subtraction.
|
||||
var_fsub_lhs.Bind(SmiToFloat64(lhs));
|
||||
var_fsub_rhs.Bind(LoadHeapNumberValue(rhs));
|
||||
Goto(&do_fsub);
|
||||
}
|
||||
}
|
||||
|
||||
Bind(&if_lhsisnotsmi);
|
||||
{
|
||||
// Load the map of the {lhs}.
|
||||
Node* lhs_map = LoadMap(lhs);
|
||||
|
||||
// Check if the {lhs} is a HeapNumber.
|
||||
GotoIfNot(IsHeapNumberMap(lhs_map), &if_lhsisnotnumber);
|
||||
|
||||
// Check if the {rhs} is a Smi.
|
||||
Label if_rhsissmi(this), if_rhsisnotsmi(this);
|
||||
Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi);
|
||||
|
||||
Bind(&if_rhsissmi);
|
||||
{
|
||||
// Perform a floating point subtraction.
|
||||
var_fsub_lhs.Bind(LoadHeapNumberValue(lhs));
|
||||
var_fsub_rhs.Bind(SmiToFloat64(rhs));
|
||||
Goto(&do_fsub);
|
||||
}
|
||||
|
||||
Bind(&if_rhsisnotsmi);
|
||||
{
|
||||
// Load the map of the {rhs}.
|
||||
Node* rhs_map = LoadMap(rhs);
|
||||
|
||||
// Check if the {rhs} is a HeapNumber.
|
||||
GotoIfNot(IsHeapNumberMap(rhs_map), &check_rhsisoddball);
|
||||
|
||||
// Perform a floating point subtraction.
|
||||
var_fsub_lhs.Bind(LoadHeapNumberValue(lhs));
|
||||
var_fsub_rhs.Bind(LoadHeapNumberValue(rhs));
|
||||
Goto(&do_fsub);
|
||||
}
|
||||
}
|
||||
|
||||
Bind(&do_fsub);
|
||||
{
|
||||
var_type_feedback.Bind(SmiConstant(BinaryOperationFeedback::kNumber));
|
||||
Node* lhs_value = var_fsub_lhs.value();
|
||||
Node* rhs_value = var_fsub_rhs.value();
|
||||
Node* value = Float64Sub(lhs_value, rhs_value);
|
||||
var_result.Bind(AllocateHeapNumberWithValue(value));
|
||||
Goto(&end);
|
||||
}
|
||||
|
||||
Bind(&if_lhsisnotnumber);
|
||||
{
|
||||
// No checks on rhs are done yet. We just know lhs is not a number or Smi.
|
||||
// Check if lhs is an oddball.
|
||||
Node* lhs_instance_type = LoadInstanceType(lhs);
|
||||
Node* lhs_is_oddball =
|
||||
Word32Equal(lhs_instance_type, Int32Constant(ODDBALL_TYPE));
|
||||
GotoIfNot(lhs_is_oddball, &call_with_any_feedback);
|
||||
|
||||
Label if_rhsissmi(this), if_rhsisnotsmi(this);
|
||||
Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi);
|
||||
|
||||
Bind(&if_rhsissmi);
|
||||
{
|
||||
var_type_feedback.Bind(
|
||||
SmiConstant(BinaryOperationFeedback::kNumberOrOddball));
|
||||
Goto(&call_subtract_stub);
|
||||
}
|
||||
|
||||
Bind(&if_rhsisnotsmi);
|
||||
{
|
||||
// Load the map of the {rhs}.
|
||||
Node* rhs_map = LoadMap(rhs);
|
||||
|
||||
// Check if {rhs} is a HeapNumber.
|
||||
GotoIfNot(IsHeapNumberMap(rhs_map), &check_rhsisoddball);
|
||||
|
||||
var_type_feedback.Bind(
|
||||
SmiConstant(BinaryOperationFeedback::kNumberOrOddball));
|
||||
Goto(&call_subtract_stub);
|
||||
}
|
||||
}
|
||||
|
||||
Bind(&check_rhsisoddball);
|
||||
{
|
||||
// Check if rhs is an oddball. At this point we know lhs is either a
|
||||
// Smi or number or oddball and rhs is not a number or Smi.
|
||||
Node* rhs_instance_type = LoadInstanceType(rhs);
|
||||
Node* rhs_is_oddball =
|
||||
Word32Equal(rhs_instance_type, Int32Constant(ODDBALL_TYPE));
|
||||
GotoIfNot(rhs_is_oddball, &call_with_any_feedback);
|
||||
|
||||
var_type_feedback.Bind(
|
||||
SmiConstant(BinaryOperationFeedback::kNumberOrOddball));
|
||||
Goto(&call_subtract_stub);
|
||||
}
|
||||
|
||||
Bind(&call_with_any_feedback);
|
||||
{
|
||||
var_type_feedback.Bind(SmiConstant(BinaryOperationFeedback::kAny));
|
||||
Goto(&call_subtract_stub);
|
||||
}
|
||||
|
||||
Bind(&call_subtract_stub);
|
||||
{
|
||||
Callable callable = CodeFactory::Subtract(isolate());
|
||||
var_result.Bind(CallStub(callable, context, lhs, rhs));
|
||||
Goto(&end);
|
||||
}
|
||||
|
||||
Bind(&end);
|
||||
UpdateFeedback(var_type_feedback.value(), feedback_vector, slot_id);
|
||||
return var_result.value();
|
||||
}
|
||||
|
||||
compiler::Node* BinaryOpAssembler::Generate_MultiplyWithFeedback(
|
||||
Node* context, Node* lhs, Node* rhs, Node* slot_id, Node* feedback_vector) {
|
||||
// Shared entry point for floating point multiplication.
|
||||
Label do_fmul(this), if_lhsisnotnumber(this, Label::kDeferred),
|
||||
check_rhsisoddball(this, Label::kDeferred),
|
||||
call_with_oddball_feedback(this), call_with_any_feedback(this),
|
||||
call_multiply_stub(this), end(this);
|
||||
Variable var_lhs_float64(this, MachineRepresentation::kFloat64),
|
||||
var_rhs_float64(this, MachineRepresentation::kFloat64),
|
||||
var_result(this, MachineRepresentation::kTagged),
|
||||
var_type_feedback(this, MachineRepresentation::kTaggedSigned);
|
||||
|
||||
Label lhs_is_smi(this), lhs_is_not_smi(this);
|
||||
Branch(TaggedIsSmi(lhs), &lhs_is_smi, &lhs_is_not_smi);
|
||||
|
||||
Bind(&lhs_is_smi);
|
||||
{
|
||||
Label rhs_is_smi(this), rhs_is_not_smi(this);
|
||||
Branch(TaggedIsSmi(rhs), &rhs_is_smi, &rhs_is_not_smi);
|
||||
|
||||
Bind(&rhs_is_smi);
|
||||
{
|
||||
// Both {lhs} and {rhs} are Smis. The result is not necessarily a smi,
|
||||
// in case of overflow.
|
||||
var_result.Bind(SmiMul(lhs, rhs));
|
||||
var_type_feedback.Bind(
|
||||
SelectSmiConstant(TaggedIsSmi(var_result.value()),
|
||||
BinaryOperationFeedback::kSignedSmall,
|
||||
BinaryOperationFeedback::kNumber));
|
||||
Goto(&end);
|
||||
}
|
||||
|
||||
Bind(&rhs_is_not_smi);
|
||||
{
|
||||
Node* rhs_map = LoadMap(rhs);
|
||||
|
||||
// Check if {rhs} is a HeapNumber.
|
||||
GotoIfNot(IsHeapNumberMap(rhs_map), &check_rhsisoddball);
|
||||
|
||||
// Convert {lhs} to a double and multiply it with the value of {rhs}.
|
||||
var_lhs_float64.Bind(SmiToFloat64(lhs));
|
||||
var_rhs_float64.Bind(LoadHeapNumberValue(rhs));
|
||||
Goto(&do_fmul);
|
||||
}
|
||||
}
|
||||
|
||||
Bind(&lhs_is_not_smi);
|
||||
{
|
||||
Node* lhs_map = LoadMap(lhs);
|
||||
|
||||
// Check if {lhs} is a HeapNumber.
|
||||
GotoIfNot(IsHeapNumberMap(lhs_map), &if_lhsisnotnumber);
|
||||
|
||||
// Check if {rhs} is a Smi.
|
||||
Label rhs_is_smi(this), rhs_is_not_smi(this);
|
||||
Branch(TaggedIsSmi(rhs), &rhs_is_smi, &rhs_is_not_smi);
|
||||
|
||||
Bind(&rhs_is_smi);
|
||||
{
|
||||
// Convert {rhs} to a double and multiply it with the value of {lhs}.
|
||||
var_lhs_float64.Bind(LoadHeapNumberValue(lhs));
|
||||
var_rhs_float64.Bind(SmiToFloat64(rhs));
|
||||
Goto(&do_fmul);
|
||||
}
|
||||
|
||||
Bind(&rhs_is_not_smi);
|
||||
{
|
||||
Node* rhs_map = LoadMap(rhs);
|
||||
|
||||
// Check if {rhs} is a HeapNumber.
|
||||
GotoIfNot(IsHeapNumberMap(rhs_map), &check_rhsisoddball);
|
||||
|
||||
// Both {lhs} and {rhs} are HeapNumbers. Load their values and
|
||||
// multiply them.
|
||||
var_lhs_float64.Bind(LoadHeapNumberValue(lhs));
|
||||
var_rhs_float64.Bind(LoadHeapNumberValue(rhs));
|
||||
Goto(&do_fmul);
|
||||
}
|
||||
}
|
||||
|
||||
Bind(&do_fmul);
|
||||
{
|
||||
var_type_feedback.Bind(SmiConstant(BinaryOperationFeedback::kNumber));
|
||||
Node* value = Float64Mul(var_lhs_float64.value(), var_rhs_float64.value());
|
||||
Node* result = AllocateHeapNumberWithValue(value);
|
||||
var_result.Bind(result);
|
||||
Goto(&end);
|
||||
}
|
||||
|
||||
Bind(&if_lhsisnotnumber);
|
||||
{
|
||||
// No checks on rhs are done yet. We just know lhs is not a number or Smi.
|
||||
// Check if lhs is an oddball.
|
||||
Node* lhs_instance_type = LoadInstanceType(lhs);
|
||||
Node* lhs_is_oddball =
|
||||
Word32Equal(lhs_instance_type, Int32Constant(ODDBALL_TYPE));
|
||||
GotoIfNot(lhs_is_oddball, &call_with_any_feedback);
|
||||
|
||||
GotoIf(TaggedIsSmi(rhs), &call_with_oddball_feedback);
|
||||
|
||||
// Load the map of the {rhs}.
|
||||
Node* rhs_map = LoadMap(rhs);
|
||||
|
||||
// Check if {rhs} is a HeapNumber.
