Replace the use CharacterStreams in Heap::AllocateSymbolInternal and String::ComputeHash

R=yangguo@chromium.org
BUG=

Review URL: https://chromiumcodereview.appspot.com/11593007
Patch from Dan Carney <dcarney@google.com>.

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@13242 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
This commit is contained in:
yangguo@chromium.org 2012-12-19 13:27:20 +00:00
parent 362218a037
commit 9569b20db2
10 changed files with 435 additions and 363 deletions

View File

@ -98,12 +98,34 @@ MaybeObject* Heap::AllocateStringFromUtf8(Vector<const char> str,
} }
template<>
bool inline Heap::IsOneByte(Vector<const char> str, int chars) {
// TODO(dcarney): incorporate Latin-1 check when Latin-1 is supported?
// ASCII only check.
return chars == str.length();
}
template<>
bool inline Heap::IsOneByte(String* str, int chars) {
return str->IsOneByteRepresentation();
}
MaybeObject* Heap::AllocateSymbol(Vector<const char> str, MaybeObject* Heap::AllocateSymbol(Vector<const char> str,
int chars, int chars,
uint32_t hash_field) { uint32_t hash_field) {
unibrow::Utf8InputBuffer<> buffer(str.start(), if (IsOneByte(str, chars)) return AllocateAsciiSymbol(str, hash_field);
static_cast<unsigned>(str.length())); return AllocateInternalSymbol<false>(str, chars, hash_field);
return AllocateInternalSymbol(&buffer, chars, hash_field); }
template<typename T>
MaybeObject* Heap::AllocateInternalSymbol(T t, int chars, uint32_t hash_field) {
if (IsOneByte(t, chars)) {
return AllocateInternalSymbol<true>(t, chars, hash_field);
}
return AllocateInternalSymbol<false>(t, chars, hash_field);
} }

View File

@ -3302,8 +3302,8 @@ static inline bool Between(uint32_t character, uint32_t from, uint32_t to) {
MUST_USE_RESULT static inline MaybeObject* MakeOrFindTwoCharacterString( MUST_USE_RESULT static inline MaybeObject* MakeOrFindTwoCharacterString(
Heap* heap, Heap* heap,
uint32_t c1, uint16_t c1,
uint32_t c2) { uint16_t c2) {
String* symbol; String* symbol;
// Numeric strings have a different hash algorithm not known by // Numeric strings have a different hash algorithm not known by
// LookupTwoCharsSymbolIfExists, so we skip this step for such strings. // LookupTwoCharsSymbolIfExists, so we skip this step for such strings.
@ -3352,8 +3352,8 @@ MaybeObject* Heap::AllocateConsString(String* first, String* second) {
// dictionary. Check whether we already have the string in the symbol // dictionary. Check whether we already have the string in the symbol
// table to prevent creation of many unneccesary strings. // table to prevent creation of many unneccesary strings.
if (length == 2) { if (length == 2) {
unsigned c1 = first->Get(0); uint16_t c1 = first->Get(0);
unsigned c2 = second->Get(0); uint16_t c2 = second->Get(0);
return MakeOrFindTwoCharacterString(this, c1, c2); return MakeOrFindTwoCharacterString(this, c1, c2);
} }
@ -3467,8 +3467,8 @@ MaybeObject* Heap::AllocateSubString(String* buffer,
// Optimization for 2-byte strings often used as keys in a decompression // Optimization for 2-byte strings often used as keys in a decompression
// dictionary. Check whether we already have the string in the symbol // dictionary. Check whether we already have the string in the symbol
// table to prevent creation of many unneccesary strings. // table to prevent creation of many unneccesary strings.
unsigned c1 = buffer->Get(start); uint16_t c1 = buffer->Get(start);
unsigned c2 = buffer->Get(start + 1); uint16_t c2 = buffer->Get(start + 1);
return MakeOrFindTwoCharacterString(this, c1, c2); return MakeOrFindTwoCharacterString(this, c1, c2);
} }
@ -4624,27 +4624,88 @@ Map* Heap::SymbolMapForString(String* string) {
} }
MaybeObject* Heap::AllocateInternalSymbol(unibrow::CharacterStream* buffer, template<typename T>
class AllocateInternalSymbolHelper {
public:
static void WriteOneByteData(T t, char* chars, int len);
static void WriteTwoByteData(T t, uint16_t* chars, int len);
private:
DISALLOW_COPY_AND_ASSIGN(AllocateInternalSymbolHelper);
};
template<>
class AllocateInternalSymbolHelper< Vector<const char> > {
public:
static inline void WriteOneByteData(Vector<const char> vector,
char* chars,
int len) {
// Only works for ascii.
ASSERT(vector.length() == len);
memcpy(chars, vector.start(), len);
}
static inline void WriteTwoByteData(Vector<const char> vector,
uint16_t* chars,
int len) {
const uint8_t* stream = reinterpret_cast<const uint8_t*>(vector.start());
unsigned stream_length = vector.length();
while (stream_length != 0) {
unsigned consumed = 0;
uint32_t c = unibrow::Utf8::ValueOf(stream, stream_length, &consumed);
ASSERT(c != unibrow::Utf8::kBadChar);
ASSERT(consumed <= stream_length);
stream_length -= consumed;
stream += consumed;
if (c > unibrow::Utf16::kMaxNonSurrogateCharCode) {
len -= 2;
if (len < 0) break;
*chars++ = unibrow::Utf16::LeadSurrogate(c);
*chars++ = unibrow::Utf16::TrailSurrogate(c);
} else {
len -= 1;
if (len < 0) break;
*chars++ = c;
}
}
ASSERT(stream_length == 0);
ASSERT(len == 0);
}
private:
DISALLOW_COPY_AND_ASSIGN(AllocateInternalSymbolHelper);
};
template<>
class AllocateInternalSymbolHelper<String*> {
public:
static inline void WriteOneByteData(String* s, char* chars, int len) {
ASSERT(s->length() == len);
String::WriteToFlat(s, chars, 0, len);
}
static inline void WriteTwoByteData(String* s, uint16_t* chars, int len) {
ASSERT(s->length() == len);
String::WriteToFlat(s, chars, 0, len);
}
private:
DISALLOW_COPY_AND_ASSIGN(AllocateInternalSymbolHelper<String*>);
};
template<bool is_one_byte, typename T>
MaybeObject* Heap::AllocateInternalSymbol(T t,
int chars, int chars,
uint32_t hash_field) { uint32_t hash_field) {
typedef AllocateInternalSymbolHelper<T> H;
ASSERT(chars >= 0); ASSERT(chars >= 0);
// Ensure the chars matches the number of characters in the buffer.
ASSERT(static_cast<unsigned>(chars) == buffer->Utf16Length());
// Determine whether the string is ASCII.
bool is_ascii = true;
while (buffer->has_more()) {
if (buffer->GetNext() > unibrow::Utf8::kMaxOneByteChar) {
is_ascii = false;
break;
}
}
buffer->Rewind();
// Compute map and object size. // Compute map and object size.
int size; int size;
Map* map; Map* map;
if (is_ascii) { if (is_one_byte) {
if (chars > SeqOneByteString::kMaxLength) { if (chars > SeqOneByteString::kMaxLength) {
return Failure::OutOfMemoryException(); return Failure::OutOfMemoryException();
} }
@ -4674,21 +4735,26 @@ MaybeObject* Heap::AllocateInternalSymbol(unibrow::CharacterStream* buffer,
ASSERT_EQ(size, answer->Size()); ASSERT_EQ(size, answer->Size());
// Fill in the characters. if (is_one_byte) {
int i = 0; H::WriteOneByteData(t, SeqOneByteString::cast(answer)->GetChars(), chars);
while (i < chars) { } else {
uint32_t character = buffer->GetNext(); H::WriteTwoByteData(t, SeqTwoByteString::cast(answer)->GetChars(), chars);
if (character > unibrow::Utf16::kMaxNonSurrogateCharCode) {
answer->Set(i++, unibrow::Utf16::LeadSurrogate(character));
answer->Set(i++, unibrow::Utf16::TrailSurrogate(character));
} else {
answer->Set(i++, character);
}
} }
return answer; return answer;
} }
// Need explicit instantiations.
template
MaybeObject* Heap::AllocateInternalSymbol<true>(String*, int, uint32_t);
template
MaybeObject* Heap::AllocateInternalSymbol<false>(String*, int, uint32_t);
template
MaybeObject* Heap::AllocateInternalSymbol<false>(Vector<const char>,
int,
uint32_t);
MaybeObject* Heap::AllocateRawOneByteString(int length, MaybeObject* Heap::AllocateRawOneByteString(int length,
PretenureFlag pretenure) { PretenureFlag pretenure) {
if (length < 0 || length > SeqOneByteString::kMaxLength) { if (length < 0 || length > SeqOneByteString::kMaxLength) {

