rmcilroy@chromium.org 2014-03-19 09:38:20 +00:00
parent 8e749aaafd
commit 9415863c97
16 changed files with 562 additions and 115 deletions

View File

@ -2795,6 +2795,19 @@ void Assembler::RecordConstPool(int size) {
} }
MaybeObject* Assembler::AllocateConstantPool(Heap* heap) {
// No out-of-line constant pool support.
UNREACHABLE();
return NULL;
}
void Assembler::PopulateConstantPool(ConstantPoolArray* constant_pool) {
// No out-of-line constant pool support.
UNREACHABLE();
}
} } // namespace v8::internal } } // namespace v8::internal
#endif // V8_TARGET_ARCH_A64 #endif // V8_TARGET_ARCH_A64

View File

@ -1790,6 +1790,11 @@ class Assembler : public AssemblerBase {
// Check if is time to emit a constant pool. // Check if is time to emit a constant pool.
void CheckConstPool(bool force_emit, bool require_jump); void CheckConstPool(bool force_emit, bool require_jump);
// Allocate a constant pool of the correct size for the generated code.
MaybeObject* AllocateConstantPool(Heap* heap);
// Generate the constant pool for the generated code.
void PopulateConstantPool(ConstantPoolArray* constant_pool);
// Returns true if we should emit a veneer as soon as possible for a branch // Returns true if we should emit a veneer as soon as possible for a branch
// which can at most reach to specified pc. // which can at most reach to specified pc.

View File

@ -109,14 +109,28 @@ Address RelocInfo::target_address_address() {
ASSERT(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) ASSERT(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)
|| rmode_ == EMBEDDED_OBJECT || rmode_ == EMBEDDED_OBJECT
|| rmode_ == EXTERNAL_REFERENCE); || rmode_ == EXTERNAL_REFERENCE);
return Assembler::target_pointer_address_at(pc_); if (FLAG_enable_ool_constant_pool ||
Assembler::IsMovW(Memory::int32_at(pc_))) {
// We return the PC for ool constant pool since this function is used by the
// serializerer and expects the address to reside within the code object.
return reinterpret_cast<Address>(pc_);
} else {
ASSERT(Assembler::IsLdrPcImmediateOffset(Memory::int32_at(pc_)));
return Assembler::target_pointer_address_at(pc_);
}
} }
Address RelocInfo::constant_pool_entry_address() { Address RelocInfo::constant_pool_entry_address() {
ASSERT(IsInConstantPool()); ASSERT(IsInConstantPool());
ASSERT(Assembler::IsLdrPcImmediateOffset(Memory::int32_at(pc_))); if (FLAG_enable_ool_constant_pool) {
return Assembler::target_pointer_address_at(pc_); ASSERT(Assembler::IsLdrPpImmediateOffset(Memory::int32_at(pc_)));
return Assembler::target_constant_pool_address_at(pc_,
host_->constant_pool());
} else {
ASSERT(Assembler::IsLdrPcImmediateOffset(Memory::int32_at(pc_)));
return Assembler::target_pointer_address_at(pc_);
}
} }
@ -410,6 +424,16 @@ Address Assembler::target_pointer_address_at(Address pc) {
} }
Address Assembler::target_constant_pool_address_at(
Address pc, ConstantPoolArray* constant_pool) {
ASSERT(constant_pool != NULL);
ASSERT(IsLdrPpImmediateOffset(Memory::int32_at(pc)));
Instr instr = Memory::int32_at(pc);
return reinterpret_cast<Address>(constant_pool) +
GetLdrRegisterImmediateOffset(instr);
}
Address Assembler::target_address_at(Address pc, Address Assembler::target_address_at(Address pc,
ConstantPoolArray* constant_pool) { ConstantPoolArray* constant_pool) {
if (IsMovW(Memory::int32_at(pc))) { if (IsMovW(Memory::int32_at(pc))) {
@ -419,9 +443,14 @@ Address Assembler::target_address_at(Address pc,
return reinterpret_cast<Address>( return reinterpret_cast<Address>(
(next_instr->ImmedMovwMovtValue() << 16) | (next_instr->ImmedMovwMovtValue() << 16) |
instr->ImmedMovwMovtValue()); instr->ImmedMovwMovtValue());
} else if (FLAG_enable_ool_constant_pool) {
ASSERT(IsLdrPpImmediateOffset(Memory::int32_at(pc)));
return Memory::Address_at(
target_constant_pool_address_at(pc, constant_pool));
} else {
ASSERT(IsLdrPcImmediateOffset(Memory::int32_at(pc)));
return Memory::Address_at(target_pointer_address_at(pc));
} }
ASSERT(IsLdrPcImmediateOffset(Memory::int32_at(pc)));
return Memory::Address_at(target_pointer_address_at(pc));
} }
@ -439,7 +468,8 @@ Address Assembler::target_address_from_return_address(Address pc) {
// @ return address // @ return address
Address candidate = pc - 2 * Assembler::kInstrSize; Address candidate = pc - 2 * Assembler::kInstrSize;
Instr candidate_instr(Memory::int32_at(candidate)); Instr candidate_instr(Memory::int32_at(candidate));
if (IsLdrPcImmediateOffset(candidate_instr)) { if (IsLdrPcImmediateOffset(candidate_instr) |
IsLdrPpImmediateOffset(candidate_instr)) {
return candidate; return candidate;
} }
candidate = pc - 3 * Assembler::kInstrSize; candidate = pc - 3 * Assembler::kInstrSize;
@ -450,7 +480,8 @@ Address Assembler::target_address_from_return_address(Address pc) {
Address Assembler::return_address_from_call_start(Address pc) { Address Assembler::return_address_from_call_start(Address pc) {
if (IsLdrPcImmediateOffset(Memory::int32_at(pc))) { if (IsLdrPcImmediateOffset(Memory::int32_at(pc)) |
IsLdrPpImmediateOffset(Memory::int32_at(pc))) {
return pc + kInstrSize * 2; return pc + kInstrSize * 2;
} else { } else {
ASSERT(IsMovW(Memory::int32_at(pc))); ASSERT(IsMovW(Memory::int32_at(pc)));
@ -462,7 +493,11 @@ Address Assembler::return_address_from_call_start(Address pc) {
void Assembler::deserialization_set_special_target_at( void Assembler::deserialization_set_special_target_at(
Address constant_pool_entry, Code* code, Address target) { Address constant_pool_entry, Code* code, Address target) {
Memory::Address_at(constant_pool_entry) = target; if (FLAG_enable_ool_constant_pool) {
set_target_address_at(constant_pool_entry, code, target);
} else {
Memory::Address_at(constant_pool_entry) = target;
}
} }
@ -490,6 +525,10 @@ void Assembler::set_target_address_at(Address pc,
ASSERT(IsMovW(Memory::int32_at(pc))); ASSERT(IsMovW(Memory::int32_at(pc)));
ASSERT(IsMovT(Memory::int32_at(pc + kInstrSize))); ASSERT(IsMovT(Memory::int32_at(pc + kInstrSize)));
CPU::FlushICache(pc, 2 * kInstrSize); CPU::FlushICache(pc, 2 * kInstrSize);
} else if (FLAG_enable_ool_constant_pool) {
ASSERT(IsLdrPpImmediateOffset(Memory::int32_at(pc)));
Memory::Address_at(
target_constant_pool_address_at(pc, constant_pool)) = target;
} else { } else {
ASSERT(IsLdrPcImmediateOffset(Memory::int32_at(pc))); ASSERT(IsLdrPcImmediateOffset(Memory::int32_at(pc)));
Memory::Address_at(target_pointer_address_at(pc)) = target; Memory::Address_at(target_pointer_address_at(pc)) = target;

