[turbofan] Add support for accessing Uint8ClampedArrays.

This adds a new NumberToUint8Clamped simplified operator that does the
round ties to even + clamping necessary to store to Uint8ClampedArrays.

BUG=v8:4470,v8:5267,v8:5615
R=jarin@chromium.org

Review-Url: https://codereview.chromium.org/2489563004
Cr-Commit-Position: refs/heads/master@{#40861}
This commit is contained in:
bmeurer 2016-11-09 05:33:50 -08:00 committed by Commit bot
parent ed35983ab7
commit 82b315ce75
15 changed files with 388 additions and 82 deletions

View File

@ -25,8 +25,6 @@ bool CanInlineElementAccess(Handle<Map> map) {
if (map->has_indexed_interceptor()) return false;
ElementsKind const elements_kind = map->elements_kind();
if (IsFastElementsKind(elements_kind)) return true;
// TODO(bmeurer): Add support for other elements kind.
if (elements_kind == UINT8_CLAMPED_ELEMENTS) return false;
if (IsFixedTypedArrayElementsKind(elements_kind)) return true;
return false;
}

View File

@ -780,6 +780,9 @@ bool EffectControlLinearizer::TryWireInStateEffect(Node* node,
case IrOpcode::kFloat64RoundTruncate:
state = LowerFloat64RoundTruncate(node, *effect, *control);
break;
case IrOpcode::kFloat64RoundTiesEven:
state = LowerFloat64RoundTiesEven(node, *effect, *control);
break;
default:
return false;
}
@ -3374,6 +3377,137 @@ EffectControlLinearizer::LowerFloat64RoundUp(Node* node, Node* effect,
return ValueEffectControl(value, effect, merge0);
}
EffectControlLinearizer::ValueEffectControl
EffectControlLinearizer::BuildFloat64RoundDown(Node* value, Node* effect,
Node* control) {
if (machine()->Float64RoundDown().IsSupported()) {
value = graph()->NewNode(machine()->Float64RoundDown().op(), value);
} else {
Node* const one = jsgraph()->Float64Constant(1.0);
Node* const zero = jsgraph()->Float64Constant(0.0);
Node* const minus_one = jsgraph()->Float64Constant(-1.0);
Node* const minus_zero = jsgraph()->Float64Constant(-0.0);
Node* const two_52 = jsgraph()->Float64Constant(4503599627370496.0E0);
Node* const minus_two_52 =
jsgraph()->Float64Constant(-4503599627370496.0E0);
Node* const input = value;
// General case for floor.
//
// if 0.0 < input then
// if 2^52 <= input then
// input
// else
// let temp1 = (2^52 + input) - 2^52 in
// if input < temp1 then
// temp1 - 1
// else
// temp1
// else
// if input == 0 then
// input
// else
// if input <= -2^52 then
// input
// else
// let temp1 = -0 - input in
// let temp2 = (2^52 + temp1) - 2^52 in
// if temp2 < temp1 then
// -1 - temp2
// else
// -0 - temp2
//
// Note: We do not use the Diamond helper class here, because it really
// hurts
// readability with nested diamonds.
Node* check0 = graph()->NewNode(machine()->Float64LessThan(), zero, input);
Node* branch0 =
graph()->NewNode(common()->Branch(BranchHint::kTrue), check0, control);
Node* if_true0 = graph()->NewNode(common()->IfTrue(), branch0);
Node* vtrue0;
{
Node* check1 =
graph()->NewNode(machine()->Float64LessThanOrEqual(), two_52, input);
Node* branch1 = graph()->NewNode(common()->Branch(), check1, if_true0);
Node* if_true1 = graph()->NewNode(common()->IfTrue(), branch1);
Node* vtrue1 = input;
Node* if_false1 = graph()->NewNode(common()->IfFalse(), branch1);
Node* vfalse1;
{
Node* temp1 = graph()->NewNode(
machine()->Float64Sub(),
graph()->NewNode(machine()->Float64Add(), two_52, input), two_52);
vfalse1 = graph()->NewNode(
common()->Select(MachineRepresentation::kFloat64),
graph()->NewNode(machine()->Float64LessThan(), input, temp1),
graph()->NewNode(machine()->Float64Sub(), temp1, one), temp1);
}
if_true0 = graph()->NewNode(common()->Merge(2), if_true1, if_false1);
vtrue0 =
graph()->NewNode(common()->Phi(MachineRepresentation::kFloat64, 2),
vtrue1, vfalse1, if_true0);
}
Node* if_false0 = graph()->NewNode(common()->IfFalse(), branch0);
Node* vfalse0;
{
Node* check1 = graph()->NewNode(machine()->Float64Equal(), input, zero);