View File

@ -764,12 +764,16 @@ class Heap {
Vector<const uc16> str, Vector<const uc16> str,
uint32_t hash_field); uint32_t hash_field);
MUST_USE_RESULT MaybeObject* AllocateInternalSymbol( template<typename T>
unibrow::CharacterStream* buffer, int chars, uint32_t hash_field); static inline bool IsOneByte(T t, int chars);
MUST_USE_RESULT MaybeObject* AllocateExternalSymbol( template<typename T>
Vector<const char> str, MUST_USE_RESULT inline MaybeObject* AllocateInternalSymbol(
int chars); T t, int chars, uint32_t hash_field);
template<bool is_one_byte, typename T>
MUST_USE_RESULT MaybeObject* AllocateInternalSymbol(
T t, int chars, uint32_t hash_field);
// Allocates and partially initializes a String. There are two String // Allocates and partially initializes a String. There are two String
// encodings: ASCII and two byte. These functions allocate a string of the // encodings: ASCII and two byte. These functions allocate a string of the

View File

@ -631,7 +631,17 @@ Handle<String> JsonParser<seq_ascii>::ScanJsonString() {
position_); position_);
} }
if (c0 < 0x20) return Handle<String>::null(); if (c0 < 0x20) return Handle<String>::null();
running_hash = StringHasher::AddCharacterCore(running_hash, c0); if (static_cast<uint32_t>(c0) >
unibrow::Utf16::kMaxNonSurrogateCharCode) {
running_hash =
StringHasher::AddCharacterCore(running_hash,
unibrow::Utf16::LeadSurrogate(c0));
running_hash =
StringHasher::AddCharacterCore(running_hash,
unibrow::Utf16::TrailSurrogate(c0));
} else {
running_hash = StringHasher::AddCharacterCore(running_hash, c0);
}
position++; position++;
if (position >= source_length_) return Handle<String>::null(); if (position >= source_length_) return Handle<String>::null();
c0 = seq_source_->SeqOneByteStringGet(position); c0 = seq_source_->SeqOneByteStringGet(position);

