Fix array concat to follow the specification in the presence of element getters.

Also fix issue 1175 and 1177.

BUG=v8:1175

Review URL: http://codereview.chromium.org/6568007

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@6934 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
This commit is contained in:
lrn@chromium.org 2011-02-24 14:00:52 +00:00
parent ef0f8985ed
commit 68f1c73a06
6 changed files with 495 additions and 321 deletions

View File

@ -418,7 +418,6 @@ function ArrayPush() {
function ArrayConcat(arg1) { // length == 1 function ArrayConcat(arg1) { // length == 1
// TODO: can we just use arguments?
var arg_count = %_ArgumentsLength(); var arg_count = %_ArgumentsLength();
var arrays = new $Array(1 + arg_count); var arrays = new $Array(1 + arg_count);
arrays[0] = this; arrays[0] = this;

View File

@ -36,14 +36,14 @@
namespace v8 { namespace v8 {
namespace internal { namespace internal {
template<class T> template<typename T>
Handle<T>::Handle(T* obj) { Handle<T>::Handle(T* obj) {
ASSERT(!obj->IsFailure()); ASSERT(!obj->IsFailure());
location_ = HandleScope::CreateHandle(obj); location_ = HandleScope::CreateHandle(obj);
} }
template <class T> template <typename T>
inline T* Handle<T>::operator*() const { inline T* Handle<T>::operator*() const {
ASSERT(location_ != NULL); ASSERT(location_ != NULL);
ASSERT(reinterpret_cast<Address>(*location_) != kHandleZapValue); ASSERT(reinterpret_cast<Address>(*location_) != kHandleZapValue);
@ -51,6 +51,16 @@ inline T* Handle<T>::operator*() const {
} }
template <typename T>
HandleCell<T>::HandleCell(T* value)
: location_(HandleScope::CreateHandle(value)) { }
template <typename T>
HandleCell<T>::HandleCell(Handle<T> value)
: location_(HandleScope::CreateHandle(*value)) { }
#ifdef DEBUG #ifdef DEBUG
inline NoHandleAllocation::NoHandleAllocation() { inline NoHandleAllocation::NoHandleAllocation() {
v8::ImplementationUtilities::HandleScopeData* current = v8::ImplementationUtilities::HandleScopeData* current =

View File

@ -39,7 +39,7 @@ namespace internal {
// Handles are only valid within a HandleScope. // Handles are only valid within a HandleScope.
// When a handle is created for an object a cell is allocated in the heap. // When a handle is created for an object a cell is allocated in the heap.
template<class T> template<typename T>
class Handle { class Handle {
public: public:
INLINE(explicit Handle(T** location)) { location_ = location; } INLINE(explicit Handle(T** location)) { location_ = location; }
@ -93,6 +93,55 @@ class Handle {
}; };
// A handle-scope based variable. The value stored in the variable can change
// over time. The value stored in the variable at any time is a root
// for garbage collection.
// The variable is backed by the current HandleScope.
template <typename T>
class HandleCell {
public:
// Create a new HandleCell holding the given value.
explicit HandleCell(Handle<T> value);
explicit HandleCell(T* value);
// Create an alias of an existing HandleCell.
explicit HandleCell(const HandleCell<T>& value)
: location_(value.location_) { }
INLINE(T* operator->() const) { return operator*(); }
INLINE(T* operator*() const) {
return *location_;
}
INLINE(void operator=(T* value)) {
*location_ = value;
}
INLINE(void operator=(Handle<T> value)) {
*location_ = *value;
}
INLINE(void operator=(const HandleCell<T>& value)) {
*location_ = *value.location_;
}
// Extract the value of the variable and cast it to a give type.
// This is typically used for calling methods on a more specialized type.
template <typename S>
inline S* cast() {
S::cast(*location_);
return *reinterpret_cast<S**>(location_);
}
Handle<T> ToHandle() const {
return Handle<T>(*location_);
}
private:
// Prevent implicit constructor from being created.
HandleCell();
T** location_;
};
// A stack-allocated class that governs a number of local handles. // A stack-allocated class that governs a number of local handles.
// After a handle scope has been created, all local handles will be // After a handle scope has been created, all local handles will be
// allocated within that handle scope until either the handle scope is // allocated within that handle scope until either the handle scope is

