[turbofan] Replace information about uses by explicit truncation in representation selection.

This change replaces the bitwise masking of uses by storing the most general truncation for all uses.

Review URL: https://codereview.chromium.org/1464763003

Cr-Commit-Position: refs/heads/master@{#32248}
This commit is contained in:
jarin 2015-11-25 00:00:49 -08:00 committed by Commit bot
parent 47e1ab78d7
commit 9564ffe9c1
3 changed files with 281 additions and 164 deletions

View File

@ -16,10 +16,137 @@ namespace v8 {
namespace internal {
namespace compiler {
class Truncation final {
public:
// Constructors.
static Truncation None() { return Truncation(TruncationKind::kNone); }
static Truncation Bool() { return Truncation(TruncationKind::kBool); }
static Truncation Word32() { return Truncation(TruncationKind::kWord32); }
static Truncation Word64() { return Truncation(TruncationKind::kWord64); }
static Truncation Float32() { return Truncation(TruncationKind::kFloat32); }
static Truncation Float64() { return Truncation(TruncationKind::kFloat64); }
static Truncation Any() { return Truncation(TruncationKind::kAny); }
static Truncation Generalize(Truncation t1, Truncation t2) {
return Truncation(Generalize(t1.kind(), t2.kind()));
}
// Queries.
bool TruncatesToWord32() const {
return LessGeneral(kind_, TruncationKind::kWord32);
}
bool TruncatesNaNToZero() {
return LessGeneral(kind_, TruncationKind::kWord32) ||
LessGeneral(kind_, TruncationKind::kBool);
}
bool TruncatesUndefinedToZeroOrNaN() {
return LessGeneral(kind_, TruncationKind::kFloat64) ||
LessGeneral(kind_, TruncationKind::kWord64);
}
// Operators.
bool operator==(Truncation other) const { return kind() == other.kind(); }
bool operator!=(Truncation other) const { return !(*this == other); }
// Debug utilities.
const char* description() {
switch (kind()) {
case TruncationKind::kNone:
return "no-value-use";
case TruncationKind::kBool:
return "truncate-to-bool";
case TruncationKind::kWord32:
return "truncate-to-word32";
case TruncationKind::kWord64:
return "truncate-to-word64";
case TruncationKind::kFloat32:
return "truncate-to-float32";
case TruncationKind::kFloat64:
return "truncate-to-float64";
case TruncationKind::kAny:
return "no-truncation";
}
UNREACHABLE();
return nullptr;
}
private:
enum class TruncationKind : uint8_t {
kNone,
kBool,
kWord32,
kWord64,
kFloat32,
kFloat64,
kAny
};
explicit Truncation(TruncationKind kind) : kind_(kind) {}
TruncationKind kind() const { return kind_; }
TruncationKind kind_;
// Partial order for truncations:
//
// kWord64 kAny
// ^ ^
// \ |
// \ kFloat64 <--+
// \ ^ ^ |
// \ / | |
// kWord32 kFloat32 kBool
// ^ ^ ^
// \ | /
// \ | /
// \ | /
// \ | /
// \ | /
// kNone
static TruncationKind Generalize(TruncationKind rep1, TruncationKind rep2) {
if (LessGeneral(rep1, rep2)) return rep2;
if (LessGeneral(rep2, rep1)) return rep1;
// Handle the generalization of float64-representable values.
if (LessGeneral(rep1, TruncationKind::kFloat64) &&
LessGeneral(rep2, TruncationKind::kFloat64)) {
return TruncationKind::kFloat64;
}
// All other combinations are illegal.
FATAL("Tried to combine incompatible representations");
return TruncationKind::kNone;
}
static bool LessGeneral(TruncationKind rep1, TruncationKind rep2) {
switch (rep1) {
case TruncationKind::kNone:
return true;
case TruncationKind::kBool:
return rep2 == TruncationKind::kBool || rep2 == TruncationKind::kAny;
case TruncationKind::kWord32:
return rep2 == TruncationKind::kWord32 ||
rep2 == TruncationKind::kWord64 ||
rep2 == TruncationKind::kFloat64 || rep2 == TruncationKind::kAny;
case TruncationKind::kWord64:
return rep2 == TruncationKind::kWord64;
case TruncationKind::kFloat32:
return rep2 == TruncationKind::kFloat32 ||
rep2 == TruncationKind::kFloat64 || rep2 == TruncationKind::kAny;
case TruncationKind::kFloat64:
return rep2 == TruncationKind::kFloat64 || rep2 == TruncationKind::kAny;
case TruncationKind::kAny:
return rep2 == TruncationKind::kAny;
}
UNREACHABLE();
return false;
}
};
// Contains logic related to changing the representation of values for constants
// and other nodes, as well as lowering Simplified->Machine operators.
