[base] Move most of src/numbers into base

Moves all but conversions.*, hash-seed-inl.h and math-random.* into
base, in preparation for moving the parts of conversions that don't
access HeapObjects.

Also moves uc16 and uc32 out of commons/globals.h into base/strings.h.

Bug: v8:11917
Change-Id: Ife359148bb0961a63833aff40d26331454b6afb6
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2979595
Reviewed-by: Ross McIlroy <rmcilroy@chromium.org>
Reviewed-by: Clemens Backes <clemensb@chromium.org>
Commit-Queue: Ross McIlroy <rmcilroy@chromium.org>
Auto-Submit: Dan Elphick <delphick@chromium.org>
Cr-Commit-Position: refs/heads/master@{#75354}
This commit is contained in:
Dan Elphick 2021-06-23 12:32:36 +01:00 committed by V8 LUCI CQ
parent e9943dae2f
commit 9701d4a420
154 changed files with 1459 additions and 1473 deletions

View File

@ -214,6 +214,23 @@ filegroup(
"src/base/logging.h",
"src/base/macros.h",
"src/base/memory.h",
"src/base/numbers/bignum-dtoa.cc",
"src/base/numbers/bignum-dtoa.h",
"src/base/numbers/bignum.cc",
"src/base/numbers/bignum.h",
"src/base/numbers/cached-powers.cc",
"src/base/numbers/cached-powers.h",
"src/base/numbers/diy-fp.cc",
"src/base/numbers/diy-fp.h",
"src/base/numbers/double.h",
"src/base/numbers/dtoa.cc",
"src/base/numbers/dtoa.h",
"src/base/numbers/fast-dtoa.cc",
"src/base/numbers/fast-dtoa.h",
"src/base/numbers/fixed-dtoa.cc",
"src/base/numbers/fixed-dtoa.h",
"src/base/numbers/strtod.cc",
"src/base/numbers/strtod.h",
"src/base/once.cc",
"src/base/once.h",
"src/base/optional.h",
@ -1104,29 +1121,12 @@ filegroup(
"src/logging/tracing-flags.h",
"src/logging/runtime-call-stats.h",
"src/logging/runtime-call-stats-scope.h",
"src/numbers/bignum-dtoa.cc",
"src/numbers/bignum-dtoa.h",
"src/numbers/bignum.cc",
"src/numbers/bignum.h",
"src/numbers/cached-powers.cc",
"src/numbers/cached-powers.h",
"src/numbers/conversions-inl.h",
"src/numbers/conversions.cc",
"src/numbers/conversions.h",
"src/numbers/diy-fp.cc",
"src/numbers/diy-fp.h",
"src/numbers/double.h",
"src/numbers/dtoa.cc",
"src/numbers/dtoa.h",
"src/numbers/fast-dtoa.cc",
"src/numbers/fast-dtoa.h",
"src/numbers/fixed-dtoa.cc",
"src/numbers/fixed-dtoa.h",
"src/numbers/hash-seed-inl.h",
"src/numbers/math-random.cc",
"src/numbers/math-random.h",
"src/numbers/strtod.cc",
"src/numbers/strtod.h",
"src/objects/all-objects-inl.h",
"src/objects/allocation-site-inl.h",
"src/objects/allocation-site-scopes-inl.h",

View File

@ -2815,19 +2815,10 @@ v8_header_set("v8_internal_headers") {
"src/logging/runtime-call-stats-scope.h",
"src/logging/runtime-call-stats.h",
"src/logging/tracing-flags.h",
"src/numbers/bignum-dtoa.h",
"src/numbers/bignum.h",
"src/numbers/cached-powers.h",
"src/numbers/conversions-inl.h",
"src/numbers/conversions.h",
"src/numbers/diy-fp.h",
"src/numbers/double.h",
"src/numbers/dtoa.h",
"src/numbers/fast-dtoa.h",
"src/numbers/fixed-dtoa.h",
"src/numbers/hash-seed-inl.h",
"src/numbers/math-random.h",
"src/numbers/strtod.h",
"src/objects/all-objects-inl.h",
"src/objects/allocation-site-inl.h",
"src/objects/allocation-site-scopes-inl.h",
@ -3908,16 +3899,8 @@ v8_source_set("v8_base_without_compiler") {
"src/logging/metrics.cc",
"src/logging/runtime-call-stats.cc",
"src/logging/tracing-flags.cc",
"src/numbers/bignum-dtoa.cc",
"src/numbers/bignum.cc",
"src/numbers/cached-powers.cc",
"src/numbers/conversions.cc",
"src/numbers/diy-fp.cc",
"src/numbers/dtoa.cc",
"src/numbers/fast-dtoa.cc",
"src/numbers/fixed-dtoa.cc",
"src/numbers/math-random.cc",
"src/numbers/strtod.cc",
"src/objects/backing-store.cc",
"src/objects/bigint.cc",
"src/objects/code-kind.cc",
@ -4669,6 +4652,23 @@ v8_component("v8_libbase") {
"src/base/logging.h",
"src/base/macros.h",
"src/base/memory.h",
"src/base/numbers/bignum-dtoa.cc",
"src/base/numbers/bignum-dtoa.h",
"src/base/numbers/bignum.cc",
"src/base/numbers/bignum.h",
"src/base/numbers/cached-powers.cc",
"src/base/numbers/cached-powers.h",
"src/base/numbers/diy-fp.cc",
"src/base/numbers/diy-fp.h",
"src/base/numbers/double.h",
"src/base/numbers/dtoa.cc",
"src/base/numbers/dtoa.h",
"src/base/numbers/fast-dtoa.cc",
"src/base/numbers/fast-dtoa.h",
"src/base/numbers/fixed-dtoa.cc",
"src/base/numbers/fixed-dtoa.h",
"src/base/numbers/strtod.cc",
"src/base/numbers/strtod.h",
"src/base/once.cc",
"src/base/once.h",
"src/base/optional.h",

View File

@ -85,7 +85,7 @@ void AsmJsScanner::Next() {
for (;;) {
position_ = stream_->pos();
uc32 ch = stream_->Advance();
base::uc32 ch = stream_->Advance();
switch (ch) {
case ' ':
case '\t':
@ -223,7 +223,7 @@ void AsmJsScanner::Seek(size_t pos) {
Next();
}
void AsmJsScanner::ConsumeIdentifier(uc32 ch) {
void AsmJsScanner::ConsumeIdentifier(base::uc32 ch) {
// Consume characters while still part of the identifier.
identifier_string_.clear();
while (IsIdentifierPart(ch)) {
@ -271,7 +271,7 @@ void AsmJsScanner::ConsumeIdentifier(uc32 ch) {
}
}
void AsmJsScanner::ConsumeNumber(uc32 ch) {
void AsmJsScanner::ConsumeNumber(base::uc32 ch) {
std::string number;
number.assign(1, ch);
bool has_dot = ch == '.';
@ -344,7 +344,7 @@ void AsmJsScanner::ConsumeNumber(uc32 ch) {
bool AsmJsScanner::ConsumeCComment() {
for (;;) {
uc32 ch = stream_->Advance();
base::uc32 ch = stream_->Advance();
while (ch == '*') {
ch = stream_->Advance();
if (ch == '/') {
@ -362,7 +362,7 @@ bool AsmJsScanner::ConsumeCComment() {
void AsmJsScanner::ConsumeCPPComment() {
for (;;) {
uc32 ch = stream_->Advance();
base::uc32 ch = stream_->Advance();
if (ch == '\n') {
preceded_by_newline_ = true;
return;
@ -373,11 +373,11 @@ void AsmJsScanner::ConsumeCPPComment() {
}
}
void AsmJsScanner::ConsumeString(uc32 quote) {
void AsmJsScanner::ConsumeString(base::uc32 quote) {
// Only string allowed is 'use asm' / "use asm".
const char* expected = "use asm";
for (; *expected != '\0'; ++expected) {
if (stream_->Advance() != static_cast<uc32>(*expected)) {
if (stream_->Advance() != static_cast<base::uc32>(*expected)) {
token_ = kParseError;
return;
}
@ -389,8 +389,8 @@ void AsmJsScanner::ConsumeString(uc32 quote) {
token_ = kToken_UseAsm;
}
void AsmJsScanner::ConsumeCompareOrShift(uc32 ch) {
uc32 next_ch = stream_->Advance();
void AsmJsScanner::ConsumeCompareOrShift(base::uc32 ch) {
base::uc32 next_ch = stream_->Advance();
if (next_ch == '=') {
switch (ch) {
case '<':
@ -423,14 +423,16 @@ void AsmJsScanner::ConsumeCompareOrShift(uc32 ch) {
}
}
bool AsmJsScanner::IsIdentifierStart(uc32 ch) {
bool AsmJsScanner::IsIdentifierStart(base::uc32 ch) {
return base::IsInRange(AsciiAlphaToLower(ch), 'a', 'z') || ch == '_' ||
ch == '$';
}
bool AsmJsScanner::IsIdentifierPart(uc32 ch) { return IsAsciiIdentifier(ch); }
bool AsmJsScanner::IsIdentifierPart(base::uc32 ch) {
return IsAsciiIdentifier(ch);
}
bool AsmJsScanner::IsNumberStart(uc32 ch) {
bool AsmJsScanner::IsNumberStart(base::uc32 ch) {
return ch == '.' || IsDecimalDigit(ch);
}