|
||||
Branch(IsHeapNumberMap(rhs_map), &call_with_oddball_feedback,
|
||||
&check_rhsisoddball);
|
||||
}
|
||||
|
||||
Bind(&check_rhsisoddball);
|
||||
{
|
||||
// Check if rhs is an oddball. At this point we know lhs is either a
|
||||
// Smi or number or oddball and rhs is not a number or Smi.
|
||||
Node* rhs_instance_type = LoadInstanceType(rhs);
|
||||
Node* rhs_is_oddball =
|
||||
Word32Equal(rhs_instance_type, Int32Constant(ODDBALL_TYPE));
|
||||
Branch(rhs_is_oddball, &call_with_oddball_feedback,
|
||||
&call_with_any_feedback);
|
||||
}
|
||||
|
||||
Bind(&call_with_oddball_feedback);
|
||||
{
|
||||
var_type_feedback.Bind(
|
||||
SmiConstant(BinaryOperationFeedback::kNumberOrOddball));
|
||||
Goto(&call_multiply_stub);
|
||||
}
|
||||
|
||||
Bind(&call_with_any_feedback);
|
||||
{
|
||||
var_type_feedback.Bind(SmiConstant(BinaryOperationFeedback::kAny));
|
||||
Goto(&call_multiply_stub);
|
||||
}
|
||||
|
||||
Bind(&call_multiply_stub);
|
||||
{
|
||||
Callable callable = CodeFactory::Multiply(isolate());
|
||||
var_result.Bind(CallStub(callable, context, lhs, rhs));
|
||||
Goto(&end);
|
||||
}
|
||||
|
||||
Bind(&end);
|
||||
UpdateFeedback(var_type_feedback.value(), feedback_vector, slot_id);
|
||||
return var_result.value();
|
||||
}
|
||||
|
||||
compiler::Node* BinaryOpAssembler::Generate_DivideWithFeedback(
|
||||
Node* context, Node* dividend, Node* divisor, Node* slot_id,
|
||||
Node* feedback_vector) {
|
||||
// Shared entry point for floating point division.
|
||||
Label do_fdiv(this), dividend_is_not_number(this, Label::kDeferred),
|
||||
check_divisor_for_oddball(this, Label::kDeferred),
|
||||
call_with_oddball_feedback(this), call_with_any_feedback(this),
|
||||
call_divide_stub(this), end(this);
|
||||
Variable var_dividend_float64(this, MachineRepresentation::kFloat64),
|
||||
var_divisor_float64(this, MachineRepresentation::kFloat64),
|
||||
var_result(this, MachineRepresentation::kTagged),
|
||||
var_type_feedback(this, MachineRepresentation::kTaggedSigned);
|
||||
|
||||
Label dividend_is_smi(this), dividend_is_not_smi(this);
|
||||
Branch(TaggedIsSmi(dividend), ÷nd_is_smi, ÷nd_is_not_smi);
|
||||
|
||||
Bind(÷nd_is_smi);
|
||||
{
|
||||
Label divisor_is_smi(this), divisor_is_not_smi(this);
|
||||
Branch(TaggedIsSmi(divisor), &divisor_is_smi, &divisor_is_not_smi);
|
||||
|
||||
Bind(&divisor_is_smi);
|
||||
{
|
||||
Label bailout(this);
|
||||
|
||||
// Do floating point division if {divisor} is zero.
|
||||
GotoIf(WordEqual(divisor, SmiConstant(0)), &bailout);
|
||||
|
||||
// Do floating point division {dividend} is zero and {divisor} is
|
||||
// negative.
|
||||
Label dividend_is_zero(this), dividend_is_not_zero(this);
|
||||
Branch(WordEqual(dividend, SmiConstant(0)), ÷nd_is_zero,
|
||||
÷nd_is_not_zero);
|
||||
|
||||
Bind(÷nd_is_zero);
|
||||
{
|
||||
GotoIf(SmiLessThan(divisor, SmiConstant(0)), &bailout);
|
||||
Goto(÷nd_is_not_zero);
|
||||
}
|
||||
Bind(÷nd_is_not_zero);
|
||||
|
||||
Node* untagged_divisor = SmiToWord32(divisor);
|
||||
Node* untagged_dividend = SmiToWord32(dividend);
|
||||
|
||||
// Do floating point division if {dividend} is kMinInt (or kMinInt - 1
|
||||
// if the Smi size is 31) and {divisor} is -1.
|
||||
Label divisor_is_minus_one(this), divisor_is_not_minus_one(this);
|
||||
Branch(Word32Equal(untagged_divisor, Int32Constant(-1)),
|
||||
&divisor_is_minus_one, &divisor_is_not_minus_one);
|
||||
|
||||
Bind(&divisor_is_minus_one);
|
||||
{
|
||||
GotoIf(Word32Equal(untagged_dividend,
|
||||
Int32Constant(kSmiValueSize == 32 ? kMinInt
|
||||
: (kMinInt >> 1))),
|
||||
&bailout);
|
||||
Goto(&divisor_is_not_minus_one);
|
||||
}
|
||||
Bind(&divisor_is_not_minus_one);
|
||||
|
||||
Node* untagged_result = Int32Div(untagged_dividend, untagged_divisor);
|
||||
Node* truncated = Int32Mul(untagged_result, untagged_divisor);
|
||||
// Do floating point division if the remainder is not 0.
|
||||
GotoIf(Word32NotEqual(untagged_dividend, truncated), &bailout);
|
||||
var_type_feedback.Bind(
|
||||
SmiConstant(BinaryOperationFeedback::kSignedSmall));
|
||||
var_result.Bind(SmiFromWord32(untagged_result));
|
||||
Goto(&end);
|
||||
|
||||
// Bailout: convert {dividend} and {divisor} to double and do double
|
||||
// division.
|
||||
Bind(&bailout);
|
||||
{
|
||||
var_dividend_float64.Bind(SmiToFloat64(dividend));
|
||||
var_divisor_float64.Bind(SmiToFloat64(divisor));
|
||||
Goto(&do_fdiv);
|
||||
}
|
||||
}
|
||||
|
||||
Bind(&divisor_is_not_smi);
|
||||
{
|
||||
Node* divisor_map = LoadMap(divisor);
|
||||
|
||||
// Check if {divisor} is a HeapNumber.
|
||||
GotoIfNot(IsHeapNumberMap(divisor_map), &check_divisor_for_oddball);
|
||||
|
||||
// Convert {dividend} to a double and divide it with the value of
|
||||
// {divisor}.
|
||||
var_dividend_float64.Bind(SmiToFloat64(dividend));
|
||||
var_divisor_float64.Bind(LoadHeapNumberValue(divisor));
|
||||
Goto(&do_fdiv);
|
||||
}
|
||||
|
||||
Bind(÷nd_is_not_smi);
|
||||
{
|
||||
Node* dividend_map = LoadMap(dividend);
|
||||
|
||||
// Check if {dividend} is a HeapNumber.
|
||||
GotoIfNot(IsHeapNumberMap(dividend_map), ÷nd_is_not_number);
|
||||
|
||||
// Check if {divisor} is a Smi.
|
||||
Label divisor_is_smi(this), divisor_is_not_smi(this);
|
||||
Branch(TaggedIsSmi(divisor), &divisor_is_smi, &divisor_is_not_smi);
|
||||
|
||||
Bind(&divisor_is_smi);
|
||||
{
|
||||
// Convert {divisor} to a double and use it for a floating point
|
||||
// division.
|
||||
var_dividend_float64.Bind(LoadHeapNumberValue(dividend));
|
||||
var_divisor_float64.Bind(SmiToFloat64(divisor));
|
||||
Goto(&do_fdiv);
|
||||
}
|
||||
|
||||
Bind(&divisor_is_not_smi);
|
||||
{
|
||||
Node* divisor_map = LoadMap(divisor);
|
||||
|
||||
// Check if {divisor} is a HeapNumber.
|
||||
GotoIfNot(IsHeapNumberMap(divisor_map), &check_divisor_for_oddball);
|
||||
|
||||
// Both {dividend} and {divisor} are HeapNumbers. Load their values
|
||||
// and divide them.
|
||||
var_dividend_float64.Bind(LoadHeapNumberValue(dividend));
|
||||
var_divisor_float64.Bind(LoadHeapNumberValue(divisor));
|
||||
Goto(&do_fdiv);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Bind(&do_fdiv);
|
||||
{
|
||||
var_type_feedback.Bind(SmiConstant(BinaryOperationFeedback::kNumber));
|
||||
Node* value =
|
||||
Float64Div(var_dividend_float64.value(), var_divisor_float64.value());
|
||||
var_result.Bind(AllocateHeapNumberWithValue(value));
|
||||
Goto(&end);
|
||||
}
|
||||
|
||||
Bind(÷nd_is_not_number);
|
||||
{
|
||||
// We just know dividend is not a number or Smi. No checks on divisor yet.
|
||||
// Check if dividend is an oddball.
|
||||
Node* dividend_instance_type = LoadInstanceType(dividend);
|
||||
Node* dividend_is_oddball =
|
||||
Word32Equal(dividend_instance_type, Int32Constant(ODDBALL_TYPE));
|
||||
GotoIfNot(dividend_is_oddball, &call_with_any_feedback);
|
||||
|
||||
GotoIf(TaggedIsSmi(divisor), &call_with_oddball_feedback);
|
||||
|
||||
// Load the map of the {divisor}.
|
||||
Node* divisor_map = LoadMap(divisor);
|
||||
|
||||
// Check if {divisor} is a HeapNumber.
|
||||
Branch(IsHeapNumberMap(divisor_map), &call_with_oddball_feedback,
|
||||
&check_divisor_for_oddball);
|
||||
}
|
||||
|
||||
Bind(&check_divisor_for_oddball);
|
||||
{
|
||||
// Check if divisor is an oddball. At this point we know dividend is either
|
||||
// a Smi or number or oddball and divisor is not a number or Smi.
|
||||
Node* divisor_instance_type = LoadInstanceType(divisor);
|
||||
Node* divisor_is_oddball =
|
||||
Word32Equal(divisor_instance_type, Int32Constant(ODDBALL_TYPE));
|
||||
Branch(divisor_is_oddball, &call_with_oddball_feedback,
|
||||
&call_with_any_feedback);
|
||||
}
|
||||
|
||||
Bind(&call_with_oddball_feedback);
|
||||
{
|
||||
var_type_feedback.Bind(
|
||||
SmiConstant(BinaryOperationFeedback::kNumberOrOddball));
|
||||
Goto(&call_divide_stub);
|
||||
}
|
||||
|
||||
Bind(&call_with_any_feedback);
|
||||
{
|
||||
var_type_feedback.Bind(SmiConstant(BinaryOperationFeedback::kAny));
|
||||
Goto(&call_divide_stub);
|
||||
}
|
||||
|
||||
Bind(&call_divide_stub);
|
||||
{
|
||||
Callable callable = CodeFactory::Divide(isolate());
|
||||
var_result.Bind(CallStub(callable, context, dividend, divisor));
|
||||
Goto(&end);
|
||||
}
|
||||
|
||||
Bind(&end);
|
||||
UpdateFeedback(var_type_feedback.value(), feedback_vector, slot_id);
|
||||
return var_result.value();
|
||||
}
|
||||
|
||||
compiler::Node* BinaryOpAssembler::Generate_ModulusWithFeedback(
|
||||
Node* context, Node* dividend, Node* divisor, Node* slot_id,
|
||||
Node* feedback_vector) {
|
||||
// Shared entry point for floating point division.
