Test monotonicity of expression typings.

R=rossberg@chromium.org
BUG=

Review URL: https://codereview.chromium.org/653093002

git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@24693 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
This commit is contained in:
neis@chromium.org 2014-10-17 11:46:06 +00:00
parent 3154c4a5f2
commit 7f7354f3fd
3 changed files with 384 additions and 286 deletions

View File

@ -2,20 +2,13 @@
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// This tests the correctness of the typer.
//
// For simplicity, it currently only tests it on expression operators that have
// a direct equivalent in C++. Also, testing is currently limited to ranges as
// input types.
#include <functional>
#include "src/compiler/node-properties-inl.h"
#include "src/compiler/typer.h"
#include "test/cctest/cctest.h"
#include "test/cctest/compiler/graph-builder-tester.h"
#include "test/cctest/types-fuzz.h"
using namespace v8::internal;
using namespace v8::internal::compiler;
@ -26,6 +19,7 @@ class TyperTester : public HandleAndZoneScope, public GraphAndBuilders {
public:
TyperTester()
: GraphAndBuilders(main_zone()),
types_(main_zone(), isolate()),
typer_(graph(), MaybeHandle<Context>()),
javascript_(main_zone()) {
Node* s = graph()->NewNode(common()->Start(3));
@ -57,6 +51,7 @@ class TyperTester : public HandleAndZoneScope, public GraphAndBuilders {
}
}
Types<Type, Type*, Zone> types_;
Typer typer_;
JSOperatorBuilder javascript_;
Node* context_node_;
@ -160,6 +155,26 @@ class TyperTester : public HandleAndZoneScope, public GraphAndBuilders {
CHECK(result_type->Is(expected_type));
}
}
Type* RandomSubtype(Type* type) {
Type* subtype;
do {
subtype = types_.Fuzz();
} while (!subtype->Is(type));
return subtype;
}
void TestBinaryMonotonicity(const Operator* op) {
for (int i = 0; i < 50; ++i) {
Type* type1 = types_.Fuzz();
Type* type2 = types_.Fuzz();
Type* type = TypeBinaryOp(op, type1, type2);
Type* subtype1 = RandomSubtype(type1);;
Type* subtype2 = RandomSubtype(type2);;
Type* subtype = TypeBinaryOp(op, subtype1, subtype2);
CHECK(subtype->Is(type));
}
}
};
@ -170,6 +185,13 @@ static int32_t bit_and(int32_t x, int32_t y) { return x & y; }
static int32_t bit_xor(int32_t x, int32_t y) { return x ^ y; }
//------------------------------------------------------------------------------
// Soundness
// For simplicity, we currently only test soundness on expression operators
// that have a direct equivalent in C++. Also, testing is currently limited
// to ranges as input types.
TEST(TypeJSAdd) {
TyperTester t;
t.TestBinaryArithOp(t.javascript_.Subtract(), std::plus<double>());
@ -274,3 +296,39 @@ TEST(TypeJSStrictNotEqual) {
t.TestBinaryCompareOp(
t.javascript_.StrictNotEqual(), std::not_equal_to<double>());
}
//------------------------------------------------------------------------------
// Monotonicity
// List should be in sync with JS_SIMPLE_BINOP_LIST.