View File

@ -293,15 +293,20 @@ const int RelocInfo::kApplyMask = 0;
bool RelocInfo::IsCodedSpecially() { bool RelocInfo::IsCodedSpecially() {
// The deserializer needs to know whether a pointer is specially coded. Being // The deserializer needs to know whether a pointer is specially coded.  Being
// specially coded on ARM means that it is a movw/movt instruction. We don't // specially coded on ARM means that it is a movw/movt instruction, or is an
// generate those yet. // out of line constant pool entry.  These only occur if
return false; // FLAG_enable_ool_constant_pool is true.
return FLAG_enable_ool_constant_pool;
} }
bool RelocInfo::IsInConstantPool() { bool RelocInfo::IsInConstantPool() {
return Assembler::IsLdrPcImmediateOffset(Memory::int32_at(pc_)); if (FLAG_enable_ool_constant_pool) {
return Assembler::IsLdrPpImmediateOffset(Memory::int32_at(pc_));
} else {
return Assembler::IsLdrPcImmediateOffset(Memory::int32_at(pc_));
}
} }
@ -480,9 +485,15 @@ const Instr kMovLrPc = al | MOV | kRegister_pc_Code | kRegister_lr_Code * B12;
// ldr rd, [pc, #offset] // ldr rd, [pc, #offset]
const Instr kLdrPCMask = 15 * B24 | 7 * B20 | 15 * B16; const Instr kLdrPCMask = 15 * B24 | 7 * B20 | 15 * B16;
const Instr kLdrPCPattern = 5 * B24 | L | kRegister_pc_Code * B16; const Instr kLdrPCPattern = 5 * B24 | L | kRegister_pc_Code * B16;
// ldr rd, [pp, #offset]
const Instr kLdrPpMask = 15 * B24 | 7 * B20 | 15 * B16;
const Instr kLdrPpPattern = 5 * B24 | L | kRegister_r8_Code * B16;
// vldr dd, [pc, #offset] // vldr dd, [pc, #offset]
const Instr kVldrDPCMask = 15 * B24 | 3 * B20 | 15 * B16 | 15 * B8; const Instr kVldrDPCMask = 15 * B24 | 3 * B20 | 15 * B16 | 15 * B8;
const Instr kVldrDPCPattern = 13 * B24 | L | kRegister_pc_Code * B16 | 11 * B8; const Instr kVldrDPCPattern = 13 * B24 | L | kRegister_pc_Code * B16 | 11 * B8;
// vldr dd, [pp, #offset]
const Instr kVldrDPpMask = 15 * B24 | 3 * B20 | 15 * B16 | 15 * B8;
const Instr kVldrDPpPattern = 13 * B24 | L | kRegister_r8_Code * B16 | 11 * B8;
// blxcc rm // blxcc rm
const Instr kBlxRegMask = const Instr kBlxRegMask =
15 * B24 | 15 * B20 | 15 * B16 | 15 * B12 | 15 * B8 | 15 * B4; 15 * B24 | 15 * B20 | 15 * B16 | 15 * B12 | 15 * B8 | 15 * B4;
@ -520,6 +531,7 @@ const Instr kLdrStrOffsetMask = 0x00000fff;
Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size) Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size)
: AssemblerBase(isolate, buffer, buffer_size), : AssemblerBase(isolate, buffer, buffer_size),
recorded_ast_id_(TypeFeedbackId::None()), recorded_ast_id_(TypeFeedbackId::None()),
constant_pool_builder_(),
positions_recorder_(this) { positions_recorder_(this) {
reloc_info_writer.Reposition(buffer_ + buffer_size_, pc_); reloc_info_writer.Reposition(buffer_ + buffer_size_, pc_);
num_pending_32_bit_reloc_info_ = 0; num_pending_32_bit_reloc_info_ = 0;
@ -542,11 +554,12 @@ Assembler::~Assembler() {
void Assembler::GetCode(CodeDesc* desc) { void Assembler::GetCode(CodeDesc* desc) {
// Emit constant pool if necessary. if (!FLAG_enable_ool_constant_pool) {
CheckConstPool(true, false); // Emit constant pool if necessary.
ASSERT(num_pending_32_bit_reloc_info_ == 0); CheckConstPool(true, false);
ASSERT(num_pending_64_bit_reloc_info_ == 0); ASSERT(num_pending_32_bit_reloc_info_ == 0);
ASSERT(num_pending_64_bit_reloc_info_ == 0);
}
// Set up code descriptor. // Set up code descriptor.
desc->buffer = buffer_; desc->buffer = buffer_;
desc->buffer_size = buffer_size_; desc->buffer_size = buffer_size_;
@ -729,6 +742,13 @@ bool Assembler::IsLdrPcImmediateOffset(Instr instr) {
} }
bool Assembler::IsLdrPpImmediateOffset(Instr instr) {
// Check the instruction is indeed a
// ldr<cond> <Rd>, [pp +/- offset_12].
return (instr & kLdrPpMask) == kLdrPpPattern;
}
bool Assembler::IsVldrDPcImmediateOffset(Instr instr) { bool Assembler::IsVldrDPcImmediateOffset(Instr instr) {
// Check the instruction is indeed a // Check the instruction is indeed a
// vldr<cond> <Dd>, [pc +/- offset_10]. // vldr<cond> <Dd>, [pc +/- offset_10].
@ -736,6 +756,13 @@ bool Assembler::IsVldrDPcImmediateOffset(Instr instr) {
} }
bool Assembler::IsVldrDPpImmediateOffset(Instr instr) {
// Check the instruction is indeed a
// vldr<cond> <Dd>, [pp +/- offset_10].
return (instr & kVldrDPpMask) == kVldrDPpPattern;
}
bool Assembler::IsTstImmediate(Instr instr) { bool Assembler::IsTstImmediate(Instr instr) {
return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask)) == return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask)) ==
(I | TST | S); (I | TST | S);
@ -1063,7 +1090,12 @@ bool Operand::must_output_reloc_info(const Assembler* assembler) const {
static bool use_mov_immediate_load(const Operand& x, static bool use_mov_immediate_load(const Operand& x,
const Assembler* assembler) { const Assembler* assembler) {
if (CpuFeatures::IsSupported(MOVW_MOVT_IMMEDIATE_LOADS) && if (assembler != NULL && !assembler->can_use_constant_pool()) {
// If there is no constant pool available, we must use an mov immediate.
// TODO(rmcilroy): enable ARMv6 support.
ASSERT(CpuFeatures::IsSupported(ARMv7));
return true;
} else if (CpuFeatures::IsSupported(MOVW_MOVT_IMMEDIATE_LOADS) &&
(assembler == NULL || !assembler->predictable_code_size())) { (assembler == NULL || !assembler->predictable_code_size())) {
// Prefer movw / movt to constant pool if it is more efficient on the CPU. // Prefer movw / movt to constant pool if it is more efficient on the CPU.
return true; return true;
@ -1106,22 +1138,30 @@ bool Operand::is_single_instruction(const Assembler* assembler,
void Assembler::move_32_bit_immediate(Register rd, void Assembler::move_32_bit_immediate(Register rd,
const Operand& x, const Operand& x,
Condition cond) { Condition cond) {
if (rd.code() != pc.code()) { RelocInfo rinfo(pc_, x.rmode_, x.imm32_, NULL);
if (use_mov_immediate_load(x, this)) { if (x.must_output_reloc_info(this)) {
if (x.must_output_reloc_info(this)) { RecordRelocInfo(rinfo);
RecordRelocInfo(x.rmode_, x.imm32_, DONT_USE_CONSTANT_POOL);
// Make sure the movw/movt doesn't get separated.
BlockConstPoolFor(2);
}
emit(cond | 0x30*B20 | rd.code()*B12 |
EncodeMovwImmediate(x.imm32_ & 0xffff));
movt(rd, static_cast<uint32_t>(x.imm32_) >> 16, cond);
return;
}
} }
RecordRelocInfo(x.rmode_, x.imm32_, USE_CONSTANT_POOL); if (use_mov_immediate_load(x, this)) {
ldr(rd, MemOperand(pc, 0), cond); Register target = rd.code() == pc.code() ? ip : rd;
// TODO(rmcilroy): add ARMv6 support for immediate loads.
ASSERT(CpuFeatures::IsSupported(ARMv7));
if (!FLAG_enable_ool_constant_pool && x.must_output_reloc_info(this)) {