|
||||
Label do_fmod(this), dividend_is_not_number(this, Label::kDeferred),
|
||||
check_divisor_for_oddball(this, Label::kDeferred),
|
||||
call_with_oddball_feedback(this), call_with_any_feedback(this),
|
||||
call_modulus_stub(this), end(this);
|
||||
Variable var_dividend_float64(this, MachineRepresentation::kFloat64),
|
||||
var_divisor_float64(this, MachineRepresentation::kFloat64),
|
||||
var_result(this, MachineRepresentation::kTagged),
|
||||
var_type_feedback(this, MachineRepresentation::kTaggedSigned);
|
||||
|
||||
Label dividend_is_smi(this), dividend_is_not_smi(this);
|
||||
Branch(TaggedIsSmi(dividend), ÷nd_is_smi, ÷nd_is_not_smi);
|
||||
|
||||
Bind(÷nd_is_smi);
|
||||
{
|
||||
Label divisor_is_smi(this), divisor_is_not_smi(this);
|
||||
Branch(TaggedIsSmi(divisor), &divisor_is_smi, &divisor_is_not_smi);
|
||||
|
||||
Bind(&divisor_is_smi);
|
||||
{
|
||||
var_result.Bind(SmiMod(dividend, divisor));
|
||||
var_type_feedback.Bind(
|
||||
SelectSmiConstant(TaggedIsSmi(var_result.value()),
|
||||
BinaryOperationFeedback::kSignedSmall,
|
||||
BinaryOperationFeedback::kNumber));
|
||||
Goto(&end);
|
||||
}
|
||||
|
||||
Bind(&divisor_is_not_smi);
|
||||
{
|
||||
Node* divisor_map = LoadMap(divisor);
|
||||
|
||||
// Check if {divisor} is a HeapNumber.
|
||||
GotoIfNot(IsHeapNumberMap(divisor_map), &check_divisor_for_oddball);
|
||||
|
||||
// Convert {dividend} to a double and divide it with the value of
|
||||
// {divisor}.
|
||||
var_dividend_float64.Bind(SmiToFloat64(dividend));
|
||||
var_divisor_float64.Bind(LoadHeapNumberValue(divisor));
|
||||
Goto(&do_fmod);
|
||||
}
|
||||
}
|
||||
|
||||
Bind(÷nd_is_not_smi);
|
||||
{
|
||||
Node* dividend_map = LoadMap(dividend);
|
||||
|
||||
// Check if {dividend} is a HeapNumber.
|
||||
GotoIfNot(IsHeapNumberMap(dividend_map), ÷nd_is_not_number);
|
||||
|
||||
// Check if {divisor} is a Smi.
|
||||
Label divisor_is_smi(this), divisor_is_not_smi(this);
|
||||
Branch(TaggedIsSmi(divisor), &divisor_is_smi, &divisor_is_not_smi);
|
||||
|
||||
Bind(&divisor_is_smi);
|
||||
{
|
||||
// Convert {divisor} to a double and use it for a floating point
|
||||
// division.
|
||||
var_dividend_float64.Bind(LoadHeapNumberValue(dividend));
|
||||
var_divisor_float64.Bind(SmiToFloat64(divisor));
|
||||
Goto(&do_fmod);
|
||||
}
|
||||
|
||||
Bind(&divisor_is_not_smi);
|
||||
{
|
||||
Node* divisor_map = LoadMap(divisor);
|
||||
|
||||
// Check if {divisor} is a HeapNumber.
|
||||
GotoIfNot(IsHeapNumberMap(divisor_map), &check_divisor_for_oddball);
|
||||
|
||||
// Both {dividend} and {divisor} are HeapNumbers. Load their values
|
||||
// and divide them.
|
||||
var_dividend_float64.Bind(LoadHeapNumberValue(dividend));
|
||||
var_divisor_float64.Bind(LoadHeapNumberValue(divisor));
|
||||
Goto(&do_fmod);
|
||||
}
|
||||
}
|
||||
|
||||
Bind(&do_fmod);
|
||||
{
|
||||
var_type_feedback.Bind(SmiConstant(BinaryOperationFeedback::kNumber));
|
||||
Node* value =
|
||||
Float64Mod(var_dividend_float64.value(), var_divisor_float64.value());
|
||||
var_result.Bind(AllocateHeapNumberWithValue(value));
|
||||
Goto(&end);
|
||||
}
|
||||
|
||||
Bind(÷nd_is_not_number);
|
||||
{
|
||||
// No checks on divisor yet. We just know dividend is not a number or Smi.
|
||||
// Check if dividend is an oddball.
|
||||
Node* dividend_instance_type = LoadInstanceType(dividend);
|
||||
Node* dividend_is_oddball =
|
||||
Word32Equal(dividend_instance_type, Int32Constant(ODDBALL_TYPE));
|
||||
GotoIfNot(dividend_is_oddball, &call_with_any_feedback);
|
||||
|
||||
GotoIf(TaggedIsSmi(divisor), &call_with_oddball_feedback);
|
||||
|
||||
// Load the map of the {divisor}.
|
||||
Node* divisor_map = LoadMap(divisor);
|
||||
|
||||
// Check if {divisor} is a HeapNumber.
|
||||
Branch(IsHeapNumberMap(divisor_map), &call_with_oddball_feedback,
|
||||
&check_divisor_for_oddball);
|
||||
}
|
||||
|
||||
Bind(&check_divisor_for_oddball);
|
||||
{
|
||||
// Check if divisor is an oddball. At this point we know dividend is either
|
||||
// a Smi or number or oddball and divisor is not a number or Smi.
|
||||
Node* divisor_instance_type = LoadInstanceType(divisor);
|
||||
Node* divisor_is_oddball =
|
||||
Word32Equal(divisor_instance_type, Int32Constant(ODDBALL_TYPE));
|
||||
Branch(divisor_is_oddball, &call_with_oddball_feedback,
|
||||
&call_with_any_feedback);
|
||||
}
|
||||
|
||||
Bind(&call_with_oddball_feedback);
|
||||
{
|
||||
var_type_feedback.Bind(
|
||||
SmiConstant(BinaryOperationFeedback::kNumberOrOddball));
|
||||
Goto(&call_modulus_stub);
|
||||
}
|
||||
|
||||
Bind(&call_with_any_feedback);
|
||||
{
|
||||
var_type_feedback.Bind(SmiConstant(BinaryOperationFeedback::kAny));
|
||||
Goto(&call_modulus_stub);
|
||||
}
|
||||
|
||||
Bind(&call_modulus_stub);
|
||||
{
|
||||
Callable callable = CodeFactory::Modulus(isolate());
|
||||
var_result.Bind(CallStub(callable, context, dividend, divisor));
|
||||
Goto(&end);
|
||||
}
|
||||
|
||||
Bind(&end);
|
||||
UpdateFeedback(var_type_feedback.value(), feedback_vector, slot_id);
|
||||
return var_result.value();
|
||||
}
|
||||
|
||||
#define BINARY_OP_STUB(Name) \
|
||||
TF_STUB(Name##Stub, BinaryOpAssembler) { \
|
||||
Node* context = Parameter(Descriptor::kContext); \
|
||||
Node* left = Parameter(Descriptor::kLeft); \
|
||||
Node* right = Parameter(Descriptor::kRight); \
|
||||
Node* slot = Parameter(Descriptor::kSlot); \
|
||||
Node* vector = Parameter(Descriptor::kVector); \
|
||||
Return(Generate_##Name(context, left, right, ChangeUint32ToWord(slot), \
|
||||
vector)); \
|
||||
} \
|
||||
compiler::Node* Name##Stub::Generate( \
|
||||
CodeStubAssembler* assembler, compiler::Node* left, \
|
||||
compiler::Node* right, compiler::Node* slot, \
|
||||
compiler::Node* feedback_vector, compiler::Node* context) { \
|
||||
BinaryOpAssembler basm(assembler->state()); \
|
||||
return basm.Generate_##Name(context, left, right, slot, feedback_vector); \
|
||||
}
|
||||
|
||||
// TODO(ishell): don't have to be stubs. Interpreter can use BinaryOpICAssembler
|
||||
// directly.
|
||||
BINARY_OP_STUB(AddWithFeedback)
|
||||
BINARY_OP_STUB(SubtractWithFeedback)
|
||||
BINARY_OP_STUB(MultiplyWithFeedback)
|
||||
BINARY_OP_STUB(DivideWithFeedback)
|
||||
BINARY_OP_STUB(ModulusWithFeedback)
|
||||
#undef BINARY_OP_STUB
|
||||
|
||||
// TODO(ishell): move to builtins.