// Eagerly folds any representation changes for constants.
class RepresentationChanger {
class RepresentationChanger final {
public:
RepresentationChanger(JSGraph* jsgraph, Isolate* isolate)
: jsgraph_(jsgraph),
@ -32,34 +159,40 @@ class RepresentationChanger {
return (type & (kRepWord8 | kRepWord16 | kRepWord32)) != 0;
}
// Changes representation from {output_type} to {use_rep}. The {truncation}
// parameter is only used for sanity checking - if the changer cannot figure
// out signedness for the word32->float64 conversion, then we check that the
// uses truncate to word32 (so they do not care about signedness).
Node* GetRepresentationFor(Node* node, MachineTypeUnion output_type,
MachineTypeUnion use_type) {
MachineTypeUnion use_rep,
Truncation truncation = Truncation::None()) {
DCHECK((use_rep & kRepMask) == use_rep);
if (!base::bits::IsPowerOfTwo32(output_type & kRepMask)) {
// There should be only one output representation.
return TypeError(node, output_type, use_type);
return TypeError(node, output_type, use_rep);
}
if ((use_type & kRepMask) == (output_type & kRepMask)) {
if (use_rep == (output_type & kRepMask)) {
// Representations are the same. That's a no-op.
return node;
}
if (IsWord(use_type) && IsWord(output_type)) {
if (IsWord(use_rep) && IsWord(output_type)) {
// Both are words less than or equal to 32-bits.
// Since loads of integers from memory implicitly sign or zero extend the
// value to the full machine word size and stores implicitly truncate,
// no representation change is necessary.
return node;
}
if (use_type & kRepTagged) {
if (use_rep & kRepTagged) {
return GetTaggedRepresentationFor(node, output_type);
} else if (use_type & kRepFloat32) {
return GetFloat32RepresentationFor(node, output_type, use_type);
} else if (use_type & kRepFloat64) {
return GetFloat64RepresentationFor(node, output_type, use_type);
} else if (use_type & kRepBit) {
} else if (use_rep & kRepFloat32) {
return GetFloat32RepresentationFor(node, output_type, truncation);
} else if (use_rep & kRepFloat64) {
return GetFloat64RepresentationFor(node, output_type, truncation);
} else if (use_rep & kRepBit) {
return GetBitRepresentationFor(node, output_type);
} else if (IsWord(use_type)) {
} else if (IsWord(use_rep)) {
return GetWord32RepresentationFor(node, output_type);
} else if (use_type & kRepWord64) {
} else if (use_rep & kRepWord64) {
return GetWord64RepresentationFor(node, output_type);
} else {
return node;
@ -116,7 +249,7 @@ class RepresentationChanger {
}
Node* GetFloat32RepresentationFor(Node* node, MachineTypeUnion output_type,
MachineTypeUnion truncation) {
Truncation truncation) {
// Eagerly fold representation changes for constants.
switch (node->opcode()) {
case IrOpcode::kFloat64Constant:
@ -146,8 +279,7 @@ class RepresentationChanger {
} else {
// Either the output is int32 or the uses only care about the
// low 32 bits (so we can pick int32 safely).
DCHECK(output_type & kTypeInt32 ||
!(truncation & ~(kTypeInt32 | kTypeUint32 | kRepMask)));
DCHECK(output_type & kTypeInt32 || truncation.TruncatesToWord32());
op = machine()->ChangeInt32ToFloat64();
}
// int32 -> float64 -> float32
@ -167,7 +299,7 @@ class RepresentationChanger {
}
Node* GetFloat64RepresentationFor(Node* node, MachineTypeUnion output_type,
MachineTypeUnion use_type) {
Truncation truncation) {
// Eagerly fold representation changes for constants.
switch (node->opcode()) {
case IrOpcode::kNumberConstant:
@ -197,8 +329,7 @@ class RepresentationChanger {
} else {
// Either the output is int32 or the uses only care about the
// low 32 bits (so we can pick int32 safely).