View File

@ -2584,8 +2584,7 @@ void String::Visit(
case kConsStringTag | kOneByteStringTag: case kConsStringTag | kOneByteStringTag:
case kConsStringTag | kTwoByteStringTag: case kConsStringTag | kTwoByteStringTag:
string = cons_op.Operate(ConsString::cast(string), &offset, &type, string = cons_op.Operate(string, &offset, &type, &length);
&length);
if (string == NULL) return; if (string == NULL) return;
slice_offset = offset; slice_offset = offset;
ASSERT(length == static_cast<unsigned>(string->length())); ASSERT(length == static_cast<unsigned>(string->length()));
@ -2777,6 +2776,11 @@ const uint16_t* ExternalTwoByteString::ExternalTwoByteStringGetData(
} }
String* ConsStringNullOp::Operate(String*, unsigned*, int32_t*, unsigned*) {
return NULL;
}
unsigned ConsStringIteratorOp::OffsetForDepth(unsigned depth) { unsigned ConsStringIteratorOp::OffsetForDepth(unsigned depth) {
return depth & kDepthMask; return depth & kDepthMask;
} }
@ -2805,42 +2809,38 @@ void ConsStringIteratorOp::Pop() {
} }
void ConsStringIteratorOp::Reset() {
depth_ = 0;
maximum_depth_ = 0;
}
bool ConsStringIteratorOp::HasMore() { bool ConsStringIteratorOp::HasMore() {
return depth_ != 0; return depth_ != 0;
} }
bool ConsStringIteratorOp::ContinueOperation(ContinueResponse* response) { void ConsStringIteratorOp::Reset() {
depth_ = 0;
}
String* ConsStringIteratorOp::ContinueOperation(int32_t* type_out,
unsigned* length_out) {
bool blew_stack; bool blew_stack;
int32_t type; String* string = NextLeaf(&blew_stack, type_out, length_out);
unsigned length;
String* string = NextLeaf(&blew_stack, &type, &length);
// String found. // String found.
if (string != NULL) { if (string != NULL) {
consumed_ += length; // Verify output.
response->string_ = string; ASSERT(*length_out == static_cast<unsigned>(string->length()));
response->offset_ = 0; ASSERT(*type_out == string->map()->instance_type());
response->length_ = length; return string;
response->type_ = type;
return true;
} }
// Traversal complete. // Traversal complete.
if (!blew_stack) return false; if (!blew_stack) return NULL;
// Restart search. // Restart search from root.
Reset(); unsigned offset_out;
// TODO(dcarney) This is unnecessary. string = Search(&offset_out, type_out, length_out);
// After a reset, we don't need a String::Visit // Verify output.
response->string_ = root_; ASSERT(string == NULL || offset_out == 0);
response->offset_ = consumed_; ASSERT(string == NULL ||
response->length_ = root_length_; *length_out == static_cast<unsigned>(string->length()));
response->type_ = root_type_; ASSERT(string == NULL || *type_out == string->map()->instance_type());
return true; return string;
} }
@ -2857,18 +2857,24 @@ StringCharacterStream::StringCharacterStream(
end_(NULL), end_(NULL),
op_(op) { op_(op) {
op->Reset(); op->Reset();
String::Visit(string, int32_t type = string->map()->instance_type();
offset, *this, *op, string->map()->instance_type(), string->length()); unsigned length = string->length();
String::Visit(string, offset, *this, *op, type, length);
} }
bool StringCharacterStream::HasMore() { bool StringCharacterStream::HasMore() {
if (buffer8_ != end_) return true; if (buffer8_ != end_) return true;
if (!op_->HasMore()) return false; if (!op_->HasMore()) return false;
ConsStringIteratorOp::ContinueResponse response; unsigned length;
if (!op_->ContinueOperation(&response)) return false; int32_t type;
String::Visit(response.string_, String* string = op_->ContinueOperation(&type, &length);
response.offset_, *this, *op_, response.type_, response.length_); if (string == NULL) return false;
ASSERT(!string->IsConsString());
ASSERT(string->length() != 0);
ConsStringNullOp null_op;
String::Visit(string, 0, *this, null_op, type, length);
ASSERT(buffer8_ != end_);
return true; return true;
} }
@ -5138,7 +5144,7 @@ bool StringHasher::has_trivial_hash() {
} }
uint32_t StringHasher::AddCharacterCore(uint32_t running_hash, uint32_t c) { uint32_t StringHasher::AddCharacterCore(uint32_t running_hash, uint16_t c) {
running_hash += c; running_hash += c;
running_hash += (running_hash << 10); running_hash += (running_hash << 10);
running_hash ^= (running_hash >> 6); running_hash ^= (running_hash >> 6);
@ -5157,66 +5163,62 @@ uint32_t StringHasher::GetHashCore(uint32_t running_hash) {
} }
void StringHasher::AddCharacter(uint32_t c) { void StringHasher::AddCharacter(uint16_t c) {
if (c > unibrow::Utf16::kMaxNonSurrogateCharCode) {
AddSurrogatePair(c); // Not inlined.
return;
}
// Use the Jenkins one-at-a-time hash function to update the hash // Use the Jenkins one-at-a-time hash function to update the hash
// for the given character. // for the given character.
raw_running_hash_ = AddCharacterCore(raw_running_hash_, c); raw_running_hash_ = AddCharacterCore(raw_running_hash_, c);
// Incremental array index computation. }
if (is_array_index_) {
if (c < '0' || c > '9') {
bool StringHasher::UpdateIndex(uint16_t c) {
ASSERT(is_array_index_);
if (c < '0' || c > '9') {
is_array_index_ = false;
return false;
}
int d = c - '0';
if (is_first_char_) {
is_first_char_ = false;
if (c == '0' && length_ > 1) {
is_array_index_ = false; is_array_index_ = false;
} else { return false;
int d = c - '0'; }
if (is_first_char_) { }
is_first_char_ = false; if (array_index_ > 429496729U - ((d + 2) >> 3)) {
if (c == '0' && length_ > 1) { is_array_index_ = false;
is_array_index_ = false; return false;
return; }
} array_index_ = array_index_ * 10 + d;
} return true;
if (array_index_ > 429496729U - ((d + 2) >> 3)) { }
is_array_index_ = false;
} else {
array_index_ = array_index_ * 10 + d; template<typename Char>
inline void StringHasher::AddCharacters(const Char* chars, int length) {
ASSERT(sizeof(Char) == 1 || sizeof(Char) == 2);
int i = 0;
if (is_array_index_) {
for (; i < length; i++) {
AddCharacter(chars[i]);
if (!UpdateIndex(chars[i])) {
i++;
break;
} }
} }
} }
} for (; i < length; i++) {
ASSERT(!is_array_index_);
AddCharacter(chars[i]);
void StringHasher::AddCharacterNoIndex(uint32_t c) {
ASSERT(!is_array_index());
if (c > unibrow::Utf16::kMaxNonSurrogateCharCode) {
AddSurrogatePairNoIndex(c); // Not inlined.
return;
} }
raw_running_hash_ = AddCharacterCore(raw_running_hash_, c);
}
uint32_t StringHasher::GetHash() {
// Get the calculated raw hash value and do some more bit ops to distribute
// the hash further. Ensure that we never return zero as the hash value.
return GetHashCore(raw_running_hash_);
} }
template <typename schar> template <typename schar>
uint32_t HashSequentialString(const schar* chars, int length, uint32_t seed) { uint32_t StringHasher::HashSequentialString(const schar* chars,
int length,
uint32_t seed) {
StringHasher hasher(length, seed); StringHasher hasher(length, seed);
if (!hasher.has_trivial_hash()) { if (!hasher.has_trivial_hash()) hasher.AddCharacters(chars, length);
int i;
for (i = 0; hasher.is_array_index() && (i < length); i++) {
hasher.AddCharacter(chars[i]);
}
for (; i < length; i++) {
hasher.AddCharacterNoIndex(chars[i]);
}
}
return hasher.GetHashField(); return hasher.GetHashField();
} }