#define JSBINOP_LIST(V) \
V(Equal) \
V(NotEqual) \
V(StrictEqual) \
V(StrictNotEqual) \
V(LessThan) \
V(GreaterThan) \
V(LessThanOrEqual) \
V(GreaterThanOrEqual) \
V(BitwiseOr) \
V(BitwiseXor) \
V(BitwiseAnd) \
V(ShiftLeft) \
V(ShiftRight) \
V(ShiftRightLogical) \
V(Add) \
V(Subtract) \
V(Multiply) \
V(Divide) \
V(Modulus)
TEST(Monotonicity) {
TyperTester t;
#define TEST_OP(name) \
t.TestBinaryMonotonicity(t.javascript_.name());
JSBINOP_LIST(TEST_OP)
#undef TEST_OP
}

View File

@ -8,6 +8,7 @@
#include "src/isolate-inl.h"
#include "src/types.h"
#include "test/cctest/cctest.h"
#include "test/cctest/types-fuzz.h"
using namespace v8::internal;
@ -90,284 +91,6 @@ struct HeapRep {
};
template<class Type, class TypeHandle, class Region>
class Types {
public:
Types(Region* region, Isolate* isolate)
: region_(region), rng_(isolate->random_number_generator()) {
#define DECLARE_TYPE(name, value) \
name = Type::name(region); \
if (SmiValuesAre31Bits() || \
(!Type::name(region)->Equals(Type::OtherSigned32()) && \
!Type::name(region)->Equals(Type::OtherUnsigned31()))) { \
/* Hack: Avoid generating those empty bitset types. */ \
types.push_back(name); \
}
PROPER_BITSET_TYPE_LIST(DECLARE_TYPE)
#undef DECLARE_TYPE
object_map = isolate->factory()->NewMap(
JS_OBJECT_TYPE, JSObject::kHeaderSize);
array_map = isolate->factory()->NewMap(
JS_ARRAY_TYPE, JSArray::kSize);
number_map = isolate->factory()->NewMap(
HEAP_NUMBER_TYPE, HeapNumber::kSize);
uninitialized_map = isolate->factory()->uninitialized_map();
ObjectClass = Type::Class(object_map, region);
ArrayClass = Type::Class(array_map, region);
NumberClass = Type::Class(number_map, region);
UninitializedClass = Type::Class(uninitialized_map, region);
maps.push_back(object_map);
maps.push_back(array_map);
maps.push_back(uninitialized_map);
for (MapVector::iterator it = maps.begin(); it != maps.end(); ++it) {
types.push_back(Type::Class(*it, region));
}
smi = handle(Smi::FromInt(666), isolate);
signed32 = isolate->factory()->NewHeapNumber(0x40000000);
object1 = isolate->factory()->NewJSObjectFromMap(object_map);
object2 = isolate->factory()->NewJSObjectFromMap(object_map);
array = isolate->factory()->NewJSArray(20);
uninitialized = isolate->factory()->uninitialized_value();
SmiConstant = Type::Constant(smi, region);
Signed32Constant = Type::Constant(signed32, region);
ObjectConstant1 = Type::Constant(object1, region);
ObjectConstant2 = Type::Constant(object2, region);
ArrayConstant = Type::Constant(array, region);
UninitializedConstant = Type::Constant(uninitialized, region);
values.push_back(smi);
values.push_back(signed32);
values.push_back(object1);
values.push_back(object2);
values.push_back(array);
values.push_back(uninitialized);
for (ValueVector::iterator it = values.begin(); it != values.end(); ++it) {
types.push_back(Type::Constant(*it, region));
}
integers.push_back(isolate->factory()->NewNumber(-V8_INFINITY));
integers.push_back(isolate->factory()->NewNumber(+V8_INFINITY));
integers.push_back(isolate->factory()->NewNumber(-rng_->NextInt(10)));
integers.push_back(isolate->factory()->NewNumber(+rng_->NextInt(10)));
for (int i = 0; i < 10; ++i) {
double x = rng_->NextInt();
integers.push_back(isolate->factory()->NewNumber(x));
x *= rng_->NextInt();
if (!IsMinusZero(x)) integers.push_back(isolate->factory()->NewNumber(x));
}
NumberArray = Type::Array(Number, region);
StringArray = Type::Array(String, region);
AnyArray = Type::Array(Any, region);
SignedFunction1 = Type::Function(SignedSmall, SignedSmall, region);
NumberFunction1 = Type::Function(Number, Number, region);
NumberFunction2 = Type::Function(Number, Number, Number, region);
MethodFunction = Type::Function(String, Object, 0, region);
for (int i = 0; i < 30; ++i) {
types.push_back(Fuzz());
}
}
Handle<i::Map> object_map;
Handle<i::Map> array_map;
Handle<i::Map> number_map;
Handle<i::Map> uninitialized_map;
Handle<i::Smi> smi;
Handle<i::HeapNumber> signed32;
Handle<i::JSObject> object1;
Handle<i::JSObject> object2;
Handle<i::JSArray> array;
Handle<i::Oddball> uninitialized;
#define DECLARE_TYPE(name, value) TypeHandle name;
BITSET_TYPE_LIST(DECLARE_TYPE)
#undef DECLARE_TYPE
TypeHandle ObjectClass;
TypeHandle ArrayClass;
TypeHandle NumberClass;
TypeHandle UninitializedClass;
TypeHandle SmiConstant;
TypeHandle Signed32Constant;
TypeHandle ObjectConstant1;
TypeHandle ObjectConstant2;
TypeHandle ArrayConstant;
TypeHandle UninitializedConstant;
TypeHandle NumberArray;
TypeHandle StringArray;
TypeHandle AnyArray;
TypeHandle SignedFunction1;
TypeHandle NumberFunction1;
TypeHandle NumberFunction2;
TypeHandle MethodFunction;
typedef std::vector<TypeHandle> TypeVector;
typedef std::vector<Handle<i::Map> > MapVector;
typedef std::vector<Handle<i::Object> > ValueVector;
TypeVector types;
MapVector maps;
ValueVector values;
ValueVector integers; // "Integer" values used for range limits.
