Initial implementation of an edge-labeled instruction flow graph.

The flow graph is built by walking the AST.  Edges are labeled with
instructions (AST nodes).  Normal nodes have a single predecessor edge and a
single (labeled) successor edge.  Branch nodes are explicit, they have a
single predecessor edge and a pair of (unlabeled) successor edges.  Merge
nodes are explicit, they have a pair of predecessor edges and a single
(unlabeled) successor edge.

There is a distinguished (normal) entry node and a distinguished (special)
exit node with arbitrarily many predecessor edges and no successor edges.

The graph is intended to support graph-based analysis and transformation.

Review URL: http://codereview.chromium.org/660449

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@4051 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
This commit is contained in:
kmillikin@chromium.org 2010-03-08 12:53:11 +00:00
parent 6b47d26217
commit 8528d650d8
6 changed files with 1232 additions and 13 deletions

View File

@ -117,6 +117,9 @@ typedef ZoneList<Handle<Object> > ZoneObjectList;
class AstNode: public ZoneObject {
public:
static const int kNoNumber = -1;
AstNode() : num_(kNoNumber) {}
virtual ~AstNode() { }
virtual void Accept(AstVisitor* v) = 0;
@ -141,6 +144,13 @@ class AstNode: public ZoneObject {
virtual ObjectLiteral* AsObjectLiteral() { return NULL; }
virtual ArrayLiteral* AsArrayLiteral() { return NULL; }
virtual CompareOperation* AsCompareOperation() { return NULL; }
int num() { return num_; }
void set_num(int n) { num_ = n; }
private:
// Support for ast node numbering.
int num_;
};
@ -181,11 +191,8 @@ class Expression: public AstNode {
kTestValue
};
static const int kNoLabel = -1;
Expression()
: bitfields_(0),
num_(kNoLabel),
def_(NULL),
defined_vars_(NULL) {}
@ -215,11 +222,6 @@ class Expression: public AstNode {
// Static type information for this expression.
StaticType* type() { return &type_; }
int num() { return num_; }
// AST node numbering ordered by evaluation order.
void set_num(int n) { num_ = n; }
// Data flow information.
DefinitionInfo* var_def() { return def_; }
void set_var_def(DefinitionInfo* def) { def_ = def; }
@ -261,7 +263,6 @@ class Expression: public AstNode {
uint32_t bitfields_;
StaticType type_;
int num_;
DefinitionInfo* def_;
ZoneList<DefinitionInfo*>* defined_vars_;

View File

@ -31,6 +31,7 @@
#include "codegen-inl.h"
#include "compilation-cache.h"
#include "compiler.h"
#include "data-flow.h"
#include "debug.h"
#include "fast-codegen.h"
#include "full-codegen.h"
@ -79,6 +80,17 @@ static Handle<Code> MakeCode(Handle<Context> context, CompilationInfo* info) {
return Handle<Code>::null();
}
if (FLAG_use_flow_graph) {
FlowGraphBuilder builder;
builder.Build(function);
#ifdef DEBUG
if (FLAG_print_graph_text) {
builder.graph()->PrintText(builder.postorder());
}
#endif
}
// Generate code and return it. Code generator selection is governed by
// which backends are enabled and whether the function is considered
// run-once code or not:
@ -452,6 +464,17 @@ Handle<JSFunction> Compiler::BuildBoilerplate(FunctionLiteral* literal,
return Handle<JSFunction>::null();
}
if (FLAG_use_flow_graph) {
FlowGraphBuilder builder;
builder.Build(literal);
#ifdef DEBUG
if (FLAG_print_graph_text) {
builder.graph()->PrintText(builder.postorder());
}
#endif
}
// Generate code and return it. The way that the compilation mode
// is controlled by the command-line flags is described in
// the static helper function MakeCode.

