[wasm-gc] Implement cross-module subtyping

Additional changes:
- Add tests.
- Rename some subtyping functions.

Bug: v8:7748
Change-Id: I3635e93ea6bbab1942f927a8e414afc8efd31f69
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2389983
Commit-Queue: Manos Koukoutos <manoskouk@chromium.org>
Reviewed-by: Jakob Kummerow <jkummerow@chromium.org>
Cr-Commit-Position: refs/heads/master@{#69784}
This commit is contained in:
Manos Koukoutos 2020-09-09 14:26:39 +00:00 committed by Commit Bot
parent 914b231753
commit 698f8caca0
5 changed files with 366 additions and 215 deletions

View File

@ -218,16 +218,7 @@ std::ostream& operator<<(std::ostream& os, const WasmFunctionName& name) {
}
WasmModule::WasmModule(std::unique_ptr<Zone> signature_zone)
: signature_zone(std::move(signature_zone)),
subtyping_cache(this->signature_zone.get() == nullptr
? nullptr
: new ZoneUnorderedSet<std::pair<uint32_t, uint32_t>>(
this->signature_zone.get())),
type_equivalence_cache(
this->signature_zone.get() == nullptr
? nullptr
: new ZoneUnorderedSet<std::pair<uint32_t, uint32_t>>(
this->signature_zone.get())) {}
: signature_zone(std::move(signature_zone)) {}
bool IsWasmCodegenAllowed(Isolate* isolate, Handle<Context> context) {
// TODO(wasm): Once wasm has its own CSP policy, we should introduce a

View File

@ -15,7 +15,6 @@
#include "src/wasm/struct-types.h"
#include "src/wasm/wasm-constants.h"
#include "src/wasm/wasm-opcodes.h"
#include "src/zone/zone-containers.h"
namespace v8 {
@ -334,28 +333,6 @@ struct V8_EXPORT_PRIVATE WasmModule {
bool has_array(uint32_t index) const {
return index < types.size() && type_kinds[index] == kWasmArrayTypeCode;
}
base::RecursiveMutex* type_cache_mutex() const { return &type_cache_mutex_; }
bool is_cached_subtype(uint32_t subtype, uint32_t supertype) const {
return subtyping_cache->count(std::make_pair(subtype, supertype)) == 1;
}
void cache_subtype(uint32_t subtype, uint32_t supertype) const {
subtyping_cache->emplace(subtype, supertype);
}
void uncache_subtype(uint32_t subtype, uint32_t supertype) const {
subtyping_cache->erase(std::make_pair(subtype, supertype));
}
bool is_cached_equivalent_type(uint32_t type1, uint32_t type2) const {
if (type1 > type2) std::swap(type1, type2);
return type_equivalence_cache->count(std::make_pair(type1, type2)) == 1;
}
void cache_type_equivalence(uint32_t type1, uint32_t type2) const {
if (type1 > type2) std::swap(type1, type2);
type_equivalence_cache->emplace(type1, type2);
}
void uncache_type_equivalence(uint32_t type1, uint32_t type2) const {
if (type1 > type2) std::swap(type1, type2);
type_equivalence_cache->erase(std::make_pair(type1, type2));
}
std::vector<WasmFunction> functions;
std::vector<WasmDataSegment> data_segments;
@ -378,17 +355,6 @@ struct V8_EXPORT_PRIVATE WasmModule {
explicit WasmModule(std::unique_ptr<Zone> signature_zone = nullptr);
private:
// Cache for discovered subtyping pairs.
std::unique_ptr<ZoneUnorderedSet<std::pair<uint32_t, uint32_t>>>
subtyping_cache;
// Cache for discovered equivalent type pairs.
// Indexes are stored in increasing order.