Node* branch1 = graph()->NewNode(common()->Branch(BranchHint::kFalse),
check1, if_false0);
Node* if_true1 = graph()->NewNode(common()->IfTrue(), branch1);
Node* vtrue1 = input;
Node* if_false1 = graph()->NewNode(common()->IfFalse(), branch1);
Node* vfalse1;
{
Node* check2 = graph()->NewNode(machine()->Float64LessThanOrEqual(),
input, minus_two_52);
Node* branch2 = graph()->NewNode(common()->Branch(BranchHint::kFalse),
check2, if_false1);
Node* if_true2 = graph()->NewNode(common()->IfTrue(), branch2);
Node* vtrue2 = input;
Node* if_false2 = graph()->NewNode(common()->IfFalse(), branch2);
Node* vfalse2;
{
Node* temp1 =
graph()->NewNode(machine()->Float64Sub(), minus_zero, input);
Node* temp2 = graph()->NewNode(
machine()->Float64Sub(),
graph()->NewNode(machine()->Float64Add(), two_52, temp1), two_52);
vfalse2 = graph()->NewNode(
common()->Select(MachineRepresentation::kFloat64),
graph()->NewNode(machine()->Float64LessThan(), temp2, temp1),
graph()->NewNode(machine()->Float64Sub(), minus_one, temp2),
graph()->NewNode(machine()->Float64Sub(), minus_zero, temp2));
}
if_false1 = graph()->NewNode(common()->Merge(2), if_true2, if_false2);
vfalse1 =
graph()->NewNode(common()->Phi(MachineRepresentation::kFloat64, 2),
vtrue2, vfalse2, if_false1);
}
if_false0 = graph()->NewNode(common()->Merge(2), if_true1, if_false1);
vfalse0 =
graph()->NewNode(common()->Phi(MachineRepresentation::kFloat64, 2),
vtrue1, vfalse1, if_false0);
}
control = graph()->NewNode(common()->Merge(2), if_true0, if_false0);
value = graph()->NewNode(common()->Phi(MachineRepresentation::kFloat64, 2),
vtrue0, vfalse0, control);
}
return ValueEffectControl(value, effect, control);
}
EffectControlLinearizer::ValueEffectControl
EffectControlLinearizer::LowerFloat64RoundDown(Node* node, Node* effect,
Node* control) {
@ -3382,108 +3516,78 @@ EffectControlLinearizer::LowerFloat64RoundDown(Node* node, Node* effect,
return ValueEffectControl(node, effect, control);
}
Node* const input = node->InputAt(0);
return BuildFloat64RoundDown(input, effect, control);
}
EffectControlLinearizer::ValueEffectControl
EffectControlLinearizer::LowerFloat64RoundTiesEven(Node* node, Node* effect,
Node* control) {
// Nothing to be done if a fast hardware instruction is available.
if (machine()->Float64RoundTiesEven().IsSupported()) {
return ValueEffectControl(node, effect, control);
}
Node* const one = jsgraph()->Float64Constant(1.0);
Node* const two = jsgraph()->Float64Constant(2.0);
Node* const half = jsgraph()->Float64Constant(0.5);
Node* const zero = jsgraph()->Float64Constant(0.0);
Node* const minus_one = jsgraph()->Float64Constant(-1.0);
Node* const minus_zero = jsgraph()->Float64Constant(-0.0);
Node* const two_52 = jsgraph()->Float64Constant(4503599627370496.0E0);
Node* const minus_two_52 = jsgraph()->Float64Constant(-4503599627370496.0E0);
Node* const input = node->InputAt(0);
// General case for floor.
// Generate case for round ties to even:
//
// if 0.0 < input then
// if 2^52 <= input then
// input
// else
// let temp1 = (2^52 + input) - 2^52 in
// if input < temp1 then
// temp1 - 1
// else
// temp1
// let value = floor(input) in
// let temp1 = input - value in
// if temp1 < 0.5 then
// value
// else if 0.5 < temp1 then
// value + 1.0
// else
// if input == 0 then
// input
// let temp2 = value % 2.0 in
// if temp2 == 0.0 then
// value
// else
// if input <= -2^52 then
// input
// else
// let temp1 = -0 - input in
// let temp2 = (2^52 + temp1) - 2^52 in
// if temp2 < temp1 then
// -1 - temp2
// else
// -0 - temp2
// value + 1.0
//
// Note: We do not use the Diamond helper class here, because it really hurts
// readability with nested diamonds.
Node* check0 = graph()->NewNode(machine()->Float64LessThan(), zero, input);
Node* branch0 =
graph()->NewNode(common()->Branch(BranchHint::kTrue), check0, control);