View File

@ -11,6 +11,7 @@
#include "src/asmjs/asm-names.h"
#include "src/base/logging.h"
#include "src/base/strings.h"
#include "src/common/globals.h"
namespace v8 {
@ -135,7 +136,8 @@ class V8_EXPORT_PRIVATE AsmJsScanner {
};
// clang-format on
static constexpr uc32 kEndOfInputU = static_cast<uc32>(kEndOfInput);
static constexpr base::uc32 kEndOfInputU =
static_cast<base::uc32>(kEndOfInput);
private:
Utf16CharacterStream* stream_;
@ -157,17 +159,17 @@ class V8_EXPORT_PRIVATE AsmJsScanner {
bool preceded_by_newline_;
// Consume multiple characters.
void ConsumeIdentifier(uc32 ch);
void ConsumeNumber(uc32 ch);
void ConsumeIdentifier(base::uc32 ch);
void ConsumeNumber(base::uc32 ch);
bool ConsumeCComment();
void ConsumeCPPComment();
void ConsumeString(uc32 quote);
void ConsumeCompareOrShift(uc32 ch);
void ConsumeString(base::uc32 quote);
void ConsumeCompareOrShift(base::uc32 ch);
// Classify character categories.
bool IsIdentifierStart(uc32 ch);
bool IsIdentifierPart(uc32 ch);
bool IsNumberStart(uc32 ch);
bool IsIdentifierStart(base::uc32 ch);
bool IsIdentifierPart(base::uc32 ch);
bool IsNumberStart(base::uc32 ch);
};
} // namespace internal

View File

@ -11,13 +11,13 @@
#include "src/ast/scopes.h"
#include "src/base/hashmap.h"
#include "src/base/logging.h"
#include "src/base/numbers/double.h"
#include "src/base/platform/wrappers.h"
#include "src/builtins/builtins-constructor.h"
#include "src/builtins/builtins.h"
#include "src/common/assert-scope.h"
#include "src/heap/local-factory-inl.h"
#include "src/numbers/conversions-inl.h"
#include "src/numbers/double.h"
#include "src/objects/contexts.h"
#include "src/objects/elements-kind.h"
#include "src/objects/elements.h"
@ -1044,7 +1044,7 @@ uint32_t Literal::Hash() {
return ComputeLongHash(index);
}
return IsString() ? AsRawString()->Hash()
: ComputeLongHash(double_to_uint64(AsNumber()));
: ComputeLongHash(base::double_to_uint64(AsNumber()));
}
// static

View File

@ -2,17 +2,16 @@
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/numbers/bignum-dtoa.h"
#include "src/base/numbers/bignum-dtoa.h"
#include <cmath>
#include "src/base/logging.h"
#include "src/numbers/bignum.h"
#include "src/numbers/double.h"
#include "src/utils/utils.h"
#include "src/base/numbers/bignum.h"
#include "src/base/numbers/double.h"
namespace v8 {
namespace internal {
namespace base {
static int NormalizedExponent(uint64_t significand, int exponent) {
DCHECK_NE(significand, 0);
@ -45,22 +44,22 @@ static void FixupMultiply10(int estimated_power, bool is_even,
// digits yield the shortest decimal representation of v.
static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
Bignum* delta_minus, Bignum* delta_plus,
bool is_even, base::Vector<char> buffer,
bool is_even, Vector<char> buffer,
int* length);
// Generates 'requested_digits' after the decimal point.
static void BignumToFixed(int requested_digits, int* decimal_point,
Bignum* numerator, Bignum* denominator,
base::Vector<char>(buffer), int* length);
Vector<char>(buffer), int* length);
// Generates 'count' digits of numerator/denominator.
// Once 'count' digits have been produced rounds the result depending on the
// remainder (remainders of exactly .5 round upwards). Might update the
// decimal_point when rounding up (for example for 0.9999).
static void GenerateCountedDigits(int count, int* decimal_point,
Bignum* numerator, Bignum* denominator,
base::Vector<char>(buffer), int* length);
Vector<char>(buffer), int* length);
void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits,
base::Vector<char> buffer, int* length, int* decimal_point) {
Vector<char> buffer, int* length, int* decimal_point) {
DCHECK_GT(v, 0);
DCHECK(!Double(v).IsSpecial());
uint64_t significand = Double(v).Significand();
@ -135,7 +134,7 @@ void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits,
// will be produced. This should be the standard precondition.
static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
Bignum* delta_minus, Bignum* delta_plus,
bool is_even, base::Vector<char> buffer,
bool is_even, Vector<char> buffer,
int* length) {
// Small optimization: if delta_minus and delta_plus are the same just reuse
// one of the two bignums.
@ -232,7 +231,7 @@ static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
// exponent (decimal_point), when rounding upwards.
static void GenerateCountedDigits(int count, int* decimal_point,
Bignum* numerator, Bignum* denominator,
base::Vector<char>(buffer), int* length) {
Vector<char>(buffer), int* length) {
DCHECK_GE(count, 0);
for (int i = 0; i < count - 1; ++i) {
uint16_t digit;
@ -273,7 +272,7 @@ static void GenerateCountedDigits(int count, int* decimal_point,
// Input verifies: 1 <= (numerator + delta) / denominator < 10.
static void BignumToFixed(int requested_digits, int* decimal_point,
Bignum* numerator, Bignum* denominator,
base::Vector<char>(buffer), int* length) {
Vector<char>(buffer), int* length) {
// Note that we have to look at more than just the requested_digits, since
// a number could be rounded up. Example: v=0.5 with requested_digits=0.
// Even though the power of v equals 0 we can't just stop here.
@ -604,5 +603,5 @@ static void FixupMultiply10(int estimated_power, bool is_even,
}
}
} // namespace internal
} // namespace base
} // namespace v8

View File

@ -2,13 +2,13 @@
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_NUMBERS_BIGNUM_DTOA_H_
#define V8_NUMBERS_BIGNUM_DTOA_H_
#ifndef V8_BASE_NUMBERS_BIGNUM_DTOA_H_
#define V8_BASE_NUMBERS_BIGNUM_DTOA_H_
#include "src/base/vector.h"
namespace v8 {
namespace internal {
namespace base {
enum BignumDtoaMode {
// Return the shortest correct representation.
@ -52,12 +52,11 @@ enum BignumDtoaMode {
// Halfway cases are again rounded up.
// 'BignumDtoa' expects the given buffer to be big enough to hold all digits
// and a terminating null-character.
V8_EXPORT_PRIVATE void BignumDtoa(double v, BignumDtoaMode mode,
int requested_digits,
base::Vector<char> buffer, int* length,
int* point);
V8_BASE_EXPORT void BignumDtoa(double v, BignumDtoaMode mode,
int requested_digits, Vector<char> buffer,
int* length, int* point);
} // namespace internal
} // namespace base
} // namespace v8
#endif // V8_NUMBERS_BIGNUM_DTOA_H_
#endif // V8_BASE_NUMBERS_BIGNUM_DTOA_H_

View File

@ -2,11 +2,12 @@
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/numbers/bignum.h"
#include "src/utils/utils.h"
#include "src/base/numbers/bignum.h"
#include "src/base/strings.h"
namespace v8 {
namespace internal {
namespace base {
Bignum::Bignum()
: bigits_(bigits_buffer_, kBigitCapacity), used_digits_(0), exponent_(0) {
@ -59,7 +60,7 @@ void Bignum::AssignBignum(const Bignum& other) {
used_digits_ = other.used_digits_;
}
static uint64_t ReadUInt64(base::Vector<const char> buffer, int from,
static uint64_t ReadUInt64(Vector<const char> buffer, int from,
int digits_to_read) {
uint64_t result = 0;
int to = from + digits_to_read;
@ -72,7 +73,7 @@ static uint64_t ReadUInt64(base::Vector<const char> buffer, int from,
return result;
}
void Bignum::AssignDecimalString(base::Vector<const char> value) {
void Bignum::AssignDecimalString(Vector<const char> value) {
// 2^64 = 18446744073709551616 > 10^19
const int kMaxUint64DecimalDigits = 19;
Zero();
@ -99,7 +100,7 @@ static int HexCharValue(char c) {
UNREACHABLE();
}
void Bignum::AssignHexString(base::Vector<const char> value) {
void Bignum::AssignHexString(Vector<const char> value) {
Zero();
int length = value.length();
@ -712,5 +713,5 @@ void Bignum::SubtractTimes(const Bignum& other, int factor) {
DCHECK(Bignum::Equal(a, *this));
}
} // namespace internal
} // namespace base
} // namespace v8