std::unique_ptr<ZoneUnorderedSet<std::pair<uint32_t, uint32_t>>>
type_equivalence_cache;
// The above two caches are used from background compile jobs, so they
// must be protected from concurrent modifications:
mutable base::RecursiveMutex type_cache_mutex_;
DISALLOW_COPY_AND_ASSIGN(WasmModule);
};

View File

@ -6,6 +6,7 @@
#include "src/base/platform/mutex.h"
#include "src/wasm/wasm-module.h"
#include "src/zone/zone-containers.h"
namespace v8 {
namespace internal {
@ -13,63 +14,148 @@ namespace wasm {
namespace {
bool IsEquivalent(ValueType type1, ValueType type2, const WasmModule* module);
using CacheKey =
std::tuple<uint32_t, uint32_t, const WasmModule*, const WasmModule*>;
bool IsArrayTypeEquivalent(uint32_t type_index_1, uint32_t type_index_2,
const WasmModule* module) {
if (module->type_kinds[type_index_1] != kWasmArrayTypeCode ||
module->type_kinds[type_index_2] != kWasmArrayTypeCode) {
return false;
struct CacheKeyHasher {
size_t operator()(CacheKey key) const {
static constexpr size_t large_prime = 14887;
return std::get<0>(key) + (std::get<1>(key) * large_prime) +
(reinterpret_cast<size_t>(std::get<2>(key)) * large_prime *
large_prime) +
(reinterpret_cast<size_t>(std::get<3>(key)) * large_prime *
large_prime * large_prime);
}
};
class TypeJudgementCache {
public:
TypeJudgementCache()
: zone_(new AccountingAllocator(), "type judgement zone"),
subtyping_cache_(&zone_),
type_equivalence_cache_(&zone_) {}
static TypeJudgementCache* instance() {
static base::LazyInstance<TypeJudgementCache>::type instance_ =
LAZY_INSTANCE_INITIALIZER;
return instance_.Pointer();
}
const ArrayType* sub_array = module->types[type_index_1].array_type;
const ArrayType* super_array = module->types[type_index_2].array_type;
base::RecursiveMutex* type_cache_mutex() { return &type_cache_mutex_; }
bool is_cached_subtype(uint32_t subtype, uint32_t supertype,
const WasmModule* sub_module,
const WasmModule* super_module) const {
return subtyping_cache_.count(std::make_tuple(
subtype, supertype, sub_module, super_module)) == 1;
}
void cache_subtype(uint32_t subtype, uint32_t supertype,
const WasmModule* sub_module,
const WasmModule* super_module) {
subtyping_cache_.emplace(subtype, supertype, sub_module, super_module);
}
void uncache_subtype(uint32_t subtype, uint32_t supertype,
const WasmModule* sub_module,
const WasmModule* super_module) {
subtyping_cache_.erase(
std::make_tuple(subtype, supertype, sub_module, super_module));
}
bool is_cached_equivalent_type(uint32_t type1, uint32_t type2,
const WasmModule* module1,
const WasmModule* module2) const {
if (type1 > type2) std::swap(type1, type2);
if (reinterpret_cast<uintptr_t>(module1) >
reinterpret_cast<uintptr_t>(module2)) {
std::swap(module1, module2);
}
return type_equivalence_cache_.count(
std::make_tuple(type1, type2, module1, module2)) == 1;
}
void cache_type_equivalence(uint32_t type1, uint32_t type2,
const WasmModule* module1,
const WasmModule* module2) {
if (type1 > type2) std::swap(type1, type2);
if (reinterpret_cast<uintptr_t>(module1) >
reinterpret_cast<uintptr_t>(module2)) {
std::swap(module1, module2);
}
type_equivalence_cache_.emplace(type1, type2, module1, module2);
}
void uncache_type_equivalence(uint32_t type1, uint32_t type2,
const WasmModule* module1,
const WasmModule* module2) {
if (type1 > type2) std::swap(type1, type2);
if (reinterpret_cast<uintptr_t>(module1) >
reinterpret_cast<uintptr_t>(module2)) {
std::swap(module1, module2);
}
type_equivalence_cache_.erase(
std::make_tuple(type1, type2, module1, module2));
}
private:
Zone zone_;
ZoneUnorderedSet<CacheKey, CacheKeyHasher>
// Cache for discovered subtyping pairs.
subtyping_cache_,
// Cache for discovered equivalent type pairs.