TypeHandle Of(Handle<i::Object> value) {
return Type::Of(value, region_);
}
TypeHandle NowOf(Handle<i::Object> value) {
return Type::NowOf(value, region_);
}
TypeHandle Class(Handle<i::Map> map) {
return Type::Class(map, region_);
}
TypeHandle Constant(Handle<i::Object> value) {
return Type::Constant(value, region_);
}
TypeHandle Range(Handle<i::Object> min, Handle<i::Object> max) {
return Type::Range(min, max, region_);
}
TypeHandle Context(TypeHandle outer) {
return Type::Context(outer, region_);
}
TypeHandle Array1(TypeHandle element) {
return Type::Array(element, region_);
}
TypeHandle Function0(TypeHandle result, TypeHandle receiver) {
return Type::Function(result, receiver, 0, region_);
}
TypeHandle Function1(TypeHandle result, TypeHandle receiver, TypeHandle arg) {
TypeHandle type = Type::Function(result, receiver, 1, region_);
type->AsFunction()->InitParameter(0, arg);
return type;
}
TypeHandle Function2(TypeHandle result, TypeHandle arg1, TypeHandle arg2) {
return Type::Function(result, arg1, arg2, region_);
}
TypeHandle Union(TypeHandle t1, TypeHandle t2) {
return Type::Union(t1, t2, region_);
}
TypeHandle Intersect(TypeHandle t1, TypeHandle t2) {
return Type::Intersect(t1, t2, region_);
}
template<class Type2, class TypeHandle2>
TypeHandle Convert(TypeHandle2 t) {
return Type::template Convert<Type2>(t, region_);
}
TypeHandle Random() {
return types[rng_->NextInt(static_cast<int>(types.size()))];
}
TypeHandle Fuzz(int depth = 4) {
switch (rng_->NextInt(depth == 0 ? 3 : 20)) {
case 0: { // bitset
#define COUNT_BITSET_TYPES(type, value) + 1
int n = 0 PROPER_BITSET_TYPE_LIST(COUNT_BITSET_TYPES);
#undef COUNT_BITSET_TYPES
// Pick a bunch of named bitsets and return their intersection.