View File

@ -2,15 +2,15 @@
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_NUMBERS_BIGNUM_H_
#define V8_NUMBERS_BIGNUM_H_
#ifndef V8_BASE_NUMBERS_BIGNUM_H_
#define V8_BASE_NUMBERS_BIGNUM_H_
#include "src/base/vector.h"
namespace v8 {
namespace internal {
namespace base {
class V8_EXPORT_PRIVATE Bignum {
class V8_BASE_EXPORT Bignum {
public:
// 3584 = 128 * 28. We can represent 2^3584 > 10^1000 accurately.
// This bignum can encode much bigger numbers, since it contains an
@ -24,8 +24,8 @@ class V8_EXPORT_PRIVATE Bignum {
void AssignUInt64(uint64_t value);
void AssignBignum(const Bignum& other);
void AssignDecimalString(base::Vector<const char> value);
void AssignHexString(base::Vector<const char> value);
void AssignDecimalString(Vector<const char> value);
void AssignHexString(Vector<const char> value);
void AssignPowerUInt16(uint16_t base, int exponent);
@ -109,13 +109,13 @@ class V8_EXPORT_PRIVATE Bignum {
Chunk bigits_buffer_[kBigitCapacity];
// A vector backed by bigits_buffer_. This way accesses to the array are
// checked for out-of-bounds errors.
base::Vector<Chunk> bigits_;
Vector<Chunk> bigits_;
int used_digits_;
// The Bignum's value equals value(bigits_) * 2^(exponent_ * kBigitSize).
int exponent_;
};
} // namespace internal
} // namespace base
} // namespace v8
#endif // V8_NUMBERS_BIGNUM_H_
#endif // V8_BASE_NUMBERS_BIGNUM_H_

View File

@ -2,18 +2,18 @@
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/numbers/cached-powers.h"
#include "src/base/numbers/cached-powers.h"
#include <limits.h>
#include <stdarg.h>
#include <stdint.h>
#include <cmath>
#include "src/base/logging.h"
#include "src/common/globals.h"
namespace v8 {
namespace internal {
namespace base {
struct CachedPower {
uint64_t significand;
@ -109,5 +109,5 @@ void PowersOfTenCache::GetCachedPowerForDecimalExponent(int requested_exponent,
DCHECK(requested_exponent < *found_exponent + kDecimalExponentDistance);
}
} // namespace internal
} // namespace base
} // namespace v8

View File

@ -2,14 +2,14 @@
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_NUMBERS_CACHED_POWERS_H_
#define V8_NUMBERS_CACHED_POWERS_H_
#ifndef V8_BASE_NUMBERS_CACHED_POWERS_H_
#define V8_BASE_NUMBERS_CACHED_POWERS_H_
#include "src/base/logging.h"
#include "src/numbers/diy-fp.h"
#include "src/base/numbers/diy-fp.h"
namespace v8 {
namespace internal {
namespace base {
class PowersOfTenCache {
public:
@ -37,7 +37,7 @@ class PowersOfTenCache {
int* found_exponent);
};
} // namespace internal
} // namespace base
} // namespace v8
#endif // V8_NUMBERS_CACHED_POWERS_H_
#endif // V8_BASE_NUMBERS_CACHED_POWERS_H_

View File

@ -2,12 +2,12 @@
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/numbers/diy-fp.h"
#include "src/base/numbers/diy-fp.h"
#include <stdint.h>
namespace v8 {
namespace internal {
namespace base {
void DiyFp::Multiply(const DiyFp& other) {
// Simply "emulates" a 128 bit multiplication.
@ -32,5 +32,5 @@ void DiyFp::Multiply(const DiyFp& other) {
f_ = result_f;
}
} // namespace internal
} // namespace base
} // namespace v8

View File

@ -2,8 +2,8 @@
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_NUMBERS_DIY_FP_H_
#define V8_NUMBERS_DIY_FP_H_
#ifndef V8_BASE_NUMBERS_DIY_FP_H_
#define V8_BASE_NUMBERS_DIY_FP_H_
#include <stdint.h>
@ -11,7 +11,7 @@
#include "src/base/macros.h"
namespace v8 {
namespace internal {
namespace base {
// This "Do It Yourself Floating Point" class implements a floating-point number
// with a uint64 significand and an int exponent. Normalized DiyFp numbers will
@ -45,7 +45,7 @@ class DiyFp {
}
// this = this * other.
V8_EXPORT_PRIVATE void Multiply(const DiyFp& other);
V8_BASE_EXPORT void Multiply(const DiyFp& other);
// returns a * b;
static DiyFp Times(const DiyFp& a, const DiyFp& b) {
@ -93,7 +93,7 @@ class DiyFp {
int e_;
};
} // namespace internal
} // namespace base
} // namespace v8
#endif // V8_NUMBERS_DIY_FP_H_
#endif // V8_BASE_NUMBERS_DIY_FP_H_

View File

@ -2,14 +2,14 @@
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_NUMBERS_DOUBLE_H_
#define V8_NUMBERS_DOUBLE_H_
#ifndef V8_BASE_NUMBERS_DOUBLE_H_
#define V8_BASE_NUMBERS_DOUBLE_H_
#include "src/base/macros.h"
#include "src/numbers/diy-fp.h"
#include "src/base/numbers/diy-fp.h"
namespace v8 {
namespace internal {
namespace base {
// We assume that doubles and uint64_t have the same endianness.
inline uint64_t double_to_uint64(double d) { return bit_cast<uint64_t>(d); }
@ -204,7 +204,7 @@ class Double {
}
};
} // namespace internal
} // namespace base
} // namespace v8
#endif // V8_NUMBERS_DOUBLE_H_
#endif // V8_BASE_NUMBERS_DOUBLE_H_

View File

@ -2,20 +2,18 @@
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/base/numbers/dtoa.h"
#include <cmath>
#include "src/base/logging.h"
#include "src/utils/utils.h"
#include "src/numbers/dtoa.h"
#include "src/numbers/bignum-dtoa.h"
#include "src/numbers/double.h"
#include "src/numbers/fast-dtoa.h"
#include "src/numbers/fixed-dtoa.h"
#include "src/base/numbers/bignum-dtoa.h"
#include "src/base/numbers/double.h"
#include "src/base/numbers/fast-dtoa.h"
#include "src/base/numbers/fixed-dtoa.h"
namespace v8 {
namespace internal {
namespace base {
static BignumDtoaMode DtoaToBignumDtoaMode(DtoaMode dtoa_mode) {
switch (dtoa_mode) {
@ -31,8 +29,7 @@ static BignumDtoaMode DtoaToBignumDtoaMode(DtoaMode dtoa_mode) {
}
void DoubleToAscii(double v, DtoaMode mode, int requested_digits,
base::Vector<char> buffer, int* sign, int* length,
int* point) {
Vector<char> buffer, int* sign, int* length, int* point) {
DCHECK(!Double(v).IsSpecial());
DCHECK(mode == DTOA_SHORTEST || requested_digits >= 0);
@ -80,5 +77,5 @@ void DoubleToAscii(double v, DtoaMode mode, int requested_digits,
buffer[*length] = '\0';
}
} // namespace internal
} // namespace base
} // namespace v8

View File

@ -2,13 +2,13 @@
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_NUMBERS_DTOA_H_
#define V8_NUMBERS_DTOA_H_
#ifndef V8_BASE_NUMBERS_DTOA_H_
#define V8_BASE_NUMBERS_DTOA_H_
#include "src/base/vector.h"
namespace v8 {
namespace internal {
namespace base {
enum DtoaMode {
// Return the shortest correct representation.
@ -61,12 +61,11 @@ const int kBase10MaximalLength = 17;
// and a terminating null-character. In SHORTEST-mode it expects a buffer of
// at least kBase10MaximalLength + 1. Otherwise, the size of the output is
// limited to requested_digits digits plus the null terminator.
V8_EXPORT_PRIVATE void DoubleToAscii(double v, DtoaMode mode,
int requested_digits,
base::Vector<char> buffer, int* sign,
int* length, int* point);
V8_BASE_EXPORT void DoubleToAscii(double v, DtoaMode mode, int requested_digits,
Vector<char> buffer, int* sign, int* length,
int* point);
} // namespace internal
} // namespace base
} // namespace v8
#endif // V8_NUMBERS_DTOA_H_
#endif // V8_BASE_NUMBERS_DTOA_H_