// Make sure the movw/movt doesn't get separated.
BlockConstPoolFor(2);
}
emit(cond | 0x30*B20 | target.code()*B12 |
EncodeMovwImmediate(x.imm32_ & 0xffff));
movt(target, static_cast<uint32_t>(x.imm32_) >> 16, cond);
if (target.code() != rd.code()) {
mov(rd, target, LeaveCC, cond);
}
} else {
ASSERT(can_use_constant_pool());
ConstantPoolAddEntry(rinfo);
ldr(rd, MemOperand(FLAG_enable_ool_constant_pool ? pp : pc, 0), cond);
}
} }
@ -2421,7 +2461,7 @@ void Assembler::vmov(const DwVfpRegister dst,
int vd, d; int vd, d;
dst.split_code(&vd, &d); dst.split_code(&vd, &d);
emit(al | 0x1D*B23 | d*B22 | 0x3*B20 | vd*B12 | 0x5*B9 | B8 | enc); emit(al | 0x1D*B23 | d*B22 | 0x3*B20 | vd*B12 | 0x5*B9 | B8 | enc);
} else if (FLAG_enable_vldr_imm) { } else if (FLAG_enable_vldr_imm && can_use_constant_pool()) {
// TODO(jfb) Temporarily turned off until we have constant blinding or // TODO(jfb) Temporarily turned off until we have constant blinding or
// some equivalent mitigation: an attacker can otherwise control // some equivalent mitigation: an attacker can otherwise control
// generated data which also happens to be executable, a Very Bad // generated data which also happens to be executable, a Very Bad
@ -2437,8 +2477,9 @@ void Assembler::vmov(const DwVfpRegister dst,
// The code could also randomize the order of values, though // The code could also randomize the order of values, though
// that's tricky because vldr has a limited reach. Furthermore // that's tricky because vldr has a limited reach. Furthermore
// it breaks load locality. // it breaks load locality.
RecordRelocInfo(imm); RelocInfo rinfo(pc_, imm);
vldr(dst, MemOperand(pc, 0)); ConstantPoolAddEntry(rinfo);
vldr(dst, MemOperand(FLAG_enable_ool_constant_pool ? pp : pc, 0));
} else { } else {
// Synthesise the double from ARM immediates. // Synthesise the double from ARM immediates.
uint32_t lo, hi; uint32_t lo, hi;
@ -3168,6 +3209,7 @@ void Assembler::GrowBuffer() {
ASSERT(rinfo.rmode() == RelocInfo::NONE64); ASSERT(rinfo.rmode() == RelocInfo::NONE64);
rinfo.set_pc(rinfo.pc() + pc_delta); rinfo.set_pc(rinfo.pc() + pc_delta);
} }
constant_pool_builder_.Relocate(pc_delta);
} }
@ -3203,28 +3245,16 @@ void Assembler::emit_code_stub_address(Code* stub) {
} }
void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data, void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
UseConstantPoolMode mode) {
// We do not try to reuse pool constants.
RelocInfo rinfo(pc_, rmode, data, NULL); RelocInfo rinfo(pc_, rmode, data, NULL);
if (((rmode >= RelocInfo::JS_RETURN) && RecordRelocInfo(rinfo);
(rmode <= RelocInfo::DEBUG_BREAK_SLOT)) || }
(rmode == RelocInfo::CONST_POOL) ||
mode == DONT_USE_CONSTANT_POOL) {
// Adjust code for new modes. void Assembler::RecordRelocInfo(const RelocInfo& rinfo) {
ASSERT(RelocInfo::IsDebugBreakSlot(rmode)
|| RelocInfo::IsJSReturn(rmode)
|| RelocInfo::IsComment(rmode)
|| RelocInfo::IsPosition(rmode)
|| RelocInfo::IsConstPool(rmode)
|| mode == DONT_USE_CONSTANT_POOL);
// These modes do not need an entry in the constant pool.
} else {
RecordRelocInfoConstantPoolEntryHelper(rinfo);
}
if (!RelocInfo::IsNone(rinfo.rmode())) { if (!RelocInfo::IsNone(rinfo.rmode())) {
// Don't record external references unless the heap will be serialized. // Don't record external references unless the heap will be serialized.
if (rmode == RelocInfo::EXTERNAL_REFERENCE) { if (rinfo.rmode() == RelocInfo::EXTERNAL_REFERENCE) {
#ifdef DEBUG #ifdef DEBUG
if (!Serializer::enabled()) { if (!Serializer::enabled()) {
Serializer::TooLateToEnableNow(); Serializer::TooLateToEnableNow();
@ -3235,9 +3265,9 @@ void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data,
} }
} }
ASSERT(buffer_space() >= kMaxRelocSize); // too late to grow buffer here ASSERT(buffer_space() >= kMaxRelocSize); // too late to grow buffer here
if (rmode == RelocInfo::CODE_TARGET_WITH_ID) { if (rinfo.rmode() == RelocInfo::CODE_TARGET_WITH_ID) {
RelocInfo reloc_info_with_ast_id(pc_, RelocInfo reloc_info_with_ast_id(rinfo.pc(),
rmode, rinfo.rmode(),
RecordedAstId().ToInt(), RecordedAstId().ToInt(),
NULL); NULL);
ClearRecordedAstId(); ClearRecordedAstId();
@ -3249,34 +3279,38 @@ void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data,
} }
void Assembler::RecordRelocInfo(double data) { void Assembler::ConstantPoolAddEntry(const RelocInfo& rinfo) {
// We do not try to reuse pool constants. if (FLAG_enable_ool_constant_pool) {
RelocInfo rinfo(pc_, data); constant_pool_builder_.AddEntry(this, rinfo);
RecordRelocInfoConstantPoolEntryHelper(rinfo);
}
void Assembler::RecordRelocInfoConstantPoolEntryHelper(const RelocInfo& rinfo) {
if (rinfo.rmode() == RelocInfo::NONE64) {
ASSERT(num_pending_64_bit_reloc_info_ < kMaxNumPending64RelocInfo);
if (num_pending_64_bit_reloc_info_ == 0) {
first_const_pool_64_use_ = pc_offset();
}
pending_64_bit_reloc_info_[num_pending_64_bit_reloc_info_++] = rinfo;
} else { } else {
ASSERT(num_pending_32_bit_reloc_info_ < kMaxNumPending32RelocInfo); if (rinfo.rmode() == RelocInfo::NONE64) {
if (num_pending_32_bit_reloc_info_ == 0) { ASSERT(num_pending_64_bit_reloc_info_ < kMaxNumPending64RelocInfo);
first_const_pool_32_use_ = pc_offset(); if (num_pending_64_bit_reloc_info_ == 0) {
first_const_pool_64_use_ = pc_offset();
}
pending_64_bit_reloc_info_[num_pending_64_bit_reloc_info_++] = rinfo;
} else {
ASSERT(num_pending_32_bit_reloc_info_ < kMaxNumPending32RelocInfo);
if (num_pending_32_bit_reloc_info_ == 0) {
first_const_pool_32_use_ = pc_offset();
}
pending_32_bit_reloc_info_[num_pending_32_bit_reloc_info_++] = rinfo;
} }
pending_32_bit_reloc_info_[num_pending_32_bit_reloc_info_++] = rinfo; // Make sure the constant pool is not emitted in place of the next
// instruction for which we just recorded relocation info.
BlockConstPoolFor(1);
} }
// Make sure the constant pool is not emitted in place of the next
// instruction for which we just recorded relocation info.
BlockConstPoolFor(1);
} }
void Assembler::BlockConstPoolFor(int instructions) { void Assembler::BlockConstPoolFor(int instructions) {
if (FLAG_enable_ool_constant_pool) {
// Should be a no-op if using an out-of-line constant pool.
ASSERT(num_pending_32_bit_reloc_info_ == 0);
ASSERT(num_pending_64_bit_reloc_info_ == 0);
return;
}
int pc_limit = pc_offset() + instructions * kInstrSize; int pc_limit = pc_offset() + instructions * kInstrSize;
if (no_const_pool_before_ < pc_limit) { if (no_const_pool_before_ < pc_limit) {
// Max pool start (if we need a jump and an alignment). // Max pool start (if we need a jump and an alignment).