View File

@ -769,6 +769,10 @@ bool Object::HasSpecificClassOf(String* name) {
MaybeObject* Object::GetElement(uint32_t index) { MaybeObject* Object::GetElement(uint32_t index) {
// GetElement can trigger a getter which can cause allocation.
// This was not always the case. This ASSERT is here to catch
// leftover incorrect uses.
ASSERT(Heap::IsAllocationAllowed());
return GetElementWithReceiver(this, index); return GetElementWithReceiver(this, index);
} }

View File

@ -8028,377 +8028,448 @@ static MaybeObject* Runtime_PushIfAbsent(Arguments args) {
class ArrayConcatVisitor { class ArrayConcatVisitor {
public: public:
ArrayConcatVisitor(Handle<FixedArray> storage, ArrayConcatVisitor(Handle<FixedArray> storage,
uint32_t index_limit,
bool fast_elements) : bool fast_elements) :
storage_(storage), index_limit_(index_limit), storage_(storage),
index_offset_(0), fast_elements_(fast_elements) { } index_offset_(0u),
fast_elements_(fast_elements) { }
void visit(uint32_t i, Handle<Object> elm) { void visit(uint32_t i, Handle<Object> elm) {
if (i >= index_limit_ - index_offset_) return; if (i >= JSObject::kMaxElementCount - index_offset_) return;
uint32_t index = index_offset_ + i; uint32_t index = index_offset_ + i;
if (fast_elements_) { if (fast_elements_) {
ASSERT(index < static_cast<uint32_t>(storage_->length())); if (index < static_cast<uint32_t>(storage_->length())) {
storage_->set(index, *elm); storage_->set(index, *elm);
return;
} else { }
Handle<NumberDictionary> dict = Handle<NumberDictionary>::cast(storage_); // Our initial estimate of length was foiled, possibly by
Handle<NumberDictionary> result = // getters on the arrays increasing the length of later arrays
Factory::DictionaryAtNumberPut(dict, index, elm); // during iteration.
if (!result.is_identical_to(dict)) // This shouldn't happen in anything but pathological cases.
storage_ = result; SetDictionaryMode(index);
// Fall-through to dictionary mode.
} }
} ASSERT(!fast_elements_);
Handle<NumberDictionary> dict(storage_.cast<NumberDictionary>());
Handle<NumberDictionary> result =
Factory::DictionaryAtNumberPut(dict, index, elm);
if (!result.is_identical_to(dict)) {
storage_ = Handle<FixedArray>::cast(result);
}
}
void increase_index_offset(uint32_t delta) { void increase_index_offset(uint32_t delta) {
if (index_limit_ - index_offset_ < delta) { if (JSObject::kMaxElementCount - index_offset_ < delta) {
index_offset_ = index_limit_; index_offset_ = JSObject::kMaxElementCount;
} else { } else {
index_offset_ += delta; index_offset_ += delta;
} }
} }
Handle<FixedArray> storage() { return storage_; } Handle<JSArray> ToArray() {
Handle<JSArray> array = Factory::NewJSArray(0);
Handle<Object> length =
Factory::NewNumber(static_cast<double>(index_offset_));
Handle<Map> map;
if (fast_elements_) {
map = Factory::GetFastElementsMap(Handle<Map>(array->map()));
} else {
map = Factory::GetSlowElementsMap(Handle<Map>(array->map()));
}
array->set_map(*map);
array->set_length(*length);
array->set_elements(*storage_);
return array;
}
private: private:
Handle<FixedArray> storage_; // Convert storage to dictionary mode.
// Limit on the accepted indices. Elements with indices larger than the void SetDictionaryMode(uint32_t index) {
// limit are ignored by the visitor. ASSERT(fast_elements_);
uint32_t index_limit_; Handle<FixedArray> current_storage(storage_.ToHandle());
// Index after last seen index. Always less than or equal to index_limit_. HandleCell<NumberDictionary> slow_storage(
Factory::NewNumberDictionary(current_storage->length()));
uint32_t current_length = static_cast<uint32_t>(current_storage->length());
for (uint32_t i = 0; i < current_length; i++) {
HandleScope loop_scope;
Handle<Object> element(current_storage->get(i));
if (!element->IsTheHole()) {
slow_storage =
Factory::DictionaryAtNumberPut(slow_storage.ToHandle(), i, element);
}
}
storage_ = slow_storage.cast<FixedArray>();
fast_elements_ = false;
}
HandleCell<FixedArray> storage_;
// Index after last seen index. Always less than or equal to
// JSObject::kMaxElementCount.
uint32_t index_offset_; uint32_t index_offset_;
const bool fast_elements_; bool fast_elements_;
}; };
template<class ExternalArrayClass, class ElementType> static uint32_t EstimateElementCount(Handle<JSArray> array) {