View File

@ -7029,24 +7029,36 @@ void StringInputBuffer::Seek(unsigned pos) {
} }
String* ConsStringIteratorOp::Operate(ConsString* cons_string, String* ConsStringIteratorOp::Operate(String* string,
unsigned* offset_out, int32_t* type_out, unsigned* length_out) { unsigned* offset_out,
ASSERT(*length_out == (unsigned)cons_string->length()); int32_t* type_out,
ASSERT(depth_ == 0); unsigned* length_out) {
// Push the root string. ASSERT(string->IsConsString());
PushLeft(cons_string); ConsString* cons_string = ConsString::cast(string);
// Set up search data.
root_ = cons_string; root_ = cons_string;
root_type_ = *type_out;
root_length_ = *length_out;
consumed_ = *offset_out; consumed_ = *offset_out;
unsigned targetOffset = *offset_out; // Now search.
return Search(offset_out, type_out, length_out);
}
String* ConsStringIteratorOp::Search(unsigned* offset_out,
int32_t* type_out,
unsigned* length_out) {
ConsString* cons_string = root_;
// Reset the stack, pushing the root string.
depth_ = 1;
maximum_depth_ = 1;
frames_[0] = cons_string;
const unsigned consumed = consumed_;
unsigned offset = 0; unsigned offset = 0;
while (true) { while (true) {
// Loop until the string is found which contains the target offset. // Loop until the string is found which contains the target offset.
String* string = cons_string->first(); String* string = cons_string->first();
unsigned length = string->length(); unsigned length = string->length();
int32_t type; int32_t type;
if (targetOffset < offset + length) { if (consumed < offset + length) {
// Target offset is in the left branch. // Target offset is in the left branch.
// Keep going if we're still in a ConString. // Keep going if we're still in a ConString.
type = string->map()->instance_type(); type = string->map()->instance_type();
@ -7075,6 +7087,7 @@ String* ConsStringIteratorOp::Operate(ConsString* cons_string,
// Account for the possibility of an empty right leaf. // Account for the possibility of an empty right leaf.
// This happens only if we have asked for an offset outside the string. // This happens only if we have asked for an offset outside the string.
if (length == 0) { if (length == 0) {
// Reset depth so future operations will return null immediately.
Reset(); Reset();
return NULL; return NULL;
} }
@ -7085,9 +7098,8 @@ String* ConsStringIteratorOp::Operate(ConsString* cons_string,
} }
ASSERT(length != 0); ASSERT(length != 0);
// Adjust return values and exit. // Adjust return values and exit.
unsigned innerOffset = targetOffset - offset; consumed_ = offset + length;
consumed_ += length - innerOffset; *offset_out = consumed - offset;
*offset_out = innerOffset;
*type_out = type; *type_out = type;
*length_out = length; *length_out = length;
return string; return string;
@ -7097,8 +7109,9 @@ String* ConsStringIteratorOp::Operate(ConsString* cons_string,
} }
String* ConsStringIteratorOp::NextLeaf( String* ConsStringIteratorOp::NextLeaf(bool* blew_stack,
bool* blew_stack, int32_t* type_out, unsigned* length_out) { int32_t* type_out,
unsigned* length_out) {
while (true) { while (true) {
// Tree traversal complete. // Tree traversal complete.
if (depth_ == 0) { if (depth_ == 0) {
@ -7122,6 +7135,7 @@ String* ConsStringIteratorOp::NextLeaf(
if (length == 0) continue; if (length == 0) continue;
*length_out = length; *length_out = length;
*type_out = type; *type_out = type;
consumed_ += length;
return string; return string;
} }
cons_string = ConsString::cast(string); cons_string = ConsString::cast(string);
@ -7134,8 +7148,11 @@ String* ConsStringIteratorOp::NextLeaf(
type = string->map()->instance_type(); type = string->map()->instance_type();
if ((type & kStringRepresentationMask) != kConsStringTag) { if ((type & kStringRepresentationMask) != kConsStringTag) {
AdjustMaximumDepth(); AdjustMaximumDepth();
unsigned length = (unsigned) string->length();
ASSERT(length != 0);
*length_out = length;
*type_out = type; *type_out = type;
*length_out = string->length(); consumed_ += length;
return string; return string;
} }
cons_string = ConsString::cast(string); cons_string = ConsString::cast(string);
@ -7674,28 +7691,62 @@ bool String::IsTwoByteEqualTo(Vector<const uc16> str) {
} }
class IteratingStringHasher: public StringHasher {
public:
static inline uint32_t Hash(String* string, uint32_t seed) {
const unsigned len = static_cast<unsigned>(string->length());
IteratingStringHasher hasher(len, seed);
if (hasher.has_trivial_hash()) {
return hasher.GetHashField();
}
int32_t type = string->map()->instance_type();
ConsStringNullOp null_op;
String::Visit(string, 0, hasher, null_op, type, len);
// Flat strings terminate immediately.
if (hasher.consumed_ == len) {
ASSERT(!string->IsConsString());
return hasher.GetHashField();
}
ASSERT(string->IsConsString());
// This is a ConsString, iterate across it.
ConsStringIteratorOp op;
unsigned offset = 0;
unsigned leaf_length = len;
string = op.Operate(string, &offset, &type, &leaf_length);
while (true) {
ASSERT(hasher.consumed_ < len);
String::Visit(string, 0, hasher, null_op, type, leaf_length);
if (hasher.consumed_ == len) break;
string = op.ContinueOperation(&type, &leaf_length);
// This should be taken care of by the length check.
ASSERT(string != NULL);
}
return hasher.GetHashField();
}