@ -3298,6 +3332,13 @@ void Assembler::BlockConstPoolFor(int instructions) {
void Assembler::CheckConstPool(bool force_emit, bool require_jump) { void Assembler::CheckConstPool(bool force_emit, bool require_jump) {
if (FLAG_enable_ool_constant_pool) {
// Should be a no-op if using an out-of-line constant pool.
ASSERT(num_pending_32_bit_reloc_info_ == 0);
ASSERT(num_pending_64_bit_reloc_info_ == 0);
return;
}
// Some short sequence of instruction mustn't be broken up by constant pool // Some short sequence of instruction mustn't be broken up by constant pool
// emission, such sequences are protected by calls to BlockConstPoolFor and // emission, such sequences are protected by calls to BlockConstPoolFor and
// BlockConstPoolScope. // BlockConstPoolScope.
@ -3495,6 +3536,195 @@ void Assembler::CheckConstPool(bool force_emit, bool require_jump) {
} }
MaybeObject* Assembler::AllocateConstantPool(Heap* heap) {
ASSERT(FLAG_enable_ool_constant_pool);
return constant_pool_builder_.Allocate(heap);
}
void Assembler::PopulateConstantPool(ConstantPoolArray* constant_pool) {
ASSERT(FLAG_enable_ool_constant_pool);
constant_pool_builder_.Populate(this, constant_pool);
}
ConstantPoolBuilder::ConstantPoolBuilder()
: entries_(),
merged_indexes_(),
count_of_64bit_(0),
count_of_code_ptr_(0),
count_of_heap_ptr_(0),
count_of_32bit_(0) { }
bool ConstantPoolBuilder::IsEmpty() {
return entries_.size() == 0;
}
bool ConstantPoolBuilder::Is64BitEntry(RelocInfo::Mode rmode) {
return rmode == RelocInfo::NONE64;
}
bool ConstantPoolBuilder::Is32BitEntry(RelocInfo::Mode rmode) {
return !RelocInfo::IsGCRelocMode(rmode) && rmode != RelocInfo::NONE64;
}
bool ConstantPoolBuilder::IsCodePtrEntry(RelocInfo::Mode rmode) {
return RelocInfo::IsCodeTarget(rmode);
}
bool ConstantPoolBuilder::IsHeapPtrEntry(RelocInfo::Mode rmode) {
return RelocInfo::IsGCRelocMode(rmode) && !RelocInfo::IsCodeTarget(rmode);
}
void ConstantPoolBuilder::AddEntry(Assembler* assm,
const RelocInfo& rinfo) {
RelocInfo::Mode rmode = rinfo.rmode();
ASSERT(rmode != RelocInfo::COMMENT &&
rmode != RelocInfo::POSITION &&
rmode != RelocInfo::STATEMENT_POSITION &&
rmode != RelocInfo::CONST_POOL);
// Try to merge entries which won't be patched.
int merged_index = -1;
if (RelocInfo::IsNone(rmode) ||
(!Serializer::enabled() && (rmode >= RelocInfo::CELL))) {
size_t i;
std::vector<RelocInfo>::const_iterator it;
for (it = entries_.begin(), i = 0; it != entries_.end(); it++, i++) {
if (RelocInfo::IsEqual(rinfo, *it)) {
merged_index = i;
break;
}
}
}
entries_.push_back(rinfo);
merged_indexes_.push_back(merged_index);
if (merged_index == -1) {
// Not merged, so update the appropriate count.
if (Is64BitEntry(rmode)) {
count_of_64bit_++;
} else if (Is32BitEntry(rmode)) {
count_of_32bit_++;
} else if (IsCodePtrEntry(rmode)) {
count_of_code_ptr_++;
} else {
ASSERT(IsHeapPtrEntry(rmode));
count_of_heap_ptr_++;
}
}
// Check if we still have room for another entry given Arm's ldr and vldr
// immediate offset range.
if (!(is_uint12(ConstantPoolArray::SizeFor(count_of_64bit_,
count_of_code_ptr_,
count_of_heap_ptr_,
count_of_32bit_))) &&
is_uint10(ConstantPoolArray::SizeFor(count_of_64bit_, 0, 0, 0))) {
assm->set_constant_pool_full();
}
}
void ConstantPoolBuilder::Relocate(int pc_delta) {
for (std::vector<RelocInfo>::iterator rinfo = entries_.begin();
rinfo != entries_.end(); rinfo++) {
ASSERT(rinfo->rmode() != RelocInfo::JS_RETURN);
rinfo->set_pc(rinfo->pc() + pc_delta);
}
}
MaybeObject* ConstantPoolBuilder::Allocate(Heap* heap) {
if (IsEmpty()) {
return heap->empty_constant_pool_array();
} else {
return heap->AllocateConstantPoolArray(count_of_64bit_, count_of_code_ptr_,
count_of_heap_ptr_, count_of_32bit_);
}
}
void ConstantPoolBuilder::Populate(Assembler* assm,
ConstantPoolArray* constant_pool) {
ASSERT(constant_pool->count_of_int64_entries() == count_of_64bit_);
ASSERT(constant_pool->count_of_code_ptr_entries() == count_of_code_ptr_);
ASSERT(constant_pool->count_of_heap_ptr_entries() == count_of_heap_ptr_);
ASSERT(constant_pool->count_of_int32_entries() == count_of_32bit_);
ASSERT(entries_.size() == merged_indexes_.size());
int index_64bit = 0;
int index_code_ptr = count_of_64bit_;
int index_heap_ptr = count_of_64bit_ + count_of_code_ptr_;
int index_32bit = count_of_64bit_ + count_of_code_ptr_ + count_of_heap_ptr_;
size_t i;
std::vector<RelocInfo>::const_iterator rinfo;
for (rinfo = entries_.begin(), i = 0; rinfo != entries_.end(); rinfo++, i++) {
RelocInfo::Mode rmode = rinfo->rmode();
// Update constant pool if necessary and get the entry's offset.
int offset;
if (merged_indexes_[i] == -1) {
if (Is64BitEntry(rmode)) {
offset = constant_pool->OffsetOfElementAt(index_64bit) - kHeapObjectTag;
constant_pool->set(index_64bit++, rinfo->data64());
} else if (Is32BitEntry(rmode)) {
offset = constant_pool->OffsetOfElementAt(index_32bit) - kHeapObjectTag;
constant_pool->set(index_32bit++, static_cast<int32_t>(rinfo->data()));
} else if (IsCodePtrEntry(rmode)) {
offset = constant_pool->OffsetOfElementAt(index_code_ptr) -
kHeapObjectTag;
constant_pool->set(index_code_ptr++,
reinterpret_cast<Object *>(rinfo->data()));
} else {
ASSERT(IsHeapPtrEntry(rmode));
offset = constant_pool->OffsetOfElementAt(index_heap_ptr) -
kHeapObjectTag;
constant_pool->set(index_heap_ptr++,
reinterpret_cast<Object *>(rinfo->data()));
}
merged_indexes_[i] = offset; // Stash offset for merged entries.
} else {
size_t merged_index = static_cast<size_t>(merged_indexes_[i]);
ASSERT(merged_index < merged_indexes_.size() && merged_index < i);
offset = merged_indexes_[merged_index];
}
// Patch vldr/ldr instruction with correct offset.
Instr instr = assm->instr_at(rinfo->pc());
if (Is64BitEntry(rmode)) {
// Instruction to patch must be 'vldr rd, [pp, #0]'.
ASSERT((Assembler::IsVldrDPpImmediateOffset(instr) &&
Assembler::GetVldrDRegisterImmediateOffset(instr) == 0));
ASSERT(is_uint10(offset));
assm->instr_at_put(rinfo->pc(),
Assembler::SetVldrDRegisterImmediateOffset(instr, offset));
} else {
// Instruction to patch must be 'ldr rd, [pp, #0]'.
ASSERT((Assembler::IsLdrPpImmediateOffset(instr) &&
Assembler::GetLdrRegisterImmediateOffset(instr) == 0));
ASSERT(is_uint12(offset));
assm->instr_at_put(rinfo->pc(),
Assembler::SetLdrRegisterImmediateOffset(instr, offset));
}
}
ASSERT((index_64bit == count_of_64bit_) &&
(index_code_ptr == (index_64bit + count_of_code_ptr_)) &&
(index_heap_ptr == (index_code_ptr + count_of_heap_ptr_)) &&
(index_32bit == (index_heap_ptr + count_of_32bit_)));
}
} } // namespace v8::internal } } // namespace v8::internal
#endif // V8_TARGET_ARCH_ARM #endif // V8_TARGET_ARCH_ARM

