Revert r16648, r16641, r16638 and r16637.

Original descriptions were:
- "Refactor and cleanup VirtualMemory."
- "Fix typo."
- "Deuglify V8_INLINE and V8_NOINLINE."
- "Don't align size on allocation granularity for unaligned ReserveRegion calls."

Reasons for the revert are:
- Our mjsunit test suite slower by a factor of 5(!) in release mode.
- Flaky cctest/test-alloc/CodeRange on all architectures and platforms.
- Tankage of Sunspider by about 6% overall (unverified).

TBR=bmeurer@chromium.org

Review URL: https://codereview.chromium.org/23970004

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@16662 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
This commit is contained in:
mstarzinger@chromium.org 2013-09-11 18:30:01 +00:00
parent ebbd9c8ed7
commit 718a6a9a9e
45 changed files with 2077 additions and 1489 deletions

File diff suppressed because it is too large Load Diff

View File

@ -187,7 +187,6 @@
// supported // supported
// V8_HAS_ATTRIBUTE_DEPRECATED - __attribute__((deprecated)) supported // V8_HAS_ATTRIBUTE_DEPRECATED - __attribute__((deprecated)) supported
// V8_HAS_ATTRIBUTE_NOINLINE - __attribute__((noinline)) supported // V8_HAS_ATTRIBUTE_NOINLINE - __attribute__((noinline)) supported
// V8_HAS_ATTRIBUTE_PURE - __attribute__((pure)) supported
// V8_HAS_ATTRIBUTE_VISIBILITY - __attribute__((visibility)) supported // V8_HAS_ATTRIBUTE_VISIBILITY - __attribute__((visibility)) supported
// V8_HAS_ATTRIBUTE_WARN_UNUSED_RESULT - __attribute__((warn_unused_result)) // V8_HAS_ATTRIBUTE_WARN_UNUSED_RESULT - __attribute__((warn_unused_result))
// supported // supported
@ -217,7 +216,6 @@
# define V8_HAS_ATTRIBUTE_ALWAYS_INLINE (__has_attribute(always_inline)) # define V8_HAS_ATTRIBUTE_ALWAYS_INLINE (__has_attribute(always_inline))
# define V8_HAS_ATTRIBUTE_DEPRECATED (__has_attribute(deprecated)) # define V8_HAS_ATTRIBUTE_DEPRECATED (__has_attribute(deprecated))
# define V8_HAS_ATTRIBUTE_NOINLINE (__has_attribute(noinline)) # define V8_HAS_ATTRIBUTE_NOINLINE (__has_attribute(noinline))
# define V8_HAS_ATTRIBUTE_PURE (__has_attribute(pure))
# define V8_HAS_ATTRIBUTE_VISIBILITY (__has_attribute(visibility)) # define V8_HAS_ATTRIBUTE_VISIBILITY (__has_attribute(visibility))
# define V8_HAS_ATTRIBUTE_WARN_UNUSED_RESULT \ # define V8_HAS_ATTRIBUTE_WARN_UNUSED_RESULT \
(__has_attribute(warn_unused_result)) (__has_attribute(warn_unused_result))
@ -248,7 +246,6 @@
# define V8_HAS_ATTRIBUTE_ALWAYS_INLINE (V8_GNUC_PREREQ(4, 4, 0)) # define V8_HAS_ATTRIBUTE_ALWAYS_INLINE (V8_GNUC_PREREQ(4, 4, 0))
# define V8_HAS_ATTRIBUTE_DEPRECATED (V8_GNUC_PREREQ(3, 4, 0)) # define V8_HAS_ATTRIBUTE_DEPRECATED (V8_GNUC_PREREQ(3, 4, 0))
# define V8_HAS_ATTRIBUTE_NOINLINE (V8_GNUC_PREREQ(3, 4, 0)) # define V8_HAS_ATTRIBUTE_NOINLINE (V8_GNUC_PREREQ(3, 4, 0))
# define V8_HAS_ATTRIBUTE_PURE (V8_GNUC_PREREQ(2, 96, 0))
# define V8_HAS_ATTRIBUTE_VISIBILITY (V8_GNUC_PREREQ(4, 3, 0)) # define V8_HAS_ATTRIBUTE_VISIBILITY (V8_GNUC_PREREQ(4, 3, 0))
# define V8_HAS_ATTRIBUTE_WARN_UNUSED_RESULT \ # define V8_HAS_ATTRIBUTE_WARN_UNUSED_RESULT \
(!V8_CC_INTEL && V8_GNUC_PREREQ(4, 1, 0)) (!V8_CC_INTEL && V8_GNUC_PREREQ(4, 1, 0))
@ -298,27 +295,23 @@
// Helper macros // Helper macros
// A macro used to make better inlining. Don't bother for debug builds. // A macro used to make better inlining. Don't bother for debug builds.
// Use like:
// V8_INLINE int GetZero() { return 0; }
#if !defined(DEBUG) && V8_HAS_ATTRIBUTE_ALWAYS_INLINE #if !defined(DEBUG) && V8_HAS_ATTRIBUTE_ALWAYS_INLINE
# define V8_INLINE inline __attribute__((always_inline)) # define V8_INLINE(declarator) inline __attribute__((always_inline)) declarator
#elif !defined(DEBUG) && V8_HAS___FORCEINLINE #elif !defined(DEBUG) && V8_HAS___FORCEINLINE
# define V8_INLINE __forceinline # define V8_INLINE(declarator) __forceinline declarator
#else #else
# define V8_INLINE inline # define V8_INLINE(declarator) inline declarator
#endif #endif
// A macro used to tell the compiler to never inline a particular function. // A macro used to tell the compiler to never inline a particular function.
// Don't bother for debug builds. // Don't bother for debug builds.
// Use like:
// V8_NOINLINE int GetMinusOne() { return -1; }
#if !defined(DEBUG) && V8_HAS_ATTRIBUTE_NOINLINE #if !defined(DEBUG) && V8_HAS_ATTRIBUTE_NOINLINE
# define V8_NOINLINE __attribute__((noinline)) # define V8_NOINLINE(declarator) __attribute__((noinline)) declarator
#elif !defined(DEBUG) && V8_HAS_DECLSPEC_NOINLINE #elif !defined(DEBUG) && V8_HAS_DECLSPEC_NOINLINE
# define V8_NOINLINE __declspec(noinline) # define V8_NOINLINE(declarator) __declspec(noinline) declarator
#else #else
# define V8_NOINLINE /* NOT SUPPORTED */ # define V8_NOINLINE(declarator) declarator
#endif #endif
@ -332,28 +325,6 @@
#endif #endif
// Many functions have no effects except the return value and their return value
// depends only on the parameters and/or global variables. Such a function can
// be subject to common subexpression elimination and loop optimization just as
// an arithmetic operator would be. These functions should be declared with the
// attribute V8_PURE. For example,
//
// int square (int) V8_PURE;
//
// says that the hypothetical function square is safe to call fewer times than
// the program says.
//
// Some of common examples of pure functions are strlen or memcmp. Interesting
// non-V8_PURE functions are functions with infinite loops or those depending
// on volatile memory or other system resource, that may change between two
// consecutive calls (such as feof in a multithreaded environment).
#if V8_HAS_ATTRIBUTE_PURE
# define V8_PURE __attribute__((pure))
#else
# define V8_PURE /* NOT SUPPORTED */
#endif
// Annotate a function indicating the caller must examine the return value. // Annotate a function indicating the caller must examine the return value.
// Use like: // Use like:
// int foo() V8_WARN_UNUSED_RESULT; // int foo() V8_WARN_UNUSED_RESULT;

View File

@ -64,8 +64,7 @@ double fast_exp_simulator(double x) {
UnaryMathFunction CreateExpFunction() { UnaryMathFunction CreateExpFunction() {
if (!FLAG_fast_math) return &exp; if (!FLAG_fast_math) return &exp;
size_t actual_size; size_t actual_size;
byte* buffer = static_cast<byte*>(VirtualMemory::AllocateRegion( byte* buffer = static_cast<byte*>(OS::Allocate(1 * KB, &actual_size, true));
1 * KB, &actual_size, VirtualMemory::EXECUTABLE));
if (buffer == NULL) return &exp; if (buffer == NULL) return &exp;
ExternalReference::InitializeMathExpData(); ExternalReference::InitializeMathExpData();
@ -103,9 +102,7 @@ UnaryMathFunction CreateExpFunction() {
ASSERT(!RelocInfo::RequiresRelocation(desc)); ASSERT(!RelocInfo::RequiresRelocation(desc));
CPU::FlushICache(buffer, actual_size); CPU::FlushICache(buffer, actual_size);
bool result = VirtualMemory::WriteProtectRegion(buffer, actual_size); OS::ProtectCode(buffer, actual_size);
ASSERT(result);
USE(result);
#if !defined(USE_SIMULATOR) #if !defined(USE_SIMULATOR)
return FUNCTION_CAST<UnaryMathFunction>(buffer); return FUNCTION_CAST<UnaryMathFunction>(buffer);
@ -125,8 +122,7 @@ OS::MemCopyUint8Function CreateMemCopyUint8Function(
return stub; return stub;
} }
size_t actual_size; size_t actual_size;
byte* buffer = static_cast<byte*>(VirtualMemory::AllocateRegion( byte* buffer = static_cast<byte*>(OS::Allocate(1 * KB, &actual_size, true));
1 * KB, &actual_size, VirtualMemory::EXECUTABLE));
if (buffer == NULL) return stub; if (buffer == NULL) return stub;
MacroAssembler masm(NULL, buffer, static_cast<int>(actual_size)); MacroAssembler masm(NULL, buffer, static_cast<int>(actual_size));
@ -268,9 +264,7 @@ OS::MemCopyUint8Function CreateMemCopyUint8Function(
ASSERT(!RelocInfo::RequiresRelocation(desc)); ASSERT(!RelocInfo::RequiresRelocation(desc));
CPU::FlushICache(buffer, actual_size); CPU::FlushICache(buffer, actual_size);
bool result = VirtualMemory::WriteProtectRegion(buffer, actual_size); OS::ProtectCode(buffer, actual_size);
ASSERT(result);
USE(result);
return FUNCTION_CAST<OS::MemCopyUint8Function>(buffer); return FUNCTION_CAST<OS::MemCopyUint8Function>(buffer);
#endif #endif
} }
@ -286,8 +280,7 @@ OS::MemCopyUint16Uint8Function CreateMemCopyUint16Uint8Function(
return stub; return stub;
} }
size_t actual_size; size_t actual_size;
byte* buffer = static_cast<byte*>(VirtualMemory::AllocateRegion( byte* buffer = static_cast<byte*>(OS::Allocate(1 * KB, &actual_size, true));
1 * KB, &actual_size, VirtualMemory::EXECUTABLE));
if (buffer == NULL) return stub; if (buffer == NULL) return stub;
MacroAssembler masm(NULL, buffer, static_cast<int>(actual_size)); MacroAssembler masm(NULL, buffer, static_cast<int>(actual_size));
@ -359,9 +352,7 @@ OS::MemCopyUint16Uint8Function CreateMemCopyUint16Uint8Function(
masm.GetCode(&desc); masm.GetCode(&desc);
CPU::FlushICache(buffer, actual_size); CPU::FlushICache(buffer, actual_size);
bool result = VirtualMemory::WriteProtectRegion(buffer, actual_size); OS::ProtectCode(buffer, actual_size);
ASSERT(result);
USE(result);
return FUNCTION_CAST<OS::MemCopyUint16Uint8Function>(buffer); return FUNCTION_CAST<OS::MemCopyUint16Uint8Function>(buffer);
#endif #endif

View File

@ -54,7 +54,7 @@ namespace internal {
// Define __cpuid() for non-MSVC compilers. // Define __cpuid() for non-MSVC compilers.
#if !V8_CC_MSVC #if !V8_CC_MSVC
static V8_INLINE void __cpuid(int cpu_info[4], int info_type) { static V8_INLINE(void __cpuid(int cpu_info[4], int info_type)) {
#if defined(__i386__) && defined(__pic__) #if defined(__i386__) && defined(__pic__)
// Make sure to preserve ebx, which contains the pointer // Make sure to preserve ebx, which contains the pointer
// to the GOT in case we're generating PIC. // to the GOT in case we're generating PIC.

View File

@ -42,8 +42,14 @@ namespace internal {
static MemoryChunk* AllocateCodeChunk(MemoryAllocator* allocator) { static MemoryChunk* AllocateCodeChunk(MemoryAllocator* allocator) {
return allocator->AllocateChunk(Deoptimizer::GetMaxDeoptTableSize(), return allocator->AllocateChunk(Deoptimizer::GetMaxDeoptTableSize(),
VirtualMemory::GetPageSize(), OS::CommitPageSize(),
VirtualMemory::EXECUTABLE, #if defined(__native_client__)
// The Native Client port of V8 uses an interpreter,
// so code pages don't need PROT_EXEC.
NOT_EXECUTABLE,
#else
EXECUTABLE,
#endif
NULL); NULL);
} }
@ -122,7 +128,7 @@ static const int kDeoptTableMaxEpilogueCodeSize = 2 * KB;
size_t Deoptimizer::GetMaxDeoptTableSize() { size_t Deoptimizer::GetMaxDeoptTableSize() {
int entries_size = int entries_size =
Deoptimizer::kMaxNumberOfEntries * Deoptimizer::table_entry_size_; Deoptimizer::kMaxNumberOfEntries * Deoptimizer::table_entry_size_;
int commit_page_size = static_cast<int>(VirtualMemory::GetPageSize()); int commit_page_size = static_cast<int>(OS::CommitPageSize());
int page_count = ((kDeoptTableMaxEpilogueCodeSize + entries_size - 1) / int page_count = ((kDeoptTableMaxEpilogueCodeSize + entries_size - 1) /
commit_page_size) + 1; commit_page_size) + 1;
return static_cast<size_t>(commit_page_size * page_count); return static_cast<size_t>(commit_page_size * page_count);

View File

@ -342,9 +342,9 @@ F FUNCTION_CAST(Address addr) {
DISALLOW_COPY_AND_ASSIGN(TypeName) DISALLOW_COPY_AND_ASSIGN(TypeName)
// Newly written code should use V8_INLINE and V8_NOINLINE directly. // Newly written code should use V8_INLINE() and V8_NOINLINE() directly.
#define INLINE(declarator) V8_INLINE declarator #define INLINE(declarator) V8_INLINE(declarator)
#define NO_INLINE(declarator) V8_NOINLINE declarator #define NO_INLINE(declarator) V8_NOINLINE(declarator)
// Newly written code should use V8_WARN_UNUSED_RESULT. // Newly written code should use V8_WARN_UNUSED_RESULT.

View File

@ -144,7 +144,7 @@ MaybeObject* Heap::AllocateOneByteInternalizedString(Vector<const uint8_t> str,
// Allocate string. // Allocate string.
Object* result; Object* result;
{ MaybeObject* maybe_result = (size > Page::kMaxNonCodeHeapObjectSize) { MaybeObject* maybe_result = (size > Page::kMaxNonCodeHeapObjectSize)
? lo_space_->AllocateRaw(size, VirtualMemory::NOT_EXECUTABLE) ? lo_space_->AllocateRaw(size, NOT_EXECUTABLE)
: old_data_space_->AllocateRaw(size); : old_data_space_->AllocateRaw(size);
if (!maybe_result->ToObject(&result)) return maybe_result; if (!maybe_result->ToObject(&result)) return maybe_result;
} }
@ -178,7 +178,7 @@ MaybeObject* Heap::AllocateTwoByteInternalizedString(Vector<const uc16> str,
// Allocate string. // Allocate string.
Object* result; Object* result;
{ MaybeObject* maybe_result = (size > Page::kMaxNonCodeHeapObjectSize) { MaybeObject* maybe_result = (size > Page::kMaxNonCodeHeapObjectSize)
? lo_space_->AllocateRaw(size, VirtualMemory::NOT_EXECUTABLE) ? lo_space_->AllocateRaw(size, NOT_EXECUTABLE)
: old_data_space_->AllocateRaw(size); : old_data_space_->AllocateRaw(size);
if (!maybe_result->ToObject(&result)) return maybe_result; if (!maybe_result->ToObject(&result)) return maybe_result;
} }
@ -242,8 +242,7 @@ MaybeObject* Heap::AllocateRaw(int size_in_bytes,
} else if (CODE_SPACE == space) { } else if (CODE_SPACE == space) {
result = code_space_->AllocateRaw(size_in_bytes); result = code_space_->AllocateRaw(size_in_bytes);
} else if (LO_SPACE == space) { } else if (LO_SPACE == space) {
result = lo_space_->AllocateRaw( result = lo_space_->AllocateRaw(size_in_bytes, NOT_EXECUTABLE);
size_in_bytes, VirtualMemory::NOT_EXECUTABLE);
} else if (CELL_SPACE == space) { } else if (CELL_SPACE == space) {
result = cell_space_->AllocateRaw(size_in_bytes); result = cell_space_->AllocateRaw(size_in_bytes);
} else if (PROPERTY_CELL_SPACE == space) { } else if (PROPERTY_CELL_SPACE == space) {

View File

@ -172,7 +172,8 @@ Heap::Heap()
max_semispace_size_ = reserved_semispace_size_ = V8_MAX_SEMISPACE_SIZE; max_semispace_size_ = reserved_semispace_size_ = V8_MAX_SEMISPACE_SIZE;
#endif #endif
intptr_t max_virtual = static_cast<intptr_t>(VirtualMemory::GetLimit()); intptr_t max_virtual = OS::MaxVirtualMemory();
if (max_virtual > 0) { if (max_virtual > 0) {
if (code_range_size_ > 0) { if (code_range_size_ > 0) {
// Reserve no more than 1/8 of the memory for the code range. // Reserve no more than 1/8 of the memory for the code range.
@ -4150,7 +4151,7 @@ MaybeObject* Heap::CreateCode(const CodeDesc& desc,
HeapObject* result; HeapObject* result;
bool force_lo_space = obj_size > code_space()->AreaSize(); bool force_lo_space = obj_size > code_space()->AreaSize();
if (force_lo_space) { if (force_lo_space) {
maybe_result = lo_space_->AllocateRaw(obj_size, VirtualMemory::EXECUTABLE); maybe_result = lo_space_->AllocateRaw(obj_size, EXECUTABLE);
} else { } else {
maybe_result = code_space_->AllocateRaw(obj_size); maybe_result = code_space_->AllocateRaw(obj_size);
} }
@ -4162,7 +4163,7 @@ MaybeObject* Heap::CreateCode(const CodeDesc& desc,
// Discard the first code allocation, which was on a page where it could be // Discard the first code allocation, which was on a page where it could be
// moved. // moved.
CreateFillerObjectAt(result->address(), obj_size); CreateFillerObjectAt(result->address(), obj_size);
maybe_result = lo_space_->AllocateRaw(obj_size, VirtualMemory::EXECUTABLE); maybe_result = lo_space_->AllocateRaw(obj_size, EXECUTABLE);
if (!maybe_result->To<HeapObject>(&result)) return maybe_result; if (!maybe_result->To<HeapObject>(&result)) return maybe_result;
} }
@ -4213,7 +4214,7 @@ MaybeObject* Heap::CopyCode(Code* code) {
int obj_size = code->Size(); int obj_size = code->Size();
MaybeObject* maybe_result; MaybeObject* maybe_result;
if (obj_size > code_space()->AreaSize()) { if (obj_size > code_space()->AreaSize()) {
maybe_result = lo_space_->AllocateRaw(obj_size, VirtualMemory::EXECUTABLE); maybe_result = lo_space_->AllocateRaw(obj_size, EXECUTABLE);
} else { } else {
maybe_result = code_space_->AllocateRaw(obj_size); maybe_result = code_space_->AllocateRaw(obj_size);
} }
@ -4256,8 +4257,7 @@ MaybeObject* Heap::CopyCode(Code* code, Vector<byte> reloc_info) {
MaybeObject* maybe_result; MaybeObject* maybe_result;
if (new_obj_size > code_space()->AreaSize()) { if (new_obj_size > code_space()->AreaSize()) {
maybe_result = lo_space_->AllocateRaw( maybe_result = lo_space_->AllocateRaw(new_obj_size, EXECUTABLE);
new_obj_size, VirtualMemory::EXECUTABLE);
} else { } else {
maybe_result = code_space_->AllocateRaw(new_obj_size); maybe_result = code_space_->AllocateRaw(new_obj_size);
} }
@ -5370,7 +5370,7 @@ MaybeObject* Heap::AllocateInternalizedStringImpl(
// Allocate string. // Allocate string.
Object* result; Object* result;
{ MaybeObject* maybe_result = (size > Page::kMaxNonCodeHeapObjectSize) { MaybeObject* maybe_result = (size > Page::kMaxNonCodeHeapObjectSize)
? lo_space_->AllocateRaw(size, VirtualMemory::NOT_EXECUTABLE) ? lo_space_->AllocateRaw(size, NOT_EXECUTABLE)
: old_data_space_->AllocateRaw(size); : old_data_space_->AllocateRaw(size);
if (!maybe_result->ToObject(&result)) return maybe_result; if (!maybe_result->ToObject(&result)) return maybe_result;
} }
@ -5523,7 +5523,7 @@ MaybeObject* Heap::AllocateRawFixedArray(int length) {
int size = FixedArray::SizeFor(length); int size = FixedArray::SizeFor(length);
return size <= Page::kMaxNonCodeHeapObjectSize return size <= Page::kMaxNonCodeHeapObjectSize
? new_space_.AllocateRaw(size) ? new_space_.AllocateRaw(size)
: lo_space_->AllocateRaw(size, VirtualMemory::NOT_EXECUTABLE); : lo_space_->AllocateRaw(size, NOT_EXECUTABLE);
} }
@ -6878,7 +6878,7 @@ bool Heap::SetUp() {
new OldSpace(this, new OldSpace(this,
max_old_generation_size_, max_old_generation_size_,
OLD_POINTER_SPACE, OLD_POINTER_SPACE,
VirtualMemory::NOT_EXECUTABLE); NOT_EXECUTABLE);
if (old_pointer_space_ == NULL) return false; if (old_pointer_space_ == NULL) return false;
if (!old_pointer_space_->SetUp()) return false; if (!old_pointer_space_->SetUp()) return false;
@ -6887,7 +6887,7 @@ bool Heap::SetUp() {
new OldSpace(this, new OldSpace(this,
max_old_generation_size_, max_old_generation_size_,
OLD_DATA_SPACE, OLD_DATA_SPACE,
VirtualMemory::NOT_EXECUTABLE); NOT_EXECUTABLE);
if (old_data_space_ == NULL) return false; if (old_data_space_ == NULL) return false;
if (!old_data_space_->SetUp()) return false; if (!old_data_space_->SetUp()) return false;
@ -6901,8 +6901,8 @@ bool Heap::SetUp() {
} }
} }
code_space_ = new OldSpace( code_space_ =
this, max_old_generation_size_, CODE_SPACE, VirtualMemory::EXECUTABLE); new OldSpace(this, max_old_generation_size_, CODE_SPACE, EXECUTABLE);
if (code_space_ == NULL) return false; if (code_space_ == NULL) return false;
if (!code_space_->SetUp()) return false; if (!code_space_->SetUp()) return false;
@ -7999,9 +7999,8 @@ void Heap::FreeQueuedChunks() {
MemoryChunk* inner_last = MemoryChunk::FromAddress(chunk_end - 1); MemoryChunk* inner_last = MemoryChunk::FromAddress(chunk_end - 1);
while (inner <= inner_last) { while (inner <= inner_last) {
// Size of a large chunk is always a multiple of // Size of a large chunk is always a multiple of
// VirtualMemory::GetAllocationGranularity() so // OS::AllocateAlignment() so there is always
// there is always enough space for a fake // enough space for a fake MemoryChunk header.
// MemoryChunk header.
Address area_end = Min(inner->address() + Page::kPageSize, chunk_end); Address area_end = Min(inner->address() + Page::kPageSize, chunk_end);
// Guard against overflow. // Guard against overflow.
if (area_end < inner->address()) area_end = chunk_end; if (area_end < inner->address()) area_end = chunk_end;