ValueEffectControl continuation =
BuildFloat64RoundDown(input, effect, control);
Node* value = continuation.value;
effect = continuation.effect;
control = continuation.control;
Node* temp1 = graph()->NewNode(machine()->Float64Sub(), input, value);
Node* check0 = graph()->NewNode(machine()->Float64LessThan(), temp1, half);
Node* branch0 = graph()->NewNode(common()->Branch(), check0, control);
Node* if_true0 = graph()->NewNode(common()->IfTrue(), branch0);
Node* vtrue0;
{
Node* check1 =
graph()->NewNode(machine()->Float64LessThanOrEqual(), two_52, input);
Node* branch1 = graph()->NewNode(common()->Branch(), check1, if_true0);
Node* if_true1 = graph()->NewNode(common()->IfTrue(), branch1);
Node* vtrue1 = input;
Node* if_false1 = graph()->NewNode(common()->IfFalse(), branch1);
Node* vfalse1;
{
Node* temp1 = graph()->NewNode(
machine()->Float64Sub(),
graph()->NewNode(machine()->Float64Add(), two_52, input), two_52);
vfalse1 = graph()->NewNode(
common()->Select(MachineRepresentation::kFloat64),
graph()->NewNode(machine()->Float64LessThan(), input, temp1),
graph()->NewNode(machine()->Float64Sub(), temp1, one), temp1);
}
if_true0 = graph()->NewNode(common()->Merge(2), if_true1, if_false1);
vtrue0 = graph()->NewNode(common()->Phi(MachineRepresentation::kFloat64, 2),
vtrue1, vfalse1, if_true0);
}
Node* vtrue0 = value;
Node* if_false0 = graph()->NewNode(common()->IfFalse(), branch0);
Node* vfalse0;
{
Node* check1 = graph()->NewNode(machine()->Float64Equal(), input, zero);
Node* branch1 = graph()->NewNode(common()->Branch(BranchHint::kFalse),
check1, if_false0);
Node* check1 = graph()->NewNode(machine()->Float64LessThan(), half, temp1);
Node* branch1 = graph()->NewNode(common()->Branch(), check1, if_false0);
Node* if_true1 = graph()->NewNode(common()->IfTrue(), branch1);
Node* vtrue1 = input;
Node* vtrue1 = graph()->NewNode(machine()->Float64Add(), value, one);
Node* if_false1 = graph()->NewNode(common()->IfFalse(), branch1);
Node* vfalse1;
{
Node* check2 = graph()->NewNode(machine()->Float64LessThanOrEqual(),
input, minus_two_52);
Node* branch2 = graph()->NewNode(common()->Branch(BranchHint::kFalse),
check2, if_false1);
Node* temp2 = graph()->NewNode(machine()->Float64Mod(), value, two);
Node* check2 = graph()->NewNode(machine()->Float64Equal(), temp2, zero);
Node* branch2 = graph()->NewNode(common()->Branch(), check2, if_false1);
Node* if_true2 = graph()->NewNode(common()->IfTrue(), branch2);
Node* vtrue2 = input;
Node* vtrue2 = value;
Node* if_false2 = graph()->NewNode(common()->IfFalse(), branch2);
Node* vfalse2;
{
Node* temp1 =
graph()->NewNode(machine()->Float64Sub(), minus_zero, input);
Node* temp2 = graph()->NewNode(
machine()->Float64Sub(),
graph()->NewNode(machine()->Float64Add(), two_52, temp1), two_52);
vfalse2 = graph()->NewNode(
common()->Select(MachineRepresentation::kFloat64),
graph()->NewNode(machine()->Float64LessThan(), temp2, temp1),
graph()->NewNode(machine()->Float64Sub(), minus_one, temp2),
graph()->NewNode(machine()->Float64Sub(), minus_zero, temp2));
}
Node* vfalse2 = graph()->NewNode(machine()->Float64Add(), value, one);
if_false1 = graph()->NewNode(common()->Merge(2), if_true2, if_false2);
vfalse1 =
@ -3497,11 +3601,11 @@ EffectControlLinearizer::LowerFloat64RoundDown(Node* node, Node* effect,
vtrue1, vfalse1, if_false0);
}
Node* merge0 = graph()->NewNode(common()->Merge(2), if_true0, if_false0);
Node* value =
graph()->NewNode(common()->Phi(MachineRepresentation::kFloat64, 2),
vtrue0, vfalse0, merge0);
return ValueEffectControl(value, effect, merge0);
control = graph()->NewNode(common()->Merge(2), if_true0, if_false0);
value = graph()->NewNode(common()->Phi(MachineRepresentation::kFloat64, 2),
vtrue0, vfalse0, control);
return ValueEffectControl(value, effect, control);
}
EffectControlLinearizer::ValueEffectControl