static uint32_t IterateExternalArrayElements(Handle<JSObject> receiver, uint32_t length = static_cast<uint32_t>(array->length()->Number());
bool elements_are_ints, int element_count = 0;
bool elements_are_guaranteed_smis, switch (array->GetElementsKind()) {
uint32_t range,
ArrayConcatVisitor* visitor) {
Handle<ExternalArrayClass> array(
ExternalArrayClass::cast(receiver->elements()));
uint32_t len = Min(static_cast<uint32_t>(array->length()), range);
if (visitor != NULL) {
if (elements_are_ints) {
if (elements_are_guaranteed_smis) {
for (uint32_t j = 0; j < len; j++) {
Handle<Smi> e(Smi::FromInt(static_cast<int>(array->get(j))));
visitor->visit(j, e);
}
} else {
for (uint32_t j = 0; j < len; j++) {
int64_t val = static_cast<int64_t>(array->get(j));
if (Smi::IsValid(static_cast<intptr_t>(val))) {
Handle<Smi> e(Smi::FromInt(static_cast<int>(val)));
visitor->visit(j, e);
} else {
Handle<Object> e =
Factory::NewNumber(static_cast<ElementType>(val));
visitor->visit(j, e);
}
}
}
} else {
for (uint32_t j = 0; j < len; j++) {
Handle<Object> e = Factory::NewNumber(array->get(j));
visitor->visit(j, e);
}
}
}
return len;
}
/**
* A helper function that visits elements of a JSObject. Only elements
* whose index between 0 and range (exclusive) are visited.
*
* If the third parameter, visitor, is not NULL, the visitor is called
* with parameters, 'visitor_index_offset + element index' and the element.
*
* It returns the number of visisted elements.
*/
static uint32_t IterateElements(Handle<JSObject> receiver,
uint32_t range,
ArrayConcatVisitor* visitor) {
uint32_t num_of_elements = 0;
switch (receiver->GetElementsKind()) {
case JSObject::FAST_ELEMENTS: { case JSObject::FAST_ELEMENTS: {
Handle<FixedArray> elements(FixedArray::cast(receiver->elements())); // Fast elements can't have lengths that are not representable by
uint32_t len = elements->length(); // a 32-bit signed integer.
if (range < len) { ASSERT(static_cast<int32_t>(FixedArray::kMaxLength) >= 0);
len = range; int fast_length = static_cast<int>(length);
Handle<FixedArray> elements(FixedArray::cast(array->elements()));
for (int i = 0; i < fast_length; i++) {
if (!elements->get(i)->IsTheHole()) element_count++;
} }
for (uint32_t j = 0; j < len; j++) {
Handle<Object> e(elements->get(j));
if (!e->IsTheHole()) {
num_of_elements++;
if (visitor) {
visitor->visit(j, e);
}
}
}
break;
}
case JSObject::PIXEL_ELEMENTS: {
Handle<PixelArray> pixels(PixelArray::cast(receiver->elements()));
uint32_t len = pixels->length();
if (range < len) {
len = range;
}
for (uint32_t j = 0; j < len; j++) {
num_of_elements++;
if (visitor != NULL) {
Handle<Smi> e(Smi::FromInt(pixels->get(j)));
visitor->visit(j, e);
}
}
break;
}
case JSObject::EXTERNAL_BYTE_ELEMENTS: {
num_of_elements =
IterateExternalArrayElements<ExternalByteArray, int8_t>(
receiver, true, true, range, visitor);
break;
}
case JSObject::EXTERNAL_UNSIGNED_BYTE_ELEMENTS: {
num_of_elements =
IterateExternalArrayElements<ExternalUnsignedByteArray, uint8_t>(
receiver, true, true, range, visitor);
break;
}
case JSObject::EXTERNAL_SHORT_ELEMENTS: {
num_of_elements =
IterateExternalArrayElements<ExternalShortArray, int16_t>(
receiver, true, true, range, visitor);
break;
}
case JSObject::EXTERNAL_UNSIGNED_SHORT_ELEMENTS: {
num_of_elements =
IterateExternalArrayElements<ExternalUnsignedShortArray, uint16_t>(
receiver, true, true, range, visitor);
break;
}
case JSObject::EXTERNAL_INT_ELEMENTS: {
num_of_elements =
IterateExternalArrayElements<ExternalIntArray, int32_t>(
receiver, true, false, range, visitor);
break;
}
case JSObject::EXTERNAL_UNSIGNED_INT_ELEMENTS: {
num_of_elements =
IterateExternalArrayElements<ExternalUnsignedIntArray, uint32_t>(
receiver, true, false, range, visitor);
break;
}
case JSObject::EXTERNAL_FLOAT_ELEMENTS: {
num_of_elements =
IterateExternalArrayElements<ExternalFloatArray, float>(
receiver, false, false, range, visitor);
break; break;
} }
case JSObject::DICTIONARY_ELEMENTS: { case JSObject::DICTIONARY_ELEMENTS: {
Handle<NumberDictionary> dict(receiver->element_dictionary()); Handle<NumberDictionary> dictionary(
NumberDictionary::cast(array->elements()));
int capacity = dictionary->Capacity();
for (int i = 0; i < capacity; i++) {
Handle<Object> key(dictionary->KeyAt(i));
if (dictionary->IsKey(*key)) {