View File

@ -60,8 +60,9 @@ void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const {
UnaryMathFunction CreateTranscendentalFunction(TranscendentalCache::Type type) { UnaryMathFunction CreateTranscendentalFunction(TranscendentalCache::Type type) {
size_t actual_size; size_t actual_size;
// Allocate buffer in executable space. // Allocate buffer in executable space.
byte* buffer = static_cast<byte*>(VirtualMemory::AllocateRegion( byte* buffer = static_cast<byte*>(OS::Allocate(1 * KB,
1 * KB, &actual_size, VirtualMemory::EXECUTABLE)); &actual_size,
true));
if (buffer == NULL) { if (buffer == NULL) {
// Fallback to library function if function cannot be created. // Fallback to library function if function cannot be created.
switch (type) { switch (type) {
@ -96,9 +97,7 @@ UnaryMathFunction CreateTranscendentalFunction(TranscendentalCache::Type type) {
ASSERT(!RelocInfo::RequiresRelocation(desc)); ASSERT(!RelocInfo::RequiresRelocation(desc));
CPU::FlushICache(buffer, actual_size); CPU::FlushICache(buffer, actual_size);
bool result = VirtualMemory::WriteProtectRegion(buffer, actual_size); OS::ProtectCode(buffer, actual_size);
ASSERT(result);
USE(result);
return FUNCTION_CAST<UnaryMathFunction>(buffer); return FUNCTION_CAST<UnaryMathFunction>(buffer);
} }
@ -107,8 +106,7 @@ UnaryMathFunction CreateExpFunction() {
if (!CpuFeatures::IsSupported(SSE2)) return &exp; if (!CpuFeatures::IsSupported(SSE2)) return &exp;
if (!FLAG_fast_math) return &exp; if (!FLAG_fast_math) return &exp;
size_t actual_size; size_t actual_size;
byte* buffer = static_cast<byte*>(VirtualMemory::AllocateRegion( byte* buffer = static_cast<byte*>(OS::Allocate(1 * KB, &actual_size, true));
1 * KB, &actual_size, VirtualMemory::EXECUTABLE));
if (buffer == NULL) return &exp; if (buffer == NULL) return &exp;
ExternalReference::InitializeMathExpData(); ExternalReference::InitializeMathExpData();
@ -137,9 +135,7 @@ UnaryMathFunction CreateExpFunction() {
ASSERT(!RelocInfo::RequiresRelocation(desc)); ASSERT(!RelocInfo::RequiresRelocation(desc));
CPU::FlushICache(buffer, actual_size); CPU::FlushICache(buffer, actual_size);
bool result = VirtualMemory::WriteProtectRegion(buffer, actual_size); OS::ProtectCode(buffer, actual_size);
ASSERT(result);
USE(result);
return FUNCTION_CAST<UnaryMathFunction>(buffer); return FUNCTION_CAST<UnaryMathFunction>(buffer);
} }
@ -147,8 +143,9 @@ UnaryMathFunction CreateExpFunction() {
UnaryMathFunction CreateSqrtFunction() { UnaryMathFunction CreateSqrtFunction() {
size_t actual_size; size_t actual_size;
// Allocate buffer in executable space. // Allocate buffer in executable space.
byte* buffer = static_cast<byte*>(VirtualMemory::AllocateRegion( byte* buffer = static_cast<byte*>(OS::Allocate(1 * KB,
1 * KB, &actual_size, VirtualMemory::EXECUTABLE)); &actual_size,
true));
// If SSE2 is not available, we can use libc's implementation to ensure // If SSE2 is not available, we can use libc's implementation to ensure
// consistency since code by fullcodegen's calls into runtime in that case. // consistency since code by fullcodegen's calls into runtime in that case.
if (buffer == NULL || !CpuFeatures::IsSupported(SSE2)) return &sqrt; if (buffer == NULL || !CpuFeatures::IsSupported(SSE2)) return &sqrt;
@ -171,9 +168,7 @@ UnaryMathFunction CreateSqrtFunction() {
ASSERT(!RelocInfo::RequiresRelocation(desc)); ASSERT(!RelocInfo::RequiresRelocation(desc));
CPU::FlushICache(buffer, actual_size); CPU::FlushICache(buffer, actual_size);
bool result = VirtualMemory::WriteProtectRegion(buffer, actual_size); OS::ProtectCode(buffer, actual_size);
ASSERT(result);
USE(result);
return FUNCTION_CAST<UnaryMathFunction>(buffer); return FUNCTION_CAST<UnaryMathFunction>(buffer);
} }
@ -267,8 +262,7 @@ class LabelConverter {
OS::MemMoveFunction CreateMemMoveFunction() { OS::MemMoveFunction CreateMemMoveFunction() {
size_t actual_size; size_t actual_size;
// Allocate buffer in executable space. // Allocate buffer in executable space.
byte* buffer = static_cast<byte*>(VirtualMemory::AllocateRegion( byte* buffer = static_cast<byte*>(OS::Allocate(1 * KB, &actual_size, true));
1 * KB, &actual_size, VirtualMemory::EXECUTABLE));
if (buffer == NULL) return NULL; if (buffer == NULL) return NULL;
MacroAssembler masm(NULL, buffer, static_cast<int>(actual_size)); MacroAssembler masm(NULL, buffer, static_cast<int>(actual_size));
LabelConverter conv(buffer); LabelConverter conv(buffer);
@ -645,9 +639,7 @@ OS::MemMoveFunction CreateMemMoveFunction() {
masm.GetCode(&desc); masm.GetCode(&desc);
ASSERT(!RelocInfo::RequiresRelocation(desc)); ASSERT(!RelocInfo::RequiresRelocation(desc));
CPU::FlushICache(buffer, actual_size); CPU::FlushICache(buffer, actual_size);
bool result = VirtualMemory::WriteProtectRegion(buffer, actual_size); OS::ProtectCode(buffer, actual_size);
ASSERT(result);
USE(result);
// TODO(jkummerow): It would be nice to register this code creation event // TODO(jkummerow): It would be nice to register this code creation event
// with the PROFILE / GDBJIT system. // with the PROFILE / GDBJIT system.
return FUNCTION_CAST<OS::MemMoveFunction>(buffer); return FUNCTION_CAST<OS::MemMoveFunction>(buffer);

View File

@ -558,7 +558,7 @@ void IncrementalMarking::EnsureMarkingDequeIsCommitted() {
bool success = marking_deque_memory_->Commit( bool success = marking_deque_memory_->Commit(
reinterpret_cast<Address>(marking_deque_memory_->address()), reinterpret_cast<Address>(marking_deque_memory_->address()),
marking_deque_memory_->size(), marking_deque_memory_->size(),
VirtualMemory::NOT_EXECUTABLE); false); // Not executable.
CHECK(success); CHECK(success);
marking_deque_memory_committed_ = true; marking_deque_memory_committed_ = true;
} }

View File

@ -64,8 +64,7 @@ double fast_exp_simulator(double x) {
UnaryMathFunction CreateExpFunction() { UnaryMathFunction CreateExpFunction() {
if (!FLAG_fast_math) return &exp; if (!FLAG_fast_math) return &exp;
size_t actual_size; size_t actual_size;
byte* buffer = static_cast<byte*>(VirtualMemory::AllocateRegion( byte* buffer = static_cast<byte*>(OS::Allocate(1 * KB, &actual_size, true));
1 * KB, &actual_size, VirtualMemory::EXECUTABLE));
if (buffer == NULL) return &exp; if (buffer == NULL) return &exp;
ExternalReference::InitializeMathExpData(); ExternalReference::InitializeMathExpData();
@ -103,9 +102,7 @@ UnaryMathFunction CreateExpFunction() {
ASSERT(!RelocInfo::RequiresRelocation(desc)); ASSERT(!RelocInfo::RequiresRelocation(desc));
CPU::FlushICache(buffer, actual_size); CPU::FlushICache(buffer, actual_size);
bool result = VirtualMemory::WriteProtectRegion(buffer, actual_size); OS::ProtectCode(buffer, actual_size);
ASSERT(result);
USE(result);
#if !defined(USE_SIMULATOR) #if !defined(USE_SIMULATOR)
return FUNCTION_CAST<UnaryMathFunction>(buffer); return FUNCTION_CAST<UnaryMathFunction>(buffer);

View File

@ -73,6 +73,21 @@ double OS::LocalTimeOffset() {
} }
void* OS::Allocate(const size_t requested,
size_t* allocated,
bool is_executable) {
const size_t msize = RoundUp(requested, sysconf(_SC_PAGESIZE));
int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
void* mbase = mmap(NULL, msize, prot, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (mbase == MAP_FAILED) {
LOG(Isolate::Current(), StringEvent("OS::Allocate", "mmap failed"));
return NULL;
}
*allocated = msize;
return mbase;
}
void OS::DumpBacktrace() { void OS::DumpBacktrace() {
// Currently unsupported. // Currently unsupported.
} }
@ -208,8 +223,7 @@ static void* GetRandomAddr() {
// CpuFeatures::Probe. We don't care about randomization in this case because // CpuFeatures::Probe. We don't care about randomization in this case because
// the code page is immediately freed. // the code page is immediately freed.
if (isolate != NULL) { if (isolate != NULL) {
// The address range used to randomize RWX allocations in // The address range used to randomize RWX allocations in OS::Allocate
// VirtualMemory::AllocateRegion().
// Try not to map pages into the default range that windows loads DLLs // Try not to map pages into the default range that windows loads DLLs
// Use a multiple of 64k to prevent committing unused memory. // Use a multiple of 64k to prevent committing unused memory.
// Note: This does not guarantee RWX regions will be within the // Note: This does not guarantee RWX regions will be within the
@ -230,4 +244,126 @@ static void* GetRandomAddr() {
return NULL; return NULL;
} }
static void* RandomizedVirtualAlloc(size_t size, int action, int protection) {
LPVOID base = NULL;
if (protection == PAGE_EXECUTE_READWRITE || protection == PAGE_NOACCESS) {
// For exectutable pages try and randomize the allocation address
for (size_t attempts = 0; base == NULL && attempts < 3; ++attempts) {
base = VirtualAlloc(GetRandomAddr(), size, action, protection);
}
}
// After three attempts give up and let the OS find an address to use.
if (base == NULL) base = VirtualAlloc(NULL, size, action, protection);
return base;
}
VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { }
VirtualMemory::VirtualMemory(size_t size)
: address_(ReserveRegion(size)), size_(size) { }
VirtualMemory::VirtualMemory(size_t size, size_t alignment)
: address_(NULL), size_(0) {
ASSERT(IsAligned(alignment, static_cast<intptr_t>(OS::AllocateAlignment())));
size_t request_size = RoundUp(size + alignment,
static_cast<intptr_t>(OS::AllocateAlignment()));
void* address = ReserveRegion(request_size);
if (address == NULL) return;
Address base = RoundUp(static_cast<Address>(address), alignment);
// Try reducing the size by freeing and then reallocating a specific area.
bool result = ReleaseRegion(address, request_size);
USE(result);
ASSERT(result);
address = VirtualAlloc(base, size, MEM_RESERVE, PAGE_NOACCESS);
if (address != NULL) {
request_size = size;
ASSERT(base == static_cast<Address>(address));
} else {
// Resizing failed, just go with a bigger area.
address = ReserveRegion(request_size);
if (address == NULL) return;
}
address_ = address;
size_ = request_size;
}
VirtualMemory::~VirtualMemory() {
if (IsReserved()) {
bool result = ReleaseRegion(address_, size_);
ASSERT(result);
USE(result);
}
}
bool VirtualMemory::IsReserved() {
return address_ != NULL;
}
void VirtualMemory::Reset() {
address_ = NULL;
size_ = 0;
}
bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
return CommitRegion(address, size, is_executable);
}
bool VirtualMemory::Uncommit(void* address, size_t size) {
ASSERT(IsReserved());
return UncommitRegion(address, size);
}
void* VirtualMemory::ReserveRegion(size_t size) {
return RandomizedVirtualAlloc(size, MEM_RESERVE, PAGE_NOACCESS);
}
bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) {
int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
if (NULL == VirtualAlloc(base, size, MEM_COMMIT, prot)) {
return false;
}
return true;
}
bool VirtualMemory::Guard(void* address) {
if (NULL == VirtualAlloc(address,
OS::CommitPageSize(),
MEM_COMMIT,
PAGE_NOACCESS)) {
return false;
}
return true;
}
bool VirtualMemory::UncommitRegion(void* base, size_t size) {
return VirtualFree(base, size, MEM_DECOMMIT) != 0;
}
bool VirtualMemory::ReleaseRegion(void* base, size_t size) {
return VirtualFree(base, 0, MEM_RELEASE) != 0;
}
bool VirtualMemory::HasLazyCommits() {
// TODO(alph): implement for the platform.
return false;
}
} } // namespace v8::internal } } // namespace v8::internal

View File

@ -81,6 +81,22 @@ double OS::LocalTimeOffset() {
} }
void* OS::Allocate(const size_t requested,
size_t* allocated,
bool executable) {
const size_t msize = RoundUp(requested, getpagesize());
int prot = PROT_READ | PROT_WRITE | (executable ? PROT_EXEC : 0);
void* mbase = mmap(NULL, msize, prot, MAP_PRIVATE | MAP_ANON, -1, 0);
if (mbase == MAP_FAILED) {
LOG(Isolate::Current(), StringEvent("OS::Allocate", "mmap failed"));
return NULL;
}
*allocated = msize;
return mbase;
}
void OS::DumpBacktrace() { void OS::DumpBacktrace() {
POSIXBacktraceHelper<backtrace, backtrace_symbols>::DumpBacktrace(); POSIXBacktraceHelper<backtrace, backtrace_symbols>::DumpBacktrace();
} }
@ -187,4 +203,141 @@ int OS::StackWalk(Vector<OS::StackFrame> frames) {
return POSIXBacktraceHelper<backtrace, backtrace_symbols>::StackWalk(frames); return POSIXBacktraceHelper<backtrace, backtrace_symbols>::StackWalk(frames);
} }
// Constants used for mmap.
static const int kMmapFd = -1;
static const int kMmapFdOffset = 0;
VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { }
VirtualMemory::VirtualMemory(size_t size)
: address_(ReserveRegion(size)), size_(size) { }
VirtualMemory::VirtualMemory(size_t size, size_t alignment)
: address_(NULL), size_(0) {
ASSERT(IsAligned(alignment, static_cast<intptr_t>(OS::AllocateAlignment())));
size_t request_size = RoundUp(size + alignment,
static_cast<intptr_t>(OS::AllocateAlignment()));
void* reservation = mmap(OS::GetRandomMmapAddr(),
request_size,
PROT_NONE,
MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
kMmapFd,
kMmapFdOffset);
if (reservation == MAP_FAILED) return;
Address base = static_cast<Address>(reservation);
Address aligned_base = RoundUp(base, alignment);
ASSERT_LE(base, aligned_base);
// Unmap extra memory reserved before and after the desired block.
if (aligned_base != base) {
size_t prefix_size = static_cast<size_t>(aligned_base - base);
OS::Free(base, prefix_size);
request_size -= prefix_size;
}
size_t aligned_size = RoundUp(size, OS::AllocateAlignment());
ASSERT_LE(aligned_size, request_size);
if (aligned_size != request_size) {
size_t suffix_size = request_size - aligned_size;
OS::Free(aligned_base + aligned_size, suffix_size);
request_size -= suffix_size;
}
ASSERT(aligned_size == request_size);
address_ = static_cast<void*>(aligned_base);
size_ = aligned_size;
}
VirtualMemory::~VirtualMemory() {
if (IsReserved()) {
bool result = ReleaseRegion(address(), size());
ASSERT(result);
USE(result);
}
}
bool VirtualMemory::IsReserved() {
return address_ != NULL;
}
void VirtualMemory::Reset() {
address_ = NULL;
size_ = 0;
}
bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
return CommitRegion(address, size, is_executable);
}
bool VirtualMemory::Uncommit(void* address, size_t size) {
return UncommitRegion(address, size);
}
bool VirtualMemory::Guard(void* address) {
OS::Guard(address, OS::CommitPageSize());
return true;
}
void* VirtualMemory::ReserveRegion(size_t size) {
void* result = mmap(OS::GetRandomMmapAddr(),
size,
PROT_NONE,
MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
kMmapFd,
kMmapFdOffset);
if (result == MAP_FAILED) return NULL;
return result;
}
bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) {
int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
if (MAP_FAILED == mmap(base,
size,
prot,
MAP_PRIVATE | MAP_ANON | MAP_FIXED,
kMmapFd,
kMmapFdOffset)) {
return false;
}
return true;
}
bool VirtualMemory::UncommitRegion(void* base, size_t size) {
return mmap(base,
size,
PROT_NONE,
MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | MAP_FIXED,
kMmapFd,
kMmapFdOffset) != MAP_FAILED;
}
bool VirtualMemory::ReleaseRegion(void* base, size_t size) {
return munmap(base, size) == 0;
}
bool VirtualMemory::HasLazyCommits() {
// TODO(alph): implement for the platform.
return false;
}
} } // namespace v8::internal } } // namespace v8::internal

View File

@ -137,6 +137,23 @@ double OS::LocalTimeOffset() {
} }
void* OS::Allocate(const size_t requested,
size_t* allocated,
bool is_executable) {
const size_t msize = RoundUp(requested, AllocateAlignment());
int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
void* addr = OS::GetRandomMmapAddr();
void* mbase = mmap(addr, msize, prot, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (mbase == MAP_FAILED) {
LOG(i::Isolate::Current(),
StringEvent("OS::Allocate", "mmap failed"));
return NULL;
}
*allocated = msize;
return mbase;
}
void OS::DumpBacktrace() { void OS::DumpBacktrace() {
// backtrace is a glibc extension. // backtrace is a glibc extension.
#if defined(__GLIBC__) && !defined(__UCLIBC__) #if defined(__GLIBC__) && !defined(__UCLIBC__)
@ -167,16 +184,12 @@ OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) {
int size = ftell(file); int size = ftell(file);
void* memory = void* memory =
mmap(NULL, mmap(OS::GetRandomMmapAddr(),
size, size,
PROT_READ | PROT_WRITE, PROT_READ | PROT_WRITE,
MAP_SHARED, MAP_SHARED,
fileno(file), fileno(file),
0); 0);
if (memory == MAP_FAILED) {
fclose(file);
return NULL;
}
return new PosixMemoryMappedFile(file, memory, size); return new PosixMemoryMappedFile(file, memory, size);
} }
@ -191,24 +204,18 @@ OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
return NULL; return NULL;
} }
void* memory = void* memory =
mmap(NULL, mmap(OS::GetRandomMmapAddr(),
size, size,
PROT_READ | PROT_WRITE, PROT_READ | PROT_WRITE,
MAP_SHARED, MAP_SHARED,
fileno(file), fileno(file),
0); 0);
if (memory == MAP_FAILED) {
fclose(file);
return NULL;
}
return new PosixMemoryMappedFile(file, memory, size); return new PosixMemoryMappedFile(file, memory, size);
} }
PosixMemoryMappedFile::~PosixMemoryMappedFile() { PosixMemoryMappedFile::~PosixMemoryMappedFile() {
int result = munmap(memory_, size_); if (memory_) OS::Free(memory_, size_);
ASSERT_EQ(0, result);
USE(result);
fclose(file_); fclose(file_);
} }
@ -288,7 +295,7 @@ void OS::SignalCodeMovingGC() {
OS::PrintError("Failed to open %s\n", FLAG_gc_fake_mmap); OS::PrintError("Failed to open %s\n", FLAG_gc_fake_mmap);
OS::Abort(); OS::Abort();
} }
void* addr = mmap(NULL, void* addr = mmap(OS::GetRandomMmapAddr(),
size, size,
#if defined(__native_client__) #if defined(__native_client__)
// The Native Client port of V8 uses an interpreter, // The Native Client port of V8 uses an interpreter,
@ -301,9 +308,7 @@ void OS::SignalCodeMovingGC() {
fileno(f), fileno(f),
0); 0);
ASSERT(addr != MAP_FAILED); ASSERT(addr != MAP_FAILED);
int result = munmap(addr, size); OS::Free(addr, size);
ASSERT_EQ(0, result);
USE(result);
fclose(f); fclose(f);
} }
@ -317,4 +322,147 @@ int OS::StackWalk(Vector<OS::StackFrame> frames) {
#endif #endif
} }
// Constants used for mmap.
static const int kMmapFd = -1;
static const int kMmapFdOffset = 0;
VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { }
VirtualMemory::VirtualMemory(size_t size)
: address_(ReserveRegion(size)), size_(size) { }
VirtualMemory::VirtualMemory(size_t size, size_t alignment)
: address_(NULL), size_(0) {
ASSERT(IsAligned(alignment, static_cast<intptr_t>(OS::AllocateAlignment())));
size_t request_size = RoundUp(size + alignment,
static_cast<intptr_t>(OS::AllocateAlignment()));
void* reservation = mmap(OS::GetRandomMmapAddr(),
request_size,
PROT_NONE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE,
kMmapFd,
kMmapFdOffset);
if (reservation == MAP_FAILED) return;
Address base = static_cast<Address>(reservation);
Address aligned_base = RoundUp(base, alignment);
ASSERT_LE(base, aligned_base);
// Unmap extra memory reserved before and after the desired block.
if (aligned_base != base) {
size_t prefix_size = static_cast<size_t>(aligned_base - base);
OS::Free(base, prefix_size);
request_size -= prefix_size;
}
size_t aligned_size = RoundUp(size, OS::AllocateAlignment());
ASSERT_LE(aligned_size, request_size);
if (aligned_size != request_size) {
size_t suffix_size = request_size - aligned_size;
OS::Free(aligned_base + aligned_size, suffix_size);
request_size -= suffix_size;
}
ASSERT(aligned_size == request_size);
address_ = static_cast<void*>(aligned_base);
size_ = aligned_size;
}
VirtualMemory::~VirtualMemory() {
if (IsReserved()) {
bool result = ReleaseRegion(address(), size());
ASSERT(result);
USE(result);
}
}
bool VirtualMemory::IsReserved() {
return address_ != NULL;
}
void VirtualMemory::Reset() {
address_ = NULL;
size_ = 0;
}
bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
return CommitRegion(address, size, is_executable);
}
bool VirtualMemory::Uncommit(void* address, size_t size) {
return UncommitRegion(address, size);
}
bool VirtualMemory::Guard(void* address) {
OS::Guard(address, OS::CommitPageSize());
return true;
}
void* VirtualMemory::ReserveRegion(size_t size) {
void* result = mmap(OS::GetRandomMmapAddr(),
size,
PROT_NONE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE,
kMmapFd,
kMmapFdOffset);
if (result == MAP_FAILED) return NULL;
return result;
}
bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) {
#if defined(__native_client__)
// The Native Client port of V8 uses an interpreter,
// so code pages don't need PROT_EXEC.
int prot = PROT_READ | PROT_WRITE;
#else
int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
#endif
if (MAP_FAILED == mmap(base,
size,
prot,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED,
kMmapFd,
kMmapFdOffset)) {
return false;
}
return true;
}
bool VirtualMemory::UncommitRegion(void* base, size_t size) {
return mmap(base,
size,
PROT_NONE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE | MAP_FIXED,
kMmapFd,
kMmapFdOffset) != MAP_FAILED;
}
bool VirtualMemory::ReleaseRegion(void* base, size_t size) {
return munmap(base, size) == 0;
}
bool VirtualMemory::HasLazyCommits() {
return true;
}
} } // namespace v8::internal } } // namespace v8::internal