View File

@ -182,6 +182,8 @@ class V8_EXPORT_PRIVATE EffectControlLinearizer {
Node* control);
ValueEffectControl LowerFloat64RoundDown(Node* node, Node* effect,
Node* control);
ValueEffectControl LowerFloat64RoundTiesEven(Node* node, Node* effect,
Node* control);
ValueEffectControl LowerFloat64RoundTruncate(Node* node, Node* effect,
Node* control);
@ -193,6 +195,8 @@ class V8_EXPORT_PRIVATE EffectControlLinearizer {
ValueEffectControl BuildCheckedHeapNumberOrOddballToFloat64(
CheckTaggedInputMode mode, Node* value, Node* frame_state, Node* effect,
Node* control);
ValueEffectControl BuildFloat64RoundDown(Node* value, Node* effect,
Node* control);
ValueEffectControl LowerStringComparison(Callable const& callable, Node* node,
Node* effect, Node* control);

View File

@ -1200,6 +1200,14 @@ JSNativeContextSpecialization::BuildElementAccess(
value = effect = graph()->NewNode(simplified()->CheckNumber(), value,
effect, control);
// Introduce the appropriate truncation for {value}. Currently we
// only need to do this for ClamedUint8Array {receiver}s, as the
// other truncations are implicit in the StoreTypedElement, but we
// might want to change that at some point.
if (external_array_type == kExternalUint8ClampedArray) {
value = graph()->NewNode(simplified()->NumberToUint8Clamped(), value);
}
// Check if we can skip the out-of-bounds store.
if (store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) {
Node* check =

View File

@ -281,6 +281,7 @@
V(NumberToBoolean) \
V(NumberToInt32) \
V(NumberToUint32) \
V(NumberToUint8Clamped) \
V(NumberSilenceNaN)
#define SIMPLIFIED_OTHER_OP_LIST(V) \

View File

@ -490,6 +490,13 @@ Type* OperationTyper::NumberToUint32(Type* type) {
return Type::Unsigned32();
}
Type* OperationTyper::NumberToUint8Clamped(Type* type) {
DCHECK(type->Is(Type::Number()));
if (type->Is(cache_.kUint8)) return type;
return cache_.kUint8;
}
Type* OperationTyper::NumberSilenceNaN(Type* type) {
DCHECK(type->Is(Type::Number()));
// TODO(jarin): This is a terrible hack; we definitely need a dedicated type