inline void VisitOneByteString(const uint8_t* chars, unsigned length) {
AddCharacters(chars, static_cast<int>(length));
consumed_ += length;
}
inline void VisitTwoByteString(const uint16_t* chars, unsigned length) {
AddCharacters(chars, static_cast<int>(length));
consumed_ += length;
}
private:
inline IteratingStringHasher(int len, uint32_t seed)
: StringHasher(len, seed),
consumed_(0) {}
unsigned consumed_;
DISALLOW_COPY_AND_ASSIGN(IteratingStringHasher);
};
uint32_t String::ComputeAndSetHash() { uint32_t String::ComputeAndSetHash() {
// Should only be called if hash code has not yet been computed. // Should only be called if hash code has not yet been computed.
ASSERT(!HasHashCode()); ASSERT(!HasHashCode());
const int len = length();
// Compute the hash code.
uint32_t field = 0;
if (StringShape(this).IsSequentialAscii()) {
field = HashSequentialString(SeqOneByteString::cast(this)->GetChars(),
len,
GetHeap()->HashSeed());
} else if (StringShape(this).IsSequentialTwoByte()) {
field = HashSequentialString(SeqTwoByteString::cast(this)->GetChars(),
len,
GetHeap()->HashSeed());
} else {
StringInputBuffer buffer(this);
field = ComputeHashField(&buffer, len, GetHeap()->HashSeed());
}
// Store the hash code in the object. // Store the hash code in the object.
uint32_t field = IteratingStringHasher::Hash(this, GetHeap()->HashSeed());
set_hash_field(field); set_hash_field(field);
// Check the hash code is there. // Check the hash code is there.
@ -7799,57 +7850,59 @@ uint32_t StringHasher::MakeArrayIndexHash(uint32_t value, int length) {
} }
void StringHasher::AddSurrogatePair(uc32 c) {
uint16_t lead = unibrow::Utf16::LeadSurrogate(c);
AddCharacter(lead);
uint16_t trail = unibrow::Utf16::TrailSurrogate(c);
AddCharacter(trail);
}
void StringHasher::AddSurrogatePairNoIndex(uc32 c) {
uint16_t lead = unibrow::Utf16::LeadSurrogate(c);
AddCharacterNoIndex(lead);
uint16_t trail = unibrow::Utf16::TrailSurrogate(c);
AddCharacterNoIndex(trail);
}
uint32_t StringHasher::GetHashField() { uint32_t StringHasher::GetHashField() {
if (length_ <= String::kMaxHashCalcLength) { if (length_ <= String::kMaxHashCalcLength) {
if (is_array_index()) { if (is_array_index_) {
return MakeArrayIndexHash(array_index(), length_); return MakeArrayIndexHash(array_index_, length_);
} }
return (GetHash() << String::kHashShift) | String::kIsNotArrayIndexMask; return (GetHashCore(raw_running_hash_) << String::kHashShift) |
String::kIsNotArrayIndexMask;
} else { } else {
return (length_ << String::kHashShift) | String::kIsNotArrayIndexMask; return (length_ << String::kHashShift) | String::kIsNotArrayIndexMask;
} }
} }
uint32_t String::ComputeHashField(unibrow::CharacterStream* buffer, uint32_t StringHasher::ComputeHashField(unibrow::CharacterStream* buffer,
int length, int length,
uint32_t seed) { uint32_t seed) {
typedef unibrow::Utf16 u;
StringHasher hasher(length, seed); StringHasher hasher(length, seed);
// Very long strings have a trivial hash that doesn't inspect the // Very long strings have a trivial hash that doesn't inspect the
// string contents. // string contents.
if (hasher.has_trivial_hash()) { if (hasher.has_trivial_hash()) {
return hasher.GetHashField(); return hasher.GetHashField();
} }
// Do the iterative array index computation as long as there is a // Do the iterative array index computation as long as there is a
// chance this is an array index. // chance this is an array index.
while (buffer->has_more() && hasher.is_array_index()) { if (hasher.is_array_index_) {
hasher.AddCharacter(buffer->GetNext()); while (buffer->has_more()) {
uint32_t c = buffer->GetNext();
if (c > u::kMaxNonSurrogateCharCode) {
uint16_t c1 = u::LeadSurrogate(c);
uint16_t c2 = u::TrailSurrogate(c);
hasher.AddCharacter(c1);
hasher.AddCharacter(c2);
if (!hasher.UpdateIndex(c1)) break;
if (!hasher.UpdateIndex(c2)) break;
} else {
hasher.AddCharacter(c);
if (!hasher.UpdateIndex(c)) break;
}
}
} }
// Process the remaining characters without updating the array // Process the remaining characters without updating the array
// index. // index.
while (buffer->has_more()) { while (buffer->has_more()) {
hasher.AddCharacterNoIndex(buffer->GetNext()); ASSERT(!hasher.is_array_index_);
uint32_t c = buffer->GetNext();
if (c > u::kMaxNonSurrogateCharCode) {
hasher.AddCharacter(u::LeadSurrogate(c));
hasher.AddCharacter(u::TrailSurrogate(c));
} else {
hasher.AddCharacter(c);
}
} }
return hasher.GetHashField(); return hasher.GetHashField();
} }
@ -11667,7 +11720,7 @@ class Utf8SymbolKey : public HashTableKey {
unibrow::Utf8InputBuffer<> buffer(string_.start(), unibrow::Utf8InputBuffer<> buffer(string_.start(),
static_cast<unsigned>(string_.length())); static_cast<unsigned>(string_.length()));
chars_ = buffer.Utf16Length(); chars_ = buffer.Utf16Length();
hash_field_ = String::ComputeHashField(&buffer, chars_, seed_); hash_field_ = StringHasher::ComputeHashField(&buffer, chars_, seed_);
uint32_t result = hash_field_ >> String::kHashShift; uint32_t result = hash_field_ >> String::kHashShift;
ASSERT(result != 0); // Ensure that the hash value of 0 is never computed. ASSERT(result != 0); // Ensure that the hash value of 0 is never computed.
return result; return result;
@ -11697,29 +11750,9 @@ class SequentialSymbolKey : public HashTableKey {