View File

@ -39,7 +39,10 @@
#ifndef V8_ARM_ASSEMBLER_ARM_H_ #ifndef V8_ARM_ASSEMBLER_ARM_H_
#define V8_ARM_ASSEMBLER_ARM_H_ #define V8_ARM_ASSEMBLER_ARM_H_
#include <stdio.h> #include <stdio.h>
#include <vector>
#include "assembler.h" #include "assembler.h"
#include "constants-arm.h" #include "constants-arm.h"
#include "serialize.h" #include "serialize.h"
@ -702,9 +705,42 @@ class NeonListOperand BASE_EMBEDDED {
NeonListType type_; NeonListType type_;
}; };
// Class used to build a constant pool.
class ConstantPoolBuilder BASE_EMBEDDED {
public:
explicit ConstantPoolBuilder();
void AddEntry(Assembler* assm, const RelocInfo& rinfo);
void Relocate(int pc_delta);
bool IsEmpty();
MaybeObject* Allocate(Heap* heap);
void Populate(Assembler* assm, ConstantPoolArray* constant_pool);
inline int count_of_64bit() const { return count_of_64bit_; }
inline int count_of_code_ptr() const { return count_of_code_ptr_; }
inline int count_of_heap_ptr() const { return count_of_heap_ptr_; }
inline int count_of_32bit() const { return count_of_32bit_; }
private:
bool Is64BitEntry(RelocInfo::Mode rmode);
bool Is32BitEntry(RelocInfo::Mode rmode);
bool IsCodePtrEntry(RelocInfo::Mode rmode);
bool IsHeapPtrEntry(RelocInfo::Mode rmode);
std::vector<RelocInfo> entries_;
std::vector<int> merged_indexes_;
int count_of_64bit_;
int count_of_code_ptr_;
int count_of_heap_ptr_;
int count_of_32bit_;
};
extern const Instr kMovLrPc; extern const Instr kMovLrPc;
extern const Instr kLdrPCMask; extern const Instr kLdrPCMask;
extern const Instr kLdrPCPattern; extern const Instr kLdrPCPattern;
extern const Instr kLdrPpMask;
extern const Instr kLdrPpPattern;
extern const Instr kBlxRegMask; extern const Instr kBlxRegMask;
extern const Instr kBlxRegPattern; extern const Instr kBlxRegPattern;
extern const Instr kBlxIp; extern const Instr kBlxIp;
@ -1413,6 +1449,8 @@ class Assembler : public AssemblerBase {
static int GetBranchOffset(Instr instr); static int GetBranchOffset(Instr instr);
static bool IsLdrRegisterImmediate(Instr instr); static bool IsLdrRegisterImmediate(Instr instr);
static bool IsVldrDRegisterImmediate(Instr instr); static bool IsVldrDRegisterImmediate(Instr instr);
static bool IsLdrPpImmediateOffset(Instr instr);
static bool IsVldrDPpImmediateOffset(Instr instr);
static int GetLdrRegisterImmediateOffset(Instr instr); static int GetLdrRegisterImmediateOffset(Instr instr);
static int GetVldrDRegisterImmediateOffset(Instr instr); static int GetVldrDRegisterImmediateOffset(Instr instr);
static Instr SetLdrRegisterImmediateOffset(Instr instr, int offset); static Instr SetLdrRegisterImmediateOffset(Instr instr, int offset);
@ -1458,6 +1496,12 @@ class Assembler : public AssemblerBase {
// Check if is time to emit a constant pool. // Check if is time to emit a constant pool.
void CheckConstPool(bool force_emit, bool require_jump); void CheckConstPool(bool force_emit, bool require_jump);
// Allocate a constant pool of the correct size for the generated code.
MaybeObject* AllocateConstantPool(Heap* heap);
// Generate the constant pool for the generated code.
void PopulateConstantPool(ConstantPoolArray* constant_pool);
bool can_use_constant_pool() const { bool can_use_constant_pool() const {
return is_constant_pool_available() && !constant_pool_full_; return is_constant_pool_available() && !constant_pool_full_;
} }
@ -1584,6 +1628,8 @@ class Assembler : public AssemblerBase {
// Number of pending reloc info entries in the 64 bits buffer. // Number of pending reloc info entries in the 64 bits buffer.
int num_pending_64_bit_reloc_info_; int num_pending_64_bit_reloc_info_;
ConstantPoolBuilder constant_pool_builder_;
// The bound position, before this we cannot do instruction elimination. // The bound position, before this we cannot do instruction elimination.
int last_bound_pos_; int last_bound_pos_;
@ -1622,10 +1668,9 @@ class Assembler : public AssemblerBase {
}; };
// Record reloc info for current pc_ // Record reloc info for current pc_
void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0, void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
UseConstantPoolMode mode = USE_CONSTANT_POOL); void RecordRelocInfo(const RelocInfo& rinfo);
void RecordRelocInfo(double data); void ConstantPoolAddEntry(const RelocInfo& rinfo);
void RecordRelocInfoConstantPoolEntryHelper(const RelocInfo& rinfo);
friend class RelocInfo; friend class RelocInfo;
friend class CodePatcher; friend class CodePatcher;