// Indexes and modules are stored in increasing order.
type_equivalence_cache_;
// The above two caches are used from background compile jobs, so they
// must be protected from concurrent modifications:
base::RecursiveMutex type_cache_mutex_;
};
bool ArrayEquivalentIndices(uint32_t type_index_1, uint32_t type_index_2,
const WasmModule* module1,
const WasmModule* module2) {
const ArrayType* sub_array = module1->types[type_index_1].array_type;
const ArrayType* super_array = module2->types[type_index_2].array_type;
if (sub_array->mutability() != super_array->mutability()) return false;
// Temporarily cache type equivalence for the recursive call.
module->cache_type_equivalence(type_index_1, type_index_2);
if (IsEquivalent(sub_array->element_type(), super_array->element_type(),
module)) {
TypeJudgementCache::instance()->cache_type_equivalence(
type_index_1, type_index_2, module1, module2);
if (EquivalentTypes(sub_array->element_type(), super_array->element_type(),
module1, module2)) {
return true;
} else {
module->uncache_type_equivalence(type_index_1, type_index_2);
TypeJudgementCache::instance()->uncache_type_equivalence(
type_index_1, type_index_2, module1, module2);
// TODO(7748): Consider caching negative results as well.
return false;
}
}
bool IsStructTypeEquivalent(uint32_t type_index_1, uint32_t type_index_2,
const WasmModule* module) {
if (module->type_kinds[type_index_1] != kWasmStructTypeCode ||
module->type_kinds[type_index_2] != kWasmStructTypeCode) {
return false;
}
const StructType* sub_struct = module->types[type_index_1].struct_type;
const StructType* super_struct = module->types[type_index_2].struct_type;
bool StructEquivalentIndices(uint32_t type_index_1, uint32_t type_index_2,
const WasmModule* module1,
const WasmModule* module2) {
const StructType* sub_struct = module1->types[type_index_1].struct_type;
const StructType* super_struct = module2->types[type_index_2].struct_type;
if (sub_struct->field_count() != super_struct->field_count()) {
return false;
}
// Temporarily cache type equivalence for the recursive call.
module->cache_type_equivalence(type_index_1, type_index_2);
TypeJudgementCache::instance()->cache_type_equivalence(
type_index_1, type_index_2, module1, module2);
for (uint32_t i = 0; i < sub_struct->field_count(); i++) {
if (sub_struct->mutability(i) != super_struct->mutability(i) ||
!IsEquivalent(sub_struct->field(i), super_struct->field(i), module)) {
module->uncache_type_equivalence(type_index_1, type_index_2);
!EquivalentTypes(sub_struct->field(i), super_struct->field(i), module1,
module2)) {
TypeJudgementCache::instance()->uncache_type_equivalence(
type_index_1, type_index_2, module1, module2);
return false;
}
}
return true;
}
bool IsFunctionTypeEquivalent(uint32_t type_index_1, uint32_t type_index_2,
const WasmModule* module) {
if (module->type_kinds[type_index_1] != kWasmFunctionTypeCode ||
module->type_kinds[type_index_2] != kWasmFunctionTypeCode) {
return false;
}
const FunctionSig* sig1 = module->types[type_index_1].function_sig;
const FunctionSig* sig2 = module->types[type_index_2].function_sig;
bool FunctionEquivalentIndices(uint32_t type_index_1, uint32_t type_index_2,
const WasmModule* module1,
const WasmModule* module2) {
const FunctionSig* sig1 = module1->types[type_index_1].function_sig;
const FunctionSig* sig2 = module2->types[type_index_2].function_sig;
if (sig1->parameter_count() != sig2->parameter_count() ||
sig1->return_count() != sig2->return_count()) {
@ -80,138 +166,206 @@ bool IsFunctionTypeEquivalent(uint32_t type_index_1, uint32_t type_index_2,
auto iter2 = sig2->all();
// Temporarily cache type equivalence for the recursive call.
module->cache_type_equivalence(type_index_1, type_index_2);
TypeJudgementCache::instance()->cache_type_equivalence(
type_index_1, type_index_2, module1, module2);
for (int i = 0; i < iter1.size(); i++) {
if (iter1[i] != iter2[i]) {
module->uncache_type_equivalence(type_index_1, type_index_2);
if (!EquivalentTypes(iter1[i], iter2[i], module1, module2)) {
TypeJudgementCache::instance()->uncache_type_equivalence(
type_index_1, type_index_2, module1, module2);
return false;
}
}
return true;
}
bool IsEquivalent(ValueType type1, ValueType type2, const WasmModule* module) {
if (type1 == type2) return true;
if (type1.kind() != type2.kind()) return false;
// At this point, the types can only be both rtts, refs, or optrefs,
// but with different indexed types.