View File

@ -33,6 +33,534 @@ namespace v8 {
namespace internal {
void FlowGraph::AppendInstruction(AstNode* instruction) {
ASSERT(instruction != NULL);
if (is_empty() || !exit()->IsBlockNode()) {
AppendNode(new BlockNode());
}
BlockNode::cast(exit())->AddInstruction(instruction);
}
void FlowGraph::AppendNode(Node* node) {
ASSERT(node != NULL);
if (is_empty()) {
entry_ = exit_ = node;
} else {
exit()->AddSuccessor(node);
node->AddPredecessor(exit());
exit_ = node;
}
}
void FlowGraph::AppendGraph(FlowGraph* graph) {
ASSERT(!graph->is_empty());
if (is_empty()) {
entry_ = graph->entry();
exit_ = graph->exit();
} else {
exit()->AddSuccessor(graph->entry());
graph->entry()->AddPredecessor(exit());
exit_ = graph->exit();
}
}
void FlowGraph::Split(BranchNode* branch,
FlowGraph* left,
FlowGraph* right,
JoinNode* merge) {
// Graphs are in edge split form. Add empty blocks if necessary.
if (left->is_empty()) left->AppendNode(new BlockNode());
if (right->is_empty()) right->AppendNode(new BlockNode());
// Add the branch, left flowgraph and merge.
AppendNode(branch);
AppendGraph(left);
AppendNode(merge);
// Splice in the right flowgraph.
right->AppendNode(merge);
branch->AddSuccessor(right->entry());
right->entry()->AddPredecessor(branch);
}
void FlowGraph::Loop(JoinNode* merge,
FlowGraph* condition,
BranchNode* branch,
FlowGraph* body) {
// Add the merge, condition and branch. Add merge's predecessors in
// left-to-right order.
AppendNode(merge);
body->AppendNode(merge);
AppendGraph(condition);
AppendNode(branch);
// Splice in the body flowgraph.
branch->AddSuccessor(body->entry());
body->entry()->AddPredecessor(branch);
}
void EntryNode::Traverse(bool mark,
ZoneList<Node*>* preorder,
ZoneList<Node*>* postorder) {
ASSERT(successor_ != NULL);
preorder->Add(this);
if (!successor_->IsMarkedWith(mark)) {
successor_->MarkWith(mark);
successor_->Traverse(mark, preorder, postorder);
}
postorder->Add(this);
}
void ExitNode::Traverse(bool mark,
ZoneList<Node*>* preorder,
ZoneList<Node*>* postorder) {
preorder->Add(this);
postorder->Add(this);
}
void BlockNode::Traverse(bool mark,
ZoneList<Node*>* preorder,
ZoneList<Node*>* postorder) {
ASSERT(successor_ != NULL);
preorder->Add(this);
if (!successor_->IsMarkedWith(mark)) {
successor_->MarkWith(mark);
successor_->Traverse(mark, preorder, postorder);
}
postorder->Add(this);
}
void BranchNode::Traverse(bool mark,
ZoneList<Node*>* preorder,
ZoneList<Node*>* postorder) {
ASSERT(successor0_ != NULL && successor1_ != NULL);
preorder->Add(this);
if (!successor0_->IsMarkedWith(mark)) {
successor0_->MarkWith(mark);
successor0_->Traverse(mark, preorder, postorder);
}
if (!successor1_->IsMarkedWith(mark)) {
successor1_->MarkWith(mark);
successor1_->Traverse(mark, preorder, postorder);
}
postorder->Add(this);
}
void JoinNode::Traverse(bool mark,
ZoneList<Node*>* preorder,
ZoneList<Node*>* postorder) {
ASSERT(successor_ != NULL);
preorder->Add(this);
if (!successor_->IsMarkedWith(mark)) {
successor_->MarkWith(mark);
successor_->Traverse(mark, preorder, postorder);
}
postorder->Add(this);
}
void FlowGraphBuilder::Build(FunctionLiteral* lit) {
graph_ = FlowGraph::Empty();
graph_.AppendNode(new EntryNode());
global_exit_ = new ExitNode();
VisitStatements(lit->body());
if (HasStackOverflow()) {
graph_ = FlowGraph::Empty();
return;
}
graph_.AppendNode(global_exit_);
// Build preorder and postorder traversal orders. All the nodes in
// the graph have the same mark flag. For the traversal, use that
// flag's negation. Traversal will flip all the flags.
bool mark = graph_.entry()->IsMarkedWith(false);
graph_.entry()->MarkWith(mark);
graph_.entry()->Traverse(mark, &preorder_, &postorder_);
}
void FlowGraphBuilder::VisitDeclaration(Declaration* decl) {
UNREACHABLE();
}
void FlowGraphBuilder::VisitBlock(Block* stmt) {
VisitStatements(stmt->statements());
}
void FlowGraphBuilder::VisitExpressionStatement(ExpressionStatement* stmt) {
Visit(stmt->expression());
}
void FlowGraphBuilder::VisitEmptyStatement(EmptyStatement* stmt) {
// Nothing to do.
}
void FlowGraphBuilder::VisitIfStatement(IfStatement* stmt) {
Visit(stmt->condition());