View File

@ -962,20 +962,26 @@ void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
// Load deoptimization data from the code object. // Load deoptimization data from the code object.
// <deopt_data> = <code>[#deoptimization_data_offset] // <deopt_data> = <code>[#deoptimization_data_offset]
__ ldr(r1, MemOperand(r0, Code::kDeoptimizationDataOffset - kHeapObjectTag)); __ ldr(r1, FieldMemOperand(r0, Code::kDeoptimizationDataOffset));
// Load the OSR entrypoint offset from the deoptimization data. { ConstantPoolUnavailableScope constant_pool_unavailable(masm);
// <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset] if (FLAG_enable_ool_constant_pool) {
__ ldr(r1, MemOperand(r1, FixedArray::OffsetOfElementAt( __ ldr(pp, FieldMemOperand(r0, Code::kConstantPoolOffset));
DeoptimizationInputData::kOsrPcOffsetIndex) - kHeapObjectTag)); }
// Compute the target address = code_obj + header_size + osr_offset // Load the OSR entrypoint offset from the deoptimization data.
// <entry_addr> = <code_obj> + #header_size + <osr_offset> // <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset]
__ add(r0, r0, Operand::SmiUntag(r1)); __ ldr(r1, FieldMemOperand(r1, FixedArray::OffsetOfElementAt(
__ add(lr, r0, Operand(Code::kHeaderSize - kHeapObjectTag)); DeoptimizationInputData::kOsrPcOffsetIndex)));
// And "return" to the OSR entry point of the function. // Compute the target address = code_obj + header_size + osr_offset
__ Ret(); // <entry_addr> = <code_obj> + #header_size + <osr_offset>
__ add(r0, r0, Operand::SmiUntag(r1));
__ add(lr, r0, Operand(Code::kHeaderSize - kHeapObjectTag));
// And "return" to the OSR entry point of the function.
__ Ret();
}
} }

View File

@ -1777,7 +1777,7 @@ void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
Isolate* isolate = masm->isolate(); Isolate* isolate = masm->isolate();
int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY; int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
if (FLAG_enable_ool_constant_pool) { if (FLAG_enable_ool_constant_pool) {
__ mov(r8, Operand(Smi::FromInt(marker))); __ mov(r8, Operand(isolate->factory()->empty_constant_pool_array()));
} }
__ mov(r7, Operand(Smi::FromInt(marker))); __ mov(r7, Operand(Smi::FromInt(marker)));
__ mov(r6, Operand(Smi::FromInt(marker))); __ mov(r6, Operand(Smi::FromInt(marker)));

View File

@ -4835,8 +4835,7 @@ static Address GetInterruptImmediateLoadAddress(Address pc) {
load_address -= Assembler::kInstrSize; load_address -= Assembler::kInstrSize;
ASSERT(Assembler::IsMovW(Memory::int32_at(load_address))); ASSERT(Assembler::IsMovW(Memory::int32_at(load_address)));
} else { } else {
// TODO(rmcilroy): uncomment when IsLdrPpImmediateOffset lands. ASSERT(Assembler::IsLdrPpImmediateOffset(Memory::int32_at(load_address)));
// ASSERT(IsLdrPpImmediateOffset(Memory::int32_at(load_address)));
} }
return load_address; return load_address;
} }

View File

@ -133,6 +133,10 @@ void MacroAssembler::Call(Address target,
set_predictable_code_size(true); set_predictable_code_size(true);
} }
// Check the expected size before generating code to ensure we assume the same
// constant pool availability (e.g., whether constant pool is full or not).
int expected_size = CallSize(target, rmode, cond);
// Call sequence on V7 or later may be : // Call sequence on V7 or later may be :
// movw ip, #... @ call address low 16 // movw ip, #... @ call address low 16
// movt ip, #... @ call address high 16 // movt ip, #... @ call address high 16
@ -153,7 +157,7 @@ void MacroAssembler::Call(Address target,
mov(ip, Operand(reinterpret_cast<int32_t>(target), rmode)); mov(ip, Operand(reinterpret_cast<int32_t>(target), rmode));
blx(ip, cond); blx(ip, cond);
ASSERT_EQ(CallSize(target, rmode, cond), SizeOfCodeGeneratedSince(&start)); ASSERT_EQ(expected_size, SizeOfCodeGeneratedSince(&start));
if (mode == NEVER_INLINE_TARGET_ADDRESS) { if (mode == NEVER_INLINE_TARGET_ADDRESS) {
set_predictable_code_size(old_predictable_code_size); set_predictable_code_size(old_predictable_code_size);
} }
@ -1054,6 +1058,8 @@ int MacroAssembler::ActivationFrameAlignment() {
void MacroAssembler::LeaveExitFrame(bool save_doubles, void MacroAssembler::LeaveExitFrame(bool save_doubles,
Register argument_count, Register argument_count,
bool restore_context) { bool restore_context) {
ConstantPoolUnavailableScope constant_pool_unavailable(this);
// Optionally restore all double registers. // Optionally restore all double registers.
if (save_doubles) { if (save_doubles) {
// Calculate the stack location of the saved doubles and restore them. // Calculate the stack location of the saved doubles and restore them.
@ -1068,7 +1074,6 @@ void MacroAssembler::LeaveExitFrame(bool save_doubles,
mov(ip, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate()))); mov(ip, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
str(r3, MemOperand(ip)); str(r3, MemOperand(ip));
// Restore current context from top and clear it in debug mode. // Restore current context from top and clear it in debug mode.
if (restore_context) { if (restore_context) {
mov(ip, Operand(ExternalReference(Isolate::kContextAddress, isolate()))); mov(ip, Operand(ExternalReference(Isolate::kContextAddress, isolate())));
@ -1375,6 +1380,11 @@ void MacroAssembler::JumpToHandlerEntry() {
// Compute the handler entry address and jump to it. The handler table is // Compute the handler entry address and jump to it. The handler table is
// a fixed array of (smi-tagged) code offsets. // a fixed array of (smi-tagged) code offsets.
// r0 = exception, r1 = code object, r2 = state. // r0 = exception, r1 = code object, r2 = state.
ConstantPoolUnavailableScope constant_pool_unavailable(this);
if (FLAG_enable_ool_constant_pool) {
ldr(pp, FieldMemOperand(r1, Code::kConstantPoolOffset)); // Constant pool.
}
ldr(r3, FieldMemOperand(r1, Code::kHandlerTableOffset)); // Handler table. ldr(r3, FieldMemOperand(r1, Code::kHandlerTableOffset)); // Handler table.
add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
mov(r2, Operand(r2, LSR, StackHandler::kKindWidth)); // Handler index. mov(r2, Operand(r2, LSR, StackHandler::kKindWidth)); // Handler index.
@ -3555,22 +3565,31 @@ void MacroAssembler::CallCFunctionHelper(Register function,
void MacroAssembler::GetRelocatedValueLocation(Register ldr_location, void MacroAssembler::GetRelocatedValueLocation(Register ldr_location,
Register result) { Register result) {
const uint32_t kLdrOffsetMask = (1 << 12) - 1; const uint32_t kLdrOffsetMask = (1 << 12) - 1;
const int32_t kPCRegOffset = 2 * kPointerSize;
ldr(result, MemOperand(ldr_location)); ldr(result, MemOperand(ldr_location));
if (emit_debug_code()) { if (emit_debug_code()) {
// Check that the instruction is a ldr reg, [pc + offset] . // Check that the instruction is a ldr reg, [<pc or pp> + offset] .
and_(result, result, Operand(kLdrPCPattern)); if (FLAG_enable_ool_constant_pool) {
cmp(result, Operand(kLdrPCPattern)); and_(result, result, Operand(kLdrPpPattern));
Check(eq, kTheInstructionToPatchShouldBeALoadFromPc); cmp(result, Operand(kLdrPpPattern));
Check(eq, kTheInstructionToPatchShouldBeALoadFromPp);
} else {
and_(result, result, Operand(kLdrPCPattern));
cmp(result, Operand(kLdrPCPattern));
Check(eq, kTheInstructionToPatchShouldBeALoadFromPc);
}
// Result was clobbered. Restore it. // Result was clobbered. Restore it.
ldr(result, MemOperand(ldr_location)); ldr(result, MemOperand(ldr_location));
} }
// Get the address of the constant. // Get the address of the constant.
and_(result, result, Operand(kLdrOffsetMask)); and_(result, result, Operand(kLdrOffsetMask));
add(result, ldr_location, Operand(result)); if (FLAG_enable_ool_constant_pool) {
add(result, result, Operand(kPCRegOffset)); add(result, pp, Operand(result));
} else {
add(result, ldr_location, Operand(result));
add(result, result, Operand(Instruction::kPCReadOffset));
}
} }