V8_INLINE bool EquivalentIndices(uint32_t index1, uint32_t index2,
const WasmModule* module1,
const WasmModule* module2) {
DCHECK(index1 != index2 || module1 != module2);
uint8_t kind1 = module1->type_kinds[index1];
// Rtts need to have the same depth.
if (type1.has_depth() && type1.depth() != type2.depth()) return false;
// In all three cases, the indexed types have to be equivalent.
if (module->is_cached_equivalent_type(type1.ref_index(), type2.ref_index())) {
if (kind1 != module2->type_kinds[index2]) return false;
base::RecursiveMutexGuard type_cache_access(
TypeJudgementCache::instance()->type_cache_mutex());
if (TypeJudgementCache::instance()->is_cached_equivalent_type(
index1, index2, module1, module2)) {
return true;
}
return IsArrayTypeEquivalent(type1.ref_index(), type2.ref_index(), module) ||
IsStructTypeEquivalent(type1.ref_index(), type2.ref_index(), module) ||
IsFunctionTypeEquivalent(type1.ref_index(), type2.ref_index(), module);
if (kind1 == kWasmStructTypeCode) {
return StructEquivalentIndices(index1, index2, module1, module2);
} else if (kind1 == kWasmArrayTypeCode) {
return ArrayEquivalentIndices(index1, index2, module1, module2);
} else {
DCHECK_EQ(kind1, kWasmFunctionTypeCode);
return FunctionEquivalentIndices(index1, index2, module1, module2);
}
}
bool IsStructSubtype(uint32_t subtype_index, uint32_t supertype_index,
const WasmModule* module) {
if (module->type_kinds[subtype_index] != kWasmStructTypeCode ||
module->type_kinds[supertype_index] != kWasmStructTypeCode) {
return false;
}
const StructType* sub_struct = module->types[subtype_index].struct_type;
const StructType* super_struct = module->types[supertype_index].struct_type;
bool StructIsSubtypeOf(uint32_t subtype_index, uint32_t supertype_index,
const WasmModule* sub_module,
const WasmModule* super_module) {
const StructType* sub_struct = sub_module->types[subtype_index].struct_type;
const StructType* super_struct =
super_module->types[supertype_index].struct_type;
if (sub_struct->field_count() < super_struct->field_count()) {
return false;
}
module->cache_subtype(subtype_index, supertype_index);
TypeJudgementCache::instance()->cache_subtype(subtype_index, supertype_index,
sub_module, super_module);
for (uint32_t i = 0; i < super_struct->field_count(); i++) {
bool sub_mut = sub_struct->mutability(i);
bool super_mut = super_struct->mutability(i);
if (sub_mut != super_mut ||
(sub_mut &&
!IsEquivalent(sub_struct->field(i), super_struct->field(i), module)) ||
(!sub_mut &&
!IsSubtypeOf(sub_struct->field(i), super_struct->field(i), module))) {
module->uncache_subtype(subtype_index, supertype_index);
!EquivalentTypes(sub_struct->field(i), super_struct->field(i),
sub_module, super_module)) ||
(!sub_mut && !IsSubtypeOf(sub_struct->field(i), super_struct->field(i),
sub_module, super_module))) {
TypeJudgementCache::instance()->uncache_subtype(
subtype_index, supertype_index, sub_module, super_module);
return false;
}
}
return true;
}
bool IsArraySubtype(uint32_t subtype_index, uint32_t supertype_index,
const WasmModule* module) {
if (module->type_kinds[subtype_index] != kWasmArrayTypeCode ||
module->type_kinds[supertype_index] != kWasmArrayTypeCode) {
return false;
}
const ArrayType* sub_array = module->types[subtype_index].array_type;
const ArrayType* super_array = module->types[supertype_index].array_type;
bool ArrayIsSubtypeOf(uint32_t subtype_index, uint32_t supertype_index,
const WasmModule* sub_module,
const WasmModule* super_module) {
const ArrayType* sub_array = sub_module->types[subtype_index].array_type;
const ArrayType* super_array =
super_module->types[supertype_index].array_type;
bool sub_mut = sub_array->mutability();
bool super_mut = super_array->mutability();
module->cache_subtype(subtype_index, supertype_index);
TypeJudgementCache::instance()->cache_subtype(subtype_index, supertype_index,
sub_module, super_module);
if (sub_mut != super_mut ||
(sub_mut && !IsEquivalent(sub_array->element_type(),
super_array->element_type(), module)) ||
(!sub_mut && !IsSubtypeOf(sub_array->element_type(),
super_array->element_type(), module))) {
module->uncache_subtype(subtype_index, supertype_index);
(sub_mut &&
!EquivalentTypes(sub_array->element_type(), super_array->element_type(),
sub_module, super_module)) ||
(!sub_mut &&
!IsSubtypeOf(sub_array->element_type(), super_array->element_type(),
sub_module, super_module))) {
TypeJudgementCache::instance()->uncache_subtype(
subtype_index, supertype_index, sub_module, super_module);
return false;
} else {
return true;
}
}
// TODO(7748): Expand this with function subtyping.