BranchNode* branch = new BranchNode();
FlowGraph original = graph_;
graph_ = FlowGraph::Empty();
Visit(stmt->then_statement());
FlowGraph left = graph_;
graph_ = FlowGraph::Empty();
Visit(stmt->else_statement());
JoinNode* join = new JoinNode();
original.Split(branch, &left, &graph_, join);
graph_ = original;
}
void FlowGraphBuilder::VisitContinueStatement(ContinueStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitBreakStatement(BreakStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitReturnStatement(ReturnStatement* stmt) {
Visit(stmt->expression());
graph_.AppendInstruction(stmt);
graph_.AppendNode(global_exit());
}
void FlowGraphBuilder::VisitWithEnterStatement(WithEnterStatement* stmt) {
Visit(stmt->expression());
graph_.AppendInstruction(stmt);
}
void FlowGraphBuilder::VisitWithExitStatement(WithExitStatement* stmt) {
graph_.AppendInstruction(stmt);
}
void FlowGraphBuilder::VisitSwitchStatement(SwitchStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitDoWhileStatement(DoWhileStatement* stmt) {
JoinNode* join = new JoinNode();
FlowGraph original = graph_;
graph_ = FlowGraph::Empty();
Visit(stmt->body());
FlowGraph body = graph_;
graph_ = FlowGraph::Empty();
Visit(stmt->cond());
BranchNode* branch = new BranchNode();
// Add body, condition and branch.
original.AppendNode(join);
original.AppendGraph(&body);
original.AppendGraph(&graph_); // The condition.
original.AppendNode(branch);
// Tie the knot.
branch->AddSuccessor(join);
join->AddPredecessor(branch);
graph_ = original;
}
void FlowGraphBuilder::VisitWhileStatement(WhileStatement* stmt) {
JoinNode* join = new JoinNode();
FlowGraph original = graph_;
graph_ = FlowGraph::Empty();
Visit(stmt->cond());
BranchNode* branch = new BranchNode();
FlowGraph condition = graph_;
graph_ = FlowGraph::Empty();
Visit(stmt->body());
original.Loop(join, &condition, branch, &graph_);
graph_ = original;
}
void FlowGraphBuilder::VisitForStatement(ForStatement* stmt) {
if (stmt->init() != NULL) Visit(stmt->init());
JoinNode* join = new JoinNode();
FlowGraph original = graph_;
graph_ = FlowGraph::Empty();
if (stmt->cond() != NULL) Visit(stmt->cond());
BranchNode* branch = new BranchNode();
FlowGraph condition = graph_;
graph_ = FlowGraph::Empty();
Visit(stmt->body());
if (stmt->next() != NULL) Visit(stmt->next());
original.Loop(join, &condition, branch, &graph_);
graph_ = original;
}
void FlowGraphBuilder::VisitForInStatement(ForInStatement* stmt) {
Visit(stmt->enumerable());
JoinNode* join = new JoinNode();
FlowGraph empty;
BranchNode* branch = new BranchNode();
FlowGraph original = graph_;
graph_ = FlowGraph::Empty();
Visit(stmt->body());
original.Loop(join, &empty, branch, &graph_);
graph_ = original;
}
void FlowGraphBuilder::VisitTryCatchStatement(TryCatchStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitTryFinallyStatement(TryFinallyStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitDebuggerStatement(DebuggerStatement* stmt) {
graph_.AppendInstruction(stmt);
}
void FlowGraphBuilder::VisitFunctionLiteral(FunctionLiteral* expr) {
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitFunctionBoilerplateLiteral(
FunctionBoilerplateLiteral* expr) {
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitConditional(Conditional* expr) {
Visit(expr->condition());
BranchNode* branch = new BranchNode();
FlowGraph original = graph_;
graph_ = FlowGraph::Empty();
Visit(expr->then_expression());
FlowGraph left = graph_;
graph_ = FlowGraph::Empty();
Visit(expr->else_expression());
JoinNode* join = new JoinNode();
original.Split(branch, &left, &graph_, join);
graph_ = original;
}
void FlowGraphBuilder::VisitSlot(Slot* expr) {
UNREACHABLE();
}
void FlowGraphBuilder::VisitVariableProxy(VariableProxy* expr) {
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitLiteral(Literal* expr) {
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitRegExpLiteral(RegExpLiteral* expr) {
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitObjectLiteral(ObjectLiteral* expr) {
ZoneList<ObjectLiteral::Property*>* properties = expr->properties();