TypeHandle result = Type::Any(region_);
for (int i = 0, m = 1 + rng_->NextInt(3); i < m; ++i) {
int j = rng_->NextInt(n);
#define PICK_BITSET_TYPE(type, value) \
if (j-- == 0) { \
if (!SmiValuesAre31Bits() && \
(Type::type(region_)->Equals(Type::OtherSigned32()) || \
Type::type(region_)->Equals(Type::OtherUnsigned31()))) { \
/* Hack: Avoid generating those empty bitset types. */ \
continue; \
} \
TypeHandle tmp = Type::Intersect( \
result, Type::type(region_), region_); \
if (tmp->Is(Type::None()) && i != 0) { \
break; \
} else { \
result = tmp; \
continue; \
} \
}
PROPER_BITSET_TYPE_LIST(PICK_BITSET_TYPE)
#undef PICK_BITSET_TYPE
}
return result;
}
case 1: { // class
int i = rng_->NextInt(static_cast<int>(maps.size()));
return Type::Class(maps[i], region_);
}
case 2: { // constant
int i = rng_->NextInt(static_cast<int>(values.size()));
return Type::Constant(values[i], region_);
}
case 3: { // range
int i = rng_->NextInt(static_cast<int>(integers.size()));
int j = rng_->NextInt(static_cast<int>(integers.size()));
i::Handle<i::Object> min = integers[i];
i::Handle<i::Object> max = integers[j];
if (min->Number() > max->Number()) std::swap(min, max);
return Type::Range(min, max, region_);
}
case 4: { // context
int depth = rng_->NextInt(3);
TypeHandle type = Type::Internal(region_);
for (int i = 0; i < depth; ++i) type = Type::Context(type, region_);
return type;
}
case 5: { // array
TypeHandle element = Fuzz(depth / 2);
return Type::Array(element, region_);
}
case 6:
case 7: { // function
TypeHandle result = Fuzz(depth / 2);
TypeHandle receiver = Fuzz(depth / 2);
int arity = rng_->NextInt(3);
TypeHandle type = Type::Function(result, receiver, arity, region_);
for (int i = 0; i < type->AsFunction()->Arity(); ++i) {
TypeHandle parameter = Fuzz(depth / 2);
type->AsFunction()->InitParameter(i, parameter);
}
return type;
}
default: { // union
int n = rng_->NextInt(10);
TypeHandle type = None;
for (int i = 0; i < n; ++i) {
TypeHandle operand = Fuzz(depth - 1);
type = Type::Union(type, operand, region_);
}
return type;
}
}
UNREACHABLE();
}
Region* region() { return region_; }
private:
Region* region_;
v8::base::RandomNumberGenerator* rng_;
};
template<class Type, class TypeHandle, class Region, class Rep>
struct Tests : Rep {
typedef Types<Type, TypeHandle, Region> TypesInstance;

317
test/cctest/types-fuzz.h Normal file
View File

@ -0,0 +1,317 @@
// Copyright 2014 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_TEST_CCTEST_TYPES_H_
#define V8_TEST_CCTEST_TYPES_H_
#include "src/v8.h"
namespace v8 {
namespace internal {
template<class Type, class TypeHandle, class Region>
class Types {
public:
Types(Region* region, Isolate* isolate)
: region_(region), rng_(isolate->random_number_generator()) {
#define DECLARE_TYPE(name, value) \
name = Type::name(region); \
if (SmiValuesAre31Bits() || \
(!Type::name(region)->Equals(Type::OtherSigned32()) && \
!Type::name(region)->Equals(Type::OtherUnsigned31()))) { \
/* Hack: Avoid generating those empty bitset types. */ \
types.push_back(name); \
}
PROPER_BITSET_TYPE_LIST(DECLARE_TYPE)
#undef DECLARE_TYPE
object_map = isolate->factory()->NewMap(
JS_OBJECT_TYPE, JSObject::kHeaderSize);
array_map = isolate->factory()->NewMap(
JS_ARRAY_TYPE, JSArray::kSize);
number_map = isolate->factory()->NewMap(
HEAP_NUMBER_TYPE, HeapNumber::kSize);
uninitialized_map = isolate->factory()->uninitialized_map();