bool IsFunctionSubtype(uint32_t subtype_index, uint32_t supertype_index,
const WasmModule* module) {
return IsFunctionTypeEquivalent(subtype_index, supertype_index, module);
// TODO(7748): Expand this with function subtyping once the hiccups
// with 'exact types' have been cleared.
bool FunctionIsSubtypeOf(uint32_t subtype_index, uint32_t supertype_index,
const WasmModule* sub_module,
const WasmModule* super_module) {
return FunctionEquivalentIndices(subtype_index, supertype_index, sub_module,
super_module);
}
} // namespace
// TODO(7748): Extend this with any-heap subtyping.
V8_NOINLINE V8_EXPORT_PRIVATE bool IsSubtypeOfImpl(ValueType subtype,
ValueType supertype,
const WasmModule* module) {
bool compatible_references = (subtype.kind() == ValueType::kOptRef &&
supertype.kind() == ValueType::kOptRef) ||
(subtype.kind() == ValueType::kRef &&
(supertype.kind() == ValueType::kOptRef ||
supertype.kind() == ValueType::kRef));
V8_NOINLINE V8_EXPORT_PRIVATE bool IsSubtypeOfImpl(
ValueType subtype, ValueType supertype, const WasmModule* sub_module,
const WasmModule* super_module) {
DCHECK(subtype != supertype || sub_module != super_module);
// This function checks for subtyping based on the kind of subtype.
if (!subtype.is_reference_type()) return subtype == supertype;
if (subtype.kind() == ValueType::kRtt) {
return subtype.heap_type().is_generic()
? subtype == supertype
: (supertype.kind() == ValueType::kRtt &&
subtype.depth() == supertype.depth() &&
EquivalentIndices(subtype.ref_index(), supertype.ref_index(),
sub_module, super_module));
}
DCHECK(subtype.is_object_reference_type());
bool compatible_references = subtype.kind() == ValueType::kOptRef
? supertype.kind() == ValueType::kOptRef
: supertype.is_object_reference_type();
if (!compatible_references) return false;
DCHECK(supertype.is_object_reference_type());
// Now check that sub_heap and super_heap are subtype-related.
HeapType sub_heap = subtype.heap_type();
HeapType super_heap = supertype.heap_type();
if (sub_heap == super_heap) {
if (sub_heap.representation() == HeapType::kI31 &&
super_heap.representation() == HeapType::kEq) {
return true;
}
// eqref is a supertype of i31ref, array, and struct types.
if (sub_heap.is_generic()) return sub_heap == super_heap;
DCHECK(sub_heap.is_index());
uint32_t sub_index = sub_heap.ref_index();
DCHECK(sub_module->has_type(sub_index));
if (super_heap.representation() == HeapType::kEq) {
return (sub_heap.is_index() &&
!module->has_signature(sub_heap.ref_index())) ||
sub_heap.representation() == HeapType::kI31;
return !sub_module->has_signature(sub_heap.ref_index());
}
// funcref is a supertype of all function types.
if (super_heap.representation() == HeapType::kFunc) {
return sub_heap.is_index() && module->has_signature(sub_heap.ref_index());
return sub_module->has_signature(sub_heap.ref_index());
}
if (super_heap.is_generic()) return false;
// At the moment, generic heap types are not subtyping-related otherwise.
if (sub_heap.is_generic() || super_heap.is_generic()) {
return false;
}
DCHECK(super_heap.is_index());
uint32_t super_index = super_heap.ref_index();
DCHECK(super_module->has_type(super_index));
uint8_t sub_kind = sub_module->type_kinds[sub_index];
if (sub_kind != super_module->type_kinds[super_index]) return false;
// Accessing the caches for subtyping and equivalence from multiple background
// threads is protected by a lock.