View File

@ -79,6 +79,34 @@ namespace v8 {
namespace internal { namespace internal {
// Constants used for mmap.
// kMmapFd is used to pass vm_alloc flags to tag the region with the user
// defined tag 255 This helps identify V8-allocated regions in memory analysis
// tools like vmmap(1).
static const int kMmapFd = VM_MAKE_TAG(255);
static const off_t kMmapFdOffset = 0;
void* OS::Allocate(const size_t requested,
size_t* allocated,
bool is_executable) {
const size_t msize = RoundUp(requested, getpagesize());
int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
void* mbase = mmap(OS::GetRandomMmapAddr(),
msize,
prot,
MAP_PRIVATE | MAP_ANON,
kMmapFd,
kMmapFdOffset);
if (mbase == MAP_FAILED) {
LOG(Isolate::Current(), StringEvent("OS::Allocate", "mmap failed"));
return NULL;
}
*allocated = msize;
return mbase;
}
void OS::DumpBacktrace() { void OS::DumpBacktrace() {
// If weak link to execinfo lib has failed, ie because we are on 10.4, abort. // If weak link to execinfo lib has failed, ie because we are on 10.4, abort.
if (backtrace == NULL) return; if (backtrace == NULL) return;
@ -109,7 +137,7 @@ OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) {
int size = ftell(file); int size = ftell(file);
void* memory = void* memory =
mmap(NULL, mmap(OS::GetRandomMmapAddr(),
size, size,
PROT_READ | PROT_WRITE, PROT_READ | PROT_WRITE,
MAP_SHARED, MAP_SHARED,
@ -129,7 +157,7 @@ OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
return NULL; return NULL;
} }
void* memory = void* memory =
mmap(NULL, mmap(OS::GetRandomMmapAddr(),
size, size,
PROT_READ | PROT_WRITE, PROT_READ | PROT_WRITE,
MAP_SHARED, MAP_SHARED,
@ -140,7 +168,7 @@ OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
PosixMemoryMappedFile::~PosixMemoryMappedFile() { PosixMemoryMappedFile::~PosixMemoryMappedFile() {
if (memory_) munmap(memory_, size_); if (memory_) OS::Free(memory_, size_);
fclose(file_); fclose(file_);
} }
@ -199,4 +227,137 @@ int OS::StackWalk(Vector<StackFrame> frames) {
return POSIXBacktraceHelper<backtrace, backtrace_symbols>::StackWalk(frames); return POSIXBacktraceHelper<backtrace, backtrace_symbols>::StackWalk(frames);
} }
VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { }
VirtualMemory::VirtualMemory(size_t size)
: address_(ReserveRegion(size)), size_(size) { }
VirtualMemory::VirtualMemory(size_t size, size_t alignment)
: address_(NULL), size_(0) {
ASSERT(IsAligned(alignment, static_cast<intptr_t>(OS::AllocateAlignment())));
size_t request_size = RoundUp(size + alignment,
static_cast<intptr_t>(OS::AllocateAlignment()));
void* reservation = mmap(OS::GetRandomMmapAddr(),
request_size,
PROT_NONE,
MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
kMmapFd,
kMmapFdOffset);
if (reservation == MAP_FAILED) return;
Address base = static_cast<Address>(reservation);
Address aligned_base = RoundUp(base, alignment);
ASSERT_LE(base, aligned_base);
// Unmap extra memory reserved before and after the desired block.
if (aligned_base != base) {
size_t prefix_size = static_cast<size_t>(aligned_base - base);
OS::Free(base, prefix_size);
request_size -= prefix_size;
}
size_t aligned_size = RoundUp(size, OS::AllocateAlignment());
ASSERT_LE(aligned_size, request_size);
if (aligned_size != request_size) {
size_t suffix_size = request_size - aligned_size;
OS::Free(aligned_base + aligned_size, suffix_size);
request_size -= suffix_size;
}
ASSERT(aligned_size == request_size);
address_ = static_cast<void*>(aligned_base);
size_ = aligned_size;
}
VirtualMemory::~VirtualMemory() {
if (IsReserved()) {
bool result = ReleaseRegion(address(), size());
ASSERT(result);
USE(result);
}
}
bool VirtualMemory::IsReserved() {
return address_ != NULL;
}
void VirtualMemory::Reset() {
address_ = NULL;
size_ = 0;
}
bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
return CommitRegion(address, size, is_executable);
}
bool VirtualMemory::Uncommit(void* address, size_t size) {
return UncommitRegion(address, size);
}
bool VirtualMemory::Guard(void* address) {
OS::Guard(address, OS::CommitPageSize());
return true;
}
void* VirtualMemory::ReserveRegion(size_t size) {
void* result = mmap(OS::GetRandomMmapAddr(),
size,
PROT_NONE,
MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
kMmapFd,
kMmapFdOffset);
if (result == MAP_FAILED) return NULL;
return result;
}
bool VirtualMemory::CommitRegion(void* address,
size_t size,
bool is_executable) {
int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
if (MAP_FAILED == mmap(address,
size,
prot,
MAP_PRIVATE | MAP_ANON | MAP_FIXED,
kMmapFd,
kMmapFdOffset)) {
return false;
}
return true;
}
bool VirtualMemory::UncommitRegion(void* address, size_t size) {
return mmap(address,
size,
PROT_NONE,
MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | MAP_FIXED,
kMmapFd,
kMmapFdOffset) != MAP_FAILED;
}
bool VirtualMemory::ReleaseRegion(void* address, size_t size) {
return munmap(address, size) == 0;
}
bool VirtualMemory::HasLazyCommits() {
return false;
}
} } // namespace v8::internal } } // namespace v8::internal

View File

@ -79,6 +79,23 @@ double OS::LocalTimeOffset() {
} }
void* OS::Allocate(const size_t requested,
size_t* allocated,
bool is_executable) {
const size_t msize = RoundUp(requested, AllocateAlignment());
int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
void* addr = OS::GetRandomMmapAddr();
void* mbase = mmap(addr, msize, prot, MAP_PRIVATE | MAP_ANON, -1, 0);
if (mbase == MAP_FAILED) {
LOG(i::Isolate::Current(),
StringEvent("OS::Allocate", "mmap failed"));
return NULL;
}
*allocated = msize;
return mbase;
}
void OS::DumpBacktrace() { void OS::DumpBacktrace() {
// Currently unsupported. // Currently unsupported.
} }
@ -242,4 +259,141 @@ int OS::StackWalk(Vector<OS::StackFrame> frames) {
return frames_count; return frames_count;
} }
// Constants used for mmap.
static const int kMmapFd = -1;
static const int kMmapFdOffset = 0;
VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { }
VirtualMemory::VirtualMemory(size_t size)
: address_(ReserveRegion(size)), size_(size) { }
VirtualMemory::VirtualMemory(size_t size, size_t alignment)
: address_(NULL), size_(0) {
ASSERT(IsAligned(alignment, static_cast<intptr_t>(OS::AllocateAlignment())));
size_t request_size = RoundUp(size + alignment,
static_cast<intptr_t>(OS::AllocateAlignment()));
void* reservation = mmap(OS::GetRandomMmapAddr(),
request_size,
PROT_NONE,
MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
kMmapFd,
kMmapFdOffset);
if (reservation == MAP_FAILED) return;
Address base = static_cast<Address>(reservation);
Address aligned_base = RoundUp(base, alignment);
ASSERT_LE(base, aligned_base);
// Unmap extra memory reserved before and after the desired block.
if (aligned_base != base) {
size_t prefix_size = static_cast<size_t>(aligned_base - base);
OS::Free(base, prefix_size);
request_size -= prefix_size;
}
size_t aligned_size = RoundUp(size, OS::AllocateAlignment());
ASSERT_LE(aligned_size, request_size);
if (aligned_size != request_size) {
size_t suffix_size = request_size - aligned_size;
OS::Free(aligned_base + aligned_size, suffix_size);
request_size -= suffix_size;
}
ASSERT(aligned_size == request_size);
address_ = static_cast<void*>(aligned_base);
size_ = aligned_size;
}
VirtualMemory::~VirtualMemory() {
if (IsReserved()) {
bool result = ReleaseRegion(address(), size());
ASSERT(result);
USE(result);
}
}
bool VirtualMemory::IsReserved() {
return address_ != NULL;
}
void VirtualMemory::Reset() {
address_ = NULL;
size_ = 0;
}
bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
return CommitRegion(address, size, is_executable);
}
bool VirtualMemory::Uncommit(void* address, size_t size) {
return UncommitRegion(address, size);
}
bool VirtualMemory::Guard(void* address) {
OS::Guard(address, OS::CommitPageSize());
return true;
}
void* VirtualMemory::ReserveRegion(size_t size) {
void* result = mmap(OS::GetRandomMmapAddr(),
size,
PROT_NONE,
MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
kMmapFd,
kMmapFdOffset);
if (result == MAP_FAILED) return NULL;
return result;
}
bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) {
int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
if (MAP_FAILED == mmap(base,
size,
prot,
MAP_PRIVATE | MAP_ANON | MAP_FIXED,
kMmapFd,
kMmapFdOffset)) {
return false;
}
return true;
}
bool VirtualMemory::UncommitRegion(void* base, size_t size) {
return mmap(base,
size,
PROT_NONE,
MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | MAP_FIXED,
kMmapFd,
kMmapFdOffset) != MAP_FAILED;
}
bool VirtualMemory::ReleaseRegion(void* base, size_t size) {
return munmap(base, size) == 0;
}
bool VirtualMemory::HasLazyCommits() {
// TODO(alph): implement for the platform.
return false;
}
} } // namespace v8::internal } } // namespace v8::internal

View File

@ -91,6 +91,17 @@ uint64_t OS::CpuFeaturesImpliedByPlatform() {
} }
// Maximum size of the virtual memory. 0 means there is no artificial
// limit.
intptr_t OS::MaxVirtualMemory() {
struct rlimit limit;
int result = getrlimit(RLIMIT_DATA, &limit);
if (result != 0) return 0;
return limit.rlim_cur;
}
int OS::ActivationFrameAlignment() { int OS::ActivationFrameAlignment() {
#if V8_TARGET_ARCH_ARM #if V8_TARGET_ARCH_ARM
// On EABI ARM targets this is required for fp correctness in the // On EABI ARM targets this is required for fp correctness in the
@ -109,6 +120,97 @@ int OS::ActivationFrameAlignment() {
} }
intptr_t OS::CommitPageSize() {
static intptr_t page_size = getpagesize();
return page_size;
}
void OS::Free(void* address, const size_t size) {
// TODO(1240712): munmap has a return value which is ignored here.
int result = munmap(address, size);
USE(result);
ASSERT(result == 0);
}
// Get rid of writable permission on code allocations.
void OS::ProtectCode(void* address, const size_t size) {
#if defined(__CYGWIN__)
DWORD old_protect;
VirtualProtect(address, size, PAGE_EXECUTE_READ, &old_protect);
#elif defined(__native_client__)
// The Native Client port of V8 uses an interpreter, so
// code pages don't need PROT_EXEC.
mprotect(address, size, PROT_READ);
#else
mprotect(address, size, PROT_READ | PROT_EXEC);
#endif
}
// Create guard pages.
void OS::Guard(void* address, const size_t size) {
#if defined(__CYGWIN__)
DWORD oldprotect;
VirtualProtect(address, size, PAGE_NOACCESS, &oldprotect);
#else
mprotect(address, size, PROT_NONE);
#endif
}
void* OS::GetRandomMmapAddr() {
#if defined(__native_client__)
// TODO(bradchen): restore randomization once Native Client gets
// smarter about using mmap address hints.
// See http://code.google.com/p/nativeclient/issues/3341
return NULL;
#endif
Isolate* isolate = Isolate::UncheckedCurrent();
// Note that the current isolate isn't set up in a call path via
// CpuFeatures::Probe. We don't care about randomization in this case because
// the code page is immediately freed.
if (isolate != NULL) {
uintptr_t raw_addr;
isolate->random_number_generator()->NextBytes(&raw_addr, sizeof(raw_addr));
#if V8_TARGET_ARCH_X64
// Currently available CPUs have 48 bits of virtual addressing. Truncate
// the hint address to 46 bits to give the kernel a fighting chance of
// fulfilling our placement request.
raw_addr &= V8_UINT64_C(0x3ffffffff000);
#else
raw_addr &= 0x3ffff000;
# ifdef __sun
// For our Solaris/illumos mmap hint, we pick a random address in the bottom
// half of the top half of the address space (that is, the third quarter).
// Because we do not MAP_FIXED, this will be treated only as a hint -- the
// system will not fail to mmap() because something else happens to already
// be mapped at our random address. We deliberately set the hint high enough
// to get well above the system's break (that is, the heap); Solaris and
// illumos will try the hint and if that fails allocate as if there were
// no hint at all. The high hint prevents the break from getting hemmed in
// at low values, ceding half of the address space to the system heap.
raw_addr += 0x80000000;
# else
// The range 0x20000000 - 0x60000000 is relatively unpopulated across a
// variety of ASLR modes (PAE kernel, NX compat mode, etc) and on macos
// 10.6 and 10.7.
raw_addr += 0x20000000;
# endif
#endif
return reinterpret_cast<void*>(raw_addr);
}
return NULL;
}
size_t OS::AllocateAlignment() {
return getpagesize();
}
void OS::Sleep(int milliseconds) { void OS::Sleep(int milliseconds) {
useconds_t ms = static_cast<useconds_t>(milliseconds); useconds_t ms = static_cast<useconds_t>(milliseconds);
usleep(1000 * ms); usleep(1000 * ms);

View File

@ -96,6 +96,22 @@ double OS::LocalTimeOffset() {
} }
void* OS::Allocate(const size_t requested,
size_t* allocated,
bool is_executable) {
const size_t msize = RoundUp(requested, getpagesize());
int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
void* mbase = mmap(NULL, msize, prot, MAP_PRIVATE | MAP_ANON, -1, 0);
if (mbase == MAP_FAILED) {
LOG(Isolate::Current(), StringEvent("OS::Allocate", "mmap failed"));
return NULL;
}
*allocated = msize;
return mbase;
}
void OS::DumpBacktrace() { void OS::DumpBacktrace() {
// Currently unsupported. // Currently unsupported.
} }
@ -208,4 +224,141 @@ int OS::StackWalk(Vector<OS::StackFrame> frames) {
return walker.index; return walker.index;
} }
// Constants used for mmap.
static const int kMmapFd = -1;
static const int kMmapFdOffset = 0;
VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { }
VirtualMemory::VirtualMemory(size_t size)
: address_(ReserveRegion(size)), size_(size) { }
VirtualMemory::VirtualMemory(size_t size, size_t alignment)
: address_(NULL), size_(0) {
ASSERT(IsAligned(alignment, static_cast<intptr_t>(OS::AllocateAlignment())));
size_t request_size = RoundUp(size + alignment,
static_cast<intptr_t>(OS::AllocateAlignment()));
void* reservation = mmap(OS::GetRandomMmapAddr(),
request_size,
PROT_NONE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE,
kMmapFd,
kMmapFdOffset);
if (reservation == MAP_FAILED) return;
Address base = static_cast<Address>(reservation);
Address aligned_base = RoundUp(base, alignment);
ASSERT_LE(base, aligned_base);
// Unmap extra memory reserved before and after the desired block.
if (aligned_base != base) {
size_t prefix_size = static_cast<size_t>(aligned_base - base);
OS::Free(base, prefix_size);
request_size -= prefix_size;
}
size_t aligned_size = RoundUp(size, OS::AllocateAlignment());
ASSERT_LE(aligned_size, request_size);
if (aligned_size != request_size) {
size_t suffix_size = request_size - aligned_size;
OS::Free(aligned_base + aligned_size, suffix_size);
request_size -= suffix_size;
}
ASSERT(aligned_size == request_size);
address_ = static_cast<void*>(aligned_base);
size_ = aligned_size;
}
VirtualMemory::~VirtualMemory() {
if (IsReserved()) {
bool result = ReleaseRegion(address(), size());
ASSERT(result);
USE(result);
}
}
bool VirtualMemory::IsReserved() {
return address_ != NULL;
}
void VirtualMemory::Reset() {
address_ = NULL;
size_ = 0;
}
bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
return CommitRegion(address, size, is_executable);
}
bool VirtualMemory::Uncommit(void* address, size_t size) {
return UncommitRegion(address, size);
}
bool VirtualMemory::Guard(void* address) {
OS::Guard(address, OS::CommitPageSize());
return true;
}
void* VirtualMemory::ReserveRegion(size_t size) {
void* result = mmap(OS::GetRandomMmapAddr(),
size,
PROT_NONE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE,
kMmapFd,
kMmapFdOffset);
if (result == MAP_FAILED) return NULL;
return result;
}
bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) {
int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
if (MAP_FAILED == mmap(base,
size,
prot,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED,
kMmapFd,
kMmapFdOffset)) {
return false;
}
return true;
}
bool VirtualMemory::UncommitRegion(void* base, size_t size) {
return mmap(base,
size,
PROT_NONE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE | MAP_FIXED,
kMmapFd,
kMmapFdOffset) != MAP_FAILED;
}
bool VirtualMemory::ReleaseRegion(void* base, size_t size) {
return munmap(base, size) == 0;
}
bool VirtualMemory::HasLazyCommits() {
// TODO(alph): implement for the platform.
return false;
}
} } // namespace v8::internal } } // namespace v8::internal

View File

@ -69,6 +69,11 @@ int strncasecmp(const char* s1, const char* s2, int n) {
#define _TRUNCATE 0 #define _TRUNCATE 0
#define STRUNCATE 80 #define STRUNCATE 80
inline void MemoryBarrier() {
int barrier = 0;
__asm__ __volatile__("xchgl %%eax,%0 ":"=r" (barrier));
}
#endif // __MINGW64_VERSION_MAJOR #endif // __MINGW64_VERSION_MAJOR
@ -123,6 +128,11 @@ int strncpy_s(char* dest, size_t dest_size, const char* source, size_t count) {
namespace v8 { namespace v8 {
namespace internal { namespace internal {
intptr_t OS::MaxVirtualMemory() {
return 0;
}
double ceiling(double x) { double ceiling(double x) {
return ceil(x); return ceil(x);
} }
@ -733,6 +743,127 @@ void OS::StrNCpy(Vector<char> dest, const char* src, size_t n) {
#undef STRUNCATE #undef STRUNCATE
// Get the system's page size used by VirtualAlloc() or the next power
// of two. The reason for always returning a power of two is that the
// rounding up in OS::Allocate expects that.
static size_t GetPageSize() {
static size_t page_size = 0;
if (page_size == 0) {
SYSTEM_INFO info;
GetSystemInfo(&info);
page_size = RoundUpToPowerOf2(info.dwPageSize);
}
return page_size;
}
// The allocation alignment is the guaranteed alignment for
// VirtualAlloc'ed blocks of memory.
size_t OS::AllocateAlignment() {
static size_t allocate_alignment = 0;
if (allocate_alignment == 0) {
SYSTEM_INFO info;
GetSystemInfo(&info);
allocate_alignment = info.dwAllocationGranularity;
}
return allocate_alignment;
}
void* OS::GetRandomMmapAddr() {
Isolate* isolate = Isolate::UncheckedCurrent();
// Note that the current isolate isn't set up in a call path via
// CpuFeatures::Probe. We don't care about randomization in this case because
// the code page is immediately freed.
if (isolate != NULL) {
// The address range used to randomize RWX allocations in OS::Allocate
// Try not to map pages into the default range that windows loads DLLs
// Use a multiple of 64k to prevent committing unused memory.
// Note: This does not guarantee RWX regions will be within the
// range kAllocationRandomAddressMin to kAllocationRandomAddressMax
#ifdef V8_HOST_ARCH_64_BIT
static const intptr_t kAllocationRandomAddressMin = 0x0000000080000000;
static const intptr_t kAllocationRandomAddressMax = 0x000003FFFFFF0000;
#else
static const intptr_t kAllocationRandomAddressMin = 0x04000000;
static const intptr_t kAllocationRandomAddressMax = 0x3FFF0000;
#endif
uintptr_t address =
(isolate->random_number_generator()->NextInt() << kPageSizeBits) |
kAllocationRandomAddressMin;
address &= kAllocationRandomAddressMax;
return reinterpret_cast<void *>(address);
}
return NULL;
}
static void* RandomizedVirtualAlloc(size_t size, int action, int protection) {
LPVOID base = NULL;
if (protection == PAGE_EXECUTE_READWRITE || protection == PAGE_NOACCESS) {
// For exectutable pages try and randomize the allocation address
for (size_t attempts = 0; base == NULL && attempts < 3; ++attempts) {
base = VirtualAlloc(OS::GetRandomMmapAddr(), size, action, protection);
}
}
// After three attempts give up and let the OS find an address to use.
if (base == NULL) base = VirtualAlloc(NULL, size, action, protection);
return base;
}
void* OS::Allocate(const size_t requested,
size_t* allocated,
bool is_executable) {
// VirtualAlloc rounds allocated size to page size automatically.
size_t msize = RoundUp(requested, static_cast<int>(GetPageSize()));
// Windows XP SP2 allows Data Excution Prevention (DEP).
int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
LPVOID mbase = RandomizedVirtualAlloc(msize,
MEM_COMMIT | MEM_RESERVE,
prot);
if (mbase == NULL) {
LOG(Isolate::Current(), StringEvent("OS::Allocate", "VirtualAlloc failed"));
return NULL;
}
ASSERT(IsAligned(reinterpret_cast<size_t>(mbase), OS::AllocateAlignment()));
*allocated = msize;
return mbase;
}
void OS::Free(void* address, const size_t size) {
// TODO(1240712): VirtualFree has a return value which is ignored here.
VirtualFree(address, 0, MEM_RELEASE);
USE(size);
}
intptr_t OS::CommitPageSize() {
return 4096;
}
void OS::ProtectCode(void* address, const size_t size) {
DWORD old_protect;
VirtualProtect(address, size, PAGE_EXECUTE_READ, &old_protect);
}
void OS::Guard(void* address, const size_t size) {
DWORD oldprotect;
VirtualProtect(address, size, PAGE_NOACCESS, &oldprotect);
}
void OS::Sleep(int milliseconds) { void OS::Sleep(int milliseconds) {
::Sleep(milliseconds); ::Sleep(milliseconds);
} }
@ -1237,6 +1368,111 @@ int OS::ActivationFrameAlignment() {
} }
VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { }
VirtualMemory::VirtualMemory(size_t size)
: address_(ReserveRegion(size)), size_(size) { }
VirtualMemory::VirtualMemory(size_t size, size_t alignment)
: address_(NULL), size_(0) {
ASSERT(IsAligned(alignment, static_cast<intptr_t>(OS::AllocateAlignment())));
size_t request_size = RoundUp(size + alignment,
static_cast<intptr_t>(OS::AllocateAlignment()));
void* address = ReserveRegion(request_size);
if (address == NULL) return;
Address base = RoundUp(static_cast<Address>(address), alignment);
// Try reducing the size by freeing and then reallocating a specific area.
bool result = ReleaseRegion(address, request_size);
USE(result);
ASSERT(result);
address = VirtualAlloc(base, size, MEM_RESERVE, PAGE_NOACCESS);
if (address != NULL) {
request_size = size;
ASSERT(base == static_cast<Address>(address));
} else {
// Resizing failed, just go with a bigger area.
address = ReserveRegion(request_size);
if (address == NULL) return;
}
address_ = address;
size_ = request_size;
}
VirtualMemory::~VirtualMemory() {
if (IsReserved()) {
bool result = ReleaseRegion(address(), size());
ASSERT(result);
USE(result);
}
}
bool VirtualMemory::IsReserved() {
return address_ != NULL;
}
void VirtualMemory::Reset() {
address_ = NULL;
size_ = 0;
}
bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
return CommitRegion(address, size, is_executable);
}
bool VirtualMemory::Uncommit(void* address, size_t size) {
ASSERT(IsReserved());
return UncommitRegion(address, size);
}
bool VirtualMemory::Guard(void* address) {
if (NULL == VirtualAlloc(address,
OS::CommitPageSize(),
MEM_COMMIT,
PAGE_NOACCESS)) {
return false;
}
return true;
}
void* VirtualMemory::ReserveRegion(size_t size) {
return RandomizedVirtualAlloc(size, MEM_RESERVE, PAGE_NOACCESS);
}
bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) {
int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
if (NULL == VirtualAlloc(base, size, MEM_COMMIT, prot)) {
return false;
}
return true;
}
bool VirtualMemory::UncommitRegion(void* base, size_t size) {
return VirtualFree(base, size, MEM_DECOMMIT) != 0;
}
bool VirtualMemory::ReleaseRegion(void* base, size_t size) {
return VirtualFree(base, 0, MEM_RELEASE) != 0;
}
bool VirtualMemory::HasLazyCommits() {
// TODO(alph): implement for the platform.
return false;
}
// ---------------------------------------------------------------------------- // ----------------------------------------------------------------------------
// Win32 thread support. // Win32 thread support.