for (int i = 0, len = properties->length(); i < len; i++) {
Visit(properties->at(i)->value());
}
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitArrayLiteral(ArrayLiteral* expr) {
ZoneList<Expression*>* values = expr->values();
for (int i = 0, len = values->length(); i < len; i++) {
Visit(values->at(i));
}
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitCatchExtensionObject(CatchExtensionObject* expr) {
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitAssignment(Assignment* expr) {
Variable* var = expr->target()->AsVariableProxy()->AsVariable();
Property* prop = expr->target()->AsProperty();
// Left-hand side can be a variable or property (or reference error) but
// not both.
ASSERT(var == NULL || prop == NULL);
if (prop != NULL) {
Visit(prop->obj());
if (!prop->key()->IsPropertyName()) Visit(prop->key());
}
if (var != NULL || prop != NULL) {
Visit(expr->value());
}
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitThrow(Throw* expr) {
Visit(expr->exception());
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitProperty(Property* expr) {
Visit(expr->obj());
if (!expr->key()->IsPropertyName()) Visit(expr->key());
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitCall(Call* expr) {
Visit(expr->expression());
ZoneList<Expression*>* arguments = expr->arguments();
for (int i = 0, len = arguments->length(); i < len; i++) {
Visit(arguments->at(i));
}
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitCallNew(CallNew* expr) {
Visit(expr->expression());
ZoneList<Expression*>* arguments = expr->arguments();
for (int i = 0, len = arguments->length(); i < len; i++) {
Visit(arguments->at(i));
}
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitCallRuntime(CallRuntime* expr) {
ZoneList<Expression*>* arguments = expr->arguments();
for (int i = 0, len = arguments->length(); i < len; i++) {
Visit(arguments->at(i));
}
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitUnaryOperation(UnaryOperation* expr) {
Visit(expr->expression());
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitCountOperation(CountOperation* expr) {
Visit(expr->expression());
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitBinaryOperation(BinaryOperation* expr) {
Visit(expr->left());
switch (expr->op()) {
case Token::COMMA:
Visit(expr->right());
break;
case Token::OR: {
BranchNode* branch = new BranchNode();
FlowGraph original = graph_;
graph_ = FlowGraph::Empty();
Visit(expr->right());
FlowGraph empty;
JoinNode* join = new JoinNode();
original.Split(branch, &empty, &graph_, join);
graph_ = original;
break;
}
case Token::AND: {
BranchNode* branch = new BranchNode();
FlowGraph original = graph_;
graph_ = FlowGraph::Empty();
Visit(expr->right());
FlowGraph empty;
JoinNode* join = new JoinNode();
original.Split(branch, &graph_, &empty, join);
graph_ = original;
break;
}
case Token::BIT_OR:
case Token::BIT_XOR:
case Token::BIT_AND:
case Token::SHL:
case Token::SAR:
case Token::SHR:
case Token::ADD:
case Token::SUB:
case Token::MUL:
case Token::DIV:
case Token::MOD:
Visit(expr->right());
graph_.AppendInstruction(expr);
break;
default:
UNREACHABLE();
}
}
void FlowGraphBuilder::VisitCompareOperation(CompareOperation* expr) {
Visit(expr->left());
Visit(expr->right());
graph_.AppendInstruction(expr);
}
void FlowGraphBuilder::VisitThisFunction(ThisFunction* expr) {
graph_.AppendInstruction(expr);
}
void AstLabeler::Label(CompilationInfo* info) {
info_ = info;
VisitStatements(info_->function()->body());
@ -204,6 +732,9 @@ void AstLabeler::VisitAssignment(Assignment* expr) {
USE(proxy);
ASSERT(proxy != NULL && proxy->var()->is_this());
info()->set_has_this_properties(true);
prop->obj()->set_num(AstNode::kNoNumber);
prop->key()->set_num(AstNode::kNoNumber);
Visit(expr->value());
expr->set_num(next_number_++);
}
@ -220,6 +751,9 @@ void AstLabeler::VisitProperty(Property* expr) {
USE(proxy);
ASSERT(proxy != NULL && proxy->var()->is_this());
info()->set_has_this_properties(true);
expr->obj()->set_num(AstNode::kNoNumber);
expr->key()->set_num(AstNode::kNoNumber);
expr->set_num(next_number_++);
}
@ -558,4 +1092,369 @@ void LivenessAnalyzer::VisitThisFunction(ThisFunction* expr) {