base::RecursiveMutexGuard type_cache_access(module->type_cache_mutex());
if (module->is_cached_subtype(sub_heap.ref_index(), super_heap.ref_index())) {
base::RecursiveMutexGuard type_cache_access(
TypeJudgementCache::instance()->type_cache_mutex());
if (TypeJudgementCache::instance()->is_cached_subtype(
sub_index, super_index, sub_module, super_module)) {
return true;
}
return IsStructSubtype(sub_heap.ref_index(), super_heap.ref_index(),
module) ||
IsArraySubtype(sub_heap.ref_index(), super_heap.ref_index(), module) ||
IsFunctionSubtype(sub_heap.ref_index(), super_heap.ref_index(),
module);
if (sub_kind == kWasmStructTypeCode) {
return StructIsSubtypeOf(sub_index, super_index, sub_module, super_module);
} else if (sub_kind == kWasmArrayTypeCode) {
return ArrayIsSubtypeOf(sub_index, super_index, sub_module, super_module);
} else {
DCHECK_EQ(sub_kind, kWasmFunctionTypeCode);
return FunctionIsSubtypeOf(sub_index, super_index, sub_module,
super_module);
}
}
V8_NOINLINE bool EquivalentTypes(ValueType type1, ValueType type2,
const WasmModule* module1,
const WasmModule* module2) {
if (type1 == type2 && module1 == module2) return true;
if (!type1.has_index()) return type1 == type2;
if (type1.kind() != type2.kind()) return false;
DCHECK(type1.has_index() && type2.has_index() &&
(type1 != type2 || module1 != module2));
DCHECK_IMPLIES(type1.has_depth(), type2.has_depth()); // Due to 'if' above
if (type1.has_depth() && type1.depth() != type2.depth()) return false;
DCHECK(type1.has_index() && module1->has_type(type1.ref_index()) &&
type2.has_index() && module2->has_type(type2.ref_index()));
return EquivalentIndices(type1.ref_index(), type2.ref_index(), module1,
module2);
}
ValueType CommonSubtype(ValueType a, ValueType b, const WasmModule* module) {

View File

@ -12,19 +12,32 @@ namespace internal {
namespace wasm {
struct WasmModule;
V8_NOINLINE V8_EXPORT_PRIVATE bool IsSubtypeOfImpl(ValueType subtype,
ValueType supertype,
const WasmModule* module);
V8_NOINLINE V8_EXPORT_PRIVATE bool IsSubtypeOfImpl(
ValueType subtype, ValueType supertype, const WasmModule* sub_module,
const WasmModule* super_module);
V8_NOINLINE bool EquivalentTypes(ValueType type1, ValueType type2,
const WasmModule* module1,
const WasmModule* module2);
// The subtyping between value types is described by the following rules:
// - All types are a supertype of bottom.
// - All reference types, except funcref, are subtypes of eqref.
// - optref(ht1) <: optref(ht2) iff ht1 <: ht2.
// - ref(ht1) <: ref/optref(ht2) iff ht1 <: ht2.
V8_INLINE bool IsSubtypeOf(ValueType subtype, ValueType supertype,
const WasmModule* sub_module,
const WasmModule* super_module) {
if (subtype == supertype && sub_module == super_module) return true;
return IsSubtypeOfImpl(subtype, supertype, sub_module, super_module);
}
V8_INLINE bool IsSubtypeOf(ValueType subtype, ValueType supertype,
const WasmModule* module) {
// If the types are trivially identical, exit early.
if (V8_LIKELY(subtype == supertype)) return true;
return IsSubtypeOfImpl(subtype, supertype, module);
return IsSubtypeOfImpl(subtype, supertype, module, module);
}
ValueType CommonSubtype(ValueType a, ValueType b, const WasmModule* module);

View File

@ -35,20 +35,25 @@ void DefineArray(WasmModule* module, FieldInit element_type) {
TEST_F(WasmSubtypingTest, Subtyping) {
v8::internal::AccountingAllocator allocator;
WasmModule module_(std::make_unique<Zone>(&allocator, ZONE_NAME));
WasmModule module1_(std::make_unique<Zone>(&allocator, ZONE_NAME));
WasmModule module2_(std::make_unique<Zone>(&allocator, ZONE_NAME));
WasmModule* module = &module_;
WasmModule* module1 = &module1_;
WasmModule* module2 = &module2_;
/* 0 */ DefineStruct(module, {mut(ref(2)), immut(optRef(2))});
/* 1 */ DefineStruct(module, {mut(ref(2)), immut(ref(2))});
/* 2 */ DefineArray(module, immut(ref(0)));
/* 3 */ DefineArray(module, immut(ref(1)));
/* 4 */ DefineStruct(module, {mut(ref(2)), immut(ref(3)), immut(kWasmF64)});
/* 5 */ DefineStruct(module, {mut(optRef(2)), immut(ref(2))});
/* 6 */ DefineArray(module, mut(kWasmI32));
/* 7 */ DefineArray(module, immut(kWasmI32));
/* 8 */ DefineStruct(module, {mut(kWasmI32), immut(optRef(8))});
/* 9 */ DefineStruct(module, {mut(kWasmI32), immut(optRef(8))});
// Set up two identical modules.