View File

@ -2,18 +2,18 @@
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/base/numbers/fast-dtoa.h"
#include <stdint.h>
#include "src/base/logging.h"
#include "src/utils/utils.h"
#include "src/numbers/fast-dtoa.h"
#include "src/numbers/cached-powers.h"
#include "src/numbers/diy-fp.h"
#include "src/numbers/double.h"
#include "src/base/numbers/cached-powers.h"
#include "src/base/numbers/diy-fp.h"
#include "src/base/numbers/double.h"
#include "src/base/v8-fallthrough.h"
namespace v8 {
namespace internal {
namespace base {
// The minimal and maximal target exponent define the range of w's binary
// exponent, where 'w' is the result of multiplying the input by a cached power
@ -39,7 +39,7 @@ static const int kMaximalTargetExponent = -32;
// Output: returns true if the buffer is guaranteed to contain the closest
// representable number to the input.
// Modifies the generated digits in the buffer to approach (round towards) w.
static bool RoundWeed(base::Vector<char> buffer, int length,
static bool RoundWeed(Vector<char> buffer, int length,
uint64_t distance_too_high_w, uint64_t unsafe_interval,
uint64_t rest, uint64_t ten_kappa, uint64_t unit) {
uint64_t small_distance = distance_too_high_w - unit;
@ -153,9 +153,8 @@ static bool RoundWeed(base::Vector<char> buffer, int length,
// unambiguously determined.
//
// Precondition: rest < ten_kappa.
static bool RoundWeedCounted(base::Vector<char> buffer, int length,
uint64_t rest, uint64_t ten_kappa, uint64_t unit,
int* kappa) {
static bool RoundWeedCounted(Vector<char> buffer, int length, uint64_t rest,
uint64_t ten_kappa, uint64_t unit, int* kappa) {
DCHECK(rest < ten_kappa);
// The following tests are done in a specific order to avoid overflows. They
// will work correctly with any uint64 values of rest < ten_kappa and unit.
@ -355,7 +354,7 @@ static void BiggestPowerTen(uint32_t number, int number_bits, uint32_t* power,
// represent 'w' we can stop. Everything inside the interval low - high
// represents w. However we have to pay attention to low, high and w's
// imprecision.
static bool DigitGen(DiyFp low, DiyFp w, DiyFp high, base::Vector<char> buffer,
static bool DigitGen(DiyFp low, DiyFp w, DiyFp high, Vector<char> buffer,
int* length, int* kappa) {
DCHECK(low.e() == w.e() && w.e() == high.e());
DCHECK(low.f() + 1 <= high.f() - 1);
@ -475,9 +474,8 @@ static bool DigitGen(DiyFp low, DiyFp w, DiyFp high, base::Vector<char> buffer,
// numbers. If the precision is not enough to guarantee all the postconditions
// then false is returned. This usually happens rarely, but the failure-rate
// increases with higher requested_digits.
static bool DigitGenCounted(DiyFp w, int requested_digits,
base::Vector<char> buffer, int* length,
int* kappa) {
static bool DigitGenCounted(DiyFp w, int requested_digits, Vector<char> buffer,
int* length, int* kappa) {
DCHECK(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
DCHECK_GE(kMinimalTargetExponent, -60);
DCHECK_LE(kMaximalTargetExponent, -32);
@ -561,7 +559,7 @@ static bool DigitGenCounted(DiyFp w, int requested_digits,
// The last digit will be closest to the actual v. That is, even if several
// digits might correctly yield 'v' when read again, the closest will be
// computed.
static bool Grisu3(double v, base::Vector<char> buffer, int* length,
static bool Grisu3(double v, Vector<char> buffer, int* length,
int* decimal_exponent) {
DiyFp w = Double(v).AsNormalizedDiyFp();
// boundary_minus and boundary_plus are the boundaries between v and its
@ -622,9 +620,8 @@ static bool Grisu3(double v, base::Vector<char> buffer, int* length,
// and with enough requested digits 0.1 will at some point print as 0.9999999...
// Grisu3 is too imprecise for real halfway cases (1.5 will not work) and
// therefore the rounding strategy for halfway cases is irrelevant.
static bool Grisu3Counted(double v, int requested_digits,
base::Vector<char> buffer, int* length,
int* decimal_exponent) {
static bool Grisu3Counted(double v, int requested_digits, Vector<char> buffer,
int* length, int* decimal_exponent) {
DiyFp w = Double(v).AsNormalizedDiyFp();
DiyFp ten_mk; // Cached power of ten: 10^-k
int mk; // -k
@ -663,7 +660,7 @@ static bool Grisu3Counted(double v, int requested_digits,
}
bool FastDtoa(double v, FastDtoaMode mode, int requested_digits,
base::Vector<char> buffer, int* length, int* decimal_point) {
Vector<char> buffer, int* length, int* decimal_point) {
DCHECK_GT(v, 0);
DCHECK(!Double(v).IsSpecial());
@ -687,5 +684,5 @@ bool FastDtoa(double v, FastDtoaMode mode, int requested_digits,
return result;
}
} // namespace internal
} // namespace base
} // namespace v8

View File

@ -2,13 +2,13 @@
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_NUMBERS_FAST_DTOA_H_
#define V8_NUMBERS_FAST_DTOA_H_
#ifndef V8_BASE_NUMBERS_FAST_DTOA_H_
#define V8_BASE_NUMBERS_FAST_DTOA_H_
#include "src/base/vector.h"
namespace v8 {
namespace internal {
namespace base {
enum FastDtoaMode {
// Computes the shortest representation of the given input. The returned
@ -50,11 +50,11 @@ const int kFastDtoaMaximalLength = 17;
// If there are two values that are equally close, then FastDtoa returns
// false.
// For both modes the buffer must be large enough to hold the result.
V8_EXPORT_PRIVATE bool FastDtoa(double d, FastDtoaMode mode,
int requested_digits, base::Vector<char> buffer,
int* length, int* decimal_point);
V8_BASE_EXPORT bool FastDtoa(double d, FastDtoaMode mode, int requested_digits,
Vector<char> buffer, int* length,
int* decimal_point);
} // namespace internal
} // namespace base
} // namespace v8
#endif // V8_NUMBERS_FAST_DTOA_H_
#endif // V8_BASE_NUMBERS_FAST_DTOA_H_

View File

@ -2,18 +2,17 @@
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/base/numbers/fixed-dtoa.h"
#include <stdint.h>
#include <cmath>
#include "src/base/logging.h"
#include "src/utils/utils.h"
#include "src/numbers/double.h"
#include "src/numbers/fixed-dtoa.h"
#include "src/base/numbers/double.h"
namespace v8 {
namespace internal {
namespace base {
// Represents a 128bit type. This class should be replaced by a native type on
// platforms that support 128bit integers.
@ -97,7 +96,7 @@ class UInt128 {
static const int kDoubleSignificandSize = 53; // Includes the hidden bit.
static void FillDigits32FixedLength(uint32_t number, int requested_length,
base::Vector<char> buffer, int* length) {
Vector<char> buffer, int* length) {
for (int i = requested_length - 1; i >= 0; --i) {
buffer[(*length) + i] = '0' + number % 10;
number /= 10;
@ -105,8 +104,7 @@ static void FillDigits32FixedLength(uint32_t number, int requested_length,
*length += requested_length;
}
static void FillDigits32(uint32_t number, base::Vector<char> buffer,
int* length) {
static void FillDigits32(uint32_t number, Vector<char> buffer, int* length) {
int number_length = 0;
// We fill the digits in reverse order and exchange them afterwards.
while (number != 0) {
@ -129,7 +127,7 @@ static void FillDigits32(uint32_t number, base::Vector<char> buffer,
}
static void FillDigits64FixedLength(uint64_t number, int requested_length,
base::Vector<char> buffer, int* length) {
Vector<char> buffer, int* length) {
const uint32_t kTen7 = 10000000;
// For efficiency cut the number into 3 uint32_t parts, and print those.
uint32_t part2 = static_cast<uint32_t>(number % kTen7);
@ -142,8 +140,7 @@ static void FillDigits64FixedLength(uint64_t number, int requested_length,
FillDigits32FixedLength(part2, 7, buffer, length);
}
static void FillDigits64(uint64_t number, base::Vector<char> buffer,
int* length) {
static void FillDigits64(uint64_t number, Vector<char> buffer, int* length) {
const uint32_t kTen7 = 10000000;
// For efficiency cut the number into 3 uint32_t parts, and print those.
uint32_t part2 = static_cast<uint32_t>(number % kTen7);
@ -163,8 +160,7 @@ static void FillDigits64(uint64_t number, base::Vector<char> buffer,
}
}
static void DtoaRoundUp(base::Vector<char> buffer, int* length,
int* decimal_point) {
static void DtoaRoundUp(Vector<char> buffer, int* length, int* decimal_point) {
// An empty buffer represents 0.
if (*length == 0) {
buffer[0] = '1';
@ -205,7 +201,7 @@ static void DtoaRoundUp(base::Vector<char> buffer, int* length,
// already contained "199" (thus yielding a buffer of "19999") then a
// rounding-up will change the contents of the buffer to "20000".
static void FillFractionals(uint64_t fractionals, int exponent,
int fractional_count, base::Vector<char> buffer,
int fractional_count, Vector<char> buffer,
int* length, int* decimal_point) {
DCHECK(-128 <= exponent && exponent <= 0);
// 'fractionals' is a fixed-point number, with binary point at bit
@ -262,8 +258,7 @@ static void FillFractionals(uint64_t fractionals, int exponent,
// Removes leading and trailing zeros.
// If leading zeros are removed then the decimal point position is adjusted.
static void TrimZeros(base::Vector<char> buffer, int* length,
int* decimal_point) {
static void TrimZeros(Vector<char> buffer, int* length, int* decimal_point) {
while (*length > 0 && buffer[(*length) - 1] == '0') {
(*length)--;
}
@ -280,7 +275,7 @@ static void TrimZeros(base::Vector<char> buffer, int* length,
}
}
bool FastFixedDtoa(double v, int fractional_count, base::Vector<char> buffer,
bool FastFixedDtoa(double v, int fractional_count, Vector<char> buffer,
int* length, int* decimal_point) {
const uint32_t kMaxUInt32 = 0xFFFFFFFF;
uint64_t significand = Double(v).Significand();
@ -372,5 +367,5 @@ bool FastFixedDtoa(double v, int fractional_count, base::Vector<char> buffer,
return true;
}
} // namespace internal
} // namespace base
} // namespace v8