: string_(string), hash_field_(0), seed_(seed) { } : string_(string), hash_field_(0), seed_(seed) { }
uint32_t Hash() { uint32_t Hash() {
StringHasher hasher(string_.length(), seed_); hash_field_ = StringHasher::HashSequentialString<Char>(string_.start(),
string_.length(),
// Very long strings have a trivial hash that doesn't inspect the seed_);
// string contents.
if (hasher.has_trivial_hash()) {
hash_field_ = hasher.GetHashField();
} else {
int i = 0;
// Do the iterative array index computation as long as there is a
// chance this is an array index.
while (i < string_.length() && hasher.is_array_index()) {
hasher.AddCharacter(static_cast<uc32>(string_[i]));
i++;
}
// Process the remaining characters without updating the array
// index.
while (i < string_.length()) {
hasher.AddCharacterNoIndex(static_cast<uc32>(string_[i]));
i++;
}
hash_field_ = hasher.GetHashField();
}
uint32_t result = hash_field_ >> String::kHashShift; uint32_t result = hash_field_ >> String::kHashShift;
ASSERT(result != 0); // Ensure that the hash value of 0 is never computed. ASSERT(result != 0); // Ensure that the hash value of 0 is never computed.
@ -11764,32 +11797,9 @@ class SubStringAsciiSymbolKey : public HashTableKey {
uint32_t Hash() { uint32_t Hash() {
ASSERT(length_ >= 0); ASSERT(length_ >= 0);
ASSERT(from_ + length_ <= string_->length()); ASSERT(from_ + length_ <= string_->length());
StringHasher hasher(length_, string_->GetHeap()->HashSeed()); char* chars = string_->GetChars() + from_;
hash_field_ = StringHasher::HashSequentialString(
// Very long strings have a trivial hash that doesn't inspect the chars, length_, string_->GetHeap()->HashSeed());
// string contents.
if (hasher.has_trivial_hash()) {
hash_field_ = hasher.GetHashField();
} else {
int i = 0;
// Do the iterative array index computation as long as there is a
// chance this is an array index.
while (i < length_ && hasher.is_array_index()) {
hasher.AddCharacter(static_cast<uc32>(
string_->SeqOneByteStringGet(i + from_)));
i++;
}
// Process the remaining characters without updating the array
// index.
while (i < length_) {
hasher.AddCharacterNoIndex(static_cast<uc32>(
string_->SeqOneByteStringGet(i + from_)));
i++;
}
hash_field_ = hasher.GetHashField();
}
uint32_t result = hash_field_ >> String::kHashShift; uint32_t result = hash_field_ >> String::kHashShift;
ASSERT(result != 0); // Ensure that the hash value of 0 is never computed. ASSERT(result != 0); // Ensure that the hash value of 0 is never computed.
return result; return result;
@ -11864,8 +11874,7 @@ class SymbolKey : public HashTableKey {
return string_; return string_;
} }
// Otherwise allocate a new symbol. // Otherwise allocate a new symbol.
StringInputBuffer buffer(string_); return heap->AllocateInternalSymbol(string_,
return heap->AllocateInternalSymbol(&buffer,
string_->length(), string_->length(),
string_->hash_field()); string_->hash_field());
} }
@ -12635,7 +12644,7 @@ MaybeObject* SymbolTable::LookupString(String* string, Object** s) {
// algorithm. // algorithm.
class TwoCharHashTableKey : public HashTableKey { class TwoCharHashTableKey : public HashTableKey {
public: public:
TwoCharHashTableKey(uint32_t c1, uint32_t c2, uint32_t seed) TwoCharHashTableKey(uint16_t c1, uint16_t c2, uint32_t seed)
: c1_(c1), c2_(c2) { : c1_(c1), c2_(c2) {
// Char 1. // Char 1.
uint32_t hash = seed; uint32_t hash = seed;
@ -12651,17 +12660,17 @@ class TwoCharHashTableKey : public HashTableKey {
hash ^= hash >> 11; hash ^= hash >> 11;
hash += hash << 15; hash += hash << 15;
if ((hash & String::kHashBitMask) == 0) hash = StringHasher::kZeroHash; if ((hash & String::kHashBitMask) == 0) hash = StringHasher::kZeroHash;
hash_ = hash;
#ifdef DEBUG #ifdef DEBUG
StringHasher hasher(2, seed);
hasher.AddCharacter(c1);
hasher.AddCharacter(c2);
// If this assert fails then we failed to reproduce the two-character // If this assert fails then we failed to reproduce the two-character
// version of the string hashing algorithm above. One reason could be // version of the string hashing algorithm above. One reason could be
// that we were passed two digits as characters, since the hash // that we were passed two digits as characters, since the hash
// algorithm is different in that case. // algorithm is different in that case.
ASSERT_EQ(static_cast<int>(hasher.GetHash()), static_cast<int>(hash)); uint16_t chars[2] = {c1, c2};
uint32_t check_hash = StringHasher::HashSequentialString(chars, 2, seed);
hash = (hash << String::kHashShift) | String::kIsNotArrayIndexMask;
ASSERT_EQ(static_cast<int32_t>(hash), static_cast<int32_t>(check_hash));
#endif #endif
hash_ = hash;
} }
bool IsMatch(Object* o) { bool IsMatch(Object* o) {
@ -12686,8 +12695,8 @@ class TwoCharHashTableKey : public HashTableKey {
} }
private: private:
uint32_t c1_; uint16_t c1_;
uint32_t c2_; uint16_t c2_;
uint32_t hash_; uint32_t hash_;
}; };
@ -12706,8 +12715,8 @@ bool SymbolTable::LookupSymbolIfExists(String* string, String** symbol) {
} }
bool SymbolTable::LookupTwoCharsSymbolIfExists(uint32_t c1, bool SymbolTable::LookupTwoCharsSymbolIfExists(uint16_t c1,
uint32_t c2, uint16_t c2,
String** symbol) { String** symbol) {
TwoCharHashTableKey key(c1, c2, GetHeap()->HashSeed()); TwoCharHashTableKey key(c1, c2, GetHeap()->HashSeed());
int entry = FindEntry(&key); int entry = FindEntry(&key);