|
||||
TF_STUB(NumberToStringStub, CodeStubAssembler) {
|
||||
Node* context = Parameter(Descriptor::kContext);
|
||||
|
@ -74,11 +74,6 @@ class Node;
|
||||
V(CreateAllocationSite) \
|
||||
V(CreateWeakCell) \
|
||||
V(StringLength) \
|
||||
V(AddWithFeedback) \
|
||||
V(SubtractWithFeedback) \
|
||||
V(MultiplyWithFeedback) \
|
||||
V(DivideWithFeedback) \
|
||||
V(ModulusWithFeedback) \
|
||||
V(InternalArrayNoArgumentConstructor) \
|
||||
V(InternalArraySingleArgumentConstructor) \
|
||||
V(ElementsTransitionAndStore) \
|
||||
@ -343,15 +338,6 @@ class CodeStub BASE_EMBEDDED {
|
||||
void GenerateAssembly(compiler::CodeAssemblerState* state) const override; \
|
||||
DEFINE_CODE_STUB(NAME, SUPER)
|
||||
|
||||
#define DEFINE_TURBOFAN_BINARY_OP_CODE_STUB_WITH_FEEDBACK(NAME, SUPER) \
|
||||
public: \
|
||||
static compiler::Node* Generate( \
|
||||
CodeStubAssembler* assembler, compiler::Node* left, \
|
||||
compiler::Node* right, compiler::Node* slot_id, \
|
||||
compiler::Node* feedback_vector, compiler::Node* context); \
|
||||
void GenerateAssembly(compiler::CodeAssemblerState* state) const override; \
|
||||
DEFINE_CODE_STUB(NAME, SUPER)
|
||||
|
||||
#define DEFINE_TURBOFAN_UNARY_OP_CODE_STUB_WITH_FEEDBACK(NAME, SUPER) \
|
||||
public: \
|
||||
static compiler::Node* Generate( \
|
||||
@ -645,55 +631,6 @@ class StringLengthStub : public TurboFanCodeStub {
|
||||
DEFINE_TURBOFAN_CODE_STUB(StringLength, TurboFanCodeStub);
|
||||
};
|
||||
|
||||
class AddWithFeedbackStub final : public TurboFanCodeStub {
|
||||
public:
|
||||
explicit AddWithFeedbackStub(Isolate* isolate) : TurboFanCodeStub(isolate) {}
|
||||
|
||||
DEFINE_CALL_INTERFACE_DESCRIPTOR(BinaryOpWithVector);
|
||||
DEFINE_TURBOFAN_BINARY_OP_CODE_STUB_WITH_FEEDBACK(AddWithFeedback,
|
||||
TurboFanCodeStub);
|
||||
};
|
||||
|
||||
class SubtractWithFeedbackStub final : public TurboFanCodeStub {
|
||||
public:
|
||||
explicit SubtractWithFeedbackStub(Isolate* isolate)
|
||||
: TurboFanCodeStub(isolate) {}
|
||||
|
||||
DEFINE_CALL_INTERFACE_DESCRIPTOR(BinaryOpWithVector);
|
||||
DEFINE_TURBOFAN_BINARY_OP_CODE_STUB_WITH_FEEDBACK(SubtractWithFeedback,
|
||||
TurboFanCodeStub);
|
||||
};
|
||||
|
||||
class MultiplyWithFeedbackStub final : public TurboFanCodeStub {
|
||||
public:
|
||||
explicit MultiplyWithFeedbackStub(Isolate* isolate)
|
||||
: TurboFanCodeStub(isolate) {}
|
||||
|
||||
DEFINE_CALL_INTERFACE_DESCRIPTOR(BinaryOpWithVector);
|
||||
DEFINE_TURBOFAN_BINARY_OP_CODE_STUB_WITH_FEEDBACK(MultiplyWithFeedback,
|
||||
TurboFanCodeStub);
|
||||
};
|
||||
|
||||
class DivideWithFeedbackStub final : public TurboFanCodeStub {
|
||||
public:
|
||||
explicit DivideWithFeedbackStub(Isolate* isolate)
|
||||
: TurboFanCodeStub(isolate) {}
|
||||
|
||||
DEFINE_CALL_INTERFACE_DESCRIPTOR(BinaryOpWithVector);
|
||||
DEFINE_TURBOFAN_BINARY_OP_CODE_STUB_WITH_FEEDBACK(DivideWithFeedback,
|
||||
TurboFanCodeStub);
|
||||
};
|
||||
|
||||
class ModulusWithFeedbackStub final : public TurboFanCodeStub {
|
||||
public:
|
||||
explicit ModulusWithFeedbackStub(Isolate* isolate)
|
||||
: TurboFanCodeStub(isolate) {}
|
||||
|
||||
DEFINE_CALL_INTERFACE_DESCRIPTOR(BinaryOpWithVector);
|
||||
DEFINE_TURBOFAN_BINARY_OP_CODE_STUB_WITH_FEEDBACK(ModulusWithFeedback,
|
||||
TurboFanCodeStub);
|
||||
};
|
||||
|
||||
class StoreInterceptorStub : public TurboFanCodeStub {
|
||||
public:
|
||||
explicit StoreInterceptorStub(Isolate* isolate) : TurboFanCodeStub(isolate) {}
|
||||
|
865
src/ic/binary-op-assembler.cc
Normal file
865
src/ic/binary-op-assembler.cc
Normal file
@ -0,0 +1,865 @@
|
||||
// Copyright 2016 the V8 project authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "src/ic/binary-op-assembler.h"
|
||||
|
||||
#include "src/globals.h"
|
||||
|
||||
namespace v8 {
|
||||
namespace internal {
|
||||
|
||||
using compiler::Node;
|
||||
|
||||
Node* BinaryOpAssembler::Generate_AddWithFeedback(Node* context, Node* lhs,
|
||||
Node* rhs, Node* slot_id,
|
||||
Node* feedback_vector) {
|
||||
// Shared entry for floating point addition.
|
||||
Label do_fadd(this), if_lhsisnotnumber(this, Label::kDeferred),
|
||||
check_rhsisoddball(this, Label::kDeferred),
|
||||
call_with_oddball_feedback(this), call_with_any_feedback(this),
|
||||
call_add_stub(this), end(this);
|
||||
Variable var_fadd_lhs(this, MachineRepresentation::kFloat64),
|
||||
var_fadd_rhs(this, MachineRepresentation::kFloat64),
|
||||
var_type_feedback(this, MachineRepresentation::kTaggedSigned),
|
||||
var_result(this, MachineRepresentation::kTagged);
|
||||
|
||||
// Check if the {lhs} is a Smi or a HeapObject.
|
||||
Label if_lhsissmi(this), if_lhsisnotsmi(this);
|
||||
Branch(TaggedIsSmi(lhs), &if_lhsissmi, &if_lhsisnotsmi);
|
||||
|
||||
Bind(&if_lhsissmi);
|
||||
{
|
||||
// Check if the {rhs} is also a Smi.
|
||||
Label if_rhsissmi(this), if_rhsisnotsmi(this);
|
||||
Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi);
|
||||
|
||||
Bind(&if_rhsissmi);
|
||||
{
|
||||
// Try fast Smi addition first.
|
||||
Node* pair = IntPtrAddWithOverflow(BitcastTaggedToWord(lhs),
|
||||
BitcastTaggedToWord(rhs));
|
||||
Node* overflow = Projection(1, pair);
|
||||
|
||||
// Check if the Smi additon overflowed.
|
||||
Label if_overflow(this), if_notoverflow(this);
|
||||
Branch(overflow, &if_overflow, &if_notoverflow);
|
||||
|
||||
Bind(&if_overflow);
|
||||
{
|
||||
var_fadd_lhs.Bind(SmiToFloat64(lhs));
|
||||
var_fadd_rhs.Bind(SmiToFloat64(rhs));
|
||||
Goto(&do_fadd);
|
||||
}
|
||||
|
||||
Bind(&if_notoverflow);
|
||||
{
|
||||
var_type_feedback.Bind(
|
||||
SmiConstant(BinaryOperationFeedback::kSignedSmall));
|
||||
var_result.Bind(BitcastWordToTaggedSigned(Projection(0, pair)));
|
||||
Goto(&end);
|
||||
}
|
||||
}
|
||||
|
||||
Bind(&if_rhsisnotsmi);
|
||||
{
|
||||
// Load the map of {rhs}.
|
||||
Node* rhs_map = LoadMap(rhs);
|
||||
|
||||
// Check if the {rhs} is a HeapNumber.
|
||||
GotoIfNot(IsHeapNumberMap(rhs_map), &check_rhsisoddball);
|
||||
|
||||
var_fadd_lhs.Bind(SmiToFloat64(lhs));
|
||||
var_fadd_rhs.Bind(LoadHeapNumberValue(rhs));
|
||||
Goto(&do_fadd);
|
||||
}
|
||||
}
|
||||
|
||||
Bind(&if_lhsisnotsmi);
|
||||
{
|
||||
// Load the map of {lhs}.
|
||||
Node* lhs_map = LoadMap(lhs);
|
||||
|
||||
// Check if {lhs} is a HeapNumber.
|
||||
GotoIfNot(IsHeapNumberMap(lhs_map), &if_lhsisnotnumber);
|
||||
|
||||
// Check if the {rhs} is Smi.
|
||||
Label if_rhsissmi(this), if_rhsisnotsmi(this);
|
||||
Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi);
|
||||
|
||||
Bind(&if_rhsissmi);
|
||||
{
|
||||
var_fadd_lhs.Bind(LoadHeapNumberValue(lhs));
|
||||
var_fadd_rhs.Bind(SmiToFloat64(rhs));
|
||||
Goto(&do_fadd);
|
||||
}
|
||||
|
||||
Bind(&if_rhsisnotsmi);
|
||||
{
|
||||
// Load the map of {rhs}.
|
||||
Node* rhs_map = LoadMap(rhs);
|
||||
|
||||
// Check if the {rhs} is a HeapNumber.
|
||||
GotoIfNot(IsHeapNumberMap(rhs_map), &check_rhsisoddball);
|
||||
|
||||
var_fadd_lhs.Bind(LoadHeapNumberValue(lhs));
|
||||
var_fadd_rhs.Bind(LoadHeapNumberValue(rhs));
|
||||
Goto(&do_fadd);
|
||||
}
|
||||
}
|
||||
|
||||
Bind(&do_fadd);
|
||||
{
|
||||
var_type_feedback.Bind(SmiConstant(BinaryOperationFeedback::kNumber));
|
||||
Node* value = Float64Add(var_fadd_lhs.value(), var_fadd_rhs.value());
|
||||
Node* result = AllocateHeapNumberWithValue(value);
|
||||
var_result.Bind(result);
|
||||
Goto(&end);
|
||||
}
|
||||
|
||||
Bind(&if_lhsisnotnumber);
|
||||
{
|
||||
// No checks on rhs are done yet. We just know lhs is not a number or Smi.
|
||||
Label if_lhsisoddball(this), if_lhsisnotoddball(this);
|
||||
Node* lhs_instance_type = LoadInstanceType(lhs);
|
||||
Node* lhs_is_oddball =
|
||||
Word32Equal(lhs_instance_type, Int32Constant(ODDBALL_TYPE));
|
||||
Branch(lhs_is_oddball, &if_lhsisoddball, &if_lhsisnotoddball);
|
||||
|
||||
Bind(&if_lhsisoddball);
|
||||
{
|
||||
GotoIf(TaggedIsSmi(rhs), &call_with_oddball_feedback);
|
||||
|
||||
// Load the map of the {rhs}.
|
||||
Node* rhs_map = LoadMap(rhs);
|
||||
|
||||
// Check if {rhs} is a HeapNumber.
|
||||
Branch(IsHeapNumberMap(rhs_map), &call_with_oddball_feedback,
|
||||
&check_rhsisoddball);
|
||||
}
|
||||
|
||||
Bind(&if_lhsisnotoddball);
|
||||
{
|
||||
// Exit unless {lhs} is a string
|
||||
GotoIfNot(IsStringInstanceType(lhs_instance_type),
|
||||
&call_with_any_feedback);
|
||||
|
||||
// Check if the {rhs} is a smi, and exit the string check early if it is.
|
||||
GotoIf(TaggedIsSmi(rhs), &call_with_any_feedback);
|
||||
|
||||
Node* rhs_instance_type = LoadInstanceType(rhs);
|
||||
|
||||
// Exit unless {rhs} is a string. Since {lhs} is a string we no longer
|
||||
// need an Oddball check.