element_count++;
}
}
break;
}
default:
// External arrays are always dense.
return length;
}
// As an estimate, we assume that the prototype doesn't contain any
// inherited elements.
return element_count;
}
template<class ExternalArrayClass, class ElementType>
static void IterateExternalArrayElements(Handle<JSObject> receiver,
bool elements_are_ints,
bool elements_are_guaranteed_smis,
ArrayConcatVisitor* visitor) {
Handle<ExternalArrayClass> array(
ExternalArrayClass::cast(receiver->elements()));
uint32_t len = static_cast<uint32_t>(array->length());
ASSERT(visitor != NULL);
if (elements_are_ints) {
if (elements_are_guaranteed_smis) {
for (uint32_t j = 0; j < len; j++) {
HandleScope loop_scope;
Handle<Smi> e(Smi::FromInt(static_cast<int>(array->get(j))));
visitor->visit(j, e);
}
} else {
for (uint32_t j = 0; j < len; j++) {
HandleScope loop_scope;
int64_t val = static_cast<int64_t>(array->get(j));
if (Smi::IsValid(static_cast<intptr_t>(val))) {
Handle<Smi> e(Smi::FromInt(static_cast<int>(val)));
visitor->visit(j, e);
} else {
Handle<Object> e =
Factory::NewNumber(static_cast<ElementType>(val));
visitor->visit(j, e);
}
}
}
} else {
for (uint32_t j = 0; j < len; j++) {
HandleScope loop_scope;
Handle<Object> e = Factory::NewNumber(array->get(j));
visitor->visit(j, e);
}
}
}
// Used for sorting indices in a List<uint32_t>.
static int compareUInt32(const uint32_t* ap, const uint32_t* bp) {
uint32_t a = *ap;
uint32_t b = *bp;
return (a == b) ? 0 : (a < b) ? -1 : 1;
}
static void CollectElementIndices(Handle<JSObject> object,
uint32_t range,
List<uint32_t>* indices) {
JSObject::ElementsKind kind = object->GetElementsKind();
switch (kind) {
case JSObject::FAST_ELEMENTS: {
Handle<FixedArray> elements(FixedArray::cast(object->elements()));
uint32_t length = static_cast<uint32_t>(elements->length());
if (range < length) length = range;
for (uint32_t i = 0; i < length; i++) {
if (!elements->get(i)->IsTheHole()) {
indices->Add(i);
}
}
break;
}
case JSObject::DICTIONARY_ELEMENTS: {
Handle<NumberDictionary> dict(NumberDictionary::cast(object->elements()));
uint32_t capacity = dict->Capacity(); uint32_t capacity = dict->Capacity();
for (uint32_t j = 0; j < capacity; j++) { for (uint32_t j = 0; j < capacity; j++) {
HandleScope loop_scope;
Handle<Object> k(dict->KeyAt(j)); Handle<Object> k(dict->KeyAt(j));
if (dict->IsKey(*k)) { if (dict->IsKey(*k)) {
ASSERT(k->IsNumber()); ASSERT(k->IsNumber());
uint32_t index = static_cast<uint32_t>(k->Number()); uint32_t index = static_cast<uint32_t>(k->Number());
if (index < range) { if (index < range) {
num_of_elements++; indices->Add(index);
if (visitor) {
visitor->visit(index, Handle<Object>(dict->ValueAt(j)));
}
} }
} }
} }
break; break;
} }
default: {
int dense_elements_length;
switch (kind) {
case JSObject::PIXEL_ELEMENTS: {
dense_elements_length =
PixelArray::cast(object->elements())->length();
break;
}
case JSObject::EXTERNAL_BYTE_ELEMENTS: {
dense_elements_length =
ExternalByteArray::cast(object->elements())->length();
break;
}
case JSObject::EXTERNAL_UNSIGNED_BYTE_ELEMENTS: {
dense_elements_length =
ExternalUnsignedByteArray::cast(object->elements())->length();
break;
}
case JSObject::EXTERNAL_SHORT_ELEMENTS: {
dense_elements_length =
ExternalShortArray::cast(object->elements())->length();
break;
}
case JSObject::EXTERNAL_UNSIGNED_SHORT_ELEMENTS: {
dense_elements_length =
ExternalUnsignedShortArray::cast(object->elements())->length();
break;
}
case JSObject::EXTERNAL_INT_ELEMENTS: {
dense_elements_length =
ExternalIntArray::cast(object->elements())->length();
break;
}
case JSObject::EXTERNAL_UNSIGNED_INT_ELEMENTS: {
dense_elements_length =
ExternalUnsignedIntArray::cast(object->elements())->length();
break;
}
case JSObject::EXTERNAL_FLOAT_ELEMENTS: {
dense_elements_length =
ExternalFloatArray::cast(object->elements())->length();
break;
}
default:
UNREACHABLE();
break;
}
uint32_t length = static_cast<uint32_t>(dense_elements_length);
if (range <= length) {
length = range;
// We will add all indices, so we might as well clear it first
// and avoid duplicates.
indices->Clear();
}
for (uint32_t i = 0; i < length; i++) {
indices->Add(i);
}
if (length == range) return; // All indices accounted for already.
break;
}
}
Handle<Object> prototype(object->GetPrototype());