View File

@ -219,6 +219,30 @@ class OS {
static void PrintError(const char* format, ...); static void PrintError(const char* format, ...);
static void VPrintError(const char* format, va_list args); static void VPrintError(const char* format, va_list args);
// Allocate/Free memory used by JS heap. Pages are readable/writable, but
// they are not guaranteed to be executable unless 'executable' is true.
// Returns the address of allocated memory, or NULL if failed.
static void* Allocate(const size_t requested,
size_t* allocated,
bool is_executable);
static void Free(void* address, const size_t size);
// This is the granularity at which the ProtectCode(...) call can set page
// permissions.
static intptr_t CommitPageSize();
// Mark code segments non-writable.
static void ProtectCode(void* address, const size_t size);
// Assign memory as a guard page so that access will cause an exception.
static void Guard(void* address, const size_t size);
// Generate a random address to be used for hinting mmap().
static void* GetRandomMmapAddr();
// Get the Alignment guaranteed by Allocate().
static size_t AllocateAlignment();
// Sleep for a number of milliseconds. // Sleep for a number of milliseconds.
static void Sleep(const int milliseconds); static void Sleep(const int milliseconds);
@ -279,6 +303,10 @@ class OS {
// positions indicated by the members of the CpuFeature enum from globals.h // positions indicated by the members of the CpuFeature enum from globals.h
static uint64_t CpuFeaturesImpliedByPlatform(); static uint64_t CpuFeaturesImpliedByPlatform();
// Maximum size of the virtual memory. 0 means there is no artificial
// limit.
static intptr_t MaxVirtualMemory();
// Returns the double constant NAN // Returns the double constant NAN
static double nan_value(); static double nan_value();
@ -358,6 +386,99 @@ class OS {
DISALLOW_IMPLICIT_CONSTRUCTORS(OS); DISALLOW_IMPLICIT_CONSTRUCTORS(OS);
}; };
// Represents and controls an area of reserved memory.
// Control of the reserved memory can be assigned to another VirtualMemory
// object by assignment or copy-contructing. This removes the reserved memory
// from the original object.
class VirtualMemory {
public:
// Empty VirtualMemory object, controlling no reserved memory.
VirtualMemory();
// Reserves virtual memory with size.
explicit VirtualMemory(size_t size);
// Reserves virtual memory containing an area of the given size that
// is aligned per alignment. This may not be at the position returned
// by address().
VirtualMemory(size_t size, size_t alignment);
// Releases the reserved memory, if any, controlled by this VirtualMemory
// object.
~VirtualMemory();
// Returns whether the memory has been reserved.
bool IsReserved();
// Initialize or resets an embedded VirtualMemory object.
void Reset();
// Returns the start address of the reserved memory.
// If the memory was reserved with an alignment, this address is not
// necessarily aligned. The user might need to round it up to a multiple of
// the alignment to get the start of the aligned block.
void* address() {
ASSERT(IsReserved());
return address_;
}
// Returns the size of the reserved memory. The returned value is only
// meaningful when IsReserved() returns true.
// If the memory was reserved with an alignment, this size may be larger
// than the requested size.
size_t size() { return size_; }
// Commits real memory. Returns whether the operation succeeded.
bool Commit(void* address, size_t size, bool is_executable);
// Uncommit real memory. Returns whether the operation succeeded.
bool Uncommit(void* address, size_t size);
// Creates a single guard page at the given address.
bool Guard(void* address);
void Release() {
ASSERT(IsReserved());
// Notice: Order is important here. The VirtualMemory object might live
// inside the allocated region.
void* address = address_;
size_t size = size_;
Reset();
bool result = ReleaseRegion(address, size);
USE(result);
ASSERT(result);
}
// Assign control of the reserved region to a different VirtualMemory object.
// The old object is no longer functional (IsReserved() returns false).
void TakeControl(VirtualMemory* from) {
ASSERT(!IsReserved());
address_ = from->address_;
size_ = from->size_;
from->Reset();
}
static void* ReserveRegion(size_t size);
static bool CommitRegion(void* base, size_t size, bool is_executable);
static bool UncommitRegion(void* base, size_t size);
// Must be called with a base pointer that has been returned by ReserveRegion
// and the same size it was reserved with.
static bool ReleaseRegion(void* base, size_t size);
// Returns true if OS performs lazy commits, i.e. the memory allocation call
// defers actual physical memory allocation till the first memory access.
// Otherwise returns false.
static bool HasLazyCommits();
private:
void* address_; // Start address of the virtual memory.
size_t size_; // Size of the virtual memory.
};
// ---------------------------------------------------------------------------- // ----------------------------------------------------------------------------
// Thread // Thread
// //

View File

@ -103,7 +103,7 @@ class ElapsedTimer V8_FINAL BASE_EMBEDDED {
} }
private: private:
static V8_INLINE TimeTicks Now() { V8_INLINE(static TimeTicks Now()) {
TimeTicks now = TimeTicks::HighResNow(); TimeTicks now = TimeTicks::HighResNow();
ASSERT(!now.IsNull()); ASSERT(!now.IsNull());
return now; return now;

View File

@ -34,7 +34,7 @@ namespace internal {
#if V8_OS_POSIX #if V8_OS_POSIX
static V8_INLINE void InitializeNativeHandle(pthread_mutex_t* mutex) { static V8_INLINE(void InitializeNativeHandle(pthread_mutex_t* mutex)) {
int result; int result;
#if defined(DEBUG) #if defined(DEBUG)
// Use an error checking mutex in debug mode. // Use an error checking mutex in debug mode.
@ -55,7 +55,7 @@ static V8_INLINE void InitializeNativeHandle(pthread_mutex_t* mutex) {
} }
static V8_INLINE void InitializeRecursiveNativeHandle(pthread_mutex_t* mutex) { static V8_INLINE(void InitializeRecursiveNativeHandle(pthread_mutex_t* mutex)) {
pthread_mutexattr_t attr; pthread_mutexattr_t attr;
int result = pthread_mutexattr_init(&attr); int result = pthread_mutexattr_init(&attr);
ASSERT_EQ(0, result); ASSERT_EQ(0, result);
@ -69,28 +69,28 @@ static V8_INLINE void InitializeRecursiveNativeHandle(pthread_mutex_t* mutex) {
} }
static V8_INLINE void DestroyNativeHandle(pthread_mutex_t* mutex) { static V8_INLINE(void DestroyNativeHandle(pthread_mutex_t* mutex)) {
int result = pthread_mutex_destroy(mutex); int result = pthread_mutex_destroy(mutex);
ASSERT_EQ(0, result); ASSERT_EQ(0, result);
USE(result); USE(result);
} }
static V8_INLINE void LockNativeHandle(pthread_mutex_t* mutex) { static V8_INLINE(void LockNativeHandle(pthread_mutex_t* mutex)) {
int result = pthread_mutex_lock(mutex); int result = pthread_mutex_lock(mutex);
ASSERT_EQ(0, result); ASSERT_EQ(0, result);
USE(result); USE(result);
} }
static V8_INLINE void UnlockNativeHandle(pthread_mutex_t* mutex) { static V8_INLINE(void UnlockNativeHandle(pthread_mutex_t* mutex)) {
int result = pthread_mutex_unlock(mutex); int result = pthread_mutex_unlock(mutex);
ASSERT_EQ(0, result); ASSERT_EQ(0, result);
USE(result); USE(result);
} }
static V8_INLINE bool TryLockNativeHandle(pthread_mutex_t* mutex) { static V8_INLINE(bool TryLockNativeHandle(pthread_mutex_t* mutex)) {
int result = pthread_mutex_trylock(mutex); int result = pthread_mutex_trylock(mutex);
if (result == EBUSY) { if (result == EBUSY) {
return false; return false;
@ -101,32 +101,32 @@ static V8_INLINE bool TryLockNativeHandle(pthread_mutex_t* mutex) {
#elif V8_OS_WIN #elif V8_OS_WIN
static V8_INLINE void InitializeNativeHandle(PCRITICAL_SECTION cs) { static V8_INLINE(void InitializeNativeHandle(PCRITICAL_SECTION cs)) {
InitializeCriticalSection(cs); InitializeCriticalSection(cs);
} }
static V8_INLINE void InitializeRecursiveNativeHandle(PCRITICAL_SECTION cs) { static V8_INLINE(void InitializeRecursiveNativeHandle(PCRITICAL_SECTION cs)) {
InitializeCriticalSection(cs); InitializeCriticalSection(cs);
} }
static V8_INLINE void DestroyNativeHandle(PCRITICAL_SECTION cs) { static V8_INLINE(void DestroyNativeHandle(PCRITICAL_SECTION cs)) {
DeleteCriticalSection(cs); DeleteCriticalSection(cs);
} }
static V8_INLINE void LockNativeHandle(PCRITICAL_SECTION cs) { static V8_INLINE(void LockNativeHandle(PCRITICAL_SECTION cs)) {
EnterCriticalSection(cs); EnterCriticalSection(cs);
} }
static V8_INLINE void UnlockNativeHandle(PCRITICAL_SECTION cs) { static V8_INLINE(void UnlockNativeHandle(PCRITICAL_SECTION cs)) {
LeaveCriticalSection(cs); LeaveCriticalSection(cs);
} }
static V8_INLINE bool TryLockNativeHandle(PCRITICAL_SECTION cs) { static V8_INLINE(bool TryLockNativeHandle(PCRITICAL_SECTION cs)) {
return TryEnterCriticalSection(cs); return TryEnterCriticalSection(cs);
} }

View File

@ -94,14 +94,14 @@ class Mutex V8_FINAL {
int level_; int level_;
#endif #endif
V8_INLINE void AssertHeldAndUnmark() { V8_INLINE(void AssertHeldAndUnmark()) {
#ifdef DEBUG #ifdef DEBUG
ASSERT_EQ(1, level_); ASSERT_EQ(1, level_);
level_--; level_--;
#endif #endif
} }
V8_INLINE void AssertUnheldAndMark() { V8_INLINE(void AssertUnheldAndMark()) {
#ifdef DEBUG #ifdef DEBUG
ASSERT_EQ(0, level_); ASSERT_EQ(0, level_);
level_++; level_++;

View File

@ -66,7 +66,7 @@ class Socket V8_FINAL {
// Set the value of the SO_REUSEADDR socket option. // Set the value of the SO_REUSEADDR socket option.
bool SetReuseAddress(bool reuse_address); bool SetReuseAddress(bool reuse_address);
V8_INLINE bool IsValid() const { V8_INLINE(bool IsValid()) const {
return native_handle_ != kInvalidNativeHandle; return native_handle_ != kInvalidNativeHandle;
} }

View File

@ -1,513 +0,0 @@
// Copyright 2013 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "platform/virtual-memory.h"
#if V8_OS_POSIX
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <unistd.h>
#endif
#if V8_OS_MACOSX
#include <mach/vm_statistics.h>
#endif
#include <cerrno>
#include "platform/mutex.h"
#include "utils.h"
#include "utils/random-number-generator.h"
#if V8_OS_CYGIN || V8_OS_WIN
#include "win32-headers.h"
#endif
namespace v8 {
namespace internal {
class RandomAddressGenerator V8_FINAL {
public:
V8_INLINE uintptr_t NextAddress() {
LockGuard<Mutex> lock_guard(&mutex_);
uintptr_t address = rng_.NextInt();
#if V8_HOST_ARCH_64_BIT
address = (address << 32) + static_cast<uintptr_t>(rng_.NextInt());
#endif
return address;
}
private:
Mutex mutex_;
RandomNumberGenerator rng_;
};
typedef LazyInstance<RandomAddressGenerator,
DefaultConstructTrait<RandomAddressGenerator>,
ThreadSafeInitOnceTrait>::type LazyRandomAddressGenerator;
#define LAZY_RANDOM_ADDRESS_GENERATOR_INITIALIZER LAZY_INSTANCE_INITIALIZER
static V8_INLINE void* GenerateRandomAddress() {
#if V8_OS_NACL
// TODO(bradchen): Restore randomization once Native Client gets smarter
// about using mmap address hints.
// See http://code.google.com/p/nativeclient/issues/3341
return NULL;
#else // V8_OS_NACL
LazyRandomAddressGenerator random_address_generator =
LAZY_RANDOM_ADDRESS_GENERATOR_INITIALIZER;
uintptr_t address = random_address_generator.Pointer()->NextAddress();
# if V8_TARGET_ARCH_X64
# if V8_OS_CYGWIN || V8_OS_WIN
// Try not to map pages into the default range that windows loads DLLs.
// Use a multiple of 64KiB to prevent committing unused memory.
address += V8_UINT64_C(0x00080000000);
address &= V8_UINT64_C(0x3ffffff0000);
# else // V8_OS_CYGWIN || V8_OS_WIN
// Currently available CPUs have 48 bits of virtual addressing. Truncate
// the hint address to 46 bits to give the kernel a fighting chance of
// fulfilling our placement request.
address &= V8_UINT64_C(0x3ffffffff000);
# endif // V8_OS_CYGWIN || V8_OS_WIN
# else // V8_TARGET_ARCH_X64
# if V8_OS_CYGWIN || V8_OS_WIN
// Try not to map pages into the default range that windows loads DLLs.
// Use a multiple of 64KiB to prevent committing unused memory.
address += 0x04000000;
address &= 0x3fff0000;
# elif V8_OS_SOLARIS
// For our Solaris/illumos mmap hint, we pick a random address in the bottom
// half of the top half of the address space (that is, the third quarter).
// Because we do not MAP_FIXED, this will be treated only as a hint -- the
// system will not fail to mmap() because something else happens to already
// be mapped at our random address. We deliberately set the hint high enough
// to get well above the system's break (that is, the heap); Solaris and
// illumos will try the hint and if that fails allocate as if there were
// no hint at all. The high hint prevents the break from getting hemmed in
// at low values, ceding half of the address space to the system heap.
address &= 0x3ffff000;
address += 0x80000000;
# else // V8_OS_CYGWIN || V8_OS_WIN
// The range 0x20000000 - 0x60000000 is relatively unpopulated across a
// variety of ASLR modes (PAE kernel, NX compat mode, etc) and on Mac OS X
// 10.6 and 10.7.
address &= 0x3ffff000;
address += 0x20000000;
# endif // V8_OS_CYGIN || V8_OS_WIN
# endif // V8_TARGET_ARCH_X64
return reinterpret_cast<void*>(address);
#endif // V8_OS_NACL
}
// static
void* VirtualMemory::AllocateRegion(size_t size,
size_t* size_return,
Executability executability) {
ASSERT_LT(0, size);
ASSERT_NE(NULL, size_return);
void* address = ReserveRegion(size, &size);
if (address == NULL) return NULL;
if (!CommitRegion(address, size, executability)) {
bool result = ReleaseRegion(address, size);
ASSERT(result);
USE(result);
return NULL;
}
*size_return = size;
return address;
}
#if V8_OS_CYGWIN || V8_OS_WIN
// static
void* VirtualMemory::ReserveRegion(size_t size, size_t* size_return) {
ASSERT_LT(0, size);
ASSERT_NE(NULL, size_return);
// The minimum size that can be reserved is 64KiB, see
// http://msdn.microsoft.com/en-us/library/ms810627.aspx
if (size < 64 * KB) {
size = 64 * KB;
}
size = RoundUp(size, GetPageSize());
LPVOID address = NULL;
// Try and randomize the allocation address (up to three attempts).
for (unsigned attempts = 0; address == NULL && attempts < 3; ++attempts) {
address = VirtualAlloc(GenerateRandomAddress(),
size,
MEM_RESERVE,
PAGE_NOACCESS);
}
if (address == NULL) {
// After three attempts give up and let the kernel find an address.
address = VirtualAlloc(NULL, size, MEM_RESERVE, PAGE_NOACCESS);
}
if (address == NULL) {
return NULL;
}
ASSERT(IsAligned(reinterpret_cast<uintptr_t>(address),
GetAllocationGranularity()));
*size_return = size;
return address;
}
// static
void* VirtualMemory::ReserveRegion(size_t size,
size_t* size_return,
size_t alignment) {
ASSERT_LT(0, size);
ASSERT_NE(NULL, size_return);
ASSERT(IsAligned(alignment, GetAllocationGranularity()));
size_t reserved_size = RoundUp(size + alignment, GetAllocationGranularity());
Address reserved_base = static_cast<Address>(
ReserveRegion(reserved_size, &reserved_size));
if (reserved_base == NULL) {
return NULL;
}
ASSERT_LE(size, reserved_size);
ASSERT_LE(size + alignment, reserved_size);
ASSERT(IsAligned(reserved_size, GetPageSize()));
// Try reducing the size by freeing and then reallocating a specific area.
bool result = ReleaseRegion(reserved_base, reserved_size);
USE(result);
ASSERT(result);
size_t aligned_size = RoundUp(size, GetPageSize());
Address aligned_base = static_cast<Address>(
VirtualAlloc(RoundUp(reserved_base, alignment),
aligned_size,
MEM_RESERVE,
PAGE_NOACCESS));
if (aligned_base != NULL) {
ASSERT(aligned_base == RoundUp(reserved_base, alignment));
ASSERT(IsAligned(reinterpret_cast<uintptr_t>(aligned_base),
GetAllocationGranularity()));
ASSERT(IsAligned(aligned_size, GetPageSize()));
*size_return = aligned_size;
return aligned_base;
}
// Resizing failed, just go with a bigger area.
ASSERT(IsAligned(reserved_size, GetAllocationGranularity()));
return ReserveRegion(reserved_size, size_return);
}
// static
bool VirtualMemory::CommitRegion(void* address,
size_t size,
Executability executability) {
ASSERT_NE(NULL, address);
ASSERT_LT(0, size);
DWORD protect = 0;
switch (executability) {
case NOT_EXECUTABLE:
protect = PAGE_READWRITE;
break;
case EXECUTABLE:
protect = PAGE_EXECUTE_READWRITE;
break;
}
LPVOID result = VirtualAlloc(address, size, MEM_COMMIT, protect);
if (result == NULL) {
ASSERT(GetLastError() != ERROR_INVALID_ADDRESS);
return false;
}
ASSERT_EQ(address, result);
return true;
}
// static
bool VirtualMemory::UncommitRegion(void* address, size_t size) {
ASSERT_NE(NULL, address);
ASSERT_LT(0, size);
int result = VirtualFree(address, size, MEM_DECOMMIT);
if (result == 0) {
return false;
}
return true;
}
// static
bool VirtualMemory::WriteProtectRegion(void* address, size_t size) {
ASSERT_NE(NULL, address);
ASSERT_LT(0, size);
DWORD old_protect;
return VirtualProtect(address, size, PAGE_EXECUTE_READ, &old_protect);
}
// static
bool VirtualMemory::ReleaseRegion(void* address, size_t size) {
ASSERT_NE(NULL, address);
ASSERT_LT(0, size);
USE(size);
int result = VirtualFree(address, 0, MEM_RELEASE);
if (result == 0) {
return false;
}
return true;
}
// static
size_t VirtualMemory::GetAllocationGranularity() {
static size_t allocation_granularity = 0;
if (allocation_granularity == 0) {
SYSTEM_INFO system_info;
GetSystemInfo(&system_info);
allocation_granularity = system_info.dwAllocationGranularity;
MemoryBarrier();
}
ASSERT_GE(allocation_granularity, GetPageSize());
return allocation_granularity;
}
// static
size_t VirtualMemory::GetLimit() {
return 0;
}
// static
size_t VirtualMemory::GetPageSize() {
static size_t page_size = 0;
if (page_size == 0) {
SYSTEM_INFO system_info;
GetSystemInfo(&system_info);
page_size = system_info.dwPageSize;
MemoryBarrier();
}
return page_size;
}
#else // V8_OS_CYGIN || V8_OS_WIN
// Constants used for mmap.
#if V8_OS_MACOSX
// kMmapFd is used to pass vm_alloc flags to tag the region with the user
// defined tag 255 This helps identify V8-allocated regions in memory analysis
// tools like vmmap(1).
static const int kMmapFd = VM_MAKE_TAG(255);
#else
static const int kMmapFd = -1;
#endif // V8_OS_MACOSX
static const off_t kMmapFdOffset = 0;
// static
void* VirtualMemory::ReserveRegion(size_t size, size_t* size_return) {
ASSERT_LT(0, size);
ASSERT_NE(NULL, size_return);
size = RoundUp(size, GetPageSize());
void* address = mmap(GenerateRandomAddress(),
size,
PROT_NONE,
MAP_ANON | MAP_NORESERVE | MAP_PRIVATE,
kMmapFd,
kMmapFdOffset);
if (address == MAP_FAILED) {
ASSERT_NE(EINVAL, errno);
return NULL;
}
*size_return = size;
return address;
}
// static
void* VirtualMemory::ReserveRegion(size_t size,
size_t* size_return,
size_t alignment) {
ASSERT_LT(0, size);
ASSERT_NE(NULL, size_return);
ASSERT(IsAligned(alignment, GetPageSize()));
size_t reserved_size;
Address reserved_base = static_cast<Address>(
ReserveRegion(size + alignment, &reserved_size));
if (reserved_base == NULL) {
return NULL;
}
Address aligned_base = RoundUp(reserved_base, alignment);
ASSERT_LE(reserved_base, aligned_base);
// Unmap extra memory reserved before the aligned region.
if (aligned_base != reserved_base) {
size_t prefix_size = static_cast<size_t>(aligned_base - reserved_base);
bool result = ReleaseRegion(reserved_base, prefix_size);
ASSERT(result);
USE(result);
reserved_size -= prefix_size;
}
size_t aligned_size = RoundUp(size, GetPageSize());
ASSERT_LE(aligned_size, reserved_size);
// Unmap extra memory reserved after the aligned region.
if (aligned_size != reserved_size) {
size_t suffix_size = reserved_size - aligned_size;
bool result = ReleaseRegion(aligned_base + aligned_size, suffix_size);
ASSERT(result);
USE(result);
reserved_size -= suffix_size;
}
ASSERT(aligned_size == reserved_size);
ASSERT_NE(NULL, aligned_base);
*size_return = aligned_size;
return aligned_base;
}
// static
bool VirtualMemory::CommitRegion(void* address,
size_t size,
Executability executability) {
ASSERT_NE(NULL, address);
ASSERT_LT(0, size);
int prot = 0;
// The Native Client port of V8 uses an interpreter,
// so code pages don't need PROT_EXEC.
#if V8_OS_NACL
executability = NOT_EXECUTABLE;
#endif
switch (executability) {
case NOT_EXECUTABLE:
prot = PROT_READ | PROT_WRITE;
break;
case EXECUTABLE:
prot = PROT_EXEC | PROT_READ | PROT_WRITE;
break;
}
void* result = mmap(address,
size,
prot,
MAP_ANON | MAP_FIXED | MAP_PRIVATE,
kMmapFd,
kMmapFdOffset);
if (result == MAP_FAILED) {
ASSERT_NE(EINVAL, errno);
return false;
}
return true;
}
// static
bool VirtualMemory::UncommitRegion(void* address, size_t size) {
ASSERT_NE(NULL, address);
ASSERT_LT(0, size);
void* result = mmap(address,
size,
PROT_NONE,
MAP_ANON | MAP_FIXED | MAP_NORESERVE | MAP_PRIVATE,
kMmapFd,
kMmapFdOffset);
if (result == MAP_FAILED) {
ASSERT_NE(EINVAL, errno);
return false;
}
return true;
}
// static
bool VirtualMemory::WriteProtectRegion(void* address, size_t size) {
ASSERT_NE(NULL, address);
ASSERT_LT(0, size);
#if V8_OS_NACL
// The Native Client port of V8 uses an interpreter,
// so code pages don't need PROT_EXEC.
int prot = PROT_READ;
#else
int prot = PROT_EXEC | PROT_READ;
#endif
int result = mprotect(address, size, prot);
if (result < 0) {
ASSERT_NE(EINVAL, errno);
return false;
}
return true;
}
// static
bool VirtualMemory::ReleaseRegion(void* address, size_t size) {
ASSERT_NE(NULL, address);
ASSERT_LT(0, size);
int result = munmap(address, size);
if (result < 0) {
ASSERT_NE(EINVAL, errno);
return false;
}
return true;
}
// static
size_t VirtualMemory::GetAllocationGranularity() {
return GetPageSize();
}
// static
size_t VirtualMemory::GetLimit() {
struct rlimit rlim;
int result = getrlimit(RLIMIT_DATA, &rlim);
ASSERT_EQ(0, result);
USE(result);
return rlim.rlim_cur;
}
// static
size_t VirtualMemory::GetPageSize() {
static const size_t kPageSize = getpagesize();
return kPageSize;
}
#endif // V8_OS_CYGWIN || V8_OS_WIN
} } // namespace v8::internal