|
||||
GotoIfNot(IsStringInstanceType(rhs_instance_type),
|
||||
&call_with_any_feedback);
|
||||
|
||||
var_type_feedback.Bind(SmiConstant(BinaryOperationFeedback::kString));
|
||||
Callable callable =
|
||||
CodeFactory::StringAdd(isolate(), STRING_ADD_CHECK_NONE, NOT_TENURED);
|
||||
var_result.Bind(CallStub(callable, context, lhs, rhs));
|
||||
|
||||
Goto(&end);
|
||||
}
|
||||
}
|
||||
|
||||
Bind(&check_rhsisoddball);
|
||||
{
|
||||
// Check if rhs is an oddball. At this point we know lhs is either a
|
||||
// Smi or number or oddball and rhs is not a number or Smi.
|
||||
Node* rhs_instance_type = LoadInstanceType(rhs);
|
||||
Node* rhs_is_oddball =
|
||||
Word32Equal(rhs_instance_type, Int32Constant(ODDBALL_TYPE));
|
||||
Branch(rhs_is_oddball, &call_with_oddball_feedback,
|
||||
&call_with_any_feedback);
|
||||
}
|
||||
|
||||
Bind(&call_with_oddball_feedback);
|
||||
{
|
||||
var_type_feedback.Bind(
|
||||
SmiConstant(BinaryOperationFeedback::kNumberOrOddball));
|
||||
Goto(&call_add_stub);
|
||||
}
|
||||
|
||||
Bind(&call_with_any_feedback);
|
||||
{
|
||||
var_type_feedback.Bind(SmiConstant(BinaryOperationFeedback::kAny));
|
||||
Goto(&call_add_stub);
|
||||
}
|
||||
|
||||
Bind(&call_add_stub);
|
||||
{
|
||||
Callable callable = CodeFactory::Add(isolate());
|
||||
var_result.Bind(CallStub(callable, context, lhs, rhs));
|
||||
Goto(&end);
|
||||
}
|
||||
|
||||
Bind(&end);
|
||||
UpdateFeedback(var_type_feedback.value(), feedback_vector, slot_id);
|
||||
return var_result.value();
|
||||
}
|
||||
|
||||
Node* BinaryOpAssembler::Generate_SubtractWithFeedback(Node* context, Node* lhs,
|
||||
Node* rhs, Node* slot_id,
|
||||
Node* feedback_vector) {
|
||||
// Shared entry for floating point subtraction.
|
||||
Label do_fsub(this), end(this), call_subtract_stub(this),
|
||||
if_lhsisnotnumber(this), check_rhsisoddball(this),
|
||||
call_with_any_feedback(this);
|
||||
Variable var_fsub_lhs(this, MachineRepresentation::kFloat64),
|
||||
var_fsub_rhs(this, MachineRepresentation::kFloat64),
|
||||
var_type_feedback(this, MachineRepresentation::kTaggedSigned),
|
||||
var_result(this, MachineRepresentation::kTagged);
|
||||
|
||||
// Check if the {lhs} is a Smi or a HeapObject.
|
||||
Label if_lhsissmi(this), if_lhsisnotsmi(this);
|
||||
Branch(TaggedIsSmi(lhs), &if_lhsissmi, &if_lhsisnotsmi);
|
||||
|
||||
Bind(&if_lhsissmi);
|
||||
{
|
||||
// Check if the {rhs} is also a Smi.
|
||||
Label if_rhsissmi(this), if_rhsisnotsmi(this);
|
||||
Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi);
|
||||
|
||||
Bind(&if_rhsissmi);
|
||||
{
|
||||
// Try a fast Smi subtraction first.
|
||||
Node* pair = IntPtrSubWithOverflow(BitcastTaggedToWord(lhs),
|
||||
BitcastTaggedToWord(rhs));
|
||||
Node* overflow = Projection(1, pair);
|
||||
|
||||
// Check if the Smi subtraction overflowed.
|
||||
Label if_overflow(this), if_notoverflow(this);
|
||||
Branch(overflow, &if_overflow, &if_notoverflow);
|
||||
|
||||
Bind(&if_overflow);
|
||||
{
|
||||
// lhs, rhs - smi and result - number. combined - number.
|
||||
// The result doesn't fit into Smi range.
|
||||
var_fsub_lhs.Bind(SmiToFloat64(lhs));
|
||||
var_fsub_rhs.Bind(SmiToFloat64(rhs));
|
||||
Goto(&do_fsub);
|
||||
}
|
||||
|
||||
Bind(&if_notoverflow);
|
||||
// lhs, rhs, result smi. combined - smi.
|
||||
var_type_feedback.Bind(
|
||||
SmiConstant(BinaryOperationFeedback::kSignedSmall));
|
||||
var_result.Bind(BitcastWordToTaggedSigned(Projection(0, pair)));
|
||||
Goto(&end);
|
||||
}
|
||||
|
||||
Bind(&if_rhsisnotsmi);
|
||||
{
|
||||
// Load the map of the {rhs}.
|
||||
Node* rhs_map = LoadMap(rhs);
|
||||
|
||||
// Check if {rhs} is a HeapNumber.
|
||||
GotoIfNot(IsHeapNumberMap(rhs_map), &check_rhsisoddball);
|
||||
|
||||
// Perform a floating point subtraction.
|
||||
var_fsub_lhs.Bind(SmiToFloat64(lhs));
|
||||
var_fsub_rhs.Bind(LoadHeapNumberValue(rhs));
|
||||
Goto(&do_fsub);
|
||||
}
|
||||
}
|
||||
|
||||
Bind(&if_lhsisnotsmi);
|
||||
{
|
||||
// Load the map of the {lhs}.
|
||||
Node* lhs_map = LoadMap(lhs);
|
||||
|
||||
// Check if the {lhs} is a HeapNumber.
|
||||
GotoIfNot(IsHeapNumberMap(lhs_map), &if_lhsisnotnumber);
|
||||
|
||||
// Check if the {rhs} is a Smi.
|
||||
Label if_rhsissmi(this), if_rhsisnotsmi(this);
|
||||
Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi);
|
||||
|
||||
Bind(&if_rhsissmi);
|
||||
{
|
||||
// Perform a floating point subtraction.
|
||||
var_fsub_lhs.Bind(LoadHeapNumberValue(lhs));
|
||||
var_fsub_rhs.Bind(SmiToFloat64(rhs));
|
||||
Goto(&do_fsub);
|
||||
}
|
||||
|
||||
Bind(&if_rhsisnotsmi);
|
||||
{
|
||||
// Load the map of the {rhs}.
|
||||
Node* rhs_map = LoadMap(rhs);
|
||||
|
||||
// Check if the {rhs} is a HeapNumber.
|
||||
GotoIfNot(IsHeapNumberMap(rhs_map), &check_rhsisoddball);
|
||||
|
||||
// Perform a floating point subtraction.
|
||||
var_fsub_lhs.Bind(LoadHeapNumberValue(lhs));
|
||||
var_fsub_rhs.Bind(LoadHeapNumberValue(rhs));
|
||||
Goto(&do_fsub);
|
||||
}
|
||||
}
|
||||
|
||||
Bind(&do_fsub);
|
||||
{
|
||||
var_type_feedback.Bind(SmiConstant(BinaryOperationFeedback::kNumber));
|
||||
Node* lhs_value = var_fsub_lhs.value();
|
||||
Node* rhs_value = var_fsub_rhs.value();
|
||||
Node* value = Float64Sub(lhs_value, rhs_value);
|
||||
var_result.Bind(AllocateHeapNumberWithValue(value));
|
||||
Goto(&end);
|
||||
}
|
||||
|
||||
Bind(&if_lhsisnotnumber);
|
||||
{
|
||||
// No checks on rhs are done yet. We just know lhs is not a number or Smi.
|
||||
// Check if lhs is an oddball.
|
||||
Node* lhs_instance_type = LoadInstanceType(lhs);
|
||||
Node* lhs_is_oddball =
|
||||
Word32Equal(lhs_instance_type, Int32Constant(ODDBALL_TYPE));
|
||||
GotoIfNot(lhs_is_oddball, &call_with_any_feedback);
|
||||
|
||||
Label if_rhsissmi(this), if_rhsisnotsmi(this);
|
||||
Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi);
|
||||
|
||||
Bind(&if_rhsissmi);
|
||||
{
|
||||
var_type_feedback.Bind(
|
||||
SmiConstant(BinaryOperationFeedback::kNumberOrOddball));
|
||||
Goto(&call_subtract_stub);
|
||||
}
|
||||
|
||||
Bind(&if_rhsisnotsmi);
|
||||
{
|
||||
// Load the map of the {rhs}.
|
||||
Node* rhs_map = LoadMap(rhs);
|
||||
|
||||
// Check if {rhs} is a HeapNumber.
|
||||
GotoIfNot(IsHeapNumberMap(rhs_map), &check_rhsisoddball);
|
||||
|
||||
var_type_feedback.Bind(
|
||||
SmiConstant(BinaryOperationFeedback::kNumberOrOddball));
|
||||
Goto(&call_subtract_stub);
|
||||
}
|
||||
}
|
||||
|
||||
Bind(&check_rhsisoddball);
|
||||
{
|
||||
// Check if rhs is an oddball. At this point we know lhs is either a
|
||||
// Smi or number or oddball and rhs is not a number or Smi.
|
||||
Node* rhs_instance_type = LoadInstanceType(rhs);
|
||||
Node* rhs_is_oddball =
|
||||
Word32Equal(rhs_instance_type, Int32Constant(ODDBALL_TYPE));
|
||||
GotoIfNot(rhs_is_oddball, &call_with_any_feedback);
|
||||
|
||||
var_type_feedback.Bind(
|
||||
SmiConstant(BinaryOperationFeedback::kNumberOrOddball));
|
||||
Goto(&call_subtract_stub);
|
||||
}
|
||||
|
||||
Bind(&call_with_any_feedback);
|
||||
{
|
||||
var_type_feedback.Bind(SmiConstant(BinaryOperationFeedback::kAny));
|
||||
Goto(&call_subtract_stub);
|
||||
}
|
||||
|
||||
Bind(&call_subtract_stub);
|
||||
{
|
||||
Callable callable = CodeFactory::Subtract(isolate());
|
||||
var_result.Bind(CallStub(callable, context, lhs, rhs));
|
||||
Goto(&end);
|
||||
}
|
||||
|
||||
Bind(&end);
|
||||
UpdateFeedback(var_type_feedback.value(), feedback_vector, slot_id);
|
||||
return var_result.value();
|
||||
}
|
||||
|
||||
Node* BinaryOpAssembler::Generate_MultiplyWithFeedback(Node* context, Node* lhs,
|
||||
Node* rhs, Node* slot_id,
|
||||
Node* feedback_vector) {
|
||||
// Shared entry point for floating point multiplication.