View File

@ -2,13 +2,13 @@
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_NUMBERS_FIXED_DTOA_H_
#define V8_NUMBERS_FIXED_DTOA_H_
#ifndef V8_BASE_NUMBERS_FIXED_DTOA_H_
#define V8_BASE_NUMBERS_FIXED_DTOA_H_
#include "src/base/vector.h"
namespace v8 {
namespace internal {
namespace base {
// Produces digits necessary to print a given number with
// 'fractional_count' digits after the decimal point.
@ -26,11 +26,11 @@ namespace internal {
//
// This method only works for some parameters. If it can't handle the input it
// returns false. The output is null-terminated when the function succeeds.
V8_EXPORT_PRIVATE bool FastFixedDtoa(double v, int fractional_count,
base::Vector<char> buffer, int* length,
int* decimal_point);
V8_BASE_EXPORT bool FastFixedDtoa(double v, int fractional_count,
Vector<char> buffer, int* length,
int* decimal_point);
} // namespace internal
} // namespace base
} // namespace v8
#endif // V8_NUMBERS_FIXED_DTOA_H_
#endif // V8_BASE_NUMBERS_FIXED_DTOA_H_

View File

@ -2,19 +2,19 @@
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/numbers/strtod.h"
#include "src/base/numbers/strtod.h"
#include <stdarg.h>
#include <cmath>
#include "src/common/globals.h"
#include "src/numbers/bignum.h"
#include "src/numbers/cached-powers.h"
#include "src/numbers/double.h"
#include "src/utils/utils.h"
#include <cmath>
#include <limits>
#include "src/base/numbers/bignum.h"
#include "src/base/numbers/cached-powers.h"
#include "src/base/numbers/double.h"
namespace v8 {
namespace internal {
namespace base {
// 2^53 = 9007199254740992.
// Any integer with at most 15 decimal digits will hence fit into a double
@ -70,28 +70,26 @@ static const int kExactPowersOfTenSize = arraysize(exact_powers_of_ten);
// we round up to 780.
static const int kMaxSignificantDecimalDigits = 780;
static base::Vector<const char> TrimLeadingZeros(
base::Vector<const char> buffer) {
static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) {
for (int i = 0; i < buffer.length(); i++) {
if (buffer[i] != '0') {
return buffer.SubVector(i, buffer.length());
}
}
return base::Vector<const char>(buffer.begin(), 0);
return Vector<const char>(buffer.begin(), 0);
}
static base::Vector<const char> TrimTrailingZeros(
base::Vector<const char> buffer) {
static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) {
for (int i = buffer.length() - 1; i >= 0; --i) {
if (buffer[i] != '0') {
return buffer.SubVector(0, i + 1);
}
}
return base::Vector<const char>(buffer.begin(), 0);
return Vector<const char>(buffer.begin(), 0);
}
static void TrimToMaxSignificantDigits(base::Vector<const char> buffer,
int exponent, char* significant_buffer,
static void TrimToMaxSignificantDigits(Vector<const char> buffer, int exponent,
char* significant_buffer,
int* significant_exponent) {
for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) {
significant_buffer[i] = buffer[i];
@ -111,7 +109,7 @@ static void TrimToMaxSignificantDigits(base::Vector<const char> buffer,
// When the string starts with "1844674407370955161" no further digit is read.
// Since 2^64 = 18446744073709551616 it would still be possible read another
// digit if it was less or equal than 6, but this would complicate the code.
static uint64_t ReadUint64(base::Vector<const char> buffer,
static uint64_t ReadUint64(Vector<const char> buffer,
int* number_of_read_digits) {
uint64_t result = 0;
int i = 0;
@ -128,7 +126,7 @@ static uint64_t ReadUint64(base::Vector<const char> buffer,
// The returned DiyFp is not necessarily normalized.
// If remaining_decimals is zero then the returned DiyFp is accurate.
// Otherwise it has been rounded and has error of at most 1/2 ulp.
static void ReadDiyFp(base::Vector<const char> buffer, DiyFp* result,
static void ReadDiyFp(Vector<const char> buffer, DiyFp* result,
int* remaining_decimals) {
int read_digits;
uint64_t significand = ReadUint64(buffer, &read_digits);
@ -147,7 +145,7 @@ static void ReadDiyFp(base::Vector<const char> buffer, DiyFp* result,
}
}
static bool DoubleStrtod(base::Vector<const char> trimmed, int exponent,
static bool DoubleStrtod(Vector<const char> trimmed, int exponent,
double* result) {
#if (V8_TARGET_ARCH_IA32 || defined(USE_SIMULATOR)) && !defined(_MSC_VER)
// On x86 the floating-point stack can be 64 or 80 bits wide. If it is
@ -233,7 +231,7 @@ static DiyFp AdjustmentPowerOfTen(int exponent) {
// If the function returns true then the result is the correct double.
// Otherwise it is either the correct double or the double that is just below
// the correct double.
static bool DiyFpStrtod(base::Vector<const char> buffer, int exponent,
static bool DiyFpStrtod(Vector<const char> buffer, int exponent,
double* result) {
DiyFp input;
int remaining_decimals;
@ -347,9 +345,9 @@ static bool DiyFpStrtod(base::Vector<const char> buffer, int exponent,
// buffer.length() + exponent <= kMaxDecimalPower + 1
// buffer.length() + exponent > kMinDecimalPower
// buffer.length() <= kMaxDecimalSignificantDigits
static double BignumStrtod(base::Vector<const char> buffer, int exponent,
static double BignumStrtod(Vector<const char> buffer, int exponent,
double guess) {
if (guess == V8_INFINITY) {
if (guess == std::numeric_limits<double>::infinity()) {
return guess;
}
@ -390,9 +388,9 @@ static double BignumStrtod(base::Vector<const char> buffer, int exponent,
}
}
double Strtod(base::Vector<const char> buffer, int exponent) {
base::Vector<const char> left_trimmed = TrimLeadingZeros(buffer);
base::Vector<const char> trimmed = TrimTrailingZeros(left_trimmed);
double Strtod(Vector<const char> buffer, int exponent) {
Vector<const char> left_trimmed = TrimLeadingZeros(buffer);
Vector<const char> trimmed = TrimTrailingZeros(left_trimmed);
exponent += left_trimmed.length() - trimmed.length();
if (trimmed.length() == 0) return 0.0;
if (trimmed.length() > kMaxSignificantDecimalDigits) {
@ -400,11 +398,12 @@ double Strtod(base::Vector<const char> buffer, int exponent) {
int significant_exponent;
TrimToMaxSignificantDigits(trimmed, exponent, significant_buffer,
&significant_exponent);
return Strtod(base::Vector<const char>(significant_buffer,
kMaxSignificantDecimalDigits),
significant_exponent);
return Strtod(
Vector<const char>(significant_buffer, kMaxSignificantDecimalDigits),
significant_exponent);
}
if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) return V8_INFINITY;
if (exponent + trimmed.length() - 1 >= kMaxDecimalPower)
return std::numeric_limits<double>::infinity();
if (exponent + trimmed.length() <= kMinDecimalPower) return 0.0;
double guess;
@ -415,5 +414,5 @@ double Strtod(base::Vector<const char> buffer, int exponent) {
return BignumStrtod(trimmed, exponent, guess);
}
} // namespace internal
} // namespace base
} // namespace v8