View File

@ -1,211 +0,0 @@
// Copyright 2013 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_PLATFORM_VIRTUAL_MEMORY_H_
#define V8_PLATFORM_VIRTUAL_MEMORY_H_
#include "checks.h"
#include "globals.h"
namespace v8 {
namespace internal {
// -----------------------------------------------------------------------------
// VirtualMemory
//
// This class represents and controls an area of reserved memory.
// Control of the reserved memory can be assigned to another VirtualMemory
// object by assignment or copy-constructing. This removes the reserved memory
// from the original object.
class VirtualMemory V8_FINAL {
public:
// The executability of a memory region.
enum Executability { NOT_EXECUTABLE, EXECUTABLE };
// Empty VirtualMemory object, controlling no reserved memory.
VirtualMemory() : address_(NULL), size_(0) {}
// Reserves virtual memory with size.
explicit VirtualMemory(size_t size) : size_(0) {
address_ = ReserveRegion(size, &size_);
}
// Reserves virtual memory containing an area of the given size that
// is aligned per alignment. This may not be at the position returned
// by address().
VirtualMemory(size_t size, size_t alignment) : size_(0) {
address_ = ReserveRegion(size, &size_, alignment);
}
// Releases the reserved memory, if any, controlled by this VirtualMemory
// object.
~VirtualMemory() {
if (IsReserved()) {
bool result = ReleaseRegion(address_, size_);
ASSERT(result);
USE(result);
}
}
// Returns whether the memory contains the specified address.
bool Contains(const void* address) const V8_WARN_UNUSED_RESULT {
if (!IsReserved()) return false;
if (address < address_) return false;
if (address >= reinterpret_cast<uint8_t*>(address_) + size_) return false;
return true;
}
// Returns whether the memory has been reserved.
bool IsReserved() const V8_WARN_UNUSED_RESULT {
return address_ != NULL;
}
// Initialize or resets an embedded VirtualMemory object.
void Reset() {
address_ = NULL;
size_ = 0;
}
// Returns the start address of the reserved memory. The returned value is
// only meaningful if |IsReserved()| returns true.
// If the memory was reserved with an alignment, this address is not
// necessarily aligned. The user might need to round it up to a multiple of
// the alignment to get the start of the aligned block.
void* address() const V8_WARN_UNUSED_RESULT { return address_; }
// Returns the size of the reserved memory. The returned value is only
// meaningful when |IsReserved()| returns true.
// If the memory was reserved with an alignment, this size may be larger
// than the requested size.
size_t size() const V8_WARN_UNUSED_RESULT { return size_; }
// Commits real memory. Returns whether the operation succeeded.
bool Commit(void* address,
size_t size,
Executability executability) V8_WARN_UNUSED_RESULT {
ASSERT(IsReserved());
ASSERT(Contains(address));
ASSERT(Contains(reinterpret_cast<uint8_t*>(address) + size - 1));
return CommitRegion(address, size, executability);
}
// Uncommit real memory. Returns whether the operation succeeded.
bool Uncommit(void* address, size_t size) V8_WARN_UNUSED_RESULT {
ASSERT(IsReserved());
ASSERT(Contains(address));
ASSERT(Contains(reinterpret_cast<uint8_t*>(address) + size - 1));
return UncommitRegion(address, size);
}
// Creates guard pages at the given address.
bool Guard(void* address, size_t size) V8_WARN_UNUSED_RESULT {
// We can simply uncommit the specified pages. Any access
// to them will cause a processor exception.
return Uncommit(address, size);
}
void Release() {
ASSERT(IsReserved());
// WARNING: Order is important here. The VirtualMemory
// object might live inside the allocated region.
void* address = address_;
size_t size = size_;
Reset();
bool result = ReleaseRegion(address, size);
USE(result);
ASSERT(result);
}
// Assign control of the reserved region to a different VirtualMemory object.
// The old object is no longer functional (IsReserved() returns false).
void TakeControl(VirtualMemory* from) {
ASSERT(!IsReserved());
address_ = from->address_;
size_ = from->size_;
from->Reset();
}
// Allocates a region of memory pages. The pages are readable/writable,
// but are not guaranteed to be executable unless explicitly requested.
// Returns the base address of the allocated memory region, or NULL in
// case of an error.
static void* AllocateRegion(size_t size,
size_t* size_return,
Executability executability)
V8_WARN_UNUSED_RESULT;
static void* ReserveRegion(size_t size,
size_t* size_return) V8_WARN_UNUSED_RESULT;
static void* ReserveRegion(size_t size,
size_t* size_return,
size_t alignment) V8_WARN_UNUSED_RESULT;
static bool CommitRegion(void* address,
size_t size,
Executability executability) V8_WARN_UNUSED_RESULT;
static bool UncommitRegion(void* address, size_t size) V8_WARN_UNUSED_RESULT;
// Mark code segments readable-executable.
static bool WriteProtectRegion(void* address,
size_t size) V8_WARN_UNUSED_RESULT;
// Must be called with a base pointer that has been returned by ReserveRegion
// and the same size it was reserved with.
static bool ReleaseRegion(void* address, size_t size) V8_WARN_UNUSED_RESULT;
// The granularity for the starting address at which virtual memory can be
// reserved (or allocated in terms of the underlying operating system).
static size_t GetAllocationGranularity() V8_PURE;
// The maximum size of the virtual memory. 0 means there is no artificial
// limit.
static size_t GetLimit() V8_PURE;
// The page size and the granularity of page protection and commitment.
static size_t GetPageSize() V8_PURE;
// Returns true if OS performs lazy commits, i.e. the memory allocation call
// defers actual physical memory allocation till the first memory access.
// Otherwise returns false.
static V8_INLINE bool HasLazyCommits() {
#if V8_OS_LINUX
return true;
#else
return false;
#endif
}
private:
void* address_; // Start address of the virtual memory.
size_t size_; // Size of the virtual memory.
};
} } // namespace v8::internal
#endif // V8_PLATFORM_VIRTUAL_MEMORY_H_

View File

@ -125,11 +125,43 @@ HeapObject* HeapObjectIterator::FromCurrentPage() {
} }
// -----------------------------------------------------------------------------
// MemoryAllocator
#ifdef ENABLE_HEAP_PROTECTION
void MemoryAllocator::Protect(Address start, size_t size) {
OS::Protect(start, size);
}
void MemoryAllocator::Unprotect(Address start,
size_t size,
Executability executable) {
OS::Unprotect(start, size, executable);
}
void MemoryAllocator::ProtectChunkFromPage(Page* page) {
int id = GetChunkId(page);
OS::Protect(chunks_[id].address(), chunks_[id].size());
}
void MemoryAllocator::UnprotectChunkFromPage(Page* page) {
int id = GetChunkId(page);
OS::Unprotect(chunks_[id].address(), chunks_[id].size(),
chunks_[id].owner()->executable() == EXECUTABLE);
}
#endif
// -------------------------------------------------------------------------- // --------------------------------------------------------------------------
// PagedSpace // PagedSpace
Page* Page::Initialize(Heap* heap, Page* Page::Initialize(Heap* heap,
MemoryChunk* chunk, MemoryChunk* chunk,
VirtualMemory::Executability executability, Executability executable,
PagedSpace* owner) { PagedSpace* owner) {
Page* page = reinterpret_cast<Page*>(chunk); Page* page = reinterpret_cast<Page*>(chunk);
ASSERT(page->area_size() <= kNonCodeObjectAreaSize); ASSERT(page->area_size() <= kNonCodeObjectAreaSize);