|
||||
Label do_fmul(this), if_lhsisnotnumber(this, Label::kDeferred),
|
||||
check_rhsisoddball(this, Label::kDeferred),
|
||||
call_with_oddball_feedback(this), call_with_any_feedback(this),
|
||||
call_multiply_stub(this), end(this);
|
||||
Variable var_lhs_float64(this, MachineRepresentation::kFloat64),
|
||||
var_rhs_float64(this, MachineRepresentation::kFloat64),
|
||||
var_result(this, MachineRepresentation::kTagged),
|
||||
var_type_feedback(this, MachineRepresentation::kTaggedSigned);
|
||||
|
||||
Label lhs_is_smi(this), lhs_is_not_smi(this);
|
||||
Branch(TaggedIsSmi(lhs), &lhs_is_smi, &lhs_is_not_smi);
|
||||
|
||||
Bind(&lhs_is_smi);
|
||||
{
|
||||
Label rhs_is_smi(this), rhs_is_not_smi(this);
|
||||
Branch(TaggedIsSmi(rhs), &rhs_is_smi, &rhs_is_not_smi);
|
||||
|
||||
Bind(&rhs_is_smi);
|
||||
{
|
||||
// Both {lhs} and {rhs} are Smis. The result is not necessarily a smi,
|
||||
// in case of overflow.
|
||||
var_result.Bind(SmiMul(lhs, rhs));
|
||||
var_type_feedback.Bind(
|
||||
SelectSmiConstant(TaggedIsSmi(var_result.value()),
|
||||
BinaryOperationFeedback::kSignedSmall,
|
||||
BinaryOperationFeedback::kNumber));
|
||||
Goto(&end);
|
||||
}
|
||||
|
||||
Bind(&rhs_is_not_smi);
|
||||
{
|
||||
Node* rhs_map = LoadMap(rhs);
|
||||
|
||||
// Check if {rhs} is a HeapNumber.
|
||||
GotoIfNot(IsHeapNumberMap(rhs_map), &check_rhsisoddball);
|
||||
|
||||
// Convert {lhs} to a double and multiply it with the value of {rhs}.
|
||||
var_lhs_float64.Bind(SmiToFloat64(lhs));
|
||||
var_rhs_float64.Bind(LoadHeapNumberValue(rhs));
|
||||
Goto(&do_fmul);
|
||||
}
|
||||
}
|
||||
|
||||
Bind(&lhs_is_not_smi);
|
||||
{
|
||||
Node* lhs_map = LoadMap(lhs);
|
||||
|
||||
// Check if {lhs} is a HeapNumber.
|
||||
GotoIfNot(IsHeapNumberMap(lhs_map), &if_lhsisnotnumber);
|
||||
|
||||
// Check if {rhs} is a Smi.
|
||||
Label rhs_is_smi(this), rhs_is_not_smi(this);
|
||||
Branch(TaggedIsSmi(rhs), &rhs_is_smi, &rhs_is_not_smi);
|
||||
|
||||
Bind(&rhs_is_smi);
|
||||
{
|
||||
// Convert {rhs} to a double and multiply it with the value of {lhs}.
|
||||
var_lhs_float64.Bind(LoadHeapNumberValue(lhs));
|
||||
var_rhs_float64.Bind(SmiToFloat64(rhs));
|
||||
Goto(&do_fmul);
|
||||
}
|
||||
|
||||
Bind(&rhs_is_not_smi);
|
||||
{
|
||||
Node* rhs_map = LoadMap(rhs);
|
||||
|
||||
// Check if {rhs} is a HeapNumber.
|
||||
GotoIfNot(IsHeapNumberMap(rhs_map), &check_rhsisoddball);
|
||||
|
||||
// Both {lhs} and {rhs} are HeapNumbers. Load their values and
|
||||
// multiply them.
|
||||
var_lhs_float64.Bind(LoadHeapNumberValue(lhs));
|
||||
var_rhs_float64.Bind(LoadHeapNumberValue(rhs));
|
||||
Goto(&do_fmul);
|
||||
}
|
||||
}
|
||||
|
||||
Bind(&do_fmul);
|
||||
{
|
||||
var_type_feedback.Bind(SmiConstant(BinaryOperationFeedback::kNumber));
|
||||
Node* value = Float64Mul(var_lhs_float64.value(), var_rhs_float64.value());
|
||||
Node* result = AllocateHeapNumberWithValue(value);
|
||||
var_result.Bind(result);
|
||||
Goto(&end);
|
||||
}
|
||||
|
||||
Bind(&if_lhsisnotnumber);
|
||||
{
|
||||
// No checks on rhs are done yet. We just know lhs is not a number or Smi.
|
||||
// Check if lhs is an oddball.
|
||||
Node* lhs_instance_type = LoadInstanceType(lhs);
|
||||
Node* lhs_is_oddball =
|
||||
Word32Equal(lhs_instance_type, Int32Constant(ODDBALL_TYPE));
|
||||
GotoIfNot(lhs_is_oddball, &call_with_any_feedback);
|
||||
|
||||
GotoIf(TaggedIsSmi(rhs), &call_with_oddball_feedback);
|
||||
|
||||
// Load the map of the {rhs}.
|
||||
Node* rhs_map = LoadMap(rhs);
|
||||
|
||||
// Check if {rhs} is a HeapNumber.
|
||||
Branch(IsHeapNumberMap(rhs_map), &call_with_oddball_feedback,
|
||||
&check_rhsisoddball);
|
||||
}
|
||||
|
||||
Bind(&check_rhsisoddball);
|
||||
{
|
||||
// Check if rhs is an oddball. At this point we know lhs is either a
|
||||
// Smi or number or oddball and rhs is not a number or Smi.
|
||||
Node* rhs_instance_type = LoadInstanceType(rhs);
|
||||
Node* rhs_is_oddball =
|
||||
Word32Equal(rhs_instance_type, Int32Constant(ODDBALL_TYPE));
|
||||
Branch(rhs_is_oddball, &call_with_oddball_feedback,
|
||||
&call_with_any_feedback);
|
||||
}
|
||||
|
||||
Bind(&call_with_oddball_feedback);
|
||||
{
|
||||
var_type_feedback.Bind(
|
||||
SmiConstant(BinaryOperationFeedback::kNumberOrOddball));
|
||||
Goto(&call_multiply_stub);
|
||||
}
|
||||
|
||||
Bind(&call_with_any_feedback);
|
||||
{
|
||||
var_type_feedback.Bind(SmiConstant(BinaryOperationFeedback::kAny));
|
||||
Goto(&call_multiply_stub);
|
||||
}
|
||||
|
||||
Bind(&call_multiply_stub);
|
||||
{
|
||||
Callable callable = CodeFactory::Multiply(isolate());
|
||||
var_result.Bind(CallStub(callable, context, lhs, rhs));
|
||||
Goto(&end);
|
||||
}
|
||||
|
||||
Bind(&end);
|
||||
UpdateFeedback(var_type_feedback.value(), feedback_vector, slot_id);
|
||||
return var_result.value();
|
||||
}
|
||||
|
||||
Node* BinaryOpAssembler::Generate_DivideWithFeedback(Node* context,
|
||||
Node* dividend,
|
||||
Node* divisor,
|
||||
Node* slot_id,
|
||||
Node* feedback_vector) {
|
||||
// Shared entry point for floating point division.
|
||||
Label do_fdiv(this), dividend_is_not_number(this, Label::kDeferred),
|
||||
check_divisor_for_oddball(this, Label::kDeferred),
|
||||
call_with_oddball_feedback(this), call_with_any_feedback(this),
|
||||
call_divide_stub(this), end(this);
|
||||
Variable var_dividend_float64(this, MachineRepresentation::kFloat64),
|
||||
var_divisor_float64(this, MachineRepresentation::kFloat64),
|
||||
var_result(this, MachineRepresentation::kTagged),
|
||||
var_type_feedback(this, MachineRepresentation::kTaggedSigned);
|
||||
|
||||
Label dividend_is_smi(this), dividend_is_not_smi(this);
|
||||
Branch(TaggedIsSmi(dividend), ÷nd_is_smi, ÷nd_is_not_smi);
|
||||
|
||||
Bind(÷nd_is_smi);
|
||||
{
|
||||
Label divisor_is_smi(this), divisor_is_not_smi(this);
|
||||
Branch(TaggedIsSmi(divisor), &divisor_is_smi, &divisor_is_not_smi);
|
||||
|
||||
Bind(&divisor_is_smi);
|
||||
{
|
||||
Label bailout(this);
|
||||
|
||||
// Do floating point division if {divisor} is zero.
|
||||
GotoIf(WordEqual(divisor, SmiConstant(0)), &bailout);
|
||||
|
||||
// Do floating point division {dividend} is zero and {divisor} is
|
||||
// negative.
|
||||
Label dividend_is_zero(this), dividend_is_not_zero(this);
|
||||
Branch(WordEqual(dividend, SmiConstant(0)), ÷nd_is_zero,
|
||||
÷nd_is_not_zero);
|
||||
|
||||
Bind(÷nd_is_zero);
|
||||
{
|
||||
GotoIf(SmiLessThan(divisor, SmiConstant(0)), &bailout);
|
||||
Goto(÷nd_is_not_zero);
|
||||
}
|
||||
Bind(÷nd_is_not_zero);
|
||||
|
||||
Node* untagged_divisor = SmiToWord32(divisor);
|
||||
Node* untagged_dividend = SmiToWord32(dividend);
|
||||
|
||||
// Do floating point division if {dividend} is kMinInt (or kMinInt - 1
|
||||
// if the Smi size is 31) and {divisor} is -1.
|
||||
Label divisor_is_minus_one(this), divisor_is_not_minus_one(this);
|
||||
Branch(Word32Equal(untagged_divisor, Int32Constant(-1)),
|
||||
&divisor_is_minus_one, &divisor_is_not_minus_one);
|
||||
|
||||
Bind(&divisor_is_minus_one);
|
||||
{
|
||||
GotoIf(Word32Equal(untagged_dividend,
|
||||
Int32Constant(kSmiValueSize == 32 ? kMinInt
|
||||
: (kMinInt >> 1))),
|
||||
&bailout);
|
||||
Goto(&divisor_is_not_minus_one);
|
||||
}
|
||||
Bind(&divisor_is_not_minus_one);
|
||||
|
||||
Node* untagged_result = Int32Div(untagged_dividend, untagged_divisor);
|
||||
Node* truncated = Int32Mul(untagged_result, untagged_divisor);
|
||||
// Do floating point division if the remainder is not 0.
|
||||
GotoIf(Word32NotEqual(untagged_dividend, truncated), &bailout);
|
||||
var_type_feedback.Bind(
|
||||
SmiConstant(BinaryOperationFeedback::kSignedSmall));
|
||||
var_result.Bind(SmiFromWord32(untagged_result));
|
||||
Goto(&end);
|
||||
|
||||
// Bailout: convert {dividend} and {divisor} to double and do double
|
||||
// division.
|
||||
Bind(&bailout);
|
||||
{
|
||||
var_dividend_float64.Bind(SmiToFloat64(dividend));
|
||||
var_divisor_float64.Bind(SmiToFloat64(divisor));
|
||||
Goto(&do_fdiv);
|
||||
}
|
||||
}
|
||||
|
||||
Bind(&divisor_is_not_smi);
|
||||
{
|
||||
Node* divisor_map = LoadMap(divisor);
|
||||
|
||||
// Check if {divisor} is a HeapNumber.