}
#ifdef DEBUG
// Print a textual representation of an instruction in a flow graph. Using
// the AstVisitor is overkill because there is no recursion here. It is
// only used for printing in debug mode.
class TextInstructionPrinter: public AstVisitor {
public:
TextInstructionPrinter() {}
private:
// AST node visit functions.
#define DECLARE_VISIT(type) virtual void Visit##type(type* node);
AST_NODE_LIST(DECLARE_VISIT)
#undef DECLARE_VISIT
DISALLOW_COPY_AND_ASSIGN(TextInstructionPrinter);
};
void TextInstructionPrinter::VisitDeclaration(Declaration* decl) {
UNREACHABLE();
}
void TextInstructionPrinter::VisitBlock(Block* stmt) {
PrintF("Block");
}
void TextInstructionPrinter::VisitExpressionStatement(ExpressionStatement* stmt) {
PrintF("ExpressionStatement");
}
void TextInstructionPrinter::VisitEmptyStatement(EmptyStatement* stmt) {
PrintF("EmptyStatement");
}
void TextInstructionPrinter::VisitIfStatement(IfStatement* stmt) {
PrintF("IfStatement");
}
void TextInstructionPrinter::VisitContinueStatement(ContinueStatement* stmt) {
UNREACHABLE();
}
void TextInstructionPrinter::VisitBreakStatement(BreakStatement* stmt) {
UNREACHABLE();
}
void TextInstructionPrinter::VisitReturnStatement(ReturnStatement* stmt) {
PrintF("return @%d", stmt->expression()->num());
}
void TextInstructionPrinter::VisitWithEnterStatement(WithEnterStatement* stmt) {
PrintF("WithEnterStatement");
}
void TextInstructionPrinter::VisitWithExitStatement(WithExitStatement* stmt) {
PrintF("WithExitStatement");
}
void TextInstructionPrinter::VisitSwitchStatement(SwitchStatement* stmt) {
UNREACHABLE();
}
void TextInstructionPrinter::VisitDoWhileStatement(DoWhileStatement* stmt) {
PrintF("DoWhileStatement");
}
void TextInstructionPrinter::VisitWhileStatement(WhileStatement* stmt) {
PrintF("WhileStatement");
}
void TextInstructionPrinter::VisitForStatement(ForStatement* stmt) {
PrintF("ForStatement");
}
void TextInstructionPrinter::VisitForInStatement(ForInStatement* stmt) {
PrintF("ForInStatement");
}
void TextInstructionPrinter::VisitTryCatchStatement(TryCatchStatement* stmt) {
UNREACHABLE();
}
void TextInstructionPrinter::VisitTryFinallyStatement(
TryFinallyStatement* stmt) {
UNREACHABLE();
}
void TextInstructionPrinter::VisitDebuggerStatement(DebuggerStatement* stmt) {
PrintF("DebuggerStatement");
}
void TextInstructionPrinter::VisitFunctionLiteral(FunctionLiteral* expr) {
PrintF("FunctionLiteral");
}
void TextInstructionPrinter::VisitFunctionBoilerplateLiteral(
FunctionBoilerplateLiteral* expr) {
PrintF("FunctionBoilerplateLiteral");
}
void TextInstructionPrinter::VisitConditional(Conditional* expr) {
PrintF("Conditional");
}
void TextInstructionPrinter::VisitSlot(Slot* expr) {
UNREACHABLE();
}
void TextInstructionPrinter::VisitVariableProxy(VariableProxy* expr) {
Variable* var = expr->AsVariable();
if (var != NULL) {
SmartPointer<char> name = var->name()->ToCString();
PrintF("%s", *name);
} else {
ASSERT(expr->AsProperty() != NULL);
VisitProperty(expr->AsProperty());
}
}
void TextInstructionPrinter::VisitLiteral(Literal* expr) {
expr->handle()->ShortPrint();
}
void TextInstructionPrinter::VisitRegExpLiteral(RegExpLiteral* expr) {
PrintF("RegExpLiteral");
}
void TextInstructionPrinter::VisitObjectLiteral(ObjectLiteral* expr) {
PrintF("ObjectLiteral");
}
void TextInstructionPrinter::VisitArrayLiteral(ArrayLiteral* expr) {
PrintF("ArrayLiteral");
}
void TextInstructionPrinter::VisitCatchExtensionObject(
CatchExtensionObject* expr) {
PrintF("CatchExtensionObject");
}
void TextInstructionPrinter::VisitAssignment(Assignment* expr) {
Variable* var = expr->target()->AsVariableProxy()->AsVariable();
Property* prop = expr->target()->AsProperty();
if (var != NULL) {
SmartPointer<char> name = var->name()->ToCString();
PrintF("%s %s @%d",
*name,
Token::String(expr->op()),
expr->value()->num());
} else if (prop != NULL) {
if (prop->key()->IsPropertyName()) {
PrintF("@%d.", prop->obj()->num());
ASSERT(prop->key()->AsLiteral() != NULL);
prop->key()->AsLiteral()->handle()->Print();
PrintF(" %s @%d",
Token::String(expr->op()),
expr->value()->num());
} else {