View File

@ -245,8 +245,7 @@ Address CodeRange::AllocateRawMemory(const size_t requested_size,
bool CodeRange::CommitRawMemory(Address start, size_t length) { bool CodeRange::CommitRawMemory(Address start, size_t length) {
return isolate_->memory_allocator()->CommitMemory( return isolate_->memory_allocator()->CommitMemory(start, length, EXECUTABLE);
start, length, VirtualMemory::EXECUTABLE);
} }
@ -258,9 +257,7 @@ bool CodeRange::UncommitRawMemory(Address start, size_t length) {
void CodeRange::FreeRawMemory(Address address, size_t length) { void CodeRange::FreeRawMemory(Address address, size_t length) {
ASSERT(IsAddressAligned(address, MemoryChunk::kAlignment)); ASSERT(IsAddressAligned(address, MemoryChunk::kAlignment));
free_list_.Add(FreeBlock(address, length)); free_list_.Add(FreeBlock(address, length));
bool result = code_range_->Uncommit(address, length); code_range_->Uncommit(address, length);
ASSERT(result);
USE(result);
} }
@ -311,8 +308,8 @@ void MemoryAllocator::TearDown() {
bool MemoryAllocator::CommitMemory(Address base, bool MemoryAllocator::CommitMemory(Address base,
size_t size, size_t size,
VirtualMemory::Executability executability) { Executability executable) {
if (!VirtualMemory::CommitRegion(base, size, executability)) { if (!VirtualMemory::CommitRegion(base, size, executable == EXECUTABLE)) {
return false; return false;
} }
UpdateAllocatedSpaceLimits(base, base + size); UpdateAllocatedSpaceLimits(base, base + size);
@ -321,7 +318,7 @@ bool MemoryAllocator::CommitMemory(Address base,
void MemoryAllocator::FreeMemory(VirtualMemory* reservation, void MemoryAllocator::FreeMemory(VirtualMemory* reservation,
VirtualMemory::Executability executability) { Executability executable) {
// TODO(gc) make code_range part of memory allocator? // TODO(gc) make code_range part of memory allocator?
ASSERT(reservation->IsReserved()); ASSERT(reservation->IsReserved());
size_t size = reservation->size(); size_t size = reservation->size();
@ -330,38 +327,36 @@ void MemoryAllocator::FreeMemory(VirtualMemory* reservation,
isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size)); isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size));
if (executability == VirtualMemory::EXECUTABLE) { if (executable == EXECUTABLE) {
ASSERT(size_executable_ >= size); ASSERT(size_executable_ >= size);
size_executable_ -= size; size_executable_ -= size;
} }
// Code which is part of the code-range does not have its own VirtualMemory. // Code which is part of the code-range does not have its own VirtualMemory.
ASSERT(!isolate_->code_range()->contains( ASSERT(!isolate_->code_range()->contains(
static_cast<Address>(reservation->address()))); static_cast<Address>(reservation->address())));
ASSERT(executability == VirtualMemory::NOT_EXECUTABLE || ASSERT(executable == NOT_EXECUTABLE || !isolate_->code_range()->exists());
!isolate_->code_range()->exists());
reservation->Release(); reservation->Release();
} }
void MemoryAllocator::FreeMemory(Address base, void MemoryAllocator::FreeMemory(Address base,
size_t size, size_t size,
VirtualMemory::Executability executability) { Executability executable) {
// TODO(gc) make code_range part of memory allocator? // TODO(gc) make code_range part of memory allocator?
ASSERT(size_ >= size); ASSERT(size_ >= size);
size_ -= size; size_ -= size;
isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size)); isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size));
if (executability == VirtualMemory::EXECUTABLE) { if (executable == EXECUTABLE) {
ASSERT(size_executable_ >= size); ASSERT(size_executable_ >= size);
size_executable_ -= size; size_executable_ -= size;
} }
if (isolate_->code_range()->contains(static_cast<Address>(base))) { if (isolate_->code_range()->contains(static_cast<Address>(base))) {
ASSERT(executability == VirtualMemory::EXECUTABLE); ASSERT(executable == EXECUTABLE);
isolate_->code_range()->FreeRawMemory(base, size); isolate_->code_range()->FreeRawMemory(base, size);
} else { } else {
ASSERT(executability == VirtualMemory::NOT_EXECUTABLE || ASSERT(executable == NOT_EXECUTABLE || !isolate_->code_range()->exists());
!isolate_->code_range()->exists());
bool result = VirtualMemory::ReleaseRegion(base, size); bool result = VirtualMemory::ReleaseRegion(base, size);
USE(result); USE(result);
ASSERT(result); ASSERT(result);
@ -383,18 +378,17 @@ Address MemoryAllocator::ReserveAlignedMemory(size_t size,
} }
Address MemoryAllocator::AllocateAlignedMemory( Address MemoryAllocator::AllocateAlignedMemory(size_t reserve_size,
size_t reserve_size,
size_t commit_size, size_t commit_size,
size_t alignment, size_t alignment,
VirtualMemory::Executability executability, Executability executable,
VirtualMemory* controller) { VirtualMemory* controller) {
ASSERT(commit_size <= reserve_size); ASSERT(commit_size <= reserve_size);
VirtualMemory reservation; VirtualMemory reservation;
Address base = ReserveAlignedMemory(reserve_size, alignment, &reservation); Address base = ReserveAlignedMemory(reserve_size, alignment, &reservation);
if (base == NULL) return NULL; if (base == NULL) return NULL;
if (executability == VirtualMemory::EXECUTABLE) { if (executable == EXECUTABLE) {
if (!CommitExecutableMemory(&reservation, if (!CommitExecutableMemory(&reservation,
base, base,
commit_size, commit_size,
@ -402,7 +396,7 @@ Address MemoryAllocator::AllocateAlignedMemory(
base = NULL; base = NULL;
} }
} else { } else {
if (reservation.Commit(base, commit_size, VirtualMemory::NOT_EXECUTABLE)) { if (reservation.Commit(base, commit_size, false)) {
UpdateAllocatedSpaceLimits(base, base + commit_size); UpdateAllocatedSpaceLimits(base, base + commit_size);
} else { } else {
base = NULL; base = NULL;
@ -439,7 +433,7 @@ NewSpacePage* NewSpacePage::Initialize(Heap* heap,
Page::kPageSize, Page::kPageSize,
area_start, area_start,
area_end, area_end,
VirtualMemory::NOT_EXECUTABLE, NOT_EXECUTABLE,
semi_space); semi_space);
chunk->set_next_chunk(NULL); chunk->set_next_chunk(NULL);
chunk->set_prev_chunk(NULL); chunk->set_prev_chunk(NULL);
@ -470,7 +464,7 @@ MemoryChunk* MemoryChunk::Initialize(Heap* heap,
size_t size, size_t size,
Address area_start, Address area_start,
Address area_end, Address area_end,
VirtualMemory::Executability executability, Executability executable,
Space* owner) { Space* owner) {
MemoryChunk* chunk = FromAddress(base); MemoryChunk* chunk = FromAddress(base);
@ -502,7 +496,7 @@ MemoryChunk* MemoryChunk::Initialize(Heap* heap,
ASSERT(OFFSET_OF(MemoryChunk, flags_) == kFlagsOffset); ASSERT(OFFSET_OF(MemoryChunk, flags_) == kFlagsOffset);
ASSERT(OFFSET_OF(MemoryChunk, live_byte_count_) == kLiveBytesOffset); ASSERT(OFFSET_OF(MemoryChunk, live_byte_count_) == kLiveBytesOffset);
if (executability == VirtualMemory::EXECUTABLE) { if (executable == EXECUTABLE) {
chunk->SetFlag(IS_EXECUTABLE); chunk->SetFlag(IS_EXECUTABLE);
} }
@ -519,10 +513,9 @@ bool MemoryChunk::CommitArea(size_t requested) {
size_t guard_size = IsFlagSet(IS_EXECUTABLE) ? size_t guard_size = IsFlagSet(IS_EXECUTABLE) ?
MemoryAllocator::CodePageGuardSize() : 0; MemoryAllocator::CodePageGuardSize() : 0;
size_t header_size = area_start() - address() - guard_size; size_t header_size = area_start() - address() - guard_size;
size_t commit_size = RoundUp(header_size + requested, size_t commit_size = RoundUp(header_size + requested, OS::CommitPageSize());
VirtualMemory::GetPageSize());
size_t committed_size = RoundUp(header_size + (area_end() - area_start()), size_t committed_size = RoundUp(header_size + (area_end() - area_start()),
VirtualMemory::GetPageSize()); OS::CommitPageSize());
if (commit_size > committed_size) { if (commit_size > committed_size) {
// Commit size should be less or equal than the reserved size. // Commit size should be less or equal than the reserved size.
@ -531,10 +524,10 @@ bool MemoryChunk::CommitArea(size_t requested) {
Address start = address() + committed_size + guard_size; Address start = address() + committed_size + guard_size;
size_t length = commit_size - committed_size; size_t length = commit_size - committed_size;
if (reservation_.IsReserved()) { if (reservation_.IsReserved()) {
VirtualMemory::Executability executability = IsFlagSet(IS_EXECUTABLE) Executability executable = IsFlagSet(IS_EXECUTABLE)
? VirtualMemory::EXECUTABLE : VirtualMemory::NOT_EXECUTABLE; ? EXECUTABLE : NOT_EXECUTABLE;
if (!heap()->isolate()->memory_allocator()->CommitMemory( if (!heap()->isolate()->memory_allocator()->CommitMemory(
start, length, executability)) { start, length, executable)) {
return false; return false;
} }
} else { } else {
@ -596,10 +589,9 @@ void MemoryChunk::Unlink() {
} }
MemoryChunk* MemoryAllocator::AllocateChunk( MemoryChunk* MemoryAllocator::AllocateChunk(intptr_t reserve_area_size,
intptr_t reserve_area_size,
intptr_t commit_area_size, intptr_t commit_area_size,
VirtualMemory::Executability executability, Executability executable,
Space* owner) { Space* owner) {
ASSERT(commit_area_size <= reserve_area_size); ASSERT(commit_area_size <= reserve_area_size);
@ -640,9 +632,9 @@ MemoryChunk* MemoryAllocator::AllocateChunk(
// +----------------------------+<- base + chunk_size // +----------------------------+<- base + chunk_size
// //
if (executability == VirtualMemory::EXECUTABLE) { if (executable == EXECUTABLE) {
chunk_size = RoundUp(CodePageAreaStartOffset() + reserve_area_size, chunk_size = RoundUp(CodePageAreaStartOffset() + reserve_area_size,
VirtualMemory::GetPageSize()) + CodePageGuardSize(); OS::CommitPageSize()) + CodePageGuardSize();
// Check executable memory limit. // Check executable memory limit.
if (size_executable_ + chunk_size > capacity_executable_) { if (size_executable_ + chunk_size > capacity_executable_) {
@ -654,7 +646,7 @@ MemoryChunk* MemoryAllocator::AllocateChunk(
// Size of header (not executable) plus area (executable). // Size of header (not executable) plus area (executable).
size_t commit_size = RoundUp(CodePageGuardStartOffset() + commit_area_size, size_t commit_size = RoundUp(CodePageGuardStartOffset() + commit_area_size,
VirtualMemory::GetPageSize()); OS::CommitPageSize());
// Allocate executable memory either from code range or from the // Allocate executable memory either from code range or from the
// OS. // OS.
if (isolate_->code_range()->exists()) { if (isolate_->code_range()->exists()) {
@ -671,7 +663,7 @@ MemoryChunk* MemoryAllocator::AllocateChunk(
base = AllocateAlignedMemory(chunk_size, base = AllocateAlignedMemory(chunk_size,
commit_size, commit_size,
MemoryChunk::kAlignment, MemoryChunk::kAlignment,
executability, executable,
&reservation); &reservation);
if (base == NULL) return NULL; if (base == NULL) return NULL;
// Update executable memory size. // Update executable memory size.
@ -687,14 +679,13 @@ MemoryChunk* MemoryAllocator::AllocateChunk(
area_end = area_start + commit_area_size; area_end = area_start + commit_area_size;
} else { } else {
chunk_size = RoundUp(MemoryChunk::kObjectStartOffset + reserve_area_size, chunk_size = RoundUp(MemoryChunk::kObjectStartOffset + reserve_area_size,
VirtualMemory::GetPageSize()); OS::CommitPageSize());
size_t commit_size = RoundUp( size_t commit_size = RoundUp(MemoryChunk::kObjectStartOffset +
MemoryChunk::kObjectStartOffset + commit_area_size, commit_area_size, OS::CommitPageSize());
VirtualMemory::GetPageSize());
base = AllocateAlignedMemory(chunk_size, base = AllocateAlignedMemory(chunk_size,
commit_size, commit_size,
MemoryChunk::kAlignment, MemoryChunk::kAlignment,
executability, executable,
&reservation); &reservation);
if (base == NULL) return NULL; if (base == NULL) return NULL;
@ -723,7 +714,7 @@ MemoryChunk* MemoryAllocator::AllocateChunk(
chunk_size, chunk_size,
area_start, area_start,
area_end, area_end,
executability, executable,
owner); owner);
result->set_reserved_memory(&reservation); result->set_reserved_memory(&reservation);
return result; return result;
@ -739,25 +730,23 @@ void Page::ResetFreeListStatistics() {
} }
Page* MemoryAllocator::AllocatePage( Page* MemoryAllocator::AllocatePage(intptr_t size,
intptr_t size,
PagedSpace* owner, PagedSpace* owner,
VirtualMemory::Executability executability) { Executability executable) {
MemoryChunk* chunk = AllocateChunk(size, size, executability, owner); MemoryChunk* chunk = AllocateChunk(size, size, executable, owner);
if (chunk == NULL) return NULL; if (chunk == NULL) return NULL;
return Page::Initialize(isolate_->heap(), chunk, executability, owner); return Page::Initialize(isolate_->heap(), chunk, executable, owner);
} }
LargePage* MemoryAllocator::AllocateLargePage( LargePage* MemoryAllocator::AllocateLargePage(intptr_t object_size,
intptr_t object_size,
Space* owner, Space* owner,
VirtualMemory::Executability executability) { Executability executable) {
MemoryChunk* chunk = AllocateChunk(object_size, MemoryChunk* chunk = AllocateChunk(object_size,
object_size, object_size,
executability, executable,
owner); owner);
if (chunk == NULL) return NULL; if (chunk == NULL) return NULL;
return LargePage::Initialize(isolate_->heap(), chunk); return LargePage::Initialize(isolate_->heap(), chunk);
@ -780,19 +769,19 @@ void MemoryAllocator::Free(MemoryChunk* chunk) {
VirtualMemory* reservation = chunk->reserved_memory(); VirtualMemory* reservation = chunk->reserved_memory();
if (reservation->IsReserved()) { if (reservation->IsReserved()) {
FreeMemory(reservation, chunk->executability()); FreeMemory(reservation, chunk->executable());
} else { } else {
FreeMemory(chunk->address(), FreeMemory(chunk->address(),
chunk->size(), chunk->size(),
chunk->executability()); chunk->executable());
} }
} }
bool MemoryAllocator::CommitBlock(Address start, bool MemoryAllocator::CommitBlock(Address start,
size_t size, size_t size,
VirtualMemory::Executability executability) { Executability executable) {
if (!CommitMemory(start, size, executability)) return false; if (!CommitMemory(start, size, executable)) return false;
if (Heap::ShouldZapGarbage()) { if (Heap::ShouldZapGarbage()) {
ZapBlock(start, size); ZapBlock(start, size);
@ -877,12 +866,12 @@ void MemoryAllocator::ReportStatistics() {
int MemoryAllocator::CodePageGuardStartOffset() { int MemoryAllocator::CodePageGuardStartOffset() {
// We are guarding code pages: the first OS page after the header // We are guarding code pages: the first OS page after the header
// will be protected as non-writable. // will be protected as non-writable.
return RoundUp(Page::kObjectStartOffset, VirtualMemory::GetPageSize()); return RoundUp(Page::kObjectStartOffset, OS::CommitPageSize());
} }
int MemoryAllocator::CodePageGuardSize() { int MemoryAllocator::CodePageGuardSize() {
return static_cast<int>(VirtualMemory::GetPageSize()); return static_cast<int>(OS::CommitPageSize());
} }
@ -896,7 +885,7 @@ int MemoryAllocator::CodePageAreaStartOffset() {
int MemoryAllocator::CodePageAreaEndOffset() { int MemoryAllocator::CodePageAreaEndOffset() {
// We are guarding code pages: the last OS page will be protected as // We are guarding code pages: the last OS page will be protected as
// non-writable. // non-writable.
return Page::kPageSize - static_cast<int>(VirtualMemory::GetPageSize()); return Page::kPageSize - static_cast<int>(OS::CommitPageSize());
} }
@ -907,26 +896,24 @@ bool MemoryAllocator::CommitExecutableMemory(VirtualMemory* vm,
// Commit page header (not executable). // Commit page header (not executable).
if (!vm->Commit(start, if (!vm->Commit(start,
CodePageGuardStartOffset(), CodePageGuardStartOffset(),
VirtualMemory::NOT_EXECUTABLE)) { false)) {
return false; return false;
} }
// Create guard page after the header. // Create guard page after the header.
if (!vm->Guard(start + CodePageGuardStartOffset(), if (!vm->Guard(start + CodePageGuardStartOffset())) {
VirtualMemory::GetPageSize())) {
return false; return false;
} }
// Commit page body (executable). // Commit page body (executable).
if (!vm->Commit(start + CodePageAreaStartOffset(), if (!vm->Commit(start + CodePageAreaStartOffset(),
commit_size - CodePageGuardStartOffset(), commit_size - CodePageGuardStartOffset(),
VirtualMemory::EXECUTABLE)) { true)) {
return false; return false;
} }
// Create guard page before the end. // Create guard page before the end.
if (!vm->Guard(start + reserved_size - CodePageGuardSize(), if (!vm->Guard(start + reserved_size - CodePageGuardSize())) {
VirtualMemory::GetPageSize())) {
return false; return false;
} }
@ -955,8 +942,8 @@ void MemoryChunk::IncrementLiveBytesFromMutator(Address address, int by) {
PagedSpace::PagedSpace(Heap* heap, PagedSpace::PagedSpace(Heap* heap,
intptr_t max_capacity, intptr_t max_capacity,
AllocationSpace id, AllocationSpace id,
VirtualMemory::Executability executability) Executability executable)
: Space(heap, id, executability), : Space(heap, id, executable),
free_list_(this), free_list_(this),
was_swept_conservatively_(false), was_swept_conservatively_(false),
first_unswept_page_(Page::FromAddress(NULL)), first_unswept_page_(Page::FromAddress(NULL)),
@ -1054,7 +1041,7 @@ bool PagedSpace::Expand() {
} }
Page* p = heap()->isolate()->memory_allocator()->AllocatePage( Page* p = heap()->isolate()->memory_allocator()->AllocatePage(
size, this, executability()); size, this, executable());
if (p == NULL) return false; if (p == NULL) return false;
ASSERT(Capacity() <= max_capacity_); ASSERT(Capacity() <= max_capacity_);
@ -1301,8 +1288,8 @@ void NewSpace::TearDown() {
LOG(heap()->isolate(), DeleteEvent("InitialChunk", chunk_base_)); LOG(heap()->isolate(), DeleteEvent("InitialChunk", chunk_base_));
ASSERT(reservation_.IsReserved()); ASSERT(reservation_.IsReserved());
heap()->isolate()->memory_allocator()->FreeMemory( heap()->isolate()->memory_allocator()->FreeMemory(&reservation_,
&reservation_, VirtualMemory::NOT_EXECUTABLE); NOT_EXECUTABLE);
chunk_base_ = NULL; chunk_base_ = NULL;
chunk_size_ = 0; chunk_size_ = 0;
} }
@ -1537,7 +1524,7 @@ bool SemiSpace::Commit() {
Address start = end - pages * Page::kPageSize; Address start = end - pages * Page::kPageSize;
if (!heap()->isolate()->memory_allocator()->CommitBlock(start, if (!heap()->isolate()->memory_allocator()->CommitBlock(start,
capacity_, capacity_,
executability())) { executable())) {
return false; return false;
} }
@ -1594,9 +1581,9 @@ bool SemiSpace::GrowTo(int new_capacity) {
Address start = end - new_capacity; Address start = end - new_capacity;
size_t delta = new_capacity - capacity_; size_t delta = new_capacity - capacity_;
ASSERT(IsAligned(delta, VirtualMemory::GetAllocationGranularity())); ASSERT(IsAligned(delta, OS::AllocateAlignment()));
if (!heap()->isolate()->memory_allocator()->CommitBlock( if (!heap()->isolate()->memory_allocator()->CommitBlock(
start, delta, executability())) { start, delta, executable())) {
return false; return false;
} }
capacity_ = new_capacity; capacity_ = new_capacity;
@ -1629,7 +1616,7 @@ bool SemiSpace::ShrinkTo(int new_capacity) {
Address space_end = start_ + maximum_capacity_; Address space_end = start_ + maximum_capacity_;
Address old_start = space_end - capacity_; Address old_start = space_end - capacity_;
size_t delta = capacity_ - new_capacity; size_t delta = capacity_ - new_capacity;
ASSERT(IsAligned(delta, VirtualMemory::GetAllocationGranularity())); ASSERT(IsAligned(delta, OS::AllocateAlignment()));
MemoryAllocator* allocator = heap()->isolate()->memory_allocator(); MemoryAllocator* allocator = heap()->isolate()->memory_allocator();
if (!allocator->UncommitBlock(old_start, delta)) { if (!allocator->UncommitBlock(old_start, delta)) {
@ -2937,8 +2924,7 @@ static bool ComparePointers(void* key1, void* key2) {
LargeObjectSpace::LargeObjectSpace(Heap* heap, LargeObjectSpace::LargeObjectSpace(Heap* heap,
intptr_t max_capacity, intptr_t max_capacity,
AllocationSpace id) AllocationSpace id)
// Managed on a per-allocation basis : Space(heap, id, NOT_EXECUTABLE), // Managed on a per-allocation basis
: Space(heap, id, VirtualMemory::NOT_EXECUTABLE),
max_capacity_(max_capacity), max_capacity_(max_capacity),
first_page_(NULL), first_page_(NULL),
size_(0), size_(0),
@ -2972,8 +2958,8 @@ void LargeObjectSpace::TearDown() {
} }
MaybeObject* LargeObjectSpace::AllocateRaw( MaybeObject* LargeObjectSpace::AllocateRaw(int object_size,
int object_size, VirtualMemory::Executability executability) { Executability executable) {
// Check if we want to force a GC before growing the old space further. // Check if we want to force a GC before growing the old space further.
// If so, fail the allocation. // If so, fail the allocation.
if (!heap()->always_allocate() && if (!heap()->always_allocate() &&
@ -2986,7 +2972,7 @@ MaybeObject* LargeObjectSpace::AllocateRaw(
} }
LargePage* page = heap()->isolate()->memory_allocator()-> LargePage* page = heap()->isolate()->memory_allocator()->
AllocateLargePage(object_size, this, executability); AllocateLargePage(object_size, this, executable);
if (page == NULL) return Failure::RetryAfterGC(identity()); if (page == NULL) return Failure::RetryAfterGC(identity());
ASSERT(page->area_size() >= object_size); ASSERT(page->area_size() >= object_size);

View File

@ -33,7 +33,6 @@
#include "list.h" #include "list.h"
#include "log.h" #include "log.h"
#include "platform/mutex.h" #include "platform/mutex.h"
#include "platform/virtual-memory.h"
#include "v8utils.h" #include "v8utils.h"
namespace v8 { namespace v8 {
@ -574,10 +573,8 @@ class MemoryChunk {
area_end_ = area_end; area_end_ = area_end;
} }
VirtualMemory::Executability executability() { Executability executable() {
return IsFlagSet(IS_EXECUTABLE) return IsFlagSet(IS_EXECUTABLE) ? EXECUTABLE : NOT_EXECUTABLE;
? VirtualMemory::EXECUTABLE
: VirtualMemory::NOT_EXECUTABLE;
} }
bool ContainsOnlyData() { bool ContainsOnlyData() {
@ -719,7 +716,7 @@ class MemoryChunk {
size_t size, size_t size,
Address area_start, Address area_start,
Address area_end, Address area_end,
VirtualMemory::Executability executability, Executability executable,
Space* owner); Space* owner);
friend class MemoryAllocator; friend class MemoryAllocator;
@ -799,7 +796,7 @@ class Page : public MemoryChunk {
static inline Page* Initialize(Heap* heap, static inline Page* Initialize(Heap* heap,
MemoryChunk* chunk, MemoryChunk* chunk,
VirtualMemory::Executability executable, Executability executable,
PagedSpace* owner); PagedSpace* owner);
void InitializeAsAnchor(PagedSpace* owner); void InitializeAsAnchor(PagedSpace* owner);
@ -865,17 +862,15 @@ STATIC_CHECK(sizeof(LargePage) <= MemoryChunk::kHeaderSize);
// Space is the abstract superclass for all allocation spaces. // Space is the abstract superclass for all allocation spaces.
class Space : public Malloced { class Space : public Malloced {
public: public:
Space(Heap* heap, Space(Heap* heap, AllocationSpace id, Executability executable)
AllocationSpace id, : heap_(heap), id_(id), executable_(executable) {}
VirtualMemory::Executability executability)
: heap_(heap), id_(id), executability_(executability) {}
virtual ~Space() {} virtual ~Space() {}
Heap* heap() const { return heap_; } Heap* heap() const { return heap_; }
// Does the space need executable memory? // Does the space need executable memory?
VirtualMemory::Executability executability() { return executability_; } Executability executable() { return executable_; }
// Identity used in error reporting. // Identity used in error reporting.
AllocationSpace identity() { return id_; } AllocationSpace identity() { return id_; }
@ -902,7 +897,7 @@ class Space : public Malloced {
private: private:
Heap* heap_; Heap* heap_;
AllocationSpace id_; AllocationSpace id_;
VirtualMemory::Executability executability_; Executability executable_;
}; };
@ -1060,13 +1055,11 @@ class MemoryAllocator {
void TearDown(); void TearDown();
Page* AllocatePage(intptr_t size, Page* AllocatePage(
PagedSpace* owner, intptr_t size, PagedSpace* owner, Executability executable);
VirtualMemory::Executability executability);
LargePage* AllocateLargePage(intptr_t object_size, LargePage* AllocateLargePage(
Space* owner, intptr_t object_size, Space* owner, Executability executable);
VirtualMemory::Executability executability);
void Free(MemoryChunk* chunk); void Free(MemoryChunk* chunk);
@ -1092,7 +1085,7 @@ class MemoryAllocator {
// Returns an indication of whether a pointer is in a space that has // Returns an indication of whether a pointer is in a space that has
// been allocated by this MemoryAllocator. // been allocated by this MemoryAllocator.
V8_INLINE bool IsOutsideAllocatedSpace(const void* address) const { V8_INLINE(bool IsOutsideAllocatedSpace(const void* address)) const {
return address < lowest_ever_allocated_ || return address < lowest_ever_allocated_ ||
address >= highest_ever_allocated_; address >= highest_ever_allocated_;
} }
@ -1107,7 +1100,7 @@ class MemoryAllocator {
// could be committed later by calling MemoryChunk::CommitArea. // could be committed later by calling MemoryChunk::CommitArea.
MemoryChunk* AllocateChunk(intptr_t reserve_area_size, MemoryChunk* AllocateChunk(intptr_t reserve_area_size,
intptr_t commit_area_size, intptr_t commit_area_size,
VirtualMemory::Executability executability, Executability executable,
Space* space); Space* space);
Address ReserveAlignedMemory(size_t requested, Address ReserveAlignedMemory(size_t requested,
@ -1116,26 +1109,19 @@ class MemoryAllocator {
Address AllocateAlignedMemory(size_t reserve_size, Address AllocateAlignedMemory(size_t reserve_size,
size_t commit_size, size_t commit_size,
size_t alignment, size_t alignment,
VirtualMemory::Executability executability, Executability executable,
VirtualMemory* controller); VirtualMemory* controller);
bool CommitMemory(Address addr, bool CommitMemory(Address addr, size_t size, Executability executable);
size_t size,
VirtualMemory::Executability executability);
void FreeMemory(VirtualMemory* reservation, void FreeMemory(VirtualMemory* reservation, Executability executable);
VirtualMemory::Executability executability); void FreeMemory(Address addr, size_t size, Executability executable);
void FreeMemory(Address addr,
size_t size,
VirtualMemory::Executability executability);
// Commit a contiguous block of memory from the initial chunk. Assumes that // Commit a contiguous block of memory from the initial chunk. Assumes that
// the address is not NULL, the size is greater than zero, and that the // the address is not NULL, the size is greater than zero, and that the
// block is contained in the initial chunk. Returns true if it succeeded // block is contained in the initial chunk. Returns true if it succeeded
// and false otherwise. // and false otherwise.
bool CommitBlock(Address start, bool CommitBlock(Address start, size_t size, Executability executable);
size_t size,
VirtualMemory::Executability executability);
// Uncommit a contiguous block of memory [start..(start+size)[. // Uncommit a contiguous block of memory [start..(start+size)[.
// start is not NULL, the size is greater than zero, and the // start is not NULL, the size is greater than zero, and the
@ -1626,7 +1612,7 @@ class PagedSpace : public Space {
PagedSpace(Heap* heap, PagedSpace(Heap* heap,
intptr_t max_capacity, intptr_t max_capacity,
AllocationSpace id, AllocationSpace id,
VirtualMemory::Executability executability); Executability executable);
virtual ~PagedSpace() {} virtual ~PagedSpace() {}
@ -2051,7 +2037,7 @@ class SemiSpace : public Space {
public: public:
// Constructor. // Constructor.
SemiSpace(Heap* heap, SemiSpaceId semispace) SemiSpace(Heap* heap, SemiSpaceId semispace)
: Space(heap, NEW_SPACE, VirtualMemory::NOT_EXECUTABLE), : Space(heap, NEW_SPACE, NOT_EXECUTABLE),
start_(NULL), start_(NULL),
age_mark_(NULL), age_mark_(NULL),
id_(semispace), id_(semispace),
@ -2304,7 +2290,7 @@ class NewSpace : public Space {
public: public:
// Constructor. // Constructor.
explicit NewSpace(Heap* heap) explicit NewSpace(Heap* heap)
: Space(heap, NEW_SPACE, VirtualMemory::NOT_EXECUTABLE), : Space(heap, NEW_SPACE, NOT_EXECUTABLE),
to_space_(heap, kToSpace), to_space_(heap, kToSpace),
from_space_(heap, kFromSpace), from_space_(heap, kFromSpace),
reservation_(), reservation_(),
@ -2569,8 +2555,8 @@ class OldSpace : public PagedSpace {
OldSpace(Heap* heap, OldSpace(Heap* heap,
intptr_t max_capacity, intptr_t max_capacity,
AllocationSpace id, AllocationSpace id,
VirtualMemory::Executability executability) Executability executable)
: PagedSpace(heap, max_capacity, id, executability) { : PagedSpace(heap, max_capacity, id, executable) {
page_extra_ = 0; page_extra_ = 0;
} }
@ -2601,7 +2587,7 @@ class FixedSpace : public PagedSpace {
intptr_t max_capacity, intptr_t max_capacity,
AllocationSpace id, AllocationSpace id,
int object_size_in_bytes) int object_size_in_bytes)
: PagedSpace(heap, max_capacity, id, VirtualMemory::NOT_EXECUTABLE), : PagedSpace(heap, max_capacity, id, NOT_EXECUTABLE),
object_size_in_bytes_(object_size_in_bytes) { object_size_in_bytes_(object_size_in_bytes) {
page_extra_ = Page::kNonCodeObjectAreaSize % object_size_in_bytes; page_extra_ = Page::kNonCodeObjectAreaSize % object_size_in_bytes;
} }
@ -2741,8 +2727,8 @@ class LargeObjectSpace : public Space {
// Shared implementation of AllocateRaw, AllocateRawCode and // Shared implementation of AllocateRaw, AllocateRawCode and
// AllocateRawFixedArray. // AllocateRawFixedArray.
MUST_USE_RESULT MaybeObject* AllocateRaw( MUST_USE_RESULT MaybeObject* AllocateRaw(int object_size,
int object_size, VirtualMemory::Executability executability); Executability executable);
// Available bytes for objects in this space. // Available bytes for objects in this space.
inline intptr_t Available(); inline intptr_t Available();

View File

@ -72,8 +72,7 @@ void StoreBuffer::SetUp() {
// Don't know the alignment requirements of the OS, but it is certainly not // Don't know the alignment requirements of the OS, but it is certainly not
// less than 0xfff. // less than 0xfff.
ASSERT((reinterpret_cast<uintptr_t>(old_start_) & 0xfff) == 0); ASSERT((reinterpret_cast<uintptr_t>(old_start_) & 0xfff) == 0);
int initial_length = int initial_length = static_cast<int>(OS::CommitPageSize() / kPointerSize);
static_cast<int>(VirtualMemory::GetPageSize() / kPointerSize);
ASSERT(initial_length > 0); ASSERT(initial_length > 0);
ASSERT(initial_length <= kOldStoreBufferLength); ASSERT(initial_length <= kOldStoreBufferLength);
old_limit_ = old_start_ + initial_length; old_limit_ = old_start_ + initial_length;
@ -82,7 +81,7 @@ void StoreBuffer::SetUp() {
CHECK(old_virtual_memory_->Commit( CHECK(old_virtual_memory_->Commit(
reinterpret_cast<void*>(old_start_), reinterpret_cast<void*>(old_start_),
(old_limit_ - old_start_) * kPointerSize, (old_limit_ - old_start_) * kPointerSize,
VirtualMemory::NOT_EXECUTABLE)); false));
ASSERT(reinterpret_cast<Address>(start_) >= virtual_memory_->address()); ASSERT(reinterpret_cast<Address>(start_) >= virtual_memory_->address());
ASSERT(reinterpret_cast<Address>(limit_) >= virtual_memory_->address()); ASSERT(reinterpret_cast<Address>(limit_) >= virtual_memory_->address());
@ -98,7 +97,7 @@ void StoreBuffer::SetUp() {
CHECK(virtual_memory_->Commit(reinterpret_cast<Address>(start_), CHECK(virtual_memory_->Commit(reinterpret_cast<Address>(start_),
kStoreBufferSize, kStoreBufferSize,
VirtualMemory::NOT_EXECUTABLE)); false)); // Not executable.
heap_->public_set_store_buffer_top(start_); heap_->public_set_store_buffer_top(start_);
hash_set_1_ = new uintptr_t[kHashSetLength]; hash_set_1_ = new uintptr_t[kHashSetLength];
@ -155,7 +154,7 @@ void StoreBuffer::EnsureSpace(intptr_t space_needed) {
size_t grow = old_limit_ - old_start_; // Double size. size_t grow = old_limit_ - old_start_; // Double size.
CHECK(old_virtual_memory_->Commit(reinterpret_cast<void*>(old_limit_), CHECK(old_virtual_memory_->Commit(reinterpret_cast<void*>(old_limit_),
grow * kPointerSize, grow * kPointerSize,
VirtualMemory::NOT_EXECUTABLE)); false));
old_limit_ += grow; old_limit_ += grow;
} }