for (WasmModule* module : {module1, module2}) {
/* 0 */ DefineStruct(module, {mut(ref(2)), immut(optRef(2))});
/* 1 */ DefineStruct(module, {mut(ref(2)), immut(ref(2))});
/* 2 */ DefineArray(module, immut(ref(0)));
/* 3 */ DefineArray(module, immut(ref(1)));
/* 4 */ DefineStruct(module, {mut(ref(2)), immut(ref(3)), immut(kWasmF64)});
/* 5 */ DefineStruct(module, {mut(optRef(2)), immut(ref(2))});
/* 6 */ DefineArray(module, mut(kWasmI32));
/* 7 */ DefineArray(module, immut(kWasmI32));
/* 8 */ DefineStruct(module, {mut(kWasmI32), immut(optRef(8))});
/* 9 */ DefineStruct(module, {mut(kWasmI32), immut(optRef(8))});
}
ValueType numeric_types[] = {kWasmI32, kWasmI64, kWasmF32, kWasmF64,
kWasmS128};
@ -56,65 +61,87 @@ TEST_F(WasmSubtypingTest, Subtyping) {
kWasmEqRef, kWasmI31Ref, optRef(0),
ref(0), optRef(2), ref(2)};
// Value types are unrelated, except if they are equal.
for (ValueType subtype : numeric_types) {
for (ValueType supertype : numeric_types) {
CHECK_EQ(IsSubtypeOf(subtype, supertype, module), subtype == supertype);
// Type judgements across modules should work the same as within one module.
for (WasmModule* module : {module1, module2}) {
// Value types are unrelated, except if they are equal.
for (ValueType subtype : numeric_types) {
for (ValueType supertype : numeric_types) {
CHECK_EQ(IsSubtypeOf(subtype, supertype, module1, module),
subtype == supertype);
}
}
// Value types are unrelated with reference types.
for (ValueType value_type : numeric_types) {
for (ValueType ref_type : ref_types) {
CHECK(!IsSubtypeOf(value_type, ref_type, module1, module));
CHECK(!IsSubtypeOf(ref_type, value_type, module1, module));
}
}
}
// Value types are unrelated with reference types.
for (ValueType value_type : numeric_types) {
for (ValueType ref_type : ref_types) {
CHECK(!IsSubtypeOf(value_type, ref_type, module));
CHECK(!IsSubtypeOf(ref_type, value_type, module));
// Concrete reference types and i31ref are subtypes of eqref,
// exnref/externref/funcref are not.
CHECK_EQ(IsSubtypeOf(ref_type, kWasmEqRef, module1, module),
ref_type != kWasmFuncRef && ref_type != kWasmExternRef &&
ref_type != kWasmExnRef);
// Each reference type is a subtype of itself.
CHECK(IsSubtypeOf(ref_type, ref_type, module1, module));
}
}
for (ValueType ref_type : ref_types) {
// Concrete reference types and i31ref are subtypes of eqref,
// exnref/externref/funcref are not.
CHECK_EQ(IsSubtypeOf(ref_type, kWasmEqRef, module),
ref_type != kWasmFuncRef && ref_type != kWasmExternRef &&
ref_type != kWasmExnRef);
// Each reference type is a subtype of itself.
CHECK(IsSubtypeOf(ref_type, ref_type, module));
}
// The rest of ref. types are unrelated.
for (ValueType type_1 :
{kWasmExternRef, kWasmFuncRef, kWasmExnRef, kWasmI31Ref}) {
for (ValueType type_2 :
// The rest of ref. types are unrelated.
for (ValueType type_1 :
{kWasmExternRef, kWasmFuncRef, kWasmExnRef, kWasmI31Ref}) {
CHECK_EQ(IsSubtypeOf(type_1, type_2, module), type_1 == type_2);
for (ValueType type_2 :
{kWasmExternRef, kWasmFuncRef, kWasmExnRef, kWasmI31Ref}) {
CHECK_EQ(IsSubtypeOf(type_1, type_2, module1, module),
type_1 == type_2);
}
}
}
// Unrelated refs are unrelated.