DCHECK(output_type & kTypeInt32 ||
!(use_type & ~(kTypeInt32 | kTypeUint32 | kRepMask)));
DCHECK(output_type & kTypeInt32 || truncation.TruncatesToWord32());
op = machine()->ChangeInt32ToFloat64();
}
} else if (output_type & kRepTagged) {

View File

@ -72,67 +72,57 @@ namespace {
// need the signedness information to produce the correct value.
class UseInfo {
public:
// Constructors
// ================================================================
// Uses truncating to the preferred representation.
UseInfo(MachineType preferred, Truncation truncation)
: preferred_(preferred), truncation_(truncation) {
DCHECK(preferred == (preferred & kRepMask));
}
static UseInfo TruncatingWord32() {
return UseInfo(kTypeInt32 | kTypeUint32 | kRepWord32);
return UseInfo(kRepWord32, Truncation::Word32());
}
static UseInfo TruncatingWord64() {
return UseInfo(kTypeInt64 | kTypeUint64 | kRepWord64);
return UseInfo(kRepWord64, Truncation::Word64());
}
static UseInfo Bool() { return UseInfo(kRepBit, Truncation::Bool()); }
static UseInfo Float32() {
return UseInfo(kRepFloat32, Truncation::Float32());
}
static UseInfo Float64() {
return UseInfo(kRepFloat64, Truncation::Float64());
}
static UseInfo Bool() { return UseInfo(kMachBool); }
static UseInfo Float32() { return UseInfo(kMachFloat32); }
static UseInfo Float64() { return UseInfo(kMachFloat64); }
static UseInfo PointerInt() {
return kPointerSize == 4 ? TruncatingWord32() : TruncatingWord64();
}
static UseInfo AnyTagged() { return UseInfo(kRepTagged, Truncation::Any()); }
// Non-truncating uses.
static UseInfo AnyTagged() { return UseInfo(kMachAnyTagged); }
static UseInfo Any() { return UseInfo(kTypeAny); }
// Undetermined representation.
static UseInfo Any() { return UseInfo(kMachNone, Truncation::Any()); }
static UseInfo None() { return UseInfo(kMachNone, Truncation::None()); }
// Ignored-value 'use'.
static UseInfo None() { return UseInfo(kMachNone); }
// Truncating to a representation that is smaller than the preferred
// Truncation to a representation that is smaller than the preferred
// one.
static UseInfo Float64TruncatingToWord32() {
return UseInfo(kRepFloat64 | kTypeInt32 | kTypeUint32);
return UseInfo(kRepFloat64, Truncation::Word32());
}
static UseInfo Word64TruncatingToWord32() {
return UseInfo(kRepWord64 | kTypeInt32 | kTypeUint32);
return UseInfo(kRepWord64, Truncation::Word32());
}
static UseInfo AnyTruncatingToBool() { return UseInfo(kTypeBool); }
UseInfo(MachineTypeUnion representation, MachineTypeUnion truncation)
: type_(representation | truncation) {
DCHECK(base::bits::CountPopulation32(representation & kRepMask) == 1);
DCHECK((representation & kTypeMask) == 0);
DCHECK((truncation & kRepMask) == 0);
// TODO(jarin) Check/normalize truncation?
static UseInfo AnyTruncatingToBool() {
return UseInfo(kMachNone, Truncation::Bool());
}
// Queries
// ================================================================
MachineType GetRepresentation() const {
return static_cast<MachineType>(type_ & kRepMask);
}
// This should only be used by the Enqueue method.
MachineTypeUnion machine_type() const { return type_; }
MachineType preferred() const { return preferred_; }
Truncation truncation() const { return truncation_; }
private:
explicit UseInfo(MachineTypeUnion type) : type_(type) {}
MachineTypeUnion type_;
MachineType preferred_;
Truncation truncation_;
};
UseInfo UseInfoFromMachineType(MachineType type) {
MachineTypeUnion rep = RepresentationOf(type);
DCHECK((rep & kTypeMask) == 0);
if (rep & kRepTagged) return UseInfo::AnyTagged();
if (rep & kRepFloat64) {
DCHECK((rep & kRepWord64) == 0);
@ -169,11 +159,29 @@ UseInfo UseInfoForBasePointer(const ElementAccess& access) {
class RepresentationSelector {
public:
// Information for each node tracked during the fixpoint.
struct NodeInfo {
MachineTypeUnion use : 15; // Union of all usages for the node.
bool queued : 1; // Bookkeeping for the traversal.
bool visited : 1; // Bookkeeping for the traversal.