View File

@ -2111,6 +2111,31 @@ class RepresentationSelector {
if (lower()) DeferReplacement(node, node->InputAt(0));
return;
}
case IrOpcode::kNumberToUint8Clamped: {
Type* const input_type = TypeOf(node->InputAt(0));
if (input_type->Is(type_cache_.kUint8OrMinusZeroOrNaN)) {
VisitUnop(node, UseInfo::TruncatingWord32(),
MachineRepresentation::kWord32);
if (lower()) DeferReplacement(node, node->InputAt(0));
} else if (input_type->Is(Type::Unsigned32OrMinusZeroOrNaN())) {
VisitUnop(node, UseInfo::TruncatingWord32(),
MachineRepresentation::kWord32);
if (lower()) lowering->DoUnsigned32ToUint8Clamped(node);
} else if (input_type->Is(Type::Signed32OrMinusZeroOrNaN())) {
VisitUnop(node, UseInfo::TruncatingWord32(),
MachineRepresentation::kWord32);
if (lower()) lowering->DoSigned32ToUint8Clamped(node);
} else if (input_type->Is(type_cache_.kIntegerOrMinusZeroOrNaN)) {
VisitUnop(node, UseInfo::TruncatingFloat64(),
MachineRepresentation::kFloat64);
if (lower()) lowering->DoIntegerToUint8Clamped(node);
} else {
VisitUnop(node, UseInfo::TruncatingFloat64(),
MachineRepresentation::kFloat64);
if (lower()) lowering->DoNumberToUint8Clamped(node);
}
return;
}
case IrOpcode::kReferenceEqual: {
VisitBinop(node, UseInfo::AnyTagged(), MachineRepresentation::kBit);
if (lower()) {
@ -3294,6 +3319,71 @@ void SimplifiedLowering::DoNumberToBit(Node* node) {
NodeProperties::ChangeOp(node, machine()->Float64LessThan());
}
void SimplifiedLowering::DoIntegerToUint8Clamped(Node* node) {
Node* const input = node->InputAt(0);
Node* const min = jsgraph()->Float64Constant(0.0);
Node* const max = jsgraph()->Float64Constant(255.0);
node->ReplaceInput(
0, graph()->NewNode(machine()->Float64LessThan(), min, input));
node->AppendInput(
graph()->zone(),
graph()->NewNode(
common()->Select(MachineRepresentation::kFloat64),
graph()->NewNode(machine()->Float64LessThan(), input, max), input,
max));
node->AppendInput(graph()->zone(), min);
NodeProperties::ChangeOp(node,
common()->Select(MachineRepresentation::kFloat64));
}
void SimplifiedLowering::DoNumberToUint8Clamped(Node* node) {
Node* const input = node->InputAt(0);
Node* const min = jsgraph()->Float64Constant(0.0);
Node* const max = jsgraph()->Float64Constant(255.0);
node->ReplaceInput(
0, graph()->NewNode(
common()->Select(MachineRepresentation::kFloat64),
graph()->NewNode(machine()->Float64LessThan(), min, input),
graph()->NewNode(
common()->Select(MachineRepresentation::kFloat64),
graph()->NewNode(machine()->Float64LessThan(), input, max),
input, max),
min));
NodeProperties::ChangeOp(node,
machine()->Float64RoundTiesEven().placeholder());
}
void SimplifiedLowering::DoSigned32ToUint8Clamped(Node* node) {
Node* const input = node->InputAt(0);
Node* const min = jsgraph()->Int32Constant(0);
Node* const max = jsgraph()->Int32Constant(255);
node->ReplaceInput(
0, graph()->NewNode(machine()->Int32LessThanOrEqual(), input, max));
node->AppendInput(
graph()->zone(),
graph()->NewNode(common()->Select(MachineRepresentation::kWord32),
graph()->NewNode(machine()->Int32LessThan(), input, min),
min, input));
node->AppendInput(graph()->zone(), max);
NodeProperties::ChangeOp(node,
common()->Select(MachineRepresentation::kWord32));
}
void SimplifiedLowering::DoUnsigned32ToUint8Clamped(Node* node) {
Node* const input = node->InputAt(0);
Node* const max = jsgraph()->Uint32Constant(255u);
node->ReplaceInput(
0, graph()->NewNode(machine()->Uint32LessThanOrEqual(), input, max));
node->AppendInput(graph()->zone(), input);
node->AppendInput(graph()->zone(), max);
NodeProperties::ChangeOp(node,
common()->Select(MachineRepresentation::kWord32));
}
Node* SimplifiedLowering::ToNumberCode() {
if (!to_number_code_.is_set()) {
Callable callable = CodeFactory::ToNumber(isolate());

View File

@ -44,6 +44,10 @@ class SimplifiedLowering final {
void DoIntegral32ToBit(Node* node);
void DoOrderedNumberToBit(Node* node);
void DoNumberToBit(Node* node);
void DoIntegerToUint8Clamped(Node* node);
void DoNumberToUint8Clamped(Node* node);
void DoSigned32ToUint8Clamped(Node* node);
void DoUnsigned32ToUint8Clamped(Node* node);
private:
JSGraph* const jsgraph_;

View File

@ -393,6 +393,7 @@ UnicodeEncoding UnicodeEncodingOf(const Operator* op) {
V(NumberToBoolean, Operator::kNoProperties, 1, 0) \
V(NumberToInt32, Operator::kNoProperties, 1, 0) \
V(NumberToUint32, Operator::kNoProperties, 1, 0) \
V(NumberToUint8Clamped, Operator::kNoProperties, 1, 0) \
V(NumberSilenceNaN, Operator::kNoProperties, 1, 0) \
V(StringCharCodeAt, Operator::kNoProperties, 2, 1) \
V(StringFromCharCode, Operator::kNoProperties, 1, 0) \