CHECK(!IsSubtypeOf(ref(0), ref(2), module));
CHECK(!IsSubtypeOf(optRef(3), optRef(1), module));
// ref is a subtype of optref for the same struct/array.
CHECK(IsSubtypeOf(ref(0), optRef(0), module));
CHECK(IsSubtypeOf(ref(2), optRef(2), module));
// optref is not a subtype of ref for the same struct/array.
CHECK(!IsSubtypeOf(optRef(0), ref(0), module));
CHECK(!IsSubtypeOf(optRef(2), ref(2), module));
// ref is a subtype of optref if the same is true for the underlying
// structs/arrays.
CHECK(IsSubtypeOf(ref(3), optRef(2), module));
// Prefix subtyping for structs.
CHECK(IsSubtypeOf(optRef(4), optRef(0), module));
// Mutable fields are invariant.
CHECK(!IsSubtypeOf(ref(0), ref(5), module));
// Immutable fields are covariant.
CHECK(IsSubtypeOf(ref(1), ref(0), module));
// Prefix subtyping + immutable field covariance for structs.
CHECK(IsSubtypeOf(optRef(4), optRef(1), module));
// No subtyping between mutable/immutable fields.
CHECK(!IsSubtypeOf(ref(7), ref(6), module));
CHECK(!IsSubtypeOf(ref(6), ref(7), module));
// Recursive types.
CHECK(IsSubtypeOf(ref(9), ref(8), module));
// Unrelated refs are unrelated.
CHECK(!IsSubtypeOf(ref(0), ref(2), module1, module));
CHECK(!IsSubtypeOf(optRef(3), optRef(1), module1, module));
// ref is a subtype of optref for the same struct/array.
CHECK(IsSubtypeOf(ref(0), optRef(0), module1, module));
CHECK(IsSubtypeOf(ref(2), optRef(2), module1, module));
// optref is not a subtype of ref for the same struct/array.
CHECK(!IsSubtypeOf(optRef(0), ref(0), module1, module));
CHECK(!IsSubtypeOf(optRef(2), ref(2), module1, module));
// ref is a subtype of optref if the same is true for the underlying
// structs/arrays.
CHECK(IsSubtypeOf(ref(3), optRef(2), module1, module));
// Prefix subtyping for structs.
CHECK(IsSubtypeOf(optRef(4), optRef(0), module1, module));
// Mutable fields are invariant.
CHECK(!IsSubtypeOf(ref(0), ref(5), module1, module));
// Immutable fields are covariant.
CHECK(IsSubtypeOf(ref(1), ref(0), module1, module));
// Prefix subtyping + immutable field covariance for structs.
CHECK(IsSubtypeOf(optRef(4), optRef(1), module1, module));
// No subtyping between mutable/immutable fields.
CHECK(!IsSubtypeOf(ref(7), ref(6), module1, module));
CHECK(!IsSubtypeOf(ref(6), ref(7), module1, module));
// Recursive types.
CHECK(IsSubtypeOf(ref(9), ref(8), module1, module));
// Identical rtts are subtypes of each other.
CHECK(IsSubtypeOf(ValueType::Rtt(5, 3), ValueType::Rtt(5, 3), module1,
module2));
CHECK(IsSubtypeOf(ValueType::Rtt(HeapType::kExn, 3),
ValueType::Rtt(HeapType::kExn, 3), module1, module2));
// Rtts of different depth are unrelated.
CHECK(!IsSubtypeOf(ValueType::Rtt(5, 1), ValueType::Rtt(5, 3), module1,
module2));
CHECK(!IsSubtypeOf(ValueType::Rtt(5, 8), ValueType::Rtt(5, 3), module1,
module2));
// Rtts of identical types are subtype-related.
CHECK(IsSubtypeOf(ValueType::Rtt(8, 1), ValueType::Rtt(9, 1), module1,
module));
// Rtts of subtypes are not related.
CHECK(!IsSubtypeOf(ValueType::Rtt(1, 1), ValueType::Rtt(0, 1), module1,
module));
}
}
} // namespace subtyping_unittest