if (prototype->IsJSObject()) {
// The prototype will usually have no inherited element indices,
// but we have to check.
CollectElementIndices(Handle<JSObject>::cast(prototype), range, indices);
}
}
/**
* A helper function that visits elements of a JSArray in numerical
* order.
*
* The visitor argument called for each existing element in the array
* with the element index and the element's value.
* Afterwards it increments the base-index of the visitor by the array
* length.
*/
static void IterateElements(Handle<JSArray> receiver,
ArrayConcatVisitor* visitor) {
uint32_t length = static_cast<uint32_t>(receiver->length()->Number());
switch (receiver->GetElementsKind()) {
case JSObject::FAST_ELEMENTS: {
// Run through the elements FixedArray and use HasElement and GetElement
// to check the prototype for missing elements.
Handle<FixedArray> elements(FixedArray::cast(receiver->elements()));
int fast_length = static_cast<int>(length);
ASSERT(fast_length <= elements->length());
for (int j = 0; j < fast_length; j++) {
HandleScope loop_scope;
Handle<Object> element_value(elements->get(j));
if (!element_value->IsTheHole()) {
visitor->visit(j, element_value);
} else if (receiver->HasElement(j)) {
// Call GetElement on receiver, not its prototype, or getters won't
// have the correct receiver.
element_value = GetElement(receiver, j);
visitor->visit(j, element_value);
}
}
break;
}
case JSObject::DICTIONARY_ELEMENTS: {
Handle<NumberDictionary> dict(receiver->element_dictionary());
List<uint32_t> indices(dict->Capacity() / 2);
// Collect all indices in the object and the prototypes less
// than length. This might introduce duplicates in the indices list.
CollectElementIndices(receiver, length, &indices);
indices.Sort(&compareUInt32);
int j = 0;
int n = indices.length();
while (j < n) {
HandleScope loop_scope;
uint32_t index = indices[j];
Handle<Object> element = GetElement(receiver, index);
visitor->visit(index, element);
// Skip to next different index (i.e., omit duplicates).
do {
j++;
} while (j < n && indices[j] == index);
}
break;
}
case JSObject::PIXEL_ELEMENTS: {
Handle<PixelArray> pixels(PixelArray::cast(receiver->elements()));
for (uint32_t j = 0; j < length; j++) {
Handle<Smi> e(Smi::FromInt(pixels->get(j)));
visitor->visit(j, e);
}
break;
}
case JSObject::EXTERNAL_BYTE_ELEMENTS: {
IterateExternalArrayElements<ExternalByteArray, int8_t>(
receiver, true, true, visitor);
break;
}
case JSObject::EXTERNAL_UNSIGNED_BYTE_ELEMENTS: {
IterateExternalArrayElements<ExternalUnsignedByteArray, uint8_t>(
receiver, true, true, visitor);
break;
}
case JSObject::EXTERNAL_SHORT_ELEMENTS: {
IterateExternalArrayElements<ExternalShortArray, int16_t>(
receiver, true, true, visitor);
break;
}
case JSObject::EXTERNAL_UNSIGNED_SHORT_ELEMENTS: {
IterateExternalArrayElements<ExternalUnsignedShortArray, uint16_t>(
receiver, true, true, visitor);
break;
}
case JSObject::EXTERNAL_INT_ELEMENTS: {
IterateExternalArrayElements<ExternalIntArray, int32_t>(
receiver, true, false, visitor);
break;
}
case JSObject::EXTERNAL_UNSIGNED_INT_ELEMENTS: {
IterateExternalArrayElements<ExternalUnsignedIntArray, uint32_t>(
receiver, true, false, visitor);
break;
}
case JSObject::EXTERNAL_FLOAT_ELEMENTS: {
IterateExternalArrayElements<ExternalFloatArray, float>(
receiver, false, false, visitor);
break;
}
default: default:
UNREACHABLE(); UNREACHABLE();
break; break;
} }
visitor->increase_index_offset(length);
return num_of_elements;
}
/**
* A helper function that visits elements of an Array object, and elements
* on its prototypes.
*
* Elements on prototypes are visited first, and only elements whose indices
* less than Array length are visited.
*
* If a ArrayConcatVisitor object is given, the visitor is called with
* parameters, element's index + visitor_index_offset and the element.
*
* The returned number of elements is an upper bound on the actual number
* of elements added. If the same element occurs in more than one object
* in the array's prototype chain, it will be counted more than once, but
* will only occur once in the result.
*/
static uint32_t IterateArrayAndPrototypeElements(Handle<JSArray> array,
ArrayConcatVisitor* visitor) {
uint32_t range = static_cast<uint32_t>(array->length()->Number());
Handle<Object> obj = array;
static const int kEstimatedPrototypes = 3;