View File

@ -2,19 +2,19 @@
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_NUMBERS_STRTOD_H_
#define V8_NUMBERS_STRTOD_H_
#ifndef V8_BASE_NUMBERS_STRTOD_H_
#define V8_BASE_NUMBERS_STRTOD_H_
#include "src/base/vector.h"
namespace v8 {
namespace internal {
namespace base {
// The buffer must only contain digits in the range [0-9]. It must not
// contain a dot or a sign. It must not start with '0', and must not be empty.
V8_EXPORT_PRIVATE double Strtod(base::Vector<const char> buffer, int exponent);
V8_BASE_EXPORT double Strtod(Vector<const char> buffer, int exponent);
} // namespace internal
} // namespace base
} // namespace v8
#endif // V8_NUMBERS_STRTOD_H_
#endif // V8_BASE_NUMBERS_STRTOD_H_

View File

@ -12,6 +12,13 @@
namespace v8 {
namespace base {
// Latin1/UTF-16 constants
// Code-point values in Unicode 4.0 are 21 bits wide.
// Code units in UTF-16 are 16 bits wide.
using uc16 = uint16_t;
using uc32 = uint32_t;
constexpr int kUC16Size = sizeof(uc16);
V8_BASE_EXPORT int PRINTF_FORMAT(2, 0)
VSNPrintF(Vector<char> str, const char* format, va_list args);
@ -22,6 +29,22 @@ V8_BASE_EXPORT int PRINTF_FORMAT(2, 3)
V8_BASE_EXPORT void StrNCpy(base::Vector<char> dest, const char* src, size_t n);
// Returns the value (0 .. 15) of a hexadecimal character c.
// If c is not a legal hexadecimal character, returns a value < 0.
inline int HexValue(uc32 c) {
c -= '0';
if (static_cast<unsigned>(c) <= 9) return c;
c = (c | 0x20) - ('a' - '0'); // detect 0x11..0x16 and 0x31..0x36.
if (static_cast<unsigned>(c) <= 5) return c + 10;
return -1;
}
inline char HexCharOfValue(int value) {
DCHECK(0 <= value && value <= 16);
if (value < 10) return value + '0';
return value - 10 + 'A';
}
} // namespace base
} // namespace v8

View File

@ -525,7 +525,7 @@ void Generate_JSEntryVariant(MacroAssembler* masm, StackFrame::Type type,
pushed_stack_space += kNumDoubleCalleeSaved * kDoubleSize;
// Set up the reserved register for 0.0.
__ vmov(kDoubleRegZero, Double(0.0));
__ vmov(kDoubleRegZero, base::Double(0.0));
// Initialize the root register.
// C calling convention. The first argument is passed in r0.

View File

@ -4,6 +4,7 @@
#include "src/builtins/builtins-string-gen.h"
#include "src/base/strings.h"
#include "src/builtins/builtins-regexp-gen.h"
#include "src/builtins/builtins-utils-gen.h"
#include "src/builtins/builtins.h"
@ -73,7 +74,7 @@ TNode<IntPtrT> StringBuiltinsAssembler::SearchOneByteStringInTwoByteString(
const TNode<RawPtrT> subject_ptr, const TNode<IntPtrT> subject_length,
const TNode<RawPtrT> search_ptr, const TNode<IntPtrT> search_length,
const TNode<IntPtrT> start_position) {
return CallSearchStringRaw<const uc16, const uint8_t>(
return CallSearchStringRaw<const base::uc16, const uint8_t>(
subject_ptr, subject_length, search_ptr, search_length, start_position);
}
TNode<IntPtrT> StringBuiltinsAssembler::SearchOneByteStringInOneByteString(
@ -87,14 +88,14 @@ TNode<IntPtrT> StringBuiltinsAssembler::SearchTwoByteStringInTwoByteString(
const TNode<RawPtrT> subject_ptr, const TNode<IntPtrT> subject_length,
const TNode<RawPtrT> search_ptr, const TNode<IntPtrT> search_length,
const TNode<IntPtrT> start_position) {
return CallSearchStringRaw<const uc16, const uc16>(
return CallSearchStringRaw<const base::uc16, const base::uc16>(
subject_ptr, subject_length, search_ptr, search_length, start_position);
}
TNode<IntPtrT> StringBuiltinsAssembler::SearchTwoByteStringInOneByteString(
const TNode<RawPtrT> subject_ptr, const TNode<IntPtrT> subject_length,
const TNode<RawPtrT> search_ptr, const TNode<IntPtrT> search_length,
const TNode<IntPtrT> start_position) {
return CallSearchStringRaw<const uint8_t, const uc16>(
return CallSearchStringRaw<const uint8_t, const base::uc16>(
subject_ptr, subject_length, search_ptr, search_length, start_position);
}
TNode<IntPtrT> StringBuiltinsAssembler::SearchOneByteInOneByteString(

View File

@ -11,6 +11,7 @@
#ifdef V8_INTL_SUPPORT
#include "src/objects/intl-objects.h"
#endif
#include "src/base/strings.h"
#include "src/regexp/regexp-utils.h"
#include "src/strings/string-builder-inl.h"
#include "src/strings/string-case.h"
@ -40,9 +41,9 @@ bool IsValidCodePoint(Isolate* isolate, Handle<Object> value) {
return true;
}
static constexpr uc32 kInvalidCodePoint = static_cast<uc32>(-1);
static constexpr base::uc32 kInvalidCodePoint = static_cast<base::uc32>(-1);
uc32 NextCodePoint(Isolate* isolate, BuiltinArguments args, int index) {
base::uc32 NextCodePoint(Isolate* isolate, BuiltinArguments args, int index) {
Handle<Object> value = args.at(1 + index);
ASSIGN_RETURN_ON_EXCEPTION_VALUE(
isolate, value, Object::ToNumber(isolate, value), kInvalidCodePoint);
@ -67,7 +68,7 @@ BUILTIN(StringFromCodePoint) {
// characters.
std::vector<uint8_t> one_byte_buffer;
one_byte_buffer.reserve(length);
uc32 code = 0;
base::uc32 code = 0;
int index;
for (index = 0; index < length; index++) {
code = NextCodePoint(isolate, args, index);
@ -86,11 +87,12 @@ BUILTIN(StringFromCodePoint) {
one_byte_buffer.data(), one_byte_buffer.size())));
}
std::vector<uc16> two_byte_buffer;
std::vector<base::uc16> two_byte_buffer;
two_byte_buffer.reserve(length - index);
while (true) {
if (code <= static_cast<uc32>(unibrow::Utf16::kMaxNonSurrogateCharCode)) {
if (code <=
static_cast<base::uc32>(unibrow::Utf16::kMaxNonSurrogateCharCode)) {
two_byte_buffer.push_back(code);
} else {
two_byte_buffer.push_back(unibrow::Utf16::LeadSurrogate(code));
@ -230,11 +232,11 @@ BUILTIN(StringPrototypeNormalize) {
#ifndef V8_INTL_SUPPORT
namespace {
inline bool ToUpperOverflows(uc32 character) {
inline bool ToUpperOverflows(base::uc32 character) {
// y with umlauts and the micro sign are the only characters that stop
// fitting into one-byte when converting to uppercase.
static const uc32 yuml_code = 0xFF;
static const uc32 micro_code = 0xB5;
static const base::uc32 yuml_code = 0xFF;
static const base::uc32 micro_code = 0xB5;
return (character == yuml_code || character == micro_code);
}
@ -259,11 +261,11 @@ V8_WARN_UNUSED_RESULT static Object ConvertCaseHelper(
StringCharacterStream stream(string);
unibrow::uchar chars[Converter::kMaxWidth];
// We can assume that the string is not empty
uc32 current = stream.GetNext();
base::uc32 current = stream.GetNext();
bool ignore_overflow = Converter::kIsToLower || result.IsSeqTwoByteString();
for (int i = 0; i < result_length;) {
bool has_next = stream.HasMore();
uc32 next = has_next ? stream.GetNext() : 0;
base::uc32 next = has_next ? stream.GetNext() : 0;
int char_length = mapping->get(current, next, chars);
if (char_length == 0) {
// The case conversion of this character is the character itself.
@ -272,7 +274,7 @@ V8_WARN_UNUSED_RESULT static Object ConvertCaseHelper(
} else if (char_length == 1 &&
(ignore_overflow || !ToUpperOverflows(current))) {
// Common case: converting the letter resulted in one character.
DCHECK(static_cast<uc32>(chars[0]) != current);
DCHECK(static_cast<base::uc32>(chars[0]) != current);
result.Set(i, chars[0]);
has_changed_character = true;
i++;