|
||||
GotoIfNot(IsHeapNumberMap(divisor_map), &check_divisor_for_oddball);
|
||||
|
||||
// Convert {dividend} to a double and divide it with the value of
|
||||
// {divisor}.
|
||||
var_dividend_float64.Bind(SmiToFloat64(dividend));
|
||||
var_divisor_float64.Bind(LoadHeapNumberValue(divisor));
|
||||
Goto(&do_fdiv);
|
||||
}
|
||||
|
||||
Bind(÷nd_is_not_smi);
|
||||
{
|
||||
Node* dividend_map = LoadMap(dividend);
|
||||
|
||||
// Check if {dividend} is a HeapNumber.
|
||||
GotoIfNot(IsHeapNumberMap(dividend_map), ÷nd_is_not_number);
|
||||
|
||||
// Check if {divisor} is a Smi.
|
||||
Label divisor_is_smi(this), divisor_is_not_smi(this);
|
||||
Branch(TaggedIsSmi(divisor), &divisor_is_smi, &divisor_is_not_smi);
|
||||
|
||||
Bind(&divisor_is_smi);
|
||||
{
|
||||
// Convert {divisor} to a double and use it for a floating point
|
||||
// division.
|
||||
var_dividend_float64.Bind(LoadHeapNumberValue(dividend));
|
||||
var_divisor_float64.Bind(SmiToFloat64(divisor));
|
||||
Goto(&do_fdiv);
|
||||
}
|
||||
|
||||
Bind(&divisor_is_not_smi);
|
||||
{
|
||||
Node* divisor_map = LoadMap(divisor);
|
||||
|
||||
// Check if {divisor} is a HeapNumber.
|
||||
GotoIfNot(IsHeapNumberMap(divisor_map), &check_divisor_for_oddball);
|
||||
|
||||
// Both {dividend} and {divisor} are HeapNumbers. Load their values
|
||||
// and divide them.
|
||||
var_dividend_float64.Bind(LoadHeapNumberValue(dividend));
|
||||
var_divisor_float64.Bind(LoadHeapNumberValue(divisor));
|
||||
Goto(&do_fdiv);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Bind(&do_fdiv);
|
||||
{
|
||||
var_type_feedback.Bind(SmiConstant(BinaryOperationFeedback::kNumber));
|
||||
Node* value =
|
||||
Float64Div(var_dividend_float64.value(), var_divisor_float64.value());
|
||||
var_result.Bind(AllocateHeapNumberWithValue(value));
|
||||
Goto(&end);
|
||||
}
|
||||
|
||||
Bind(÷nd_is_not_number);
|
||||
{
|
||||
// We just know dividend is not a number or Smi. No checks on divisor yet.
|
||||
// Check if dividend is an oddball.
|
||||
Node* dividend_instance_type = LoadInstanceType(dividend);
|
||||
Node* dividend_is_oddball =
|
||||
Word32Equal(dividend_instance_type, Int32Constant(ODDBALL_TYPE));
|
||||
GotoIfNot(dividend_is_oddball, &call_with_any_feedback);
|
||||
|
||||
GotoIf(TaggedIsSmi(divisor), &call_with_oddball_feedback);
|
||||
|
||||
// Load the map of the {divisor}.
|
||||
Node* divisor_map = LoadMap(divisor);
|
||||
|
||||
// Check if {divisor} is a HeapNumber.
|
||||
Branch(IsHeapNumberMap(divisor_map), &call_with_oddball_feedback,
|
||||
&check_divisor_for_oddball);
|
||||
}
|
||||
|
||||
Bind(&check_divisor_for_oddball);
|
||||
{
|
||||
// Check if divisor is an oddball. At this point we know dividend is either
|
||||
// a Smi or number or oddball and divisor is not a number or Smi.
|
||||
Node* divisor_instance_type = LoadInstanceType(divisor);
|
||||
Node* divisor_is_oddball =
|
||||
Word32Equal(divisor_instance_type, Int32Constant(ODDBALL_TYPE));
|
||||
Branch(divisor_is_oddball, &call_with_oddball_feedback,
|
||||
&call_with_any_feedback);
|
||||
}
|
||||
|
||||
Bind(&call_with_oddball_feedback);
|
||||
{
|
||||
var_type_feedback.Bind(
|
||||
SmiConstant(BinaryOperationFeedback::kNumberOrOddball));
|
||||
Goto(&call_divide_stub);
|
||||
}
|
||||
|
||||
Bind(&call_with_any_feedback);
|
||||
{
|
||||
var_type_feedback.Bind(SmiConstant(BinaryOperationFeedback::kAny));
|
||||
Goto(&call_divide_stub);
|
||||
}
|
||||
|
||||
Bind(&call_divide_stub);
|
||||
{
|
||||
Callable callable = CodeFactory::Divide(isolate());
|
||||
var_result.Bind(CallStub(callable, context, dividend, divisor));
|
||||
Goto(&end);
|
||||
}
|
||||
|
||||
Bind(&end);
|
||||
UpdateFeedback(var_type_feedback.value(), feedback_vector, slot_id);
|
||||
return var_result.value();
|
||||
}
|
||||
|
||||
Node* BinaryOpAssembler::Generate_ModulusWithFeedback(Node* context,
|
||||
Node* dividend,
|
||||
Node* divisor,
|
||||
Node* slot_id,
|
||||
Node* feedback_vector) {
|
||||
// Shared entry point for floating point division.
|
||||
Label do_fmod(this), dividend_is_not_number(this, Label::kDeferred),
|
||||
check_divisor_for_oddball(this, Label::kDeferred),
|
||||
call_with_oddball_feedback(this), call_with_any_feedback(this),
|
||||
call_modulus_stub(this), end(this);
|
||||
Variable var_dividend_float64(this, MachineRepresentation::kFloat64),
|
||||
var_divisor_float64(this, MachineRepresentation::kFloat64),
|
||||
var_result(this, MachineRepresentation::kTagged),
|
||||
var_type_feedback(this, MachineRepresentation::kTaggedSigned);
|
||||
|
||||
Label dividend_is_smi(this), dividend_is_not_smi(this);
|
||||
Branch(TaggedIsSmi(dividend), ÷nd_is_smi, ÷nd_is_not_smi);
|
||||
|
||||
Bind(÷nd_is_smi);
|
||||
{
|
||||
Label divisor_is_smi(this), divisor_is_not_smi(this);
|
||||
Branch(TaggedIsSmi(divisor), &divisor_is_smi, &divisor_is_not_smi);
|
||||
|
||||
Bind(&divisor_is_smi);
|
||||
{
|
||||
var_result.Bind(SmiMod(dividend, divisor));
|
||||
var_type_feedback.Bind(
|
||||
SelectSmiConstant(TaggedIsSmi(var_result.value()),
|
||||
BinaryOperationFeedback::kSignedSmall,
|
||||
BinaryOperationFeedback::kNumber));
|
||||
Goto(&end);
|
||||
}
|
||||
|
||||
Bind(&divisor_is_not_smi);
|
||||
{
|
||||
Node* divisor_map = LoadMap(divisor);
|
||||
|
||||
// Check if {divisor} is a HeapNumber.
|
||||
GotoIfNot(IsHeapNumberMap(divisor_map), &check_divisor_for_oddball);
|
||||
|
||||
// Convert {dividend} to a double and divide it with the value of
|
||||
// {divisor}.
|
||||
var_dividend_float64.Bind(SmiToFloat64(dividend));
|
||||
var_divisor_float64.Bind(LoadHeapNumberValue(divisor));
|
||||
Goto(&do_fmod);
|
||||
}
|
||||
}
|
||||
|
||||
Bind(÷nd_is_not_smi);
|
||||
{
|
||||
Node* dividend_map = LoadMap(dividend);
|
||||
|
||||
// Check if {dividend} is a HeapNumber.
|
||||
GotoIfNot(IsHeapNumberMap(dividend_map), ÷nd_is_not_number);
|
||||
|
||||
// Check if {divisor} is a Smi.
|
||||
Label divisor_is_smi(this), divisor_is_not_smi(this);
|
||||
Branch(TaggedIsSmi(divisor), &divisor_is_smi, &divisor_is_not_smi);
|
||||
|
||||
Bind(&divisor_is_smi);
|
||||
{
|
||||
// Convert {divisor} to a double and use it for a floating point
|
||||
// division.
|
||||
var_dividend_float64.Bind(LoadHeapNumberValue(dividend));
|
||||
var_divisor_float64.Bind(SmiToFloat64(divisor));
|
||||
Goto(&do_fmod);
|
||||
}
|
||||
|
||||
Bind(&divisor_is_not_smi);
|
||||
{
|
||||
Node* divisor_map = LoadMap(divisor);
|
||||
|
||||
// Check if {divisor} is a HeapNumber.
|
||||
GotoIfNot(IsHeapNumberMap(divisor_map), &check_divisor_for_oddball);
|
||||
|
||||
// Both {dividend} and {divisor} are HeapNumbers. Load their values
|
||||
// and divide them.
|
||||
var_dividend_float64.Bind(LoadHeapNumberValue(dividend));
|
||||
var_divisor_float64.Bind(LoadHeapNumberValue(divisor));
|
||||
Goto(&do_fmod);
|
||||
}
|
||||
}
|
||||
|
||||
Bind(&do_fmod);
|
||||
{
|
||||
var_type_feedback.Bind(SmiConstant(BinaryOperationFeedback::kNumber));
|
||||
Node* value =
|
||||
Float64Mod(var_dividend_float64.value(), var_divisor_float64.value());
|
||||
var_result.Bind(AllocateHeapNumberWithValue(value));
|
||||
Goto(&end);
|
||||
}
|
||||
|
||||
Bind(÷nd_is_not_number);
|
||||
{
|
||||
// No checks on divisor yet. We just know dividend is not a number or Smi.
|
||||
// Check if dividend is an oddball.
|
||||
Node* dividend_instance_type = LoadInstanceType(dividend);
|
||||
Node* dividend_is_oddball =
|
||||
Word32Equal(dividend_instance_type, Int32Constant(ODDBALL_TYPE));
|
||||
GotoIfNot(dividend_is_oddball, &call_with_any_feedback);
|
||||
|
||||
GotoIf(TaggedIsSmi(divisor), &call_with_oddball_feedback);
|
||||
|
||||
// Load the map of the {divisor}.
|
||||
Node* divisor_map = LoadMap(divisor);
|
||||
|
||||
// Check if {divisor} is a HeapNumber.
|
||||
Branch(IsHeapNumberMap(divisor_map), &call_with_oddball_feedback,
|
||||
&check_divisor_for_oddball);
|
||||
}
|
||||
|
||||
Bind(&check_divisor_for_oddball);
|
||||
{
|
||||
// Check if divisor is an oddball. At this point we know dividend is either
|
||||
// a Smi or number or oddball and divisor is not a number or Smi.