List< Handle<JSObject> > objects(kEstimatedPrototypes);
// Visit prototype first. If an element on the prototype is shadowed by
// the inheritor using the same index, the ArrayConcatVisitor visits
// the prototype element before the shadowing element.
// The visitor can simply overwrite the old value by new value using
// the same index. This follows Array::concat semantics.
while (!obj->IsNull()) {
objects.Add(Handle<JSObject>::cast(obj));
obj = Handle<Object>(obj->GetPrototype());
}
uint32_t nof_elements = 0;
for (int i = objects.length() - 1; i >= 0; i--) {
Handle<JSObject> obj = objects[i];
uint32_t encountered_elements =
IterateElements(Handle<JSObject>::cast(obj), range, visitor);
if (encountered_elements > JSObject::kMaxElementCount - nof_elements) {
nof_elements = JSObject::kMaxElementCount;
} else {
nof_elements += encountered_elements;
}
}
return nof_elements;
}
/**
* A helper function of Runtime_ArrayConcat.
*
* The first argument is an Array of arrays and objects. It is the
* same as the arguments array of Array::concat JS function.
*
* If an argument is an Array object, the function visits array
* elements. If an argument is not an Array object, the function
* visits the object as if it is an one-element array.
*
* If the result array index overflows 32-bit unsigned integer, the rounded
* non-negative number is used as new length. For example, if one
* array length is 2^32 - 1, second array length is 1, the
* concatenated array length is 0.
* TODO(lrn) Change length behavior to ECMAScript 5 specification (length
* is one more than the last array index to get a value assigned).
*/
static uint32_t IterateArguments(Handle<JSArray> arguments,
ArrayConcatVisitor* visitor) {
uint32_t visited_elements = 0;
uint32_t num_of_args = static_cast<uint32_t>(arguments->length()->Number());
for (uint32_t i = 0; i < num_of_args; i++) {
Object *element;
MaybeObject* maybe_element = arguments->GetElement(i);
// This if() is not expected to fail, but we have the check in the
// interest of hardening the runtime calls.
if (maybe_element->ToObject(&element)) {
Handle<Object> obj(element);
if (obj->IsJSArray()) {
Handle<JSArray> array = Handle<JSArray>::cast(obj);
uint32_t len = static_cast<uint32_t>(array->length()->Number());
uint32_t nof_elements =
IterateArrayAndPrototypeElements(array, visitor);
// Total elements of array and its prototype chain can be more than
// the array length, but ArrayConcat can only concatenate at most
// the array length number of elements. We use the length as an estimate
// for the actual number of elements added.
uint32_t added_elements = (nof_elements > len) ? len : nof_elements;
if (JSArray::kMaxElementCount - visited_elements < added_elements) {
visited_elements = JSArray::kMaxElementCount;
} else {
visited_elements += added_elements;
}
if (visitor) visitor->increase_index_offset(len);
} else {
if (visitor) {
visitor->visit(0, obj);
visitor->increase_index_offset(1);
}
if (visited_elements < JSArray::kMaxElementCount) {
visited_elements++;
}
}
}
}
return visited_elements;
} }
/** /**
* Array::concat implementation. * Array::concat implementation.
* See ECMAScript 262, 15.4.4.4. * See ECMAScript 262, 15.4.4.4.
* TODO(lrn): Fix non-compliance for very large concatenations and update to * TODO(581): Fix non-compliance for very large concatenations and update to
* following the ECMAScript 5 specification. * following the ECMAScript 5 specification.
*/ */
static MaybeObject* Runtime_ArrayConcat(Arguments args) { static MaybeObject* Runtime_ArrayConcat(Arguments args) {
ASSERT(args.length() == 1); ASSERT(args.length() == 1);
HandleScope handle_scope; HandleScope handle_scope;
CONVERT_CHECKED(JSArray, arg_arrays, args[0]); CONVERT_ARG_CHECKED(JSArray, arguments, 0);
Handle<JSArray> arguments(arg_arrays); int argument_count = static_cast<int>(arguments->length()->Number());
RUNTIME_ASSERT(arguments->HasFastElements());
Handle<FixedArray> elements(FixedArray::cast(arguments->elements()));
// Pass 1: estimate the number of elements of the result // Pass 1: estimate the length and number of elements of the result.
// (it could be more than real numbers if prototype has elements). // The actual length can be larger if any of the arguments have getters