ObjectClass = Type::Class(object_map, region);
ArrayClass = Type::Class(array_map, region);
NumberClass = Type::Class(number_map, region);
UninitializedClass = Type::Class(uninitialized_map, region);
maps.push_back(object_map);
maps.push_back(array_map);
maps.push_back(uninitialized_map);
for (MapVector::iterator it = maps.begin(); it != maps.end(); ++it) {
types.push_back(Type::Class(*it, region));
}
smi = handle(Smi::FromInt(666), isolate);
signed32 = isolate->factory()->NewHeapNumber(0x40000000);
object1 = isolate->factory()->NewJSObjectFromMap(object_map);
object2 = isolate->factory()->NewJSObjectFromMap(object_map);
array = isolate->factory()->NewJSArray(20);
uninitialized = isolate->factory()->uninitialized_value();
SmiConstant = Type::Constant(smi, region);
Signed32Constant = Type::Constant(signed32, region);
ObjectConstant1 = Type::Constant(object1, region);
ObjectConstant2 = Type::Constant(object2, region);
ArrayConstant = Type::Constant(array, region);
UninitializedConstant = Type::Constant(uninitialized, region);
values.push_back(smi);
values.push_back(signed32);
values.push_back(object1);
values.push_back(object2);
values.push_back(array);
values.push_back(uninitialized);
for (ValueVector::iterator it = values.begin(); it != values.end(); ++it) {
types.push_back(Type::Constant(*it, region));
}
integers.push_back(isolate->factory()->NewNumber(-V8_INFINITY));
integers.push_back(isolate->factory()->NewNumber(+V8_INFINITY));
integers.push_back(isolate->factory()->NewNumber(-rng_->NextInt(10)));
integers.push_back(isolate->factory()->NewNumber(+rng_->NextInt(10)));
for (int i = 0; i < 10; ++i) {
double x = rng_->NextInt();
integers.push_back(isolate->factory()->NewNumber(x));
x *= rng_->NextInt();
if (!IsMinusZero(x)) integers.push_back(isolate->factory()->NewNumber(x));
}
NumberArray = Type::Array(Number, region);
StringArray = Type::Array(String, region);
AnyArray = Type::Array(Any, region);
SignedFunction1 = Type::Function(SignedSmall, SignedSmall, region);
NumberFunction1 = Type::Function(Number, Number, region);
NumberFunction2 = Type::Function(Number, Number, Number, region);
MethodFunction = Type::Function(String, Object, 0, region);
for (int i = 0; i < 30; ++i) {
types.push_back(Fuzz());
}
}
Handle<i::Map> object_map;
Handle<i::Map> array_map;
Handle<i::Map> number_map;
Handle<i::Map> uninitialized_map;
Handle<i::Smi> smi;
Handle<i::HeapNumber> signed32;
Handle<i::JSObject> object1;
Handle<i::JSObject> object2;
Handle<i::JSArray> array;
Handle<i::Oddball> uninitialized;
#define DECLARE_TYPE(name, value) TypeHandle name;
BITSET_TYPE_LIST(DECLARE_TYPE)
#undef DECLARE_TYPE
TypeHandle ObjectClass;
TypeHandle ArrayClass;
TypeHandle NumberClass;
TypeHandle UninitializedClass;
TypeHandle SmiConstant;
TypeHandle Signed32Constant;
TypeHandle ObjectConstant1;
TypeHandle ObjectConstant2;
TypeHandle ArrayConstant;
TypeHandle UninitializedConstant;
TypeHandle NumberArray;
TypeHandle StringArray;
TypeHandle AnyArray;
TypeHandle SignedFunction1;
TypeHandle NumberFunction1;
TypeHandle NumberFunction2;
TypeHandle MethodFunction;
typedef std::vector<TypeHandle> TypeVector;
typedef std::vector<Handle<i::Map> > MapVector;
typedef std::vector<Handle<i::Object> > ValueVector;
TypeVector types;
MapVector maps;
ValueVector values;
ValueVector integers; // "Integer" values used for range limits.