View File

@ -3103,7 +3103,8 @@ void Builtins::Generate_DoubleToI(MacroAssembler* masm) {
__ j(below, &process_64_bits);
// Result is entirely in lower 32-bits of mantissa
int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize;
int delta =
HeapNumber::kExponentBias + base::Double::kPhysicalSignificandSize;
if (CpuFeatures::IsSupported(SSE3)) {
__ fstp(0);
}
@ -3129,10 +3130,11 @@ void Builtins::Generate_DoubleToI(MacroAssembler* masm) {
__ sub(ecx, Immediate(delta));
__ neg(ecx);
__ mov(result_reg, exponent_operand);
__ and_(result_reg,
Immediate(static_cast<uint32_t>(Double::kSignificandMask >> 32)));
__ and_(
result_reg,
Immediate(static_cast<uint32_t>(base::Double::kSignificandMask >> 32)));
__ add(result_reg,
Immediate(static_cast<uint32_t>(Double::kHiddenBit >> 32)));
Immediate(static_cast<uint32_t>(base::Double::kHiddenBit >> 32)));
__ shrd_cl(scratch1, result_reg);
__ shr_cl(result_reg);
__ test(ecx, Immediate(32));

View File

@ -527,7 +527,7 @@ void Generate_JSEntryVariant(MacroAssembler* masm, StackFrame::Type type,
// Save callee-saved double registers.
__ MultiPushDoubles(kCalleeSavedDoubles);
// Set up the reserved register for 0.0.
__ LoadDoubleLiteral(kDoubleRegZero, Double(0.0), r0);
__ LoadDoubleLiteral(kDoubleRegZero, base::Double(0.0), r0);
// Initialize the root register.
// C calling convention. The first argument is passed in r3.

View File

@ -3772,7 +3772,8 @@ void Builtins::Generate_DoubleToI(MacroAssembler* masm) {
__ j(below, &process_64_bits, Label::kNear);
// Result is entirely in lower 32-bits of mantissa
int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize;
int delta =
HeapNumber::kExponentBias + base::Double::kPhysicalSignificandSize;
__ subl(rcx, Immediate(delta));
__ xorl(result_reg, result_reg);
__ cmpl(rcx, Immediate(31));

View File

@ -2674,7 +2674,7 @@ void Assembler::vstm(BlockAddrMode am, Register base, SwVfpRegister first,
0xA * B8 | count);
}
static void DoubleAsTwoUInt32(Double d, uint32_t* lo, uint32_t* hi) {
static void DoubleAsTwoUInt32(base::Double d, uint32_t* lo, uint32_t* hi) {
uint64_t i = d.AsUint64();
*lo = i & 0xFFFFFFFF;
@ -2747,7 +2747,7 @@ void Assembler::vmov(const QwNeonRegister dst, uint64_t imm) {
// Only works for little endian floating point formats.
// We don't support VFP on the mixed endian floating point platform.
static bool FitsVmovFPImmediate(Double d, uint32_t* encoding) {
static bool FitsVmovFPImmediate(base::Double d, uint32_t* encoding) {
// VMOV can accept an immediate of the form:
//
// +/- m * 2^(-n) where 16 <= m <= 31 and 0 <= n <= 7
@ -2796,7 +2796,7 @@ static bool FitsVmovFPImmediate(Double d, uint32_t* encoding) {
void Assembler::vmov(const SwVfpRegister dst, Float32 imm) {
uint32_t enc;
if (CpuFeatures::IsSupported(VFPv3) &&
FitsVmovFPImmediate(Double(imm.get_scalar()), &enc)) {
FitsVmovFPImmediate(base::Double(imm.get_scalar()), &enc)) {
CpuFeatureScope scope(this, VFPv3);
// The float can be encoded in the instruction.
//
@ -2815,7 +2815,7 @@ void Assembler::vmov(const SwVfpRegister dst, Float32 imm) {
}
}
void Assembler::vmov(const DwVfpRegister dst, Double imm,
void Assembler::vmov(const DwVfpRegister dst, base::Double imm,
const Register extra_scratch) {
DCHECK(VfpRegisterIsAvailable(dst));
uint32_t enc;

View File

@ -45,13 +45,13 @@
#include <memory>
#include <vector>
#include "src/base/numbers/double.h"
#include "src/base/small-vector.h"
#include "src/codegen/arm/constants-arm.h"
#include "src/codegen/arm/register-arm.h"
#include "src/codegen/assembler.h"
#include "src/codegen/constant-pool.h"
#include "src/codegen/machine-type.h"
#include "src/numbers/double.h"
#include "src/utils/boxed-float.h"
namespace v8 {
@ -712,7 +712,7 @@ class V8_EXPORT_PRIVATE Assembler : public AssemblerBase {
SwVfpRegister last, Condition cond = al);
void vmov(const SwVfpRegister dst, Float32 imm);
void vmov(const DwVfpRegister dst, Double imm,
void vmov(const DwVfpRegister dst, base::Double imm,
const Register extra_scratch = no_reg);
void vmov(const SwVfpRegister dst, const SwVfpRegister src,
const Condition cond = al);

View File

@ -8,6 +8,7 @@
#include "src/base/bits.h"
#include "src/base/division-by-constant.h"
#include "src/base/numbers/double.h"
#include "src/base/utils/random-number-generator.h"
#include "src/codegen/assembler-inl.h"
#include "src/codegen/callable.h"
@ -21,7 +22,6 @@
#include "src/heap/memory-chunk.h"
#include "src/init/bootstrapper.h"
#include "src/logging/counters.h"
#include "src/numbers/double.h"
#include "src/objects/objects-inl.h"
#include "src/runtime/runtime.h"
#include "src/snapshot/snapshot.h"

View File

@ -7,10 +7,10 @@
#include <map>
#include "src/base/numbers/double.h"
#include "src/codegen/label.h"
#include "src/codegen/reloc-info.h"
#include "src/common/globals.h"
#include "src/numbers/double.h"
namespace v8 {
namespace internal {
@ -29,7 +29,7 @@ class ConstantPoolEntry {
merged_index_(sharing_ok ? SHARING_ALLOWED : SHARING_PROHIBITED),
value_(value),
rmode_(rmode) {}
ConstantPoolEntry(int position, Double value,
ConstantPoolEntry(int position, base::Double value,
RelocInfo::Mode rmode = RelocInfo::NONE)
: position_(position),
merged_index_(SHARING_ALLOWED),
@ -106,14 +106,14 @@ class ConstantPoolBuilder {
}
// Add double constant to the embedded constant pool
ConstantPoolEntry::Access AddEntry(int position, Double value) {
ConstantPoolEntry::Access AddEntry(int position, base::Double value) {
ConstantPoolEntry entry(position, value);
return AddEntry(&entry, ConstantPoolEntry::DOUBLE);
}
// Add double constant to the embedded constant pool
ConstantPoolEntry::Access AddEntry(int position, double value) {
return AddEntry(position, Double(value));
return AddEntry(position, base::Double(value));
}
// Previews the access type required for the next new entry to be added.

View File

@ -37,6 +37,7 @@
#ifdef V8_INTL_SUPPORT
#include "src/base/platform/wrappers.h"
#include "src/base/strings.h"
#include "src/objects/intl-objects.h"
#endif // V8_INTL_SUPPORT
@ -835,15 +836,15 @@ ExternalReference ExternalReference::search_string_raw_one_one() {
}
ExternalReference ExternalReference::search_string_raw_one_two() {
return search_string_raw<const uint8_t, const uc16>();
return search_string_raw<const uint8_t, const base::uc16>();
}
ExternalReference ExternalReference::search_string_raw_two_one() {
return search_string_raw<const uc16, const uint8_t>();
return search_string_raw<const base::uc16, const uint8_t>();
}
ExternalReference ExternalReference::search_string_raw_two_two() {
return search_string_raw<const uc16, const uc16>();
return search_string_raw<const base::uc16, const base::uc16>();
}
namespace {
@ -961,11 +962,11 @@ ExternalReference ExternalReference::intl_to_latin1_lower_table() {
template ExternalReference
ExternalReference::search_string_raw<const uint8_t, const uint8_t>();
template ExternalReference
ExternalReference::search_string_raw<const uint8_t, const uc16>();
ExternalReference::search_string_raw<const uint8_t, const base::uc16>();
template ExternalReference
ExternalReference::search_string_raw<const uc16, const uint8_t>();
ExternalReference::search_string_raw<const base::uc16, const uint8_t>();
template ExternalReference
ExternalReference::search_string_raw<const uc16, const uc16>();
ExternalReference::search_string_raw<const base::uc16, const base::uc16>();
ExternalReference ExternalReference::FromRawAddress(Address address) {
return ExternalReference(address);

View File

@ -2142,7 +2142,7 @@ void TurboAssembler::Neg_d(FPURegister fd, FPURegister fs) {
neg_d(fd, fs); // In delay slot.
bind(&is_nan);
dmfc1(scratch1, fs);
li(scratch2, Double::kSignMask);
li(scratch2, base::Double::kSignMask);
Xor(scratch1, scratch1, scratch2);
dmtc1(scratch1, fd);
bind(&done);