View File

@ -3043,7 +3043,7 @@ class SymbolTable: public HashTable<SymbolTableShape, HashTableKey*> {
// true if it is found, assigning the symbol to the given output // true if it is found, assigning the symbol to the given output
// parameter. // parameter.
bool LookupSymbolIfExists(String* str, String** symbol); bool LookupSymbolIfExists(String* str, String** symbol);
bool LookupTwoCharsSymbolIfExists(uint32_t c1, uint32_t c2, String** symbol); bool LookupTwoCharsSymbolIfExists(uint16_t c1, uint16_t c2, String** symbol);
// Casting. // Casting.
static inline SymbolTable* cast(Object* obj); static inline SymbolTable* cast(Object* obj);
@ -6929,30 +6929,14 @@ class StringHasher {
public: public:
explicit inline StringHasher(int length, uint32_t seed); explicit inline StringHasher(int length, uint32_t seed);
// Returns true if the hash of this string can be computed without template <typename schar>
// looking at the contents. static inline uint32_t HashSequentialString(const schar* chars,
inline bool has_trivial_hash(); int length,
uint32_t seed);
// Add a character to the hash and update the array index calculation. static uint32_t ComputeHashField(unibrow::CharacterStream* buffer,
inline void AddCharacter(uint32_t c); int length,
uint32_t seed);
// Adds a character to the hash but does not update the array index
// calculation. This can only be called when it has been verified
// that the input is not an array index.
inline void AddCharacterNoIndex(uint32_t c);
// Add a character above 0xffff as a surrogate pair. These can get into
// the hasher through the routines that take a UTF-8 string and make a symbol.
void AddSurrogatePair(uc32 c);
void AddSurrogatePairNoIndex(uc32 c);
// Returns the value to store in the hash field of a string with
// the given length and contents.
uint32_t GetHashField();
// Returns true if the characters seen so far make up a legal array
// index.
bool is_array_index() { return is_array_index_; }
// Calculated hash value for a string consisting of 1 to // Calculated hash value for a string consisting of 1 to
// String::kMaxArrayIndexSize digits with no leading zeros (except "0"). // String::kMaxArrayIndexSize digits with no leading zeros (except "0").
@ -6964,51 +6948,36 @@ class StringHasher {
// use 27 instead. // use 27 instead.
static const int kZeroHash = 27; static const int kZeroHash = 27;
private:
uint32_t array_index() {
ASSERT(is_array_index());
return array_index_;
}
inline uint32_t GetHash();
// Reusable parts of the hashing algorithm. // Reusable parts of the hashing algorithm.
INLINE(static uint32_t AddCharacterCore(uint32_t running_hash, uint32_t c)); INLINE(static uint32_t AddCharacterCore(uint32_t running_hash, uint16_t c));
INLINE(static uint32_t GetHashCore(uint32_t running_hash)); INLINE(static uint32_t GetHashCore(uint32_t running_hash));
protected:
// Returns the value to store in the hash field of a string with
// the given length and contents.
uint32_t GetHashField();
// Returns true if the hash of this string can be computed without
// looking at the contents.
inline bool has_trivial_hash();
// Adds a block of characters to the hash.
template<typename Char>
inline void AddCharacters(const Char* chars, int len);
private:
// Add a character to the hash.
inline void AddCharacter(uint16_t c);
// Update index. Returns true if string is still an index.
inline bool UpdateIndex(uint16_t c);
int length_; int length_;
uint32_t raw_running_hash_; uint32_t raw_running_hash_;
uint32_t array_index_; uint32_t array_index_;
bool is_array_index_; bool is_array_index_;
bool is_first_char_; bool is_first_char_;
friend class TwoCharHashTableKey; DISALLOW_COPY_AND_ASSIGN(StringHasher);
template <bool seq_ascii> friend class JsonParser;
}; };
class IncrementalAsciiStringHasher {
public:
explicit inline IncrementalAsciiStringHasher(uint32_t seed, char first_char);
inline void AddCharacter(uc32 c);
inline uint32_t GetHash();
private:
int length_;
uint32_t raw_running_hash_;
uint32_t array_index_;
bool is_array_index_;
char first_char_;
};
// Calculates string hash.
template <typename schar>
inline uint32_t HashSequentialString(const schar* chars,
int length,
uint32_t seed);
// The characteristics of a string are stored in its map. Retrieving these // The characteristics of a string are stored in its map. Retrieving these
// few bits of information is moderately expensive, involving two memory // few bits of information is moderately expensive, involving two memory
// loads where the second is dependent on the first. To improve efficiency // loads where the second is dependent on the first. To improve efficiency
@ -7227,10 +7196,6 @@ class String: public HeapObject {
// Returns a hash value used for the property table // Returns a hash value used for the property table
inline uint32_t Hash(); inline uint32_t Hash();
static uint32_t ComputeHashField(unibrow::CharacterStream* buffer,
int length,
uint32_t seed);
static bool ComputeArrayIndex(unibrow::CharacterStream* buffer, static bool ComputeArrayIndex(unibrow::CharacterStream* buffer,
uint32_t* index, uint32_t* index,
int length); int length);
@ -7870,22 +7835,30 @@ class StringInputBuffer: public unibrow::InputBuffer<String, String*, 1024> {
}; };
// A ConsStringOp that returns null.
// Useful when the operation to apply on a ConsString
// requires an expensive data structure.
class ConsStringNullOp {
public:
inline ConsStringNullOp() {}
static inline String* Operate(String*, unsigned*, int32_t*, unsigned*);
private:
DISALLOW_COPY_AND_ASSIGN(ConsStringNullOp);
};
// This maintains an off-stack representation of the stack frames required // This maintains an off-stack representation of the stack frames required
// to traverse a ConsString, allowing an entirely iterative and restartable // to traverse a ConsString, allowing an entirely iterative and restartable
// traversal of the entire string // traversal of the entire string
// Note: this class is not GC-safe. // Note: this class is not GC-safe.
class ConsStringIteratorOp { class ConsStringIteratorOp {
public: public:
struct ContinueResponse {
String* string_;
unsigned offset_;
unsigned length_;
int32_t type_;
};
inline ConsStringIteratorOp() {} inline ConsStringIteratorOp() {}
String* Operate(ConsString* cons_string, unsigned* offset_out, String* Operate(String* string,
int32_t* type_out, unsigned* length_out); unsigned* offset_out,
inline bool ContinueOperation(ContinueResponse* response); int32_t* type_out,
unsigned* length_out);
inline String* ContinueOperation(int32_t* type_out, unsigned* length_out);
inline void Reset(); inline void Reset();
inline bool HasMore(); inline bool HasMore();
@ -7902,6 +7875,9 @@ class ConsStringIteratorOp {
inline void AdjustMaximumDepth(); inline void AdjustMaximumDepth();
inline void Pop(); inline void Pop();
String* NextLeaf(bool* blew_stack, int32_t* type_out, unsigned* length_out); String* NextLeaf(bool* blew_stack, int32_t* type_out, unsigned* length_out);
String* Search(unsigned* offset_out,
int32_t* type_out,
unsigned* length_out);
unsigned depth_; unsigned depth_;
unsigned maximum_depth_; unsigned maximum_depth_;
@ -7910,8 +7886,6 @@ class ConsStringIteratorOp {
ConsString* frames_[kStackSize]; ConsString* frames_[kStackSize];
unsigned consumed_; unsigned consumed_;
ConsString* root_; ConsString* root_;
int32_t root_type_;
unsigned root_length_;
DISALLOW_COPY_AND_ASSIGN(ConsStringIteratorOp); DISALLOW_COPY_AND_ASSIGN(ConsStringIteratorOp);
}; };
@ -7919,8 +7893,9 @@ class ConsStringIteratorOp {
// Note: this class is not GC-safe. // Note: this class is not GC-safe.
class StringCharacterStream { class StringCharacterStream {
public: public:
inline StringCharacterStream( inline StringCharacterStream(String* string,
String* string, unsigned offset, ConsStringIteratorOp* op); unsigned offset,
ConsStringIteratorOp* op);
inline uint16_t GetNext(); inline uint16_t GetNext();
inline bool HasMore(); inline bool HasMore();
inline void Reset(String* string, unsigned offset, ConsStringIteratorOp* op); inline void Reset(String* string, unsigned offset, ConsStringIteratorOp* op);