PrintF("@%d[@%d] %s @%d",
prop->obj()->num(),
prop->key()->num(),
Token::String(expr->op()),
expr->value()->num());
}
} else {
// Throw reference error.
Visit(expr->target());
}
}
void TextInstructionPrinter::VisitThrow(Throw* expr) {
PrintF("throw @%d", expr->exception()->num());
}
void TextInstructionPrinter::VisitProperty(Property* expr) {
if (expr->key()->IsPropertyName()) {
PrintF("@%d.", expr->obj()->num());
ASSERT(expr->key()->AsLiteral() != NULL);
expr->key()->AsLiteral()->handle()->Print();
} else {
PrintF("@%d[@%d]", expr->obj()->num(), expr->key()->num());
}
}
void TextInstructionPrinter::VisitCall(Call* expr) {
PrintF("@%d(", expr->expression()->num());
ZoneList<Expression*>* arguments = expr->arguments();
for (int i = 0, len = arguments->length(); i < len; i++) {
if (i != 0) PrintF(", ");
PrintF("@%d", arguments->at(i)->num());
}
PrintF(")");
}
void TextInstructionPrinter::VisitCallNew(CallNew* expr) {
PrintF("new @%d(", expr->expression()->num());
ZoneList<Expression*>* arguments = expr->arguments();
for (int i = 0, len = arguments->length(); i < len; i++) {
if (i != 0) PrintF(", ");
PrintF("@%d", arguments->at(i)->num());
}
PrintF(")");
}
void TextInstructionPrinter::VisitCallRuntime(CallRuntime* expr) {
SmartPointer<char> name = expr->name()->ToCString();
PrintF("%s(", *name);
ZoneList<Expression*>* arguments = expr->arguments();
for (int i = 0, len = arguments->length(); i < len; i++) {
if (i != 0) PrintF(", ");
PrintF("@%d", arguments->at(i)->num());
}
PrintF(")");
}
void TextInstructionPrinter::VisitUnaryOperation(UnaryOperation* expr) {
PrintF("%s(@%d)", Token::String(expr->op()), expr->expression()->num());
}
void TextInstructionPrinter::VisitCountOperation(CountOperation* expr) {
if (expr->is_prefix()) {
PrintF("%s@%d", Token::String(expr->op()), expr->expression()->num());
} else {
PrintF("@%d%s", expr->expression()->num(), Token::String(expr->op()));
}
}
void TextInstructionPrinter::VisitBinaryOperation(BinaryOperation* expr) {
ASSERT(expr->op() != Token::COMMA);
ASSERT(expr->op() != Token::OR);
ASSERT(expr->op() != Token::AND);
PrintF("@%d %s @%d",
expr->left()->num(),
Token::String(expr->op()),
expr->right()->num());
}
void TextInstructionPrinter::VisitCompareOperation(CompareOperation* expr) {
PrintF("@%d %s @%d",
expr->left()->num(),
Token::String(expr->op()),
expr->right()->num());
}
void TextInstructionPrinter::VisitThisFunction(ThisFunction* expr) {
PrintF("ThisFunction");
}
static int node_count = 0;
static int instruction_count = 0;
void Node::AssignNumbers() {
set_number(node_count++);
}
void BlockNode::AssignNumbers() {
set_number(node_count++);
for (int i = 0, len = instructions_.length(); i < len; i++) {
instructions_[i]->set_num(instruction_count++);
}
}
void EntryNode::PrintText() {
PrintF("L%d: Entry\n", number());
PrintF("goto L%d\n\n", successor_->number());
}
void ExitNode::PrintText() {
PrintF("L%d: Exit\n\n", number());
}
void BlockNode::PrintText() {
// Print the instructions in the block.
PrintF("L%d: Block\n", number());
TextInstructionPrinter printer;
for (int i = 0, len = instructions_.length(); i < len; i++) {
PrintF("%d ", instructions_[i]->num());
printer.Visit(instructions_[i]);
PrintF("\n");
}
PrintF("goto L%d\n\n", successor_->number());
}
void BranchNode::PrintText() {
PrintF("L%d: Branch\n", number());
PrintF("goto (L%d, L%d)\n\n", successor0_->number(), successor1_->number());
}
void JoinNode::PrintText() {
PrintF("L%d: Join(", number());
for (int i = 0, len = predecessors_.length(); i < len; i++) {
if (i != 0) PrintF(", ");
PrintF("L%d", predecessors_[i]->number());
}
PrintF(")\ngoto L%d\n\n", successor_->number());
}
void FlowGraph::PrintText(ZoneList<Node*>* postorder) {
PrintF("\n========\n");
// Number nodes and instructions in reverse postorder.
node_count = 0;
instruction_count = 0;
for (int i = postorder->length() - 1; i >= 0; i--) {
postorder->at(i)->AssignNumbers();
}
// Print basic blocks in reverse postorder.
for (int i = postorder->length() - 1; i >= 0; i--) {
postorder->at(i)->PrintText();
}
}
#endif // defined(DEBUG)
} } // namespace v8::internal