MachineTypeUnion output : 15; // Output type of the node.
class NodeInfo {
public:
// Adds new use to the node. Returns true if something has changed
// and the node has to be requeued.
bool AddUse(UseInfo info) {
Truncation old_truncation = truncation_;
truncation_ = Truncation::Generalize(truncation_, info.truncation());
return truncation_ != old_truncation;
}
void set_queued(bool value) { queued_ = value; }
bool queued() const { return queued_; }
void set_visited() { visited_ = true; }
bool visited() const { return visited_; }
Truncation truncation() const { return truncation_; }
void set_output_type(MachineTypeUnion type) { output_ = type; }
MachineTypeUnion output_type() const { return output_; }
private:
bool queued_ = false; // Bookkeeping for the traversal.
bool visited_ = false; // Bookkeeping for the traversal.
MachineTypeUnion output_ = kMachNone; // Output type of the node.
Truncation truncation_ = Truncation::None(); // Information about uses.
};
RepresentationSelector(JSGraph* jsgraph, Zone* zone,
@ -181,15 +189,13 @@ class RepresentationSelector {
SourcePositionTable* source_positions)
: jsgraph_(jsgraph),
count_(jsgraph->graph()->NodeCount()),
info_(zone->NewArray<NodeInfo>(count_)),
info_(count_, zone),
nodes_(zone),
replacements_(zone),
phase_(PROPAGATE),
changer_(changer),
queue_(zone),
source_positions_(source_positions) {
memset(info_, 0, sizeof(NodeInfo) * count_);
safe_int_additive_range_ =
Type::Range(-std::pow(2.0, 52.0), std::pow(2.0, 52.0), zone);
}
@ -204,11 +210,11 @@ class RepresentationSelector {
Node* node = queue_.front();
NodeInfo* info = GetInfo(node);
queue_.pop();
info->queued = false;
info->set_queued(false);
TRACE(" visit #%d: %s\n", node->id(), node->op()->mnemonic());
VisitNode(node, info->use, NULL);
VisitNode(node, info->truncation(), NULL);
TRACE(" ==> output ");
PrintInfo(info->output);
PrintInfo(info->output_type());
TRACE("\n");
}
@ -218,11 +224,12 @@ class RepresentationSelector {
// Process nodes from the collected {nodes_} vector.
for (NodeVector::iterator i = nodes_.begin(); i != nodes_.end(); ++i) {
Node* node = *i;
NodeInfo* info = GetInfo(node);
TRACE(" visit #%d: %s\n", node->id(), node->op()->mnemonic());
// Reuse {VisitNode()} so the representation rules are in one place.
SourcePositionTable::Scope scope(
source_positions_, source_positions_->GetSourcePosition(node));
VisitNode(node, GetUseInfo(node), lowering);
VisitNode(node, info->truncation(), lowering);
}
// Perform the final replacements.
@ -242,34 +249,31 @@ class RepresentationSelector {
// Enqueue {node} if the {use} contains new information for that node.
// Add {node} to {nodes_} if this is the first time it's been visited.
void Enqueue(Node* node, UseInfo use_info = UseInfo::None()) {
MachineTypeUnion use = use_info.machine_type();
if (phase_ != PROPAGATE) return;
NodeInfo* info = GetInfo(node);
if (!info->visited) {
if (!info->visited()) {
// First visit of this node.
info->visited = true;
info->queued = true;
info->set_visited();
info->set_queued(true);
nodes_.push_back(node);
queue_.push(node);
TRACE(" initial: ");
info->use |= use;
PrintUseInfo(node);
info->AddUse(use_info);
PrintTruncation(info->truncation());
return;
}
TRACE(" queue?: ");
PrintUseInfo(node);
if ((info->use & use) != use) {
PrintTruncation(info->truncation());
if (info->AddUse(use_info)) {
// New usage information for the node is available.
if (!info->queued) {
if (!info->queued()) {
queue_.push(node);
info->queued = true;
info->set_queued(true);
TRACE(" added: ");
} else {
TRACE(" inqueue: ");
}
info->use |= use;
PrintUseInfo(node);
PrintTruncation(info->truncation());
}
}
@ -281,7 +285,7 @@ class RepresentationSelector {
// instruction.
DCHECK((output & kRepMask) == 0 ||
base::bits::IsPowerOfTwo32(output & kRepMask));
GetInfo(node)->output = output;
GetInfo(node)->set_output_type(output);
}
bool BothInputsAre(Node* node, Type* type) {
@ -297,7 +301,7 @@ class RepresentationSelector {
Enqueue(input, UseInfo::TruncatingWord32());
} else {
// In the change phase, insert a change before the use if necessary.