View File

@ -59,7 +59,7 @@ class RandomNumberGenerator V8_FINAL {
// that one int value is pseudorandomly generated and returned. // that one int value is pseudorandomly generated and returned.
// All 2^32 possible integer values are produced with (approximately) equal // All 2^32 possible integer values are produced with (approximately) equal
// probability. // probability.
V8_INLINE int NextInt() V8_WARN_UNUSED_RESULT { V8_INLINE(int NextInt()) V8_WARN_UNUSED_RESULT {
return Next(32); return Next(32);
} }
@ -76,7 +76,7 @@ class RandomNumberGenerator V8_FINAL {
// |NextBoolean()| is that one boolean value is pseudorandomly generated and // |NextBoolean()| is that one boolean value is pseudorandomly generated and
// returned. The values true and false are produced with (approximately) equal // returned. The values true and false are produced with (approximately) equal
// probability. // probability.
V8_INLINE bool NextBool() V8_WARN_UNUSED_RESULT { V8_INLINE(bool NextBool()) V8_WARN_UNUSED_RESULT {
return Next(1) != 0; return Next(1) != 0;
} }

View File

@ -201,6 +201,8 @@ enum PretenureFlag { NOT_TENURED, TENURED };
enum GarbageCollector { SCAVENGER, MARK_COMPACTOR }; enum GarbageCollector { SCAVENGER, MARK_COMPACTOR };
enum Executability { NOT_EXECUTABLE, EXECUTABLE };
enum VisitMode { enum VisitMode {
VISIT_ALL, VISIT_ALL,
VISIT_ALL_IN_SCAVENGE, VISIT_ALL_IN_SCAVENGE,

View File

@ -58,8 +58,9 @@ void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const {
UnaryMathFunction CreateTranscendentalFunction(TranscendentalCache::Type type) { UnaryMathFunction CreateTranscendentalFunction(TranscendentalCache::Type type) {
size_t actual_size; size_t actual_size;
// Allocate buffer in executable space. // Allocate buffer in executable space.
byte* buffer = static_cast<byte*>(VirtualMemory::AllocateRegion( byte* buffer = static_cast<byte*>(OS::Allocate(1 * KB,
1 * KB, &actual_size, VirtualMemory::EXECUTABLE)); &actual_size,
true));
if (buffer == NULL) { if (buffer == NULL) {
// Fallback to library function if function cannot be created. // Fallback to library function if function cannot be created.
switch (type) { switch (type) {
@ -93,9 +94,7 @@ UnaryMathFunction CreateTranscendentalFunction(TranscendentalCache::Type type) {
ASSERT(!RelocInfo::RequiresRelocation(desc)); ASSERT(!RelocInfo::RequiresRelocation(desc));
CPU::FlushICache(buffer, actual_size); CPU::FlushICache(buffer, actual_size);
bool result = VirtualMemory::WriteProtectRegion(buffer, actual_size); OS::ProtectCode(buffer, actual_size);
ASSERT(result);
USE(result);
return FUNCTION_CAST<UnaryMathFunction>(buffer); return FUNCTION_CAST<UnaryMathFunction>(buffer);
} }
@ -103,8 +102,7 @@ UnaryMathFunction CreateTranscendentalFunction(TranscendentalCache::Type type) {
UnaryMathFunction CreateExpFunction() { UnaryMathFunction CreateExpFunction() {
if (!FLAG_fast_math) return &exp; if (!FLAG_fast_math) return &exp;
size_t actual_size; size_t actual_size;
byte* buffer = static_cast<byte*>(VirtualMemory::AllocateRegion( byte* buffer = static_cast<byte*>(OS::Allocate(1 * KB, &actual_size, true));
1 * KB, &actual_size, VirtualMemory::EXECUTABLE));
if (buffer == NULL) return &exp; if (buffer == NULL) return &exp;
ExternalReference::InitializeMathExpData(); ExternalReference::InitializeMathExpData();
@ -127,9 +125,7 @@ UnaryMathFunction CreateExpFunction() {
ASSERT(!RelocInfo::RequiresRelocation(desc)); ASSERT(!RelocInfo::RequiresRelocation(desc));
CPU::FlushICache(buffer, actual_size); CPU::FlushICache(buffer, actual_size);
bool ok = VirtualMemory::WriteProtectRegion(buffer, actual_size); OS::ProtectCode(buffer, actual_size);
ASSERT(ok);
USE(ok);
return FUNCTION_CAST<UnaryMathFunction>(buffer); return FUNCTION_CAST<UnaryMathFunction>(buffer);
} }
@ -137,8 +133,9 @@ UnaryMathFunction CreateExpFunction() {
UnaryMathFunction CreateSqrtFunction() { UnaryMathFunction CreateSqrtFunction() {
size_t actual_size; size_t actual_size;
// Allocate buffer in executable space. // Allocate buffer in executable space.
byte* buffer = static_cast<byte*>(VirtualMemory::AllocateRegion( byte* buffer = static_cast<byte*>(OS::Allocate(1 * KB,
1 * KB, &actual_size, VirtualMemory::EXECUTABLE)); &actual_size,
true));
if (buffer == NULL) return &sqrt; if (buffer == NULL) return &sqrt;
MacroAssembler masm(NULL, buffer, static_cast<int>(actual_size)); MacroAssembler masm(NULL, buffer, static_cast<int>(actual_size));
@ -152,9 +149,7 @@ UnaryMathFunction CreateSqrtFunction() {
ASSERT(!RelocInfo::RequiresRelocation(desc)); ASSERT(!RelocInfo::RequiresRelocation(desc));
CPU::FlushICache(buffer, actual_size); CPU::FlushICache(buffer, actual_size);
bool result = VirtualMemory::WriteProtectRegion(buffer, actual_size); OS::ProtectCode(buffer, actual_size);
ASSERT(result);
USE(result);
return FUNCTION_CAST<UnaryMathFunction>(buffer); return FUNCTION_CAST<UnaryMathFunction>(buffer);
} }
@ -243,9 +238,7 @@ ModuloFunction CreateModuloFunction() {
CodeDesc desc; CodeDesc desc;
masm.GetCode(&desc); masm.GetCode(&desc);
bool result = VirtualMemory::WriteProtectRegion(buffer, actual_size); OS::ProtectCode(buffer, actual_size);
ASSERT(result);
USE(result);
// Call the function from C++ through this pointer. // Call the function from C++ through this pointer.
return FUNCTION_CAST<ModuloFunction>(buffer); return FUNCTION_CAST<ModuloFunction>(buffer);
} }

View File

@ -108,7 +108,6 @@
'test-unbound-queue.cc', 'test-unbound-queue.cc',
'test-utils.cc', 'test-utils.cc',
'test-version.cc', 'test-version.cc',
'test-virtual-memory.cc',
'test-weakmaps.cc', 'test-weakmaps.cc',
'test-weaksets.cc', 'test-weaksets.cc',
'test-weaktypedarrays.cc' 'test-weaktypedarrays.cc'

View File

@ -12670,8 +12670,8 @@ struct CopyablePersistentTraits {
typedef Persistent<T, CopyablePersistentTraits<T> > CopyablePersistent; typedef Persistent<T, CopyablePersistentTraits<T> > CopyablePersistent;
static const bool kResetInDestructor = true; static const bool kResetInDestructor = true;
template<class S, class M> template<class S, class M>
static V8_INLINE void Copy(const Persistent<S, M>& source, V8_INLINE(static void Copy(const Persistent<S, M>& source,
CopyablePersistent* dest) { CopyablePersistent* dest)) {
// do nothing, just allow copy // do nothing, just allow copy
} }
}; };

View File

@ -35,7 +35,34 @@
#include "serialize.h" #include "serialize.h"
#include "cctest.h" #include "cctest.h"
using namespace v8::internal; using v8::internal::Assembler;
using v8::internal::Code;
using v8::internal::CodeDesc;
using v8::internal::FUNCTION_CAST;
using v8::internal::Immediate;
using v8::internal::Isolate;
using v8::internal::Label;
using v8::internal::OS;
using v8::internal::Operand;
using v8::internal::byte;
using v8::internal::greater;
using v8::internal::less_equal;
using v8::internal::equal;
using v8::internal::not_equal;
using v8::internal::r13;
using v8::internal::r15;
using v8::internal::r8;
using v8::internal::r9;
using v8::internal::rax;
using v8::internal::rbx;
using v8::internal::rbp;
using v8::internal::rcx;
using v8::internal::rdi;
using v8::internal::rdx;
using v8::internal::rsi;
using v8::internal::rsp;
using v8::internal::times_1;
using v8::internal::xmm0;
// Test the x64 assembler by compiling some simple functions into // Test the x64 assembler by compiling some simple functions into
// a buffer and executing them. These tests do not initialize the // a buffer and executing them. These tests do not initialize the
@ -65,10 +92,9 @@ static const v8::internal::Register arg2 = rsi;
TEST(AssemblerX64ReturnOperation) { TEST(AssemblerX64ReturnOperation) {
// Allocate an executable page of memory. // Allocate an executable page of memory.
size_t actual_size; size_t actual_size;
byte* buffer = static_cast<byte*>(VirtualMemory::AllocateRegion( byte* buffer = static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize,
Assembler::kMinimalBufferSize,
&actual_size, &actual_size,
VirtualMemory::EXECUTABLE)); true));
CHECK(buffer); CHECK(buffer);
Assembler assm(Isolate::Current(), buffer, static_cast<int>(actual_size)); Assembler assm(Isolate::Current(), buffer, static_cast<int>(actual_size));
@ -88,10 +114,9 @@ TEST(AssemblerX64ReturnOperation) {
TEST(AssemblerX64StackOperations) { TEST(AssemblerX64StackOperations) {
// Allocate an executable page of memory. // Allocate an executable page of memory.
size_t actual_size; size_t actual_size;
byte* buffer = static_cast<byte*>(VirtualMemory::AllocateRegion( byte* buffer = static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize,
Assembler::kMinimalBufferSize,
&actual_size, &actual_size,
VirtualMemory::EXECUTABLE)); true));
CHECK(buffer); CHECK(buffer);
Assembler assm(Isolate::Current(), buffer, static_cast<int>(actual_size)); Assembler assm(Isolate::Current(), buffer, static_cast<int>(actual_size));
@ -121,10 +146,9 @@ TEST(AssemblerX64StackOperations) {
TEST(AssemblerX64ArithmeticOperations) { TEST(AssemblerX64ArithmeticOperations) {
// Allocate an executable page of memory. // Allocate an executable page of memory.
size_t actual_size; size_t actual_size;
byte* buffer = static_cast<byte*>(VirtualMemory::AllocateRegion( byte* buffer = static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize,
Assembler::kMinimalBufferSize,
&actual_size, &actual_size,
VirtualMemory::EXECUTABLE)); true));
CHECK(buffer); CHECK(buffer);
Assembler assm(Isolate::Current(), buffer, static_cast<int>(actual_size)); Assembler assm(Isolate::Current(), buffer, static_cast<int>(actual_size));
@ -144,10 +168,9 @@ TEST(AssemblerX64ArithmeticOperations) {
TEST(AssemblerX64ImulOperation) { TEST(AssemblerX64ImulOperation) {
// Allocate an executable page of memory. // Allocate an executable page of memory.
size_t actual_size; size_t actual_size;
byte* buffer = static_cast<byte*>(VirtualMemory::AllocateRegion( byte* buffer = static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize,
Assembler::kMinimalBufferSize,
&actual_size, &actual_size,
VirtualMemory::EXECUTABLE)); true));
CHECK(buffer); CHECK(buffer);
Assembler assm(Isolate::Current(), buffer, static_cast<int>(actual_size)); Assembler assm(Isolate::Current(), buffer, static_cast<int>(actual_size));
@ -173,10 +196,9 @@ TEST(AssemblerX64ImulOperation) {
TEST(AssemblerX64MemoryOperands) { TEST(AssemblerX64MemoryOperands) {
// Allocate an executable page of memory. // Allocate an executable page of memory.
size_t actual_size; size_t actual_size;
byte* buffer = static_cast<byte*>(VirtualMemory::AllocateRegion( byte* buffer = static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize,
Assembler::kMinimalBufferSize,
&actual_size, &actual_size,
VirtualMemory::EXECUTABLE)); true));
CHECK(buffer); CHECK(buffer);
Assembler assm(Isolate::Current(), buffer, static_cast<int>(actual_size)); Assembler assm(Isolate::Current(), buffer, static_cast<int>(actual_size));
@ -208,10 +230,9 @@ TEST(AssemblerX64MemoryOperands) {
TEST(AssemblerX64ControlFlow) { TEST(AssemblerX64ControlFlow) {
// Allocate an executable page of memory. // Allocate an executable page of memory.
size_t actual_size; size_t actual_size;
byte* buffer = static_cast<byte*>(VirtualMemory::AllocateRegion( byte* buffer = static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize,
Assembler::kMinimalBufferSize,
&actual_size, &actual_size,
VirtualMemory::EXECUTABLE)); true));
CHECK(buffer); CHECK(buffer);
Assembler assm(Isolate::Current(), buffer, static_cast<int>(actual_size)); Assembler assm(Isolate::Current(), buffer, static_cast<int>(actual_size));
@ -238,10 +259,9 @@ TEST(AssemblerX64ControlFlow) {
TEST(AssemblerX64LoopImmediates) { TEST(AssemblerX64LoopImmediates) {
// Allocate an executable page of memory. // Allocate an executable page of memory.
size_t actual_size; size_t actual_size;
byte* buffer = static_cast<byte*>(VirtualMemory::AllocateRegion( byte* buffer = static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize,
Assembler::kMinimalBufferSize,
&actual_size, &actual_size,
VirtualMemory::EXECUTABLE)); true));
CHECK(buffer); CHECK(buffer);
Assembler assm(Isolate::Current(), buffer, static_cast<int>(actual_size)); Assembler assm(Isolate::Current(), buffer, static_cast<int>(actual_size));
// Assemble two loops using rax as counter, and verify the ending counts. // Assemble two loops using rax as counter, and verify the ending counts.

View File

@ -47,10 +47,9 @@ ConvertDToIFunc MakeConvertDToIFuncTrampoline(Isolate* isolate,
bool inline_fastpath) { bool inline_fastpath) {
// Allocate an executable page of memory. // Allocate an executable page of memory.
size_t actual_size; size_t actual_size;
byte* buffer = static_cast<byte*>(VirtualMemory::AllocateRegion( byte* buffer = static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize,
Assembler::kMinimalBufferSize,
&actual_size, &actual_size,
VirtualMemory::EXECUTABLE)); true));
CHECK(buffer); CHECK(buffer);
HandleScope handles(isolate); HandleScope handles(isolate);
MacroAssembler masm(isolate, buffer, static_cast<int>(actual_size)); MacroAssembler masm(isolate, buffer, static_cast<int>(actual_size));

View File

@ -47,10 +47,9 @@ ConvertDToIFunc MakeConvertDToIFuncTrampoline(Isolate* isolate,
Register destination_reg) { Register destination_reg) {
// Allocate an executable page of memory. // Allocate an executable page of memory.
size_t actual_size; size_t actual_size;
byte* buffer = static_cast<byte*>(VirtualMemory::AllocateRegion( byte* buffer = static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize,
Assembler::kMinimalBufferSize,
&actual_size, &actual_size,
VirtualMemory::EXECUTABLE)); true));
CHECK(buffer); CHECK(buffer);
HandleScope handles(isolate); HandleScope handles(isolate);
MacroAssembler assm(isolate, buffer, static_cast<int>(actual_size)); MacroAssembler assm(isolate, buffer, static_cast<int>(actual_size));

View File

@ -46,10 +46,9 @@ ConvertDToIFunc MakeConvertDToIFuncTrampoline(Isolate* isolate,
Register destination_reg) { Register destination_reg) {
// Allocate an executable page of memory. // Allocate an executable page of memory.
size_t actual_size; size_t actual_size;
byte* buffer = static_cast<byte*>(VirtualMemory::AllocateRegion( byte* buffer = static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize,
Assembler::kMinimalBufferSize,
&actual_size, &actual_size,
VirtualMemory::EXECUTABLE)); true));
CHECK(buffer); CHECK(buffer);
HandleScope handles(isolate); HandleScope handles(isolate);
MacroAssembler assm(isolate, buffer, static_cast<int>(actual_size)); MacroAssembler assm(isolate, buffer, static_cast<int>(actual_size));