View File

@ -269,6 +269,7 @@ class V8_EXPORT_PRIVATE SimplifiedOperatorBuilder final
const Operator* NumberToBoolean();
const Operator* NumberToInt32();
const Operator* NumberToUint32();
const Operator* NumberToUint8Clamped();
const Operator* NumberSilenceNaN();

View File

@ -26,6 +26,8 @@ class TypeCache final {
Type* const kInt8 = CreateRange<int8_t>();
Type* const kUint8 = CreateRange<uint8_t>();
Type* const kUint8Clamped = kUint8;
Type* const kUint8OrMinusZeroOrNaN =
Type::Union(kUint8, Type::MinusZeroOrNaN(), zone());
Type* const kInt16 = CreateRange<int16_t>();
Type* const kUint16 = CreateRange<uint16_t>();
Type* const kInt32 = Type::Signed32();

View File

@ -87,6 +87,8 @@ Reduction TypedOptimization::Reduce(Node* node) {
case IrOpcode::kNumberRound:
case IrOpcode::kNumberTrunc:
return ReduceNumberRoundop(node);
case IrOpcode::kNumberToUint8Clamped:
return ReduceNumberToUint8Clamped(node);
case IrOpcode::kPhi:
return ReducePhi(node);
case IrOpcode::kSelect:
@ -192,6 +194,15 @@ Reduction TypedOptimization::ReduceNumberRoundop(Node* node) {
return NoChange();
}
Reduction TypedOptimization::ReduceNumberToUint8Clamped(Node* node) {
Node* const input = NodeProperties::GetValueInput(node, 0);
Type* const input_type = NodeProperties::GetType(input);
if (input_type->Is(type_cache_.kUint8)) {
return Replace(input);
}
return NoChange();
}
Reduction TypedOptimization::ReducePhi(Node* node) {
// Try to narrow the type of the Phi {node}, which might be more precise now
// after lowering based on types, i.e. a SpeculativeNumberAdd has a more

View File

@ -47,6 +47,7 @@ class V8_EXPORT_PRIVATE TypedOptimization final
Reduction ReduceCheckString(Node* node);
Reduction ReduceLoadField(Node* node);
Reduction ReduceNumberRoundop(Node* node);
Reduction ReduceNumberToUint8Clamped(Node* node);
Reduction ReducePhi(Node* node);
Reduction ReduceSelect(Node* node);

View File

@ -826,6 +826,7 @@ void Verifier::Visitor::Check(Node* node) {
CheckTypeIs(node, Type::Signed32());
break;
case IrOpcode::kNumberToUint32:
case IrOpcode::kNumberToUint8Clamped:
// Number -> Unsigned32
CheckValueInputIs(node, 0, Type::Number());
CheckTypeIs(node, Type::Unsigned32());

View File

@ -0,0 +1,73 @@
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Flags: --allow-natives-syntax
(function() {
function foo(a, v) {
a[0] = v & 0xff;
}
var a = new Uint8ClampedArray(4);
foo(a, 1);
foo(a, 2);
%OptimizeFunctionOnNextCall(foo);
foo(a, 256);
assertOptimized(foo);
assertEquals(0, a[0]);
})();
(function() {
function foo(a, v) {
a[0] = v >>> 0;
}
var a = new Uint8ClampedArray(4);
foo(a, 1);
foo(a, 2);
%OptimizeFunctionOnNextCall(foo);
foo(a, 256);
assertOptimized(foo);
assertEquals(255, a[0]);
})();
(function() {
function foo(a, v) {
a[0] = v | 0;
}
var a = new Uint8ClampedArray(4);
foo(a, 1);
foo(a, 2);
%OptimizeFunctionOnNextCall(foo);
foo(a, 256);
assertOptimized(foo);
assertEquals(255, a[0]);
foo(a, -1);
assertOptimized(foo);
assertEquals(0, a[0]);
})();
(function() {
function foo(a, v) {
a[0] = v;
}
var a = new Uint8ClampedArray(4);
foo(a, 1);
foo(a, 2);
%OptimizeFunctionOnNextCall(foo);
foo(a, Infinity);
assertOptimized(foo);
assertEquals(255, a[0]);
foo(a, -Infinity);
assertOptimized(foo);
assertEquals(0, a[0]);
foo(a, 0.5);
assertOptimized(foo);
assertEquals(0, a[0]);
foo(a, 1.5);
assertOptimized(foo);
assertEquals(2, a[0]);
})();