MachineTypeUnion output = GetInfo(input)->output;
MachineTypeUnion output = GetInfo(input)->output_type();
if ((output & (kRepBit | kRepWord8 | kRepWord16 | kRepWord32)) == 0) {
// Output representation doesn't match usage.
TRACE(" truncate-to-int32: #%d:%s(@%d #%d:%s) ", node->id(),
@ -319,10 +323,10 @@ class RepresentationSelector {
void ConvertInput(Node* node, int index, UseInfo use) {
Node* input = node->InputAt(index);
// In the change phase, insert a change before the use if necessary.
if (use.GetRepresentation() == kMachNone)
if (use.preferred() == kMachNone)
return; // No input requirement on the use.
MachineTypeUnion output = GetInfo(input)->output;
if ((output & kRepMask) != use.GetRepresentation()) {
MachineTypeUnion output = GetInfo(input)->output_type();
if ((output & kRepMask) != use.preferred()) {
// Output representation doesn't match usage.
TRACE(" change: #%d:%s(@%d #%d:%s) ", node->id(), node->op()->mnemonic(),
index, input->id(), input->op()->mnemonic());
@ -331,8 +335,8 @@ class RepresentationSelector {
TRACE(" to ");
PrintUseInfo(use);
TRACE("\n");
Node* n =
changer_->GetRepresentationFor(input, output, use.machine_type());
Node* n = changer_->GetRepresentationFor(input, output, use.preferred(),
use.truncation());
node->ReplaceInput(index, n);
}
}
@ -440,13 +444,13 @@ class RepresentationSelector {
}
// Infer representation for phi-like nodes.
static MachineType GetRepresentationForPhi(Node* node, MachineTypeUnion use) {
static MachineType GetRepresentationForPhi(Node* node, Truncation use) {
// Phis adapt to the output representation their uses demand.
Type* upper = NodeProperties::GetType(node);
if (upper->Is(Type::Signed32()) || upper->Is(Type::Unsigned32())) {
// We are within 32 bits range => pick kRepWord32.
return kRepWord32;
} else if (!CanObserveNonWord32(use)) {
} else if (use.TruncatesToWord32()) {
// We only use 32 bits.
return kRepWord32;
} else if (upper->Is(Type::Boolean())) {
@ -462,10 +466,10 @@ class RepresentationSelector {
}
// Helper for handling selects.
void VisitSelect(Node* node, MachineTypeUnion use,
void VisitSelect(Node* node, Truncation truncation,
SimplifiedLowering* lowering) {
ProcessInput(node, 0, UseInfo::Bool());
MachineType output = GetRepresentationForPhi(node, use);
MachineType output = GetRepresentationForPhi(node, truncation);
Type* upper = NodeProperties::GetType(node);
MachineType output_type =
@ -482,16 +486,16 @@ class RepresentationSelector {
}
}
// Convert inputs to the output representation of this phi, pass the
// use truncation along.
UseInfo input_use(output, use & kTypeMask);
// truncation truncation along.
UseInfo input_use(output, truncation);
ProcessInput(node, 1, input_use);
ProcessInput(node, 2, input_use);
}
// Helper for handling phis.
void VisitPhi(Node* node, MachineTypeUnion use,
void VisitPhi(Node* node, Truncation truncation,
SimplifiedLowering* lowering) {
MachineType output = GetRepresentationForPhi(node, use);
MachineType output = GetRepresentationForPhi(node, truncation);
Type* upper = NodeProperties::GetType(node);
MachineType output_type =
@ -509,8 +513,8 @@ class RepresentationSelector {
}
// Convert inputs to the output representation of this phi, pass the
// use truncation along.
UseInfo input_use(output, use & kTypeMask);
// truncation truncation along.