View File

@ -35,7 +35,49 @@
#include "serialize.h" #include "serialize.h"
#include "cctest.h" #include "cctest.h"
using namespace v8::internal; using v8::internal::Assembler;
using v8::internal::CodeDesc;
using v8::internal::Condition;
using v8::internal::FUNCTION_CAST;
using v8::internal::HandleScope;
using v8::internal::Immediate;
using v8::internal::Isolate;
using v8::internal::Label;
using v8::internal::MacroAssembler;
using v8::internal::OS;
using v8::internal::Operand;
using v8::internal::RelocInfo;
using v8::internal::Smi;
using v8::internal::SmiIndex;
using v8::internal::byte;
using v8::internal::carry;
using v8::internal::greater;
using v8::internal::greater_equal;
using v8::internal::kIntSize;
using v8::internal::kPointerSize;
using v8::internal::kSmiTagMask;
using v8::internal::kSmiValueSize;
using v8::internal::less_equal;
using v8::internal::negative;
using v8::internal::not_carry;
using v8::internal::not_equal;
using v8::internal::not_zero;
using v8::internal::positive;
using v8::internal::r11;
using v8::internal::r13;
using v8::internal::r14;
using v8::internal::r15;
using v8::internal::r8;
using v8::internal::r9;
using v8::internal::rax;
using v8::internal::rbp;
using v8::internal::rbx;
using v8::internal::rcx;
using v8::internal::rdi;
using v8::internal::rdx;
using v8::internal::rsi;
using v8::internal::rsp;
using v8::internal::times_pointer_size;
// Test the x64 assembler by compiling some simple functions into // Test the x64 assembler by compiling some simple functions into
// a buffer and executing them. These tests do not initialize the // a buffer and executing them. These tests do not initialize the
@ -111,10 +153,9 @@ TEST(SmiMove) {
v8::internal::V8::Initialize(NULL); v8::internal::V8::Initialize(NULL);
// Allocate an executable page of memory. // Allocate an executable page of memory.
size_t actual_size; size_t actual_size;
byte* buffer = static_cast<byte*>(VirtualMemory::AllocateRegion( byte* buffer = static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize,
Assembler::kMinimalBufferSize,
&actual_size, &actual_size,
VirtualMemory::EXECUTABLE)); true));
CHECK(buffer); CHECK(buffer);
Isolate* isolate = Isolate::Current(); Isolate* isolate = Isolate::Current();
HandleScope handles(isolate); HandleScope handles(isolate);
@ -200,10 +241,10 @@ TEST(SmiCompare) {
v8::internal::V8::Initialize(NULL); v8::internal::V8::Initialize(NULL);
// Allocate an executable page of memory. // Allocate an executable page of memory.
size_t actual_size; size_t actual_size;
byte* buffer = static_cast<byte*>(VirtualMemory::AllocateRegion( byte* buffer =
Assembler::kMinimalBufferSize * 2, static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize * 2,
&actual_size, &actual_size,
VirtualMemory::EXECUTABLE)); true));
CHECK(buffer); CHECK(buffer);
Isolate* isolate = Isolate::Current(); Isolate* isolate = Isolate::Current();
HandleScope handles(isolate); HandleScope handles(isolate);
@ -252,10 +293,9 @@ TEST(Integer32ToSmi) {
v8::internal::V8::Initialize(NULL); v8::internal::V8::Initialize(NULL);
// Allocate an executable page of memory. // Allocate an executable page of memory.
size_t actual_size; size_t actual_size;
byte* buffer = static_cast<byte*>(VirtualMemory::AllocateRegion( byte* buffer = static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize,
Assembler::kMinimalBufferSize,
&actual_size, &actual_size,
VirtualMemory::EXECUTABLE)); true));
CHECK(buffer); CHECK(buffer);
Isolate* isolate = Isolate::Current(); Isolate* isolate = Isolate::Current();
HandleScope handles(isolate); HandleScope handles(isolate);
@ -382,10 +422,9 @@ TEST(Integer64PlusConstantToSmi) {
v8::internal::V8::Initialize(NULL); v8::internal::V8::Initialize(NULL);
// Allocate an executable page of memory. // Allocate an executable page of memory.
size_t actual_size; size_t actual_size;
byte* buffer = static_cast<byte*>(VirtualMemory::AllocateRegion( byte* buffer = static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize,
Assembler::kMinimalBufferSize,
&actual_size, &actual_size,
VirtualMemory::EXECUTABLE)); true));
CHECK(buffer); CHECK(buffer);
Isolate* isolate = Isolate::Current(); Isolate* isolate = Isolate::Current();
HandleScope handles(isolate); HandleScope handles(isolate);
@ -428,10 +467,9 @@ TEST(SmiCheck) {
v8::internal::V8::Initialize(NULL); v8::internal::V8::Initialize(NULL);
// Allocate an executable page of memory. // Allocate an executable page of memory.
size_t actual_size; size_t actual_size;
byte* buffer = static_cast<byte*>(VirtualMemory::AllocateRegion( byte* buffer = static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize,
Assembler::kMinimalBufferSize,
&actual_size, &actual_size,
VirtualMemory::EXECUTABLE)); true));
CHECK(buffer); CHECK(buffer);
Isolate* isolate = Isolate::Current(); Isolate* isolate = Isolate::Current();
HandleScope handles(isolate); HandleScope handles(isolate);
@ -677,10 +715,10 @@ TEST(SmiNeg) {
v8::internal::V8::Initialize(NULL); v8::internal::V8::Initialize(NULL);
// Allocate an executable page of memory. // Allocate an executable page of memory.
size_t actual_size; size_t actual_size;
byte* buffer = static_cast<byte*>(VirtualMemory::AllocateRegion( byte* buffer =
Assembler::kMinimalBufferSize, static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize,
&actual_size, &actual_size,
VirtualMemory::EXECUTABLE)); true));
CHECK(buffer); CHECK(buffer);
Isolate* isolate = Isolate::Current(); Isolate* isolate = Isolate::Current();
HandleScope handles(isolate); HandleScope handles(isolate);
@ -768,10 +806,9 @@ TEST(SmiAdd) {
v8::internal::V8::Initialize(NULL); v8::internal::V8::Initialize(NULL);
// Allocate an executable page of memory. // Allocate an executable page of memory.
size_t actual_size; size_t actual_size;
byte* buffer = static_cast<byte*>(VirtualMemory::AllocateRegion( byte* buffer = static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize,
Assembler::kMinimalBufferSize,
&actual_size, &actual_size,
VirtualMemory::EXECUTABLE)); true));
CHECK(buffer); CHECK(buffer);
Isolate* isolate = Isolate::Current(); Isolate* isolate = Isolate::Current();
HandleScope handles(isolate); HandleScope handles(isolate);
@ -959,10 +996,10 @@ TEST(SmiSub) {
v8::internal::V8::Initialize(NULL); v8::internal::V8::Initialize(NULL);
// Allocate an executable page of memory. // Allocate an executable page of memory.
size_t actual_size; size_t actual_size;
byte* buffer = static_cast<byte*>(VirtualMemory::AllocateRegion( byte* buffer =
Assembler::kMinimalBufferSize * 2, static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize * 2,
&actual_size, &actual_size,
VirtualMemory::EXECUTABLE)); true));
CHECK(buffer); CHECK(buffer);
Isolate* isolate = Isolate::Current(); Isolate* isolate = Isolate::Current();
HandleScope handles(isolate); HandleScope handles(isolate);
@ -1051,10 +1088,9 @@ TEST(SmiMul) {
v8::internal::V8::Initialize(NULL); v8::internal::V8::Initialize(NULL);
// Allocate an executable page of memory. // Allocate an executable page of memory.
size_t actual_size; size_t actual_size;
byte* buffer = static_cast<byte*>(VirtualMemory::AllocateRegion( byte* buffer = static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize,
Assembler::kMinimalBufferSize,
&actual_size, &actual_size,
VirtualMemory::EXECUTABLE)); true));
CHECK(buffer); CHECK(buffer);
Isolate* isolate = Isolate::Current(); Isolate* isolate = Isolate::Current();
HandleScope handles(isolate); HandleScope handles(isolate);
@ -1158,10 +1194,10 @@ TEST(SmiDiv) {
v8::internal::V8::Initialize(NULL); v8::internal::V8::Initialize(NULL);
// Allocate an executable page of memory. // Allocate an executable page of memory.
size_t actual_size; size_t actual_size;
byte* buffer = static_cast<byte*>(VirtualMemory::AllocateRegion( byte* buffer =
Assembler::kMinimalBufferSize * 2, static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize * 2,
&actual_size, &actual_size,
VirtualMemory::EXECUTABLE)); true));
CHECK(buffer); CHECK(buffer);
Isolate* isolate = Isolate::Current(); Isolate* isolate = Isolate::Current();
HandleScope handles(isolate); HandleScope handles(isolate);
@ -1269,10 +1305,10 @@ TEST(SmiMod) {
v8::internal::V8::Initialize(NULL); v8::internal::V8::Initialize(NULL);
// Allocate an executable page of memory. // Allocate an executable page of memory.
size_t actual_size; size_t actual_size;
byte* buffer = static_cast<byte*>(VirtualMemory::AllocateRegion( byte* buffer =
Assembler::kMinimalBufferSize * 2, static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize * 2,
&actual_size, &actual_size,
VirtualMemory::EXECUTABLE)); true));
CHECK(buffer); CHECK(buffer);
Isolate* isolate = Isolate::Current(); Isolate* isolate = Isolate::Current();
HandleScope handles(isolate); HandleScope handles(isolate);
@ -1367,10 +1403,10 @@ TEST(SmiIndex) {
v8::internal::V8::Initialize(NULL); v8::internal::V8::Initialize(NULL);
// Allocate an executable page of memory. // Allocate an executable page of memory.
size_t actual_size; size_t actual_size;
byte* buffer = static_cast<byte*>(VirtualMemory::AllocateRegion( byte* buffer =
Assembler::kMinimalBufferSize * 3, static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize * 3,
&actual_size, &actual_size,
VirtualMemory::EXECUTABLE)); true));
CHECK(buffer); CHECK(buffer);
Isolate* isolate = Isolate::Current(); Isolate* isolate = Isolate::Current();
HandleScope handles(isolate); HandleScope handles(isolate);
@ -1437,10 +1473,10 @@ TEST(SmiSelectNonSmi) {
v8::internal::V8::Initialize(NULL); v8::internal::V8::Initialize(NULL);
// Allocate an executable page of memory. // Allocate an executable page of memory.
size_t actual_size; size_t actual_size;
byte* buffer = static_cast<byte*>(VirtualMemory::AllocateRegion( byte* buffer =
Assembler::kMinimalBufferSize, static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize,
&actual_size, &actual_size,
VirtualMemory::EXECUTABLE)); true));
CHECK(buffer); CHECK(buffer);
Isolate* isolate = Isolate::Current(); Isolate* isolate = Isolate::Current();
HandleScope handles(isolate); HandleScope handles(isolate);
@ -1517,10 +1553,10 @@ TEST(SmiAnd) {
v8::internal::V8::Initialize(NULL); v8::internal::V8::Initialize(NULL);
// Allocate an executable page of memory. // Allocate an executable page of memory.
size_t actual_size; size_t actual_size;
byte* buffer = static_cast<byte*>(VirtualMemory::AllocateRegion( byte* buffer =
Assembler::kMinimalBufferSize, static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize,
&actual_size, &actual_size,
VirtualMemory::EXECUTABLE)); true));
CHECK(buffer); CHECK(buffer);
Isolate* isolate = Isolate::Current(); Isolate* isolate = Isolate::Current();
HandleScope handles(isolate); HandleScope handles(isolate);
@ -1599,10 +1635,10 @@ TEST(SmiOr) {
v8::internal::V8::Initialize(NULL); v8::internal::V8::Initialize(NULL);
// Allocate an executable page of memory. // Allocate an executable page of memory.
size_t actual_size; size_t actual_size;
byte* buffer = static_cast<byte*>(VirtualMemory::AllocateRegion( byte* buffer =
Assembler::kMinimalBufferSize, static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize,
&actual_size, &actual_size,
VirtualMemory::EXECUTABLE)); true));
CHECK(buffer); CHECK(buffer);
Isolate* isolate = Isolate::Current(); Isolate* isolate = Isolate::Current();
HandleScope handles(isolate); HandleScope handles(isolate);
@ -1683,10 +1719,10 @@ TEST(SmiXor) {
v8::internal::V8::Initialize(NULL); v8::internal::V8::Initialize(NULL);
// Allocate an executable page of memory. // Allocate an executable page of memory.
size_t actual_size; size_t actual_size;
byte* buffer = static_cast<byte*>(VirtualMemory::AllocateRegion( byte* buffer =
Assembler::kMinimalBufferSize, static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize,
&actual_size, &actual_size,
VirtualMemory::EXECUTABLE)); true));
CHECK(buffer); CHECK(buffer);
Isolate* isolate = Isolate::Current(); Isolate* isolate = Isolate::Current();
HandleScope handles(isolate); HandleScope handles(isolate);
@ -1751,10 +1787,10 @@ TEST(SmiNot) {
v8::internal::V8::Initialize(NULL); v8::internal::V8::Initialize(NULL);
// Allocate an executable page of memory. // Allocate an executable page of memory.
size_t actual_size; size_t actual_size;
byte* buffer = static_cast<byte*>(VirtualMemory::AllocateRegion( byte* buffer =
Assembler::kMinimalBufferSize, static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize,
&actual_size, &actual_size,
VirtualMemory::EXECUTABLE)); true));
CHECK(buffer); CHECK(buffer);
Isolate* isolate = Isolate::Current(); Isolate* isolate = Isolate::Current();
HandleScope handles(isolate); HandleScope handles(isolate);
@ -1848,10 +1884,10 @@ TEST(SmiShiftLeft) {
v8::internal::V8::Initialize(NULL); v8::internal::V8::Initialize(NULL);
// Allocate an executable page of memory. // Allocate an executable page of memory.
size_t actual_size; size_t actual_size;
byte* buffer = static_cast<byte*>(VirtualMemory::AllocateRegion( byte* buffer =
Assembler::kMinimalBufferSize * 4, static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize * 4,
&actual_size, &actual_size,
VirtualMemory::EXECUTABLE)); true));
CHECK(buffer); CHECK(buffer);
Isolate* isolate = Isolate::Current(); Isolate* isolate = Isolate::Current();
HandleScope handles(isolate); HandleScope handles(isolate);
@ -1955,10 +1991,10 @@ TEST(SmiShiftLogicalRight) {
v8::internal::V8::Initialize(NULL); v8::internal::V8::Initialize(NULL);
// Allocate an executable page of memory. // Allocate an executable page of memory.
size_t actual_size; size_t actual_size;
byte* buffer = static_cast<byte*>(VirtualMemory::AllocateRegion( byte* buffer =
Assembler::kMinimalBufferSize * 3, static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize * 3,
&actual_size, &actual_size,
VirtualMemory::EXECUTABLE)); true));
CHECK(buffer); CHECK(buffer);
Isolate* isolate = Isolate::Current(); Isolate* isolate = Isolate::Current();
HandleScope handles(isolate); HandleScope handles(isolate);
@ -2025,10 +2061,10 @@ TEST(SmiShiftArithmeticRight) {
v8::internal::V8::Initialize(NULL); v8::internal::V8::Initialize(NULL);
// Allocate an executable page of memory. // Allocate an executable page of memory.
size_t actual_size; size_t actual_size;
byte* buffer = static_cast<byte*>(VirtualMemory::AllocateRegion( byte* buffer =
Assembler::kMinimalBufferSize * 2, static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize * 2,
&actual_size, &actual_size,
VirtualMemory::EXECUTABLE)); true));
CHECK(buffer); CHECK(buffer);
Isolate* isolate = Isolate::Current(); Isolate* isolate = Isolate::Current();
HandleScope handles(isolate); HandleScope handles(isolate);
@ -2090,10 +2126,10 @@ TEST(PositiveSmiTimesPowerOfTwoToInteger64) {
v8::internal::V8::Initialize(NULL); v8::internal::V8::Initialize(NULL);
// Allocate an executable page of memory. // Allocate an executable page of memory.
size_t actual_size; size_t actual_size;
byte* buffer = static_cast<byte*>(VirtualMemory::AllocateRegion( byte* buffer =
Assembler::kMinimalBufferSize * 4, static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize * 4,
&actual_size, &actual_size,
VirtualMemory::EXECUTABLE)); true));
CHECK(buffer); CHECK(buffer);
Isolate* isolate = Isolate::Current(); Isolate* isolate = Isolate::Current();
HandleScope handles(isolate); HandleScope handles(isolate);
@ -2134,10 +2170,10 @@ TEST(OperandOffset) {
// Allocate an executable page of memory. // Allocate an executable page of memory.
size_t actual_size; size_t actual_size;
byte* buffer = static_cast<byte*>(VirtualMemory::AllocateRegion( byte* buffer =
Assembler::kMinimalBufferSize * 2, static_cast<byte*>(OS::Allocate(Assembler::kMinimalBufferSize * 2,
&actual_size, &actual_size,
VirtualMemory::EXECUTABLE)); true));
CHECK(buffer); CHECK(buffer);
Isolate* isolate = Isolate::Current(); Isolate* isolate = Isolate::Current();
HandleScope handles(isolate); HandleScope handles(isolate);

View File

@ -39,6 +39,20 @@
using namespace ::v8::internal; using namespace ::v8::internal;
TEST(VirtualMemory) {
VirtualMemory* vm = new VirtualMemory(1 * MB);
CHECK(vm->IsReserved());
void* block_addr = vm->address();
size_t block_size = 4 * KB;
CHECK(vm->Commit(block_addr, block_size, false));
// Check whether we can write to memory.
int* addr = static_cast<int*>(block_addr);
addr[KB-1] = 2;
CHECK(vm->Uncommit(block_addr, block_size));
delete vm;
}
TEST(GetCurrentProcessId) { TEST(GetCurrentProcessId) {
CHECK_EQ(static_cast<int>(getpid()), OS::GetCurrentProcessId()); CHECK_EQ(static_cast<int>(getpid()), OS::GetCurrentProcessId());
} }

View File

@ -38,6 +38,20 @@
using namespace ::v8::internal; using namespace ::v8::internal;
TEST(VirtualMemory) {
VirtualMemory* vm = new VirtualMemory(1 * MB);
CHECK(vm->IsReserved());
void* block_addr = vm->address();
size_t block_size = 4 * KB;
CHECK(vm->Commit(block_addr, block_size, false));
// Check whether we can write to memory.
int* addr = static_cast<int*>(block_addr);
addr[KB-1] = 2;
CHECK(vm->Uncommit(block_addr, block_size));
delete vm;
}
TEST(GetCurrentProcessId) { TEST(GetCurrentProcessId) {
CHECK_EQ(static_cast<int>(::GetCurrentProcessId()), CHECK_EQ(static_cast<int>(::GetCurrentProcessId()),
OS::GetCurrentProcessId()); OS::GetCurrentProcessId());

View File

@ -151,30 +151,30 @@ static void VerifyMemoryChunk(Isolate* isolate,
size_t reserve_area_size, size_t reserve_area_size,
size_t commit_area_size, size_t commit_area_size,
size_t second_commit_area_size, size_t second_commit_area_size,
VirtualMemory::Executability executability) { Executability executable) {
MemoryAllocator* memory_allocator = new MemoryAllocator(isolate); MemoryAllocator* memory_allocator = new MemoryAllocator(isolate);
CHECK(memory_allocator->SetUp(heap->MaxReserved(), CHECK(memory_allocator->SetUp(heap->MaxReserved(),
heap->MaxExecutableSize())); heap->MaxExecutableSize()));
TestMemoryAllocatorScope test_allocator_scope(isolate, memory_allocator); TestMemoryAllocatorScope test_allocator_scope(isolate, memory_allocator);
TestCodeRangeScope test_code_range_scope(isolate, code_range); TestCodeRangeScope test_code_range_scope(isolate, code_range);
size_t header_size = (executability == VirtualMemory::EXECUTABLE) size_t header_size = (executable == EXECUTABLE)
? MemoryAllocator::CodePageGuardStartOffset() ? MemoryAllocator::CodePageGuardStartOffset()
: MemoryChunk::kObjectStartOffset; : MemoryChunk::kObjectStartOffset;
size_t guard_size = (executability == VirtualMemory::EXECUTABLE) size_t guard_size = (executable == EXECUTABLE)
? MemoryAllocator::CodePageGuardSize() ? MemoryAllocator::CodePageGuardSize()
: 0; : 0;
MemoryChunk* memory_chunk = memory_allocator->AllocateChunk(reserve_area_size, MemoryChunk* memory_chunk = memory_allocator->AllocateChunk(reserve_area_size,
commit_area_size, commit_area_size,
executability, executable,
NULL); NULL);
size_t alignment = code_range->exists() ? size_t alignment = code_range->exists() ?
MemoryChunk::kAlignment : VirtualMemory::GetPageSize(); MemoryChunk::kAlignment : OS::CommitPageSize();
size_t reserved_size = ((executability == VirtualMemory::EXECUTABLE)) size_t reserved_size = ((executable == EXECUTABLE))
? RoundUp(header_size + guard_size + reserve_area_size + guard_size, ? RoundUp(header_size + guard_size + reserve_area_size + guard_size,
alignment) alignment)
: RoundUp(header_size + reserve_area_size, VirtualMemory::GetPageSize()); : RoundUp(header_size + reserve_area_size, OS::CommitPageSize());
CHECK(memory_chunk->size() == reserved_size); CHECK(memory_chunk->size() == reserved_size);
CHECK(memory_chunk->area_start() < memory_chunk->address() + CHECK(memory_chunk->area_start() < memory_chunk->address() +
memory_chunk->size()); memory_chunk->size());
@ -230,7 +230,7 @@ TEST(MemoryChunk) {
reserve_area_size, reserve_area_size,
initial_commit_area_size, initial_commit_area_size,
second_commit_area_size, second_commit_area_size,
VirtualMemory::EXECUTABLE); EXECUTABLE);
VerifyMemoryChunk(isolate, VerifyMemoryChunk(isolate,
heap, heap,
@ -238,7 +238,7 @@ TEST(MemoryChunk) {
reserve_area_size, reserve_area_size,
initial_commit_area_size, initial_commit_area_size,
second_commit_area_size, second_commit_area_size,
VirtualMemory::NOT_EXECUTABLE); NOT_EXECUTABLE);
delete code_range; delete code_range;
// Without CodeRange. // Without CodeRange.
@ -249,7 +249,7 @@ TEST(MemoryChunk) {
reserve_area_size, reserve_area_size,
initial_commit_area_size, initial_commit_area_size,
second_commit_area_size, second_commit_area_size,
VirtualMemory::EXECUTABLE); EXECUTABLE);
VerifyMemoryChunk(isolate, VerifyMemoryChunk(isolate,
heap, heap,
@ -257,7 +257,7 @@ TEST(MemoryChunk) {
reserve_area_size, reserve_area_size,
initial_commit_area_size, initial_commit_area_size,
second_commit_area_size, second_commit_area_size,
VirtualMemory::NOT_EXECUTABLE); NOT_EXECUTABLE);
} }
} }
@ -276,9 +276,9 @@ TEST(MemoryAllocator) {
OldSpace faked_space(heap, OldSpace faked_space(heap,
heap->MaxReserved(), heap->MaxReserved(),
OLD_POINTER_SPACE, OLD_POINTER_SPACE,
VirtualMemory::NOT_EXECUTABLE); NOT_EXECUTABLE);
Page* first_page = memory_allocator->AllocatePage( Page* first_page = memory_allocator->AllocatePage(
faked_space.AreaSize(), &faked_space, VirtualMemory::NOT_EXECUTABLE); faked_space.AreaSize(), &faked_space, NOT_EXECUTABLE);
first_page->InsertAfter(faked_space.anchor()->prev_page()); first_page->InsertAfter(faked_space.anchor()->prev_page());
CHECK(first_page->is_valid()); CHECK(first_page->is_valid());
@ -291,7 +291,7 @@ TEST(MemoryAllocator) {
// Again, we should get n or n - 1 pages. // Again, we should get n or n - 1 pages.
Page* other = memory_allocator->AllocatePage( Page* other = memory_allocator->AllocatePage(
faked_space.AreaSize(), &faked_space, VirtualMemory::NOT_EXECUTABLE); faked_space.AreaSize(), &faked_space, NOT_EXECUTABLE);
CHECK(other->is_valid()); CHECK(other->is_valid());
total_pages++; total_pages++;
other->InsertAfter(first_page); other->InsertAfter(first_page);
@ -353,7 +353,7 @@ TEST(OldSpace) {
OldSpace* s = new OldSpace(heap, OldSpace* s = new OldSpace(heap,
heap->MaxOldGenerationSize(), heap->MaxOldGenerationSize(),
OLD_POINTER_SPACE, OLD_POINTER_SPACE,
VirtualMemory::NOT_EXECUTABLE); NOT_EXECUTABLE);
CHECK(s != NULL); CHECK(s != NULL);
CHECK(s->SetUp()); CHECK(s->SetUp());
@ -377,8 +377,7 @@ TEST(LargeObjectSpace) {
int lo_size = Page::kPageSize; int lo_size = Page::kPageSize;
Object* obj = lo->AllocateRaw( Object* obj = lo->AllocateRaw(lo_size, NOT_EXECUTABLE)->ToObjectUnchecked();
lo_size, VirtualMemory::NOT_EXECUTABLE)->ToObjectUnchecked();
CHECK(obj->IsHeapObject()); CHECK(obj->IsHeapObject());
HeapObject* ho = HeapObject::cast(obj); HeapObject* ho = HeapObject::cast(obj);
@ -391,8 +390,7 @@ TEST(LargeObjectSpace) {
while (true) { while (true) {
intptr_t available = lo->Available(); intptr_t available = lo->Available();
{ MaybeObject* maybe_obj = lo->AllocateRaw( { MaybeObject* maybe_obj = lo->AllocateRaw(lo_size, NOT_EXECUTABLE);
lo_size, VirtualMemory::NOT_EXECUTABLE);
if (!maybe_obj->ToObject(&obj)) break; if (!maybe_obj->ToObject(&obj)) break;
} }
CHECK(lo->Available() < available); CHECK(lo->Available() < available);
@ -400,5 +398,5 @@ TEST(LargeObjectSpace) {
CHECK(!lo->IsEmpty()); CHECK(!lo->IsEmpty());
CHECK(lo->AllocateRaw(lo_size, VirtualMemory::NOT_EXECUTABLE)->IsFailure()); CHECK(lo->AllocateRaw(lo_size, NOT_EXECUTABLE)->IsFailure());
} }

View File

@ -1,86 +0,0 @@
// Copyright 2013 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "cctest.h"
#include "platform/virtual-memory.h"
using namespace ::v8::internal;
TEST(CommitAndUncommit) {
static const size_t kSize = 1 * MB;
static const size_t kBlockSize = 4 * KB;
VirtualMemory vm(kSize);
CHECK(vm.IsReserved());
void* block_addr = vm.address();
CHECK(vm.Commit(block_addr, kBlockSize, VirtualMemory::NOT_EXECUTABLE));
// Check whether we can write to memory.
int* addr = static_cast<int*>(block_addr);
addr[5] = 2;
CHECK(vm.Uncommit(block_addr, kBlockSize));
}
TEST(Release) {
static const size_t kSize = 4 * KB;
VirtualMemory vm(kSize);
CHECK(vm.IsReserved());
CHECK_LE(kSize, vm.size());
CHECK_NE(NULL, vm.address());
vm.Release();
CHECK(!vm.IsReserved());
}
TEST(TakeControl) {
static const size_t kSize = 64 * KB;
VirtualMemory vm1(kSize);
size_t size1 = vm1.size();
CHECK(vm1.IsReserved());
CHECK_LE(kSize, size1);
VirtualMemory vm2;
CHECK(!vm2.IsReserved());
vm2.TakeControl(&vm1);
CHECK(vm2.IsReserved());
CHECK(!vm1.IsReserved());
CHECK(vm2.size() == size1);
}
TEST(AllocationGranularityIsPowerOf2) {
CHECK(IsPowerOf2(VirtualMemory::GetAllocationGranularity()));
}
TEST(PageSizeIsPowerOf2) {
CHECK(IsPowerOf2(VirtualMemory::GetPageSize()));
}

View File

@ -450,8 +450,6 @@
'../../src/platform/semaphore.h', '../../src/platform/semaphore.h',
'../../src/platform/socket.cc', '../../src/platform/socket.cc',
'../../src/platform/socket.h', '../../src/platform/socket.h',
'../../src/platform/virtual-memory.cc',
'../../src/platform/virtual-memory.h',
'../../src/preparse-data-format.h', '../../src/preparse-data-format.h',
'../../src/preparse-data.cc', '../../src/preparse-data.cc',
'../../src/preparse-data.h', '../../src/preparse-data.h',