uint32_t result_length = 0; // that mutate other arguments (but will otherwise be precise).
uint32_t num_of_args = static_cast<uint32_t>(arguments->length()->Number()); // The number of elements is precise if there are no inherited elements.
{ AssertNoAllocation nogc; uint32_t estimate_result_length = 0;
for (uint32_t i = 0; i < num_of_args; i++) { uint32_t estimate_nof_elements = 0;
Object* obj; {
MaybeObject* maybe_object = arguments->GetElement(i); for (int i = 0; i < argument_count; i++) {
// This if() is not expected to fail, but we have the check in the HandleScope loop_scope;
// interest of hardening the runtime calls. Handle<Object> obj(elements->get(i));
if (maybe_object->ToObject(&obj)) { uint32_t length_estimate;
uint32_t length_estimate; uint32_t element_estimate;
if (obj->IsJSArray()) { if (obj->IsJSArray()) {
length_estimate = Handle<JSArray> array(Handle<JSArray>::cast(obj));
static_cast<uint32_t>(JSArray::cast(obj)->length()->Number()); length_estimate =
} else { static_cast<uint32_t>(array->length()->Number());
length_estimate = 1; element_estimate =
} EstimateElementCount(array);
if (JSObject::kMaxElementCount - result_length < length_estimate) { } else {
result_length = JSObject::kMaxElementCount; length_estimate = 1;
break; element_estimate = 1;
} }
result_length += length_estimate; // Avoid overflows by capping at kMaxElementCount.
if (JSObject::kMaxElementCount - estimate_result_length <
length_estimate) {
estimate_result_length = JSObject::kMaxElementCount;
} else {
estimate_result_length += length_estimate;
}
if (JSObject::kMaxElementCount - estimate_nof_elements <
element_estimate) {
estimate_nof_elements = JSObject::kMaxElementCount;
} else {
estimate_nof_elements += element_estimate;
} }
} }
} }
// Allocate an empty array, will set map, length, and content later.
Handle<JSArray> result = Factory::NewJSArray(0);
uint32_t estimate_nof_elements = IterateArguments(arguments, NULL);
// If estimated number of elements is more than half of length, a // If estimated number of elements is more than half of length, a
// fixed array (fast case) is more time and space-efficient than a // fixed array (fast case) is more time and space-efficient than a
// dictionary. // dictionary.
bool fast_case = (estimate_nof_elements * 2) >= result_length; bool fast_case = (estimate_nof_elements * 2) >= estimate_result_length;
Handle<Map> map;
Handle<FixedArray> storage; Handle<FixedArray> storage;
if (fast_case) { if (fast_case) {
// The backing storage array must have non-existing elements to // The backing storage array must have non-existing elements to
// preserve holes across concat operations. // preserve holes across concat operations.
map = Factory::GetFastElementsMap(Handle<Map>(result->map())); storage = Factory::NewFixedArrayWithHoles(estimate_result_length);
storage = Factory::NewFixedArrayWithHoles(result_length);
} else { } else {
map = Factory::GetSlowElementsMap(Handle<Map>(result->map()));
// TODO(126): move 25% pre-allocation logic into Dictionary::Allocate // TODO(126): move 25% pre-allocation logic into Dictionary::Allocate
uint32_t at_least_space_for = estimate_nof_elements + uint32_t at_least_space_for = estimate_nof_elements +
(estimate_nof_elements >> 2); (estimate_nof_elements >> 2);
@ -8406,21 +8477,20 @@ static MaybeObject* Runtime_ArrayConcat(Arguments args) {
Factory::NewNumberDictionary(at_least_space_for)); Factory::NewNumberDictionary(at_least_space_for));
} }
Handle<Object> len = Factory::NewNumber(static_cast<double>(result_length)); ArrayConcatVisitor visitor(storage, fast_case);
ArrayConcatVisitor visitor(storage, result_length, fast_case); for (int i = 0; i < argument_count; i++) {
Handle<Object> obj(elements->get(i));
if (obj->IsJSArray()) {
Handle<JSArray> array = Handle<JSArray>::cast(obj);
IterateElements(array, &visitor);
} else {
visitor.visit(0, obj);
visitor.increase_index_offset(1);
}
}
IterateArguments(arguments, &visitor); return *visitor.ToArray();
// Please note:
// - the storage might have been changed in the visitor;
// - the map and the storage must be set together to avoid breaking
// the invariant that the map describes the array's elements.
result->set_map(*map);
result->set_length(*len);
result->set_elements(*visitor.storage());
return *result;
} }