UseInfo input_use(output, truncation);
for (int i = 0; i < node->InputCount(); i++) {
ProcessInput(node, i, i < values ? input_use : UseInfo::None());
}
@ -550,7 +554,7 @@ class RepresentationSelector {
new (zone->New(sizeof(ZoneVector<MachineType>)))
ZoneVector<MachineType>(node->InputCount(), zone);
for (int i = 0; i < node->InputCount(); i++) {
MachineTypeUnion input_type = GetInfo(node->InputAt(i))->output;
MachineTypeUnion input_type = GetInfo(node->InputAt(i))->output_type();
(*types)[i] = static_cast<MachineType>(input_type);
}
NodeProperties::ChangeOp(node,
@ -571,34 +575,20 @@ class RepresentationSelector {
return changer_->Float64OperatorFor(node->opcode());
}
bool CanLowerToInt32Binop(Node* node, MachineTypeUnion use) {
bool CanLowerToInt32Binop(Node* node, Truncation use) {
return BothInputsAre(node, Type::Signed32()) &&
(!CanObserveNonWord32(use) ||
(use.TruncatesToWord32() ||
NodeProperties::GetType(node)->Is(Type::Signed32()));
}
bool CanLowerToWord32AdditiveBinop(Node* node, MachineTypeUnion use) {
bool CanLowerToWord32AdditiveBinop(Node* node, Truncation use) {
return BothInputsAre(node, safe_int_additive_range_) &&
!CanObserveNonWord32(use);
}
bool CanLowerToUint32Binop(Node* node, MachineTypeUnion use) {
return BothInputsAre(node, Type::Unsigned32()) &&
(!CanObserveNonWord32(use) ||
NodeProperties::GetType(node)->Is(Type::Unsigned32()));
}
static bool CanObserveNonWord32(MachineTypeUnion use) {
return (use & kTypeMask & ~(kTypeInt32 | kTypeUint32)) != 0;
}
static bool CanObserveNaN(MachineTypeUnion use) {
return (use & (kTypeNumber | kTypeAny)) != 0;
use.TruncatesToWord32();
}
// Dispatching routine for visiting the node {node} with the usage {use}.
// Depending on the operator, propagate new usage info to the inputs.
void VisitNode(Node* node, MachineTypeUnion use,
void VisitNode(Node* node, Truncation truncation,
SimplifiedLowering* lowering) {
switch (node->opcode()) {
//------------------------------------------------------------------
@ -638,9 +628,9 @@ class RepresentationSelector {
Enqueue(NodeProperties::GetControlInput(node, 0));
break;
case IrOpcode::kSelect:
return VisitSelect(node, use, lowering);
return VisitSelect(node, truncation, lowering);
case IrOpcode::kPhi:
return VisitPhi(node, use, lowering);
return VisitPhi(node, truncation, lowering);
case IrOpcode::kCall:
return VisitCall(node, lowering);
@ -663,7 +653,7 @@ class RepresentationSelector {
//------------------------------------------------------------------
case IrOpcode::kBooleanNot: {
if (lower()) {
MachineTypeUnion input = GetInfo(node->InputAt(0))->output;
MachineTypeUnion input = GetInfo(node->InputAt(0))->output_type();
if (input & kRepBit) {
// BooleanNot(x: kRepBit) => Word32Equal(x, #0)
node->AppendInput(jsgraph_->zone(), jsgraph_->Int32Constant(0));
@ -682,7 +672,7 @@ class RepresentationSelector {
}
case IrOpcode::kBooleanToNumber: {
if (lower()) {
MachineTypeUnion input = GetInfo(node->InputAt(0))->output;
MachineTypeUnion input = GetInfo(node->InputAt(0))->output_type();
if (input & kRepBit) {
// BooleanToNumber(x: kRepBit) => x
DeferReplacement(node, node->InputAt(0));
@ -721,7 +711,7 @@ class RepresentationSelector {
case IrOpcode::kNumberSubtract: {
// Add and subtract reduce to Int32Add/Sub if the inputs
// are already integers and all uses are truncating.
if (CanLowerToWord32AdditiveBinop(node, use)) {
if (CanLowerToWord32AdditiveBinop(node, truncation)) {
// => signed Int32Add/Sub
VisitInt32Binop(node);
if (lower()) NodeProperties::ChangeOp(node, Int32Op(node));
@ -735,7 +725,7 @@ class RepresentationSelector {
case IrOpcode::kNumberMultiply: {
NumberMatcher right(node->InputAt(1));
if (right.IsInRange(-1048576, 1048576)) { // must fit double mantissa.