View File

@ -375,6 +375,15 @@ class RelocInfo BASE_EMBEDDED {
} }
static inline int ModeMask(Mode mode) { return 1 << mode; } static inline int ModeMask(Mode mode) { return 1 << mode; }
// Returns true if the first RelocInfo has the same mode and raw data as the
// second one.
static inline bool IsEqual(RelocInfo first, RelocInfo second) {
return first.rmode() == second.rmode() &&
(first.rmode() == RelocInfo::NONE64 ?
first.raw_data64() == second.raw_data64() :
first.data() == second.data());
}
// Accessors // Accessors
byte* pc() const { return pc_; } byte* pc() const { return pc_; }
void set_pc(byte* pc) { pc_ = pc; } void set_pc(byte* pc) { pc_ = pc; }

View File

@ -4047,12 +4047,20 @@ MaybeObject* Heap::CreateCode(const CodeDesc& desc,
bool immovable, bool immovable,
bool crankshafted, bool crankshafted,
int prologue_offset) { int prologue_offset) {
// Allocate ByteArray before the Code object, so that we do not risk // Allocate ByteArray and ConstantPoolArray before the Code object, so that we
// leaving uninitialized Code object (and breaking the heap). // do not risk leaving uninitialized Code object (and breaking the heap).
ByteArray* reloc_info; ByteArray* reloc_info;
MaybeObject* maybe_reloc_info = AllocateByteArray(desc.reloc_size, TENURED); MaybeObject* maybe_reloc_info = AllocateByteArray(desc.reloc_size, TENURED);
if (!maybe_reloc_info->To(&reloc_info)) return maybe_reloc_info; if (!maybe_reloc_info->To(&reloc_info)) return maybe_reloc_info;
ConstantPoolArray* constant_pool;
if (FLAG_enable_ool_constant_pool) {
MaybeObject* maybe_constant_pool = desc.origin->AllocateConstantPool(this);
if (!maybe_constant_pool->To(&constant_pool)) return maybe_constant_pool;
} else {
constant_pool = empty_constant_pool_array();
}
// Compute size. // Compute size.
int body_size = RoundUp(desc.instr_size, kObjectAlignment); int body_size = RoundUp(desc.instr_size, kObjectAlignment);
int obj_size = Code::SizeFor(body_size); int obj_size = Code::SizeFor(body_size);
@ -4099,7 +4107,11 @@ MaybeObject* Heap::CreateCode(const CodeDesc& desc,
if (code->kind() == Code::OPTIMIZED_FUNCTION) { if (code->kind() == Code::OPTIMIZED_FUNCTION) {
code->set_marked_for_deoptimization(false); code->set_marked_for_deoptimization(false);
} }
code->set_constant_pool(empty_constant_pool_array());
if (FLAG_enable_ool_constant_pool) {
desc.origin->PopulateConstantPool(constant_pool);
}
code->set_constant_pool(constant_pool);
#ifdef ENABLE_DEBUGGER_SUPPORT #ifdef ENABLE_DEBUGGER_SUPPORT
if (code->kind() == Code::FUNCTION) { if (code->kind() == Code::FUNCTION) {
@ -4130,9 +4142,20 @@ MaybeObject* Heap::CreateCode(const CodeDesc& desc,
MaybeObject* Heap::CopyCode(Code* code) { MaybeObject* Heap::CopyCode(Code* code) {
MaybeObject* maybe_result;
Object* new_constant_pool;
if (FLAG_enable_ool_constant_pool &&
code->constant_pool() != empty_constant_pool_array()) {
// Copy the constant pool, since edits to the copied code may modify
// the constant pool.
maybe_result = CopyConstantPoolArray(code->constant_pool());
if (!maybe_result->ToObject(&new_constant_pool)) return maybe_result;
} else {
new_constant_pool = empty_constant_pool_array();
}
// Allocate an object the same size as the code object. // Allocate an object the same size as the code object.
int obj_size = code->Size(); int obj_size = code->Size();
MaybeObject* maybe_result;
if (obj_size > code_space()->AreaSize()) { if (obj_size > code_space()->AreaSize()) {
maybe_result = lo_space_->AllocateRaw(obj_size, EXECUTABLE); maybe_result = lo_space_->AllocateRaw(obj_size, EXECUTABLE);
} else { } else {
@ -4146,8 +4169,12 @@ MaybeObject* Heap::CopyCode(Code* code) {
Address old_addr = code->address(); Address old_addr = code->address();
Address new_addr = reinterpret_cast<HeapObject*>(result)->address(); Address new_addr = reinterpret_cast<HeapObject*>(result)->address();
CopyBlock(new_addr, old_addr, obj_size); CopyBlock(new_addr, old_addr, obj_size);
// Relocate the copy.
Code* new_code = Code::cast(result); Code* new_code = Code::cast(result);
// Update the constant pool.
new_code->set_constant_pool(new_constant_pool);
// Relocate the copy.
ASSERT(!isolate_->code_range()->exists() || ASSERT(!isolate_->code_range()->exists() ||
isolate_->code_range()->contains(code->address())); isolate_->code_range()->contains(code->address()));
new_code->Relocate(new_addr - old_addr); new_code->Relocate(new_addr - old_addr);
@ -4156,8 +4183,8 @@ MaybeObject* Heap::CopyCode(Code* code) {
MaybeObject* Heap::CopyCode(Code* code, Vector<byte> reloc_info) { MaybeObject* Heap::CopyCode(Code* code, Vector<byte> reloc_info) {
// Allocate ByteArray before the Code object, so that we do not risk // Allocate ByteArray and ConstantPoolArray before the Code object, so that we
// leaving uninitialized Code object (and breaking the heap). // do not risk leaving uninitialized Code object (and breaking the heap).
Object* reloc_info_array; Object* reloc_info_array;
{ MaybeObject* maybe_reloc_info_array = { MaybeObject* maybe_reloc_info_array =
AllocateByteArray(reloc_info.length(), TENURED); AllocateByteArray(reloc_info.length(), TENURED);
@ -4165,6 +4192,18 @@ MaybeObject* Heap::CopyCode(Code* code, Vector<byte> reloc_info) {
return maybe_reloc_info_array; return maybe_reloc_info_array;
} }
} }
Object* new_constant_pool;
if (FLAG_enable_ool_constant_pool &&
code->constant_pool() != empty_constant_pool_array()) {
// Copy the constant pool, since edits to the copied code may modify
// the constant pool.
MaybeObject* maybe_constant_pool =
CopyConstantPoolArray(code->constant_pool());
if (!maybe_constant_pool->ToObject(&new_constant_pool))
return maybe_constant_pool;
} else {
new_constant_pool = empty_constant_pool_array();
}
int new_body_size = RoundUp(code->instruction_size(), kObjectAlignment); int new_body_size = RoundUp(code->instruction_size(), kObjectAlignment);
@ -4194,6 +4233,9 @@ MaybeObject* Heap::CopyCode(Code* code, Vector<byte> reloc_info) {
Code* new_code = Code::cast(result); Code* new_code = Code::cast(result);
new_code->set_relocation_info(ByteArray::cast(reloc_info_array)); new_code->set_relocation_info(ByteArray::cast(reloc_info_array));
// Update constant pool.
new_code->set_constant_pool(new_constant_pool);
// Copy patched rinfo. // Copy patched rinfo.
CopyBytes(new_code->relocation_start(), CopyBytes(new_code->relocation_start(),
reloc_info.start(), reloc_info.start(),
@ -5310,7 +5352,7 @@ MaybeObject* Heap::AllocateConstantPoolArray(int number_of_int64_entries,
} }
if (number_of_heap_ptr_entries > 0) { if (number_of_heap_ptr_entries > 0) {
int offset = int offset =
constant_pool->OffsetOfElementAt(constant_pool->first_code_ptr_index()); constant_pool->OffsetOfElementAt(constant_pool->first_heap_ptr_index());
MemsetPointer( MemsetPointer(
HeapObject::RawField(constant_pool, offset), HeapObject::RawField(constant_pool, offset),
undefined_value(), undefined_value(),