View File

@ -95,6 +95,299 @@ class BitVector {
};
// Forward declarations of Node types.
class Node;
class BranchNode;
class JoinNode;
// Flow graphs have a single entry and single exit. The empty flowgraph is
// represented by both entry and exit being NULL.
class FlowGraph BASE_EMBEDDED {
public:
FlowGraph() : entry_(NULL), exit_(NULL) {}
static FlowGraph Empty() { return FlowGraph(); }
bool is_empty() const { return entry_ == NULL; }
Node* entry() const { return entry_; }
Node* exit() const { return exit_; }
// Add a single instruction to the end of this flowgraph.
void AppendInstruction(AstNode* instruction);
// Add a single node to the end of this flow graph.
void AppendNode(Node* node);
// Add a flow graph fragment to the end of this one.
void AppendGraph(FlowGraph* graph);
// Concatenate an if-then-else flow-graph to this one. Control is split
// and merged, so the graph remains single-entry, single-exit.
void Split(BranchNode* branch,
FlowGraph* left,
FlowGraph* right,
JoinNode* merge);
// Concatenate a forward loop (e.g., while or for loop) flow-graph to this
// one. Control is split by the condition and merged back from the back
// edge at end of the body to the beginning of the condition. The single
// (free) exit of the result graph is the right (false) arm of the branch
// node.
void Loop(JoinNode* merge,
FlowGraph* condition,
BranchNode* branch,
FlowGraph* body);
#ifdef DEBUG
void PrintText(ZoneList<Node*>* postorder);
#endif
private:
Node* entry_;
Node* exit_;
};
// Flow-graph nodes.
class Node: public ZoneObject {
public:
Node() : number_(-1), mark_(false) {}
virtual ~Node() {}
virtual bool IsBlockNode() { return false; }
virtual bool IsJoinNode() { return false; }
virtual void AddPredecessor(Node* predecessor) = 0;
virtual void AddSuccessor(Node* successor) = 0;
bool IsMarkedWith(bool mark) { return mark_ == mark; }
void MarkWith(bool mark) { mark_ = mark; }
// Perform a depth first search and record preorder and postorder
// traversal orders.
virtual void Traverse(bool mark,
ZoneList<Node*>* preorder,
ZoneList<Node*>* postorder) = 0;
int number() { return number_; }
void set_number(int number) { number_ = number; }
#ifdef DEBUG
virtual void AssignNumbers();
virtual void PrintText() = 0;
#endif
private:
int number_;
bool mark_;
DISALLOW_COPY_AND_ASSIGN(Node);
};
// An entry node has no predecessors and a single successor.
class EntryNode: public Node {
public:
EntryNode() : successor_(NULL) {}
void AddPredecessor(Node* predecessor) { UNREACHABLE(); }
void AddSuccessor(Node* successor) {
ASSERT(successor_ == NULL && successor != NULL);
successor_ = successor;
}
void Traverse(bool mark,
ZoneList<Node*>* preorder,
ZoneList<Node*>* postorder);
#ifdef DEBUG
void PrintText();
#endif
private:
Node* successor_;
DISALLOW_COPY_AND_ASSIGN(EntryNode);
};
// An exit node has a arbitrarily many predecessors and no successors.
class ExitNode: public Node {
public:
ExitNode() : predecessors_(4) {}
void AddPredecessor(Node* predecessor) {
ASSERT(predecessor != NULL);
predecessors_.Add(predecessor);
}
void AddSuccessor(Node* successor) { /* Do nothing. */ }
void Traverse(bool mark,
ZoneList<Node*>* preorder,
ZoneList<Node*>* postorder);
#ifdef DEBUG
void PrintText();
#endif
private:
ZoneList<Node*> predecessors_;
DISALLOW_COPY_AND_ASSIGN(ExitNode);
};
// Block nodes have a single successor and predecessor and a list of
// instructions.
class BlockNode: public Node {
public:
BlockNode() : predecessor_(NULL), successor_(NULL), instructions_(4) {}
static BlockNode* cast(Node* node) {
ASSERT(node->IsBlockNode());
return reinterpret_cast<BlockNode*>(node);
}
bool IsBlockNode() { return true; }
void AddPredecessor(Node* predecessor) {
ASSERT(predecessor_ == NULL && predecessor != NULL);
predecessor_ = predecessor;
}
void AddSuccessor(Node* successor) {
ASSERT(successor_ == NULL && successor != NULL);
successor_ = successor;
}
void AddInstruction(AstNode* instruction) {
instructions_.Add(instruction);
}
void Traverse(bool mark,
ZoneList<Node*>* preorder,
ZoneList<Node*>* postorder);
#ifdef DEBUG
void AssignNumbers();
void PrintText();
#endif
private:
Node* predecessor_;
Node* successor_;
ZoneList<AstNode*> instructions_;
DISALLOW_COPY_AND_ASSIGN(BlockNode);
};
// Branch nodes have a single predecessor and a pair of successors.
class BranchNode: public Node {
public:
BranchNode() : predecessor_(NULL), successor0_(NULL), successor1_(NULL) {}
void AddPredecessor(Node* predecessor) {
ASSERT(predecessor_ == NULL && predecessor != NULL);
predecessor_ = predecessor;
}
void AddSuccessor(Node* successor) {
ASSERT(successor1_ == NULL && successor != NULL);
if (successor0_ == NULL) {
successor0_ = successor;
} else {
successor1_ = successor;
}
}
void Traverse(bool mark,
ZoneList<Node*>* preorder,
ZoneList<Node*>* postorder);
#ifdef DEBUG
void PrintText();
#endif
private:
Node* predecessor_;
Node* successor0_;
Node* successor1_;
DISALLOW_COPY_AND_ASSIGN(BranchNode);
};
// Join nodes have arbitrarily many predecessors and a single successor.
class JoinNode: public Node {
public:
JoinNode() : predecessors_(2), successor_(NULL) {}
static JoinNode* cast(Node* node) {
ASSERT(node->IsJoinNode());
return reinterpret_cast<JoinNode*>(node);
}
bool IsJoinNode() { return true; }
void AddPredecessor(Node* predecessor) {
ASSERT(predecessor != NULL);
predecessors_.Add(predecessor);
}
void AddSuccessor(Node* successor) {
ASSERT(successor_ == NULL && successor != NULL);
successor_ = successor;
}
void Traverse(bool mark,
ZoneList<Node*>* preorder,
ZoneList<Node*>* postorder);
#ifdef DEBUG
void PrintText();
#endif
private:
ZoneList<Node*> predecessors_;
Node* successor_;
DISALLOW_COPY_AND_ASSIGN(JoinNode);
};
// Construct a flow graph from a function literal. Build pre- and postorder
// traversal orders as a byproduct.
class FlowGraphBuilder: public AstVisitor {
public:
FlowGraphBuilder() : global_exit_(NULL), preorder_(4), postorder_(4) {}
void Build(FunctionLiteral* lit);
FlowGraph* graph() { return &graph_; }
ZoneList<Node*>* postorder() { return &postorder_; }
private:
ExitNode* global_exit() { return global_exit_; }
// AST node visit functions.
#define DECLARE_VISIT(type) virtual void Visit##type(type* node);
AST_NODE_LIST(DECLARE_VISIT)
#undef DECLARE_VISIT
FlowGraph graph_;
ExitNode* global_exit_;
ZoneList<Node*> preorder_;
ZoneList<Node*> postorder_;
DISALLOW_COPY_AND_ASSIGN(FlowGraphBuilder);
};
// This class is used to number all expressions in the AST according to
// their evaluation order (post-order left-to-right traversal).
class AstLabeler: public AstVisitor {