|
||||
Node* divisor_instance_type = LoadInstanceType(divisor);
|
||||
Node* divisor_is_oddball =
|
||||
Word32Equal(divisor_instance_type, Int32Constant(ODDBALL_TYPE));
|
||||
Branch(divisor_is_oddball, &call_with_oddball_feedback,
|
||||
&call_with_any_feedback);
|
||||
}
|
||||
|
||||
Bind(&call_with_oddball_feedback);
|
||||
{
|
||||
var_type_feedback.Bind(
|
||||
SmiConstant(BinaryOperationFeedback::kNumberOrOddball));
|
||||
Goto(&call_modulus_stub);
|
||||
}
|
||||
|
||||
Bind(&call_with_any_feedback);
|
||||
{
|
||||
var_type_feedback.Bind(SmiConstant(BinaryOperationFeedback::kAny));
|
||||
Goto(&call_modulus_stub);
|
||||
}
|
||||
|
||||
Bind(&call_modulus_stub);
|
||||
{
|
||||
Callable callable = CodeFactory::Modulus(isolate());
|
||||
var_result.Bind(CallStub(callable, context, dividend, divisor));
|
||||
Goto(&end);
|
||||
}
|
||||
|
||||
Bind(&end);
|
||||
UpdateFeedback(var_type_feedback.value(), feedback_vector, slot_id);
|
||||
return var_result.value();
|
||||
}
|
||||
|
||||
} // namespace internal
|
||||
} // namespace v8
|
45
src/ic/binary-op-assembler.h
Normal file
45
src/ic/binary-op-assembler.h
Normal file
@ -0,0 +1,45 @@
|
||||
// Copyright 2017 the V8 project authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#ifndef V8_SRC_IC_BINARY_OP_ASSEMBLER_H_
|
||||
#define V8_SRC_IC_BINARY_OP_ASSEMBLER_H_
|
||||
|
||||
#include "src/code-stub-assembler.h"
|
||||
|
||||
namespace v8 {
|
||||
namespace internal {
|
||||
|
||||
namespace compiler {
|
||||
class CodeAssemblerState;
|
||||
}
|
||||
|
||||
class BinaryOpAssembler : public CodeStubAssembler {
|
||||
public:
|
||||
typedef compiler::Node Node;
|
||||
|
||||
explicit BinaryOpAssembler(compiler::CodeAssemblerState* state)
|
||||
: CodeStubAssembler(state) {}
|
||||
|
||||
Node* Generate_AddWithFeedback(Node* context, Node* lhs, Node* rhs,
|
||||
Node* slot_id, Node* feedback_vector);
|
||||
|
||||
Node* Generate_SubtractWithFeedback(Node* context, Node* lhs, Node* rhs,
|
||||
Node* slot_id, Node* feedback_vector);
|
||||
|
||||
Node* Generate_MultiplyWithFeedback(Node* context, Node* lhs, Node* rhs,
|
||||
Node* slot_id, Node* feedback_vector);
|
||||
|
||||
Node* Generate_DivideWithFeedback(Node* context, Node* dividend,
|
||||
Node* divisor, Node* slot_id,
|
||||
Node* feedback_vector);
|
||||
|
||||
Node* Generate_ModulusWithFeedback(Node* context, Node* dividend,
|
||||
Node* divisor, Node* slot_id,
|
||||
Node* feedback_vector);
|
||||
};
|
||||
|
||||
} // namespace internal
|
||||
} // namespace v8
|
||||
|
||||
#endif // V8_SRC_IC_BINARY_OP_ASSEMBLER_H_
|
@ -14,6 +14,7 @@
|
||||
#include "src/code-factory.h"
|
||||
#include "src/factory.h"
|
||||
#include "src/ic/accessor-assembler.h"
|
||||
#include "src/ic/binary-op-assembler.h"
|
||||
#include "src/interpreter/bytecode-flags.h"
|
||||
#include "src/interpreter/bytecodes.h"
|
||||
#include "src/interpreter/interpreter-assembler.h"
|
||||
@ -39,9 +40,14 @@ class InterpreterGenerator {
|
||||
#undef DECLARE_BYTECODE_HANDLER_GENERATOR
|
||||
|
||||
private:
|
||||
typedef Node* (BinaryOpAssembler::*BinaryOpGenerator)(Node* context,
|
||||
Node* left, Node* right,
|
||||
Node* slot,
|
||||
Node* vector);
|
||||
|
||||
// Generates code to perform the binary operation via |Generator|.
|
||||
template <class Generator>
|
||||
void DoBinaryOpWithFeedback(InterpreterAssembler* assembler);
|
||||
void DoBinaryOpWithFeedback(InterpreterAssembler* assembler,
|
||||
BinaryOpGenerator generator);
|
||||
|
||||
// Generates code to perform the comparison via |Generator| while gathering
|
||||
// type feedback.
|
||||
@ -963,17 +969,18 @@ void InterpreterGenerator::DoCompareOp(Token::Value compare_op,
|
||||
__ Dispatch();
|
||||
}
|
||||
|
||||
template <class Generator>
|
||||
void InterpreterGenerator::DoBinaryOpWithFeedback(
|
||||
InterpreterAssembler* assembler) {
|
||||
InterpreterAssembler* assembler, BinaryOpGenerator generator) {
|
||||
Node* reg_index = __ BytecodeOperandReg(0);
|
||||
Node* lhs = __ LoadRegister(reg_index);
|
||||
Node* rhs = __ GetAccumulator();
|
||||
Node* context = __ GetContext();
|
||||
Node* slot_index = __ BytecodeOperandIdx(1);
|
||||
Node* feedback_vector = __ LoadFeedbackVector();
|
||||
Node* result = Generator::Generate(assembler, lhs, rhs, slot_index,
|
||||
feedback_vector, context);
|
||||
|
||||
BinaryOpAssembler binop_asm(assembler->state());
|
||||
Node* result =
|
||||
(binop_asm.*generator)(context, lhs, rhs, slot_index, feedback_vector);
|
||||
__ SetAccumulator(result);
|
||||
__ Dispatch();
|
||||
}
|
||||
@ -1171,35 +1178,40 @@ void InterpreterGenerator::DoCompareOpWithFeedback(
|
||||
//
|
||||
// Add register <src> to accumulator.
|
||||
void InterpreterGenerator::DoAdd(InterpreterAssembler* assembler) {
|
||||
DoBinaryOpWithFeedback<AddWithFeedbackStub>(assembler);
|
||||
DoBinaryOpWithFeedback(assembler,
|
||||
&BinaryOpAssembler::Generate_AddWithFeedback);
|
||||
}
|
||||
|
||||
// Sub <src>
|
||||
//
|
||||
// Subtract register <src> from accumulator.
|
||||
void InterpreterGenerator::DoSub(InterpreterAssembler* assembler) {
|
||||
DoBinaryOpWithFeedback<SubtractWithFeedbackStub>(assembler);
|
||||
DoBinaryOpWithFeedback(assembler,
|
||||
&BinaryOpAssembler::Generate_SubtractWithFeedback);
|
||||
}
|
||||
|
||||
// Mul <src>
|
||||
//
|
||||
// Multiply accumulator by register <src>.
|
||||
void InterpreterGenerator::DoMul(InterpreterAssembler* assembler) {
|
||||
DoBinaryOpWithFeedback<MultiplyWithFeedbackStub>(assembler);
|
||||
DoBinaryOpWithFeedback(assembler,
|
||||
&BinaryOpAssembler::Generate_MultiplyWithFeedback);
|
||||
}
|
||||
|
||||
// Div <src>
|
||||
//
|
||||
// Divide register <src> by accumulator.
|
||||
void InterpreterGenerator::DoDiv(InterpreterAssembler* assembler) {
|
||||
DoBinaryOpWithFeedback<DivideWithFeedbackStub>(assembler);
|
||||
DoBinaryOpWithFeedback(assembler,
|
||||
&BinaryOpAssembler::Generate_DivideWithFeedback);
|
||||
}
|
||||
|
||||
// Mod <src>
|
||||
//
|
||||
// Modulo register <src> by accumulator.
|
||||
void InterpreterGenerator::DoMod(InterpreterAssembler* assembler) {
|
||||
DoBinaryOpWithFeedback<ModulusWithFeedbackStub>(assembler);
|
||||
DoBinaryOpWithFeedback(assembler,
|
||||
&BinaryOpAssembler::Generate_ModulusWithFeedback);
|
||||
}
|
||||
|
||||
void InterpreterGenerator::DoBitwiseBinaryOp(Token::Value bitwise_op,
|
||||
@ -1365,12 +1377,10 @@ void InterpreterGenerator::DoAddSmi(InterpreterAssembler* assembler) {
|
||||
__ Bind(&slowpath);
|
||||
{
|
||||
Node* context = __ GetContext();
|
||||
AddWithFeedbackStub stub(__ isolate());
|
||||
Callable callable =
|
||||
Callable(stub.GetCode(), AddWithFeedbackStub::Descriptor(__ isolate()));
|
||||
var_result.Bind(__ CallStub(callable, context, left, right,
|
||||
__ TruncateWordToWord32(slot_index),
|
||||
feedback_vector));
|
||||
// TODO(ishell): pass slot as word-size value.
|
||||
var_result.Bind(__ CallBuiltin(Builtins::kAddWithFeedback, context, left,
|
||||
right, __ TruncateWordToWord32(slot_index),
|
||||
feedback_vector));
|
||||
__ Goto(&end);
|
||||
}
|
||||
__ Bind(&end);
|
||||
@ -1419,12 +1429,10 @@ void InterpreterGenerator::DoSubSmi(InterpreterAssembler* assembler) {
|
||||
__ Bind(&slowpath);
|
||||
{
|
||||
Node* context = __ GetContext();
|
||||
SubtractWithFeedbackStub stub(__ isolate());
|
||||
Callable callable = Callable(
|
||||
stub.GetCode(), SubtractWithFeedbackStub::Descriptor(__ isolate()));
|
||||
var_result.Bind(__ CallStub(callable, context, left, right,
|
||||
__ TruncateWordToWord32(slot_index),
|
||||
feedback_vector));
|
||||
// TODO(ishell): pass slot as word-size value.
|
||||
var_result.Bind(
|
||||
__ CallBuiltin(Builtins::kSubtractWithFeedback, context, left, right,
|
||||
__ TruncateWordToWord32(slot_index), feedback_vector));
|
||||
__ Goto(&end);
|
||||
}
|
||||
__ Bind(&end);
|
||||
|
@ -998,6 +998,8 @@
|
||||
'ic/access-compiler.h',
|
||||
'ic/accessor-assembler.cc',
|
||||
'ic/accessor-assembler.h',
|
||||
'ic/binary-op-assembler.cc',
|
||||
'ic/binary-op-assembler.h',
|
||||
'ic/call-optimization.cc',
|
||||
'ic/call-optimization.h',
|
||||
'ic/handler-compiler.cc',
|
||||
|
Loading…
Reference in New Issue
Block a user