View File

@ -2717,6 +2717,19 @@ void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
} }
MaybeObject* Assembler::AllocateConstantPool(Heap* heap) {
// No out-of-line constant pool support.
UNREACHABLE();
return NULL;
}
void Assembler::PopulateConstantPool(ConstantPoolArray* constant_pool) {
// No out-of-line constant pool support.
UNREACHABLE();
}
#ifdef GENERATED_CODE_COVERAGE #ifdef GENERATED_CODE_COVERAGE
static FILE* coverage_log = NULL; static FILE* coverage_log = NULL;

View File

@ -1189,6 +1189,12 @@ class Assembler : public AssemblerBase {
byte byte_at(int pos) { return buffer_[pos]; } byte byte_at(int pos) { return buffer_[pos]; }
void set_byte_at(int pos, byte value) { buffer_[pos] = value; } void set_byte_at(int pos, byte value) { buffer_[pos] = value; }
// Allocate a constant pool of the correct size for the generated code.
MaybeObject* AllocateConstantPool(Heap* heap);
// Generate the constant pool for the generated code.
void PopulateConstantPool(ConstantPoolArray* constant_pool);
protected: protected:
void emit_sse_operand(XMMRegister reg, const Operand& adr); void emit_sse_operand(XMMRegister reg, const Operand& adr);
void emit_sse_operand(XMMRegister dst, XMMRegister src); void emit_sse_operand(XMMRegister dst, XMMRegister src);

View File

@ -1326,6 +1326,8 @@ class MaybeObject BASE_EMBEDDED {
V(kTheInstructionShouldBeAnOri, "The instruction should be an ori") \ V(kTheInstructionShouldBeAnOri, "The instruction should be an ori") \
V(kTheInstructionToPatchShouldBeALoadFromPc, \ V(kTheInstructionToPatchShouldBeALoadFromPc, \
"The instruction to patch should be a load from pc") \ "The instruction to patch should be a load from pc") \
V(kTheInstructionToPatchShouldBeALoadFromPp, \
"The instruction to patch should be a load from pp") \
V(kTheInstructionToPatchShouldBeAnLdrLiteral, \ V(kTheInstructionToPatchShouldBeAnLdrLiteral, \
"The instruction to patch should be a ldr literal") \ "The instruction to patch should be a ldr literal") \
V(kTheInstructionToPatchShouldBeALui, \ V(kTheInstructionToPatchShouldBeALui, \

View File

@ -3199,6 +3199,19 @@ void Assembler::RecordComment(const char* msg, bool force) {
} }
MaybeObject* Assembler::AllocateConstantPool(Heap* heap) {
// No out-of-line constant pool support.
UNREACHABLE();
return NULL;
}
void Assembler::PopulateConstantPool(ConstantPoolArray* constant_pool) {
// No out-of-line constant pool support.
UNREACHABLE();
}
const int RelocInfo::kApplyMask = RelocInfo::kCodeTargetMask | const int RelocInfo::kApplyMask = RelocInfo::kCodeTargetMask |
1 << RelocInfo::RUNTIME_ENTRY | 1 << RelocInfo::RUNTIME_ENTRY |
1 << RelocInfo::INTERNAL_REFERENCE | 1 << RelocInfo::INTERNAL_REFERENCE |

View File

@ -1462,6 +1462,12 @@ class Assembler : public AssemblerBase {
// Use --code-comments to enable. // Use --code-comments to enable.
void RecordComment(const char* msg, bool force = false); void RecordComment(const char* msg, bool force = false);
// Allocate a constant pool of the correct size for the generated code.
MaybeObject* AllocateConstantPool(Heap* heap);
// Generate the constant pool for the generated code.
void PopulateConstantPool(ConstantPoolArray* constant_pool);
// Writes a single word of data in the code stream. // Writes a single word of data in the code stream.
// Used for inline tables, e.g., jump-tables. // Used for inline tables, e.g., jump-tables.
void db(uint8_t data); void db(uint8_t data);