if (CanLowerToInt32Binop(node, use)) {
if (CanLowerToInt32Binop(node, truncation)) {
// => signed Int32Mul
VisitInt32Binop(node);
if (lower()) NodeProperties::ChangeOp(node, Int32Op(node));
@ -748,13 +738,14 @@ class RepresentationSelector {
break;
}
case IrOpcode::kNumberDivide: {
if (CanLowerToInt32Binop(node, use)) {
if (CanLowerToInt32Binop(node, truncation)) {
// => signed Int32Div
VisitInt32Binop(node);
if (lower()) DeferReplacement(node, lowering->Int32Div(node));
break;
}
if (BothInputsAre(node, Type::Unsigned32()) && !CanObserveNaN(use)) {
if (BothInputsAre(node, Type::Unsigned32()) &&
truncation.TruncatesNaNToZero()) {
// => unsigned Uint32Div
VisitUint32Binop(node);
if (lower()) DeferReplacement(node, lowering->Uint32Div(node));
@ -766,13 +757,14 @@ class RepresentationSelector {
break;
}
case IrOpcode::kNumberModulus: {
if (CanLowerToInt32Binop(node, use)) {
if (CanLowerToInt32Binop(node, truncation)) {
// => signed Int32Mod
VisitInt32Binop(node);
if (lower()) DeferReplacement(node, lowering->Int32Mod(node));
break;
}
if (BothInputsAre(node, Type::Unsigned32()) && !CanObserveNaN(use)) {
if (BothInputsAre(node, Type::Unsigned32()) &&
truncation.TruncatesNaNToZero()) {
// => unsigned Uint32Mod
VisitUint32Binop(node);
if (lower()) DeferReplacement(node, lowering->Uint32Mod(node));
@ -901,21 +893,27 @@ class RepresentationSelector {
ProcessInput(node, 1, UseInfo::TruncatingWord32()); // offset
ProcessInput(node, 2, UseInfo::TruncatingWord32()); // length
ProcessRemainingInputs(node, 3);
// Tagged overrides everything if we have to do a typed array bounds
// check, because we may need to return undefined then.
MachineType output_type;
if (use & kRepTagged) {
output_type = kMachAnyTagged;
} else if (use & kRepFloat64) {
if (access.machine_type() & kRepFloat32) {
if (truncation.TruncatesUndefinedToZeroOrNaN()) {
if (truncation.TruncatesNaNToZero()) {
// If undefined is truncated to a non-NaN number, we can use
// the load's representation.
output_type = access.machine_type();
} else {
output_type = kMachFloat64;
// If undefined is truncated to a number, but the use can
// observe NaN, we need to output at least the float32
// representation.
if (access.machine_type() & kRepFloat32) {
output_type = access.machine_type();
} else {
output_type = kMachFloat64;
}
}
} else if (use & kRepFloat32) {
output_type = kMachFloat32;
} else {
output_type = access.machine_type();
// If undefined is not truncated away, we need to have the tagged
// representation.
output_type = kMachAnyTagged;
}
SetOutput(node, output_type);
if (lower()) lowering->DoLoadBuffer(node, output_type, changer_);
@ -1125,7 +1123,7 @@ class RepresentationSelector {
replacement->op()->mnemonic());
if (replacement->id() < count_ &&
GetInfo(replacement)->output == GetInfo(node)->output) {
GetInfo(replacement)->output_type() == GetInfo(node)->output_type()) {
// Replace with a previously existing node eagerly only if the type is the
// same.
node->ReplaceUses(replacement);
@ -1140,12 +1138,6 @@ class RepresentationSelector {
node->NullAllInputs(); // Node is now dead.
}
void PrintUseInfo(Node* node) {
TRACE("#%d:%-20s ", node->id(), node->op()->mnemonic());
PrintInfo(GetUseInfo(node));
TRACE("\n");
}
void PrintInfo(MachineTypeUnion info) {
if (FLAG_trace_representation) {
OFStream os(stdout);
@ -1153,17 +1145,24 @@ class RepresentationSelector {
}
}
void PrintTruncation(Truncation truncation) {
if (FLAG_trace_representation) {
OFStream os(stdout);
os << truncation.description();
}
}
void PrintUseInfo(UseInfo info) {
if (FLAG_trace_representation) {
OFStream os(stdout);
os << static_cast<MachineType>(info.machine_type());
os << info.preferred() << ":" << info.truncation().description();
}
}
private:
JSGraph* jsgraph_;
size_t const count_; // number of nodes in the graph
NodeInfo* info_; // node id -> usage information
ZoneVector<NodeInfo> info_; // node id -> usage information
NodeVector nodes_; // collected nodes
NodeVector replacements_; // replacements to be done after lowering
Phase phase_; // current phase of algorithm
@ -1182,8 +1181,6 @@ class RepresentationSelector {
DCHECK(node->id() < count_);
return &info_[node->id()];
}
MachineTypeUnion GetUseInfo(Node* node) { return GetInfo(node)->use; }
};
@ -1226,7 +1223,8 @@ void SimplifiedLowering::DoLoadBuffer(Node* node, MachineType output_type,
Node* if_true = graph()->NewNode(common()->IfTrue(), branch);
Node* etrue =
graph()->NewNode(machine()->Load(type), buffer, index, effect, if_true);
Node* vtrue = changer->GetRepresentationFor(etrue, type, output_type);
Node* vtrue = changer->GetRepresentationFor(
etrue, type, RepresentationOf(output_type), Truncation::None());
Node* if_false = graph()->NewNode(common()->IfFalse(), branch);
Node* efalse = effect;

View File

@ -452,11 +452,10 @@ TEST(SingleChanges) {
TEST(SignednessInWord32) {
RepresentationChangerTester r;
// TODO(titzer): assume that uses of a word32 without a sign mean kTypeInt32.