TypeHandle Of(Handle<i::Object> value) {
return Type::Of(value, region_);
}
TypeHandle NowOf(Handle<i::Object> value) {
return Type::NowOf(value, region_);
}
TypeHandle Class(Handle<i::Map> map) {
return Type::Class(map, region_);
}
TypeHandle Constant(Handle<i::Object> value) {
return Type::Constant(value, region_);
}
TypeHandle Range(Handle<i::Object> min, Handle<i::Object> max) {
return Type::Range(min, max, region_);
}
TypeHandle Context(TypeHandle outer) {
return Type::Context(outer, region_);
}
TypeHandle Array1(TypeHandle element) {
return Type::Array(element, region_);
}
TypeHandle Function0(TypeHandle result, TypeHandle receiver) {
return Type::Function(result, receiver, 0, region_);
}
TypeHandle Function1(TypeHandle result, TypeHandle receiver, TypeHandle arg) {
TypeHandle type = Type::Function(result, receiver, 1, region_);
type->AsFunction()->InitParameter(0, arg);
return type;
}
TypeHandle Function2(TypeHandle result, TypeHandle arg1, TypeHandle arg2) {
return Type::Function(result, arg1, arg2, region_);
}
TypeHandle Union(TypeHandle t1, TypeHandle t2) {
return Type::Union(t1, t2, region_);
}
TypeHandle Intersect(TypeHandle t1, TypeHandle t2) {
return Type::Intersect(t1, t2, region_);
}
template<class Type2, class TypeHandle2>
TypeHandle Convert(TypeHandle2 t) {
return Type::template Convert<Type2>(t, region_);
}
TypeHandle Random() {
return types[rng_->NextInt(static_cast<int>(types.size()))];
}
TypeHandle Fuzz(int depth = 4) {
switch (rng_->NextInt(depth == 0 ? 3 : 20)) {
case 0: { // bitset
#define COUNT_BITSET_TYPES(type, value) + 1
int n = 0 PROPER_BITSET_TYPE_LIST(COUNT_BITSET_TYPES);
#undef COUNT_BITSET_TYPES
// Pick a bunch of named bitsets and return their intersection.
TypeHandle result = Type::Any(region_);
for (int i = 0, m = 1 + rng_->NextInt(3); i < m; ++i) {
int j = rng_->NextInt(n);
#define PICK_BITSET_TYPE(type, value) \
if (j-- == 0) { \
if (!SmiValuesAre31Bits() && \
(Type::type(region_)->Equals(Type::OtherSigned32()) || \
Type::type(region_)->Equals(Type::OtherUnsigned31()))) { \
/* Hack: Avoid generating those empty bitset types. */ \
continue; \
} \
TypeHandle tmp = Type::Intersect( \
result, Type::type(region_), region_); \
if (tmp->Is(Type::None()) && i != 0) { \
break; \
} else { \
result = tmp; \
continue; \
} \
}
PROPER_BITSET_TYPE_LIST(PICK_BITSET_TYPE)
#undef PICK_BITSET_TYPE
}
return result;
}
case 1: { // class
int i = rng_->NextInt(static_cast<int>(maps.size()));
return Type::Class(maps[i], region_);
}
case 2: { // constant
int i = rng_->NextInt(static_cast<int>(values.size()));
return Type::Constant(values[i], region_);
}
case 3: { // range
int i = rng_->NextInt(static_cast<int>(integers.size()));
int j = rng_->NextInt(static_cast<int>(integers.size()));
i::Handle<i::Object> min = integers[i];
i::Handle<i::Object> max = integers[j];
if (min->Number() > max->Number()) std::swap(min, max);
return Type::Range(min, max, region_);
}
case 4: { // context
int depth = rng_->NextInt(3);
TypeHandle type = Type::Internal(region_);
for (int i = 0; i < depth; ++i) type = Type::Context(type, region_);
return type;
}
case 5: { // array
TypeHandle element = Fuzz(depth / 2);
return Type::Array(element, region_);
}
case 6:
case 7: { // function
TypeHandle result = Fuzz(depth / 2);
TypeHandle receiver = Fuzz(depth / 2);
int arity = rng_->NextInt(3);
TypeHandle type = Type::Function(result, receiver, arity, region_);
for (int i = 0; i < type->AsFunction()->Arity(); ++i) {
TypeHandle parameter = Fuzz(depth / 2);
type->AsFunction()->InitParameter(i, parameter);
}
return type;
}
default: { // union
int n = rng_->NextInt(10);
TypeHandle type = None;
for (int i = 0; i < n; ++i) {
TypeHandle operand = Fuzz(depth - 1);
type = Type::Union(type, operand, region_);
}
return type;
}
}
UNREACHABLE();
}
Region* region() { return region_; }
private:
Region* region_;
v8::base::RandomNumberGenerator* rng_;
};
} } // namespace v8::internal
#endif