View File

@ -153,6 +153,7 @@ DEFINE_bool(always_fast_compiler, false,
"try to use the speculative optimizing backend for all code")
DEFINE_bool(trace_bailout, false,
"print reasons for falling back to using the classic V8 backend")
DEFINE_bool(use_flow_graph, false, "perform flow-graph based optimizations")
// compilation-cache.cc
DEFINE_bool(compilation_cache, true, "enable compilation cache")
@ -305,6 +306,8 @@ DEFINE_string(stop_at, "", "function name where to insert a breakpoint")
DEFINE_bool(print_builtin_scopes, false, "print scopes for builtins")
DEFINE_bool(print_scopes, false, "print scopes")
DEFINE_bool(print_ir, false, "print the AST as seen by the backend")
DEFINE_bool(print_graph_text, false,
"print a text representation of the flow graph")
// contexts.cc
DEFINE_bool(trace_contexts, false, "trace contexts operations")

View File

@ -604,7 +604,7 @@ class IndentedScope BASE_EMBEDDED {
ast_printer_->Print(StaticType::Type2String(expr->type()));
printed_first = true;
}
if (expr->num() != Expression::kNoLabel) {
if (expr->num() != AstNode::kNoNumber) {
ast_printer_->Print(printed_first ? ", num = " : " (num = ");
ast_printer_->Print("%d", expr->num());
printed_first = true;
@ -679,7 +679,7 @@ void AstPrinter::PrintLiteralWithModeIndented(const char* info,
pos += OS::SNPrintF(buf + pos, ", type = %s",
StaticType::Type2String(type));
}
if (num != Expression::kNoLabel) {
if (num != AstNode::kNoNumber) {
pos += OS::SNPrintF(buf + pos, ", num = %d", num);
}
OS::SNPrintF(buf + pos, ")");
@ -740,7 +740,7 @@ void AstPrinter::PrintParameters(Scope* scope) {
PrintLiteralWithModeIndented("VAR", scope->parameter(i),
scope->parameter(i)->name(),
scope->parameter(i)->type(),
Expression::kNoLabel);
AstNode::kNoNumber);
}
}
}
@ -786,7 +786,7 @@ void AstPrinter::VisitDeclaration(Declaration* node) {
node->proxy()->AsVariable(),
node->proxy()->name(),
node->proxy()->AsVariable()->type(),
Expression::kNoLabel);
AstNode::kNoNumber);
} else {
// function declarations
PrintIndented("FUNCTION ");