CheckChange(IrOpcode::kChangeTaggedToInt32, kRepTagged | kTypeInt32,
kRepWord32 | kTypeInt32);
kRepWord32);
CheckChange(IrOpcode::kChangeTaggedToUint32, kRepTagged | kTypeUint32,
kRepWord32 | kTypeUint32);
kRepWord32);
CheckChange(IrOpcode::kChangeInt32ToFloat64, kRepWord32, kRepFloat64);
CheckChange(IrOpcode::kChangeFloat64ToInt32, kRepFloat64 | kTypeInt32,
kRepWord32);
@ -480,7 +479,6 @@ TEST(Nops) {
// 32-bit floats.
r.CheckNop(kRepFloat32, kRepFloat32);
r.CheckNop(kRepFloat32 | kTypeNumber, kRepFloat32);
r.CheckNop(kRepFloat32, kRepFloat32 | kTypeNumber);
// 32-bit words can be used as smaller word sizes and vice versa, because
// loads from memory implicitly sign or zero extend the value to the
@ -508,39 +506,29 @@ TEST(TypeErrors) {
// Wordish cannot be implicitly converted to/from comparison conditions.
r.CheckTypeError(kRepWord8, kRepBit);
r.CheckTypeError(kRepWord8, kRepBit | kTypeBool);
r.CheckTypeError(kRepWord16, kRepBit);
r.CheckTypeError(kRepWord16, kRepBit | kTypeBool);
r.CheckTypeError(kRepWord32, kRepBit);
r.CheckTypeError(kRepWord32, kRepBit | kTypeBool);
r.CheckTypeError(kRepWord64, kRepBit);
r.CheckTypeError(kRepWord64, kRepBit | kTypeBool);
// Floats cannot be implicitly converted to/from comparison conditions.
r.CheckTypeError(kRepFloat64, kRepBit);
r.CheckTypeError(kRepFloat64, kRepBit | kTypeBool);
r.CheckTypeError(kRepBit, kRepFloat64);
r.CheckTypeError(kRepBit | kTypeBool, kRepFloat64);
// Floats cannot be implicitly converted to/from comparison conditions.
r.CheckTypeError(kRepFloat32, kRepBit);
r.CheckTypeError(kRepFloat32, kRepBit | kTypeBool);
r.CheckTypeError(kRepBit, kRepFloat32);
r.CheckTypeError(kRepBit | kTypeBool, kRepFloat32);
// Word64 is internal and shouldn't be implicitly converted.
r.CheckTypeError(kRepWord64, kRepTagged | kTypeBool);
r.CheckTypeError(kRepWord64, kRepTagged);
r.CheckTypeError(kRepWord64, kRepTagged | kTypeBool);
r.CheckTypeError(kRepTagged, kRepWord64);
r.CheckTypeError(kRepTagged | kTypeBool, kRepWord64);
// Word64 / Word32 shouldn't be implicitly converted.
r.CheckTypeError(kRepWord64, kRepWord32);
r.CheckTypeError(kRepWord32, kRepWord64);
r.CheckTypeError(kRepWord64, kRepWord32 | kTypeInt32);
r.CheckTypeError(kRepWord32 | kTypeInt32, kRepWord64);
r.CheckTypeError(kRepWord64, kRepWord32 | kTypeUint32);
r.CheckTypeError(kRepWord32 | kTypeUint32, kRepWord64);
for (size_t i = 0; i < arraysize(all_reps); i++) {