View File

@ -101,7 +101,6 @@ while (pos = poses.shift()) {
assertEquals("undefined", typeof(c[-1])); assertEquals("undefined", typeof(c[-1]));
assertEquals("undefined", typeof(c[0xffffffff])); assertEquals("undefined", typeof(c[0xffffffff]));
assertEquals(c.length, a.length + 1); assertEquals(c.length, a.length + 1);
} }
poses = [140, 4000000000]; poses = [140, 4000000000];
@ -193,3 +192,46 @@ for (var i = 0; i < holey.length; i++) {
assertTrue(i in holey); assertTrue(i in holey);
} }
} }
// Polluted prototype from prior tests.
delete Array.prototype[123];
// Check that concat reads getters in the correct order.
var arr1 = [,2];
var arr2 = [1,3];
var r1 = [].concat(arr1, arr2); // [,2,1,3]
assertEquals([,2,1,3], r1);
// Make first array change length of second array.
Object.defineProperty(arr1, 0, {get: function() {
arr2.push("X");
return undefined;
}, configurable: true})
var r2 = [].concat(arr1, arr2); // [undefined,2,1,3,"X"]
assertEquals([undefined,2,1,3,"X"], r2);
// Make first array change length of second array massively.
arr2.length = 2;
Object.defineProperty(arr1, 0, {get: function() {
arr2[500000] = "X";
return undefined;
}, configurable: true})
var r3 = [].concat(arr1, arr2); // [undefined,2,1,3,"X"]
var expected = [undefined,2,1,3];
expected[500000 + 2] = "X";
assertEquals(expected, r3);
var arr3 = [];
var trace = [];
var expectedTrace = []
function mkGetter(i) { return function() { trace.push(i); }; }
arr3.length = 10000;
for (var i = 0; i < 100; i++) {
Object.defineProperty(arr3, i * i, {get: mkGetter(i)});
expectedTrace[i] = i;
expectedTrace[100 + i] = i;
}
var r4 = [0].concat(arr3, arr3);
assertEquals(1 + arr3.length * 2, r4.length);
assertEquals(expectedTrace, trace);