View File

@ -112,7 +112,7 @@ const char* StringsStorage::GetCopy(const char* src) {
OS::StrNCpy(dst, src, len); OS::StrNCpy(dst, src, len);
dst[len] = '\0'; dst[len] = '\0';
uint32_t hash = uint32_t hash =
HashSequentialString(dst.start(), len, HEAP->HashSeed()); StringHasher::HashSequentialString(dst.start(), len, HEAP->HashSeed());
return AddOrDisposeString(dst.start(), hash); return AddOrDisposeString(dst.start(), hash);
} }
@ -145,7 +145,7 @@ const char* StringsStorage::GetVFormatted(const char* format, va_list args) {
DeleteArray(str.start()); DeleteArray(str.start());
return format; return format;
} }
uint32_t hash = HashSequentialString( uint32_t hash = StringHasher::HashSequentialString(
str.start(), len, HEAP->HashSeed()); str.start(), len, HEAP->HashSeed());
return AddOrDisposeString(str.start(), hash); return AddOrDisposeString(str.start(), hash);
} }
@ -156,8 +156,8 @@ const char* StringsStorage::GetName(String* name) {
int length = Min(kMaxNameSize, name->length()); int length = Min(kMaxNameSize, name->length());
SmartArrayPointer<char> data = SmartArrayPointer<char> data =
name->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL, 0, length); name->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL, 0, length);
uint32_t hash = uint32_t hash = StringHasher::HashSequentialString(
HashSequentialString(*data, length, name->GetHeap()->HashSeed()); *data, length, name->GetHeap()->HashSeed());
return AddOrDisposeString(data.Detach(), hash); return AddOrDisposeString(data.Detach(), hash);
} }
return ""; return "";
@ -1451,9 +1451,9 @@ void HeapObjectsMap::RemoveDeadEntries() {
SnapshotObjectId HeapObjectsMap::GenerateId(v8::RetainedObjectInfo* info) { SnapshotObjectId HeapObjectsMap::GenerateId(v8::RetainedObjectInfo* info) {
SnapshotObjectId id = static_cast<SnapshotObjectId>(info->GetHash()); SnapshotObjectId id = static_cast<SnapshotObjectId>(info->GetHash());
const char* label = info->GetLabel(); const char* label = info->GetLabel();
id ^= HashSequentialString(label, id ^= StringHasher::HashSequentialString(label,
static_cast<int>(strlen(label)), static_cast<int>(strlen(label)),
HEAP->HashSeed()); HEAP->HashSeed());
intptr_t element_count = info->GetElementCount(); intptr_t element_count = info->GetElementCount();
if (element_count != -1) if (element_count != -1)
id ^= ComputeIntegerHash(static_cast<uint32_t>(element_count), id ^= ComputeIntegerHash(static_cast<uint32_t>(element_count),
@ -2940,9 +2940,10 @@ class NativeGroupRetainedObjectInfo : public v8::RetainedObjectInfo {
NativeGroupRetainedObjectInfo* NativeObjectsExplorer::FindOrAddGroupInfo( NativeGroupRetainedObjectInfo* NativeObjectsExplorer::FindOrAddGroupInfo(
const char* label) { const char* label) {
const char* label_copy = collection_->names()->GetCopy(label); const char* label_copy = collection_->names()->GetCopy(label);
uint32_t hash = HashSequentialString(label_copy, uint32_t hash = StringHasher::HashSequentialString(
static_cast<int>(strlen(label_copy)), label_copy,
HEAP->HashSeed()); static_cast<int>(strlen(label_copy)),
HEAP->HashSeed());
HashMap::Entry* entry = native_groups_.Lookup(const_cast<char*>(label_copy), HashMap::Entry* entry = native_groups_.Lookup(const_cast<char*>(label_copy),
hash, true); hash, true);
if (entry->value == NULL) { if (entry->value == NULL) {

View File

@ -170,10 +170,6 @@ class Utf8 {
// that match are coded as a 4 byte UTF-8 sequence. // that match are coded as a 4 byte UTF-8 sequence.
static const unsigned kBytesSavedByCombiningSurrogates = 2; static const unsigned kBytesSavedByCombiningSurrogates = 2;
static const unsigned kSizeOfUnmatchedSurrogate = 3; static const unsigned kSizeOfUnmatchedSurrogate = 3;
private:
template <unsigned s> friend class Utf8InputBuffer;
friend class Test;
static inline uchar ValueOf(const byte* str, static inline uchar ValueOf(const byte* str,
unsigned length, unsigned length,
unsigned* cursor); unsigned* cursor);

View File

@ -345,37 +345,24 @@ void AccumulateStats(Handle<String> cons_string, ConsStringStats* stats) {
void AccumulateStatsWithOperator( void AccumulateStatsWithOperator(
ConsString* cons_string, ConsStringStats* stats) { ConsString* cons_string, ConsStringStats* stats) {
// Init op. unsigned offset = 0;
int32_t type = cons_string->map()->instance_type();
unsigned length = static_cast<unsigned>(cons_string->length());
ConsStringIteratorOp op; ConsStringIteratorOp op;
op.Reset(); String* string = op.Operate(cons_string, &offset, &type, &length);
// Use response for initial search and on blown stack. CHECK(string != NULL);
ConsStringIteratorOp::ContinueResponse response;
response.string_ = cons_string;
response.offset_ = 0;
response.type_ = cons_string->map()->instance_type();
response.length_ = (uint32_t) cons_string->length();
while (true) { while (true) {
String* string = op.Operate(ConsString::cast(response.string_), ASSERT(!string->IsConsString());
&response.offset_, // Accumulate stats.
&response.type_, stats->leaves_++;
&response.length_); stats->chars_ += string->length();
CHECK(string != NULL); // Check for completion.
while (true) { bool keep_going_fast_check = op.HasMore();
// Accumulate stats. string = op.ContinueOperation(&type, &length);
stats->leaves_++; if (string == NULL) return;
stats->chars_ += string->length(); // Verify no false positives for fast check.
// Check for completion. CHECK(keep_going_fast_check);
bool keep_going_fast_check = op.HasMore(); }
bool keep_going = op.ContinueOperation(&response);
if (!keep_going) return;
// Verify no false positives for fast check.
CHECK(keep_going_fast_check);
CHECK(response.string_ != NULL);
// Blew stack. Restart outer loop.
if (response.string_->IsConsString()) break;
string = response.string_;
}
};
} }