View File

@ -41,16 +41,17 @@
#define V8_CODEGEN_PPC_ASSEMBLER_PPC_H_
#include <stdio.h>
#include <memory>
#include <vector>
#include "src/base/numbers/double.h"
#include "src/codegen/assembler.h"
#include "src/codegen/constant-pool.h"
#include "src/codegen/external-reference.h"
#include "src/codegen/label.h"
#include "src/codegen/ppc/constants-ppc.h"
#include "src/codegen/ppc/register-ppc.h"
#include "src/numbers/double.h"
#include "src/objects/smi.h"
namespace v8 {
@ -1251,7 +1252,7 @@ class Assembler : public AssemblerBase {
!RelocInfo::IsWasmCall(rmode) && !RelocInfo::IsWasmStubCall(rmode));
return constant_pool_builder_.AddEntry(pc_offset(), value, sharing_ok);
}
ConstantPoolEntry::Access ConstantPoolAddEntry(Double value) {
ConstantPoolEntry::Access ConstantPoolAddEntry(base::Double value) {
return constant_pool_builder_.AddEntry(pc_offset(), value);
}

View File

@ -2341,8 +2341,8 @@ void TurboAssembler::LoadSmiLiteral(Register dst, Smi smi) {
mov(dst, Operand(smi));
}
void TurboAssembler::LoadDoubleLiteral(DoubleRegister result, Double value,
Register scratch) {
void TurboAssembler::LoadDoubleLiteral(DoubleRegister result,
base::Double value, Register scratch) {
if (FLAG_enable_embedded_constant_pool && is_constant_pool_available() &&
!(scratch == r0 && ConstantPoolAccessIsInOverflow())) {
ConstantPoolEntry::Access access = ConstantPoolAddEntry(value);

View File

@ -9,10 +9,10 @@
#ifndef V8_CODEGEN_PPC_MACRO_ASSEMBLER_PPC_H_
#define V8_CODEGEN_PPC_MACRO_ASSEMBLER_PPC_H_
#include "src/base/numbers/double.h"
#include "src/codegen/bailout-reason.h"
#include "src/codegen/ppc/assembler-ppc.h"
#include "src/common/globals.h"
#include "src/numbers/double.h"
#include "src/objects/contexts.h"
namespace v8 {
@ -138,7 +138,8 @@ class V8_EXPORT_PRIVATE TurboAssembler : public TurboAssemblerBase {
mov(kRootRegister, Operand(isolate_root));
}
void LoadDoubleLiteral(DoubleRegister result, Double value, Register scratch);
void LoadDoubleLiteral(DoubleRegister result, base::Double value,
Register scratch);
void LoadSimd128(Simd128Register dst, const MemOperand& mem);
// load a literal signed int value <value> to GPR <dst>

View File

@ -223,7 +223,7 @@ constexpr int kElidedFrameSlots = 0;
constexpr int kDoubleSizeLog2 = 3;
// The maximal length of the string representation for a double value
// (e.g. "-2.2250738585072020E-308"). It is composed as follows:
// - 17 decimal digits, see kBase10MaximalLength (dtoa.h)
// - 17 decimal digits, see base::kBase10MaximalLength (dtoa.h)
// - 1 sign
// - 1 decimal point
// - 1 E or e
@ -379,13 +379,7 @@ constexpr int kBinary32ExponentShift = 23;
// other bits set.
constexpr uint64_t kQuietNaNMask = static_cast<uint64_t>(0xfff) << 51;
// Latin1/UTF-16 constants
// Code-point values in Unicode 4.0 are 21 bits wide.
// Code units in UTF-16 are 16 bits wide.
using uc16 = uint16_t;
using uc32 = uint32_t;
constexpr int kOneByteSize = kCharSize;
constexpr int kUC16Size = sizeof(uc16);
// 128 bit SIMD value size.
constexpr int kSimd128Size = 16;

View File

@ -2,6 +2,7 @@
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/base/numbers/double.h"
#include "src/codegen/arm/constants-arm.h"
#include "src/codegen/assembler-inl.h"
#include "src/codegen/macro-assembler.h"
@ -13,7 +14,6 @@
#include "src/compiler/node-matchers.h"
#include "src/compiler/osr.h"
#include "src/heap/memory-chunk.h"
#include "src/numbers/double.h"
#include "src/utils/boxed-float.h"
#if V8_ENABLE_WEBASSEMBLY
@ -2511,8 +2511,8 @@ CodeGenerator::CodeGenResult CodeGenerator::AssembleArchInstruction(
__ vshr(NeonS32, tmp, src, 31);
// Set i-th bit of each lane i. When AND with tmp, the lanes that
// are signed will have i-th bit set, unsigned will be 0.
__ vmov(mask.low(), Double(uint64_t{0x0000'0002'0000'0001}));
__ vmov(mask.high(), Double(uint64_t{0x0000'0008'0000'0004}));
__ vmov(mask.low(), base::Double(uint64_t{0x0000'0002'0000'0001}));
__ vmov(mask.high(), base::Double(uint64_t{0x0000'0008'0000'0004}));
__ vand(tmp, mask, tmp);
__ vpadd(Neon32, tmp.low(), tmp.low(), tmp.high());
__ vpadd(Neon32, tmp.low(), tmp.low(), kDoubleRegZero);
@ -2715,8 +2715,8 @@ CodeGenerator::CodeGenResult CodeGenerator::AssembleArchInstruction(
__ vshr(NeonS16, tmp, src, 15);
// Set i-th bit of each lane i. When AND with tmp, the lanes that
// are signed will have i-th bit set, unsigned will be 0.
__ vmov(mask.low(), Double(uint64_t{0x0008'0004'0002'0001}));
__ vmov(mask.high(), Double(uint64_t{0x0080'0040'0020'0010}));
__ vmov(mask.low(), base::Double(uint64_t{0x0008'0004'0002'0001}));
__ vmov(mask.high(), base::Double(uint64_t{0x0080'0040'0020'0010}));
__ vand(tmp, mask, tmp);
__ vpadd(Neon16, tmp.low(), tmp.low(), tmp.high());
__ vpadd(Neon16, tmp.low(), tmp.low(), tmp.low());
@ -2870,8 +2870,8 @@ CodeGenerator::CodeGenResult CodeGenerator::AssembleArchInstruction(
__ vshr(NeonS8, tmp, src, 7);
// Set i-th bit of each lane i. When AND with tmp, the lanes that
// are signed will have i-th bit set, unsigned will be 0.
__ vmov(mask.low(), Double(uint64_t{0x8040'2010'0804'0201}));
__ vmov(mask.high(), Double(uint64_t{0x8040'2010'0804'0201}));
__ vmov(mask.low(), base::Double(uint64_t{0x8040'2010'0804'0201}));
__ vmov(mask.high(), base::Double(uint64_t{0x8040'2010'0804'0201}));
__ vand(tmp, mask, tmp);
__ vext(mask, tmp, tmp, 8);
__ vzip(Neon8, mask, tmp);
@ -2885,8 +2885,8 @@ CodeGenerator::CodeGenResult CodeGenerator::AssembleArchInstruction(
QwNeonRegister dst = i.OutputSimd128Register();
uint64_t imm1 = make_uint64(i.InputUint32(1), i.InputUint32(0));
uint64_t imm2 = make_uint64(i.InputUint32(3), i.InputUint32(2));
__ vmov(dst.low(), Double(imm1));
__ vmov(dst.high(), Double(imm2));
__ vmov(dst.low(), base::Double(imm1));
__ vmov(dst.high(), base::Double(imm2));
break;
}
case kArmS128Zero: {

View File

@ -11,6 +11,7 @@
#include <set>
#include "src/base/compiler-specific.h"
#include "src/base/numbers/double.h"
#include "src/codegen/external-reference.h"
#include "src/codegen/register-arch.h"
#include "src/codegen/source-position.h"
@ -20,7 +21,6 @@
#include "src/compiler/feedback-source.h"
#include "src/compiler/frame.h"
#include "src/compiler/opcodes.h"
#include "src/numbers/double.h"
#include "src/zone/zone-allocator.h"
namespace v8 {
@ -1147,9 +1147,9 @@ class V8_EXPORT_PRIVATE Constant final {
return bit_cast<uint32_t>(static_cast<int32_t>(value_));
}
Double ToFloat64() const {
base::Double ToFloat64() const {
DCHECK_EQ(kFloat64, type());
return Double(bit_cast<uint64_t>(value_));
return base::Double(bit_cast<uint64_t>(value_));
}
ExternalReference ToExternalReference() const {

View File

@ -2,6 +2,7 @@
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/base/numbers/double.h"
#include "src/codegen/assembler-inl.h"
#include "src/codegen/callable.h"
#include "src/codegen/macro-assembler.h"
@ -12,7 +13,6 @@
#include "src/compiler/node-matchers.h"
#include "src/compiler/osr.h"
#include "src/heap/memory-chunk.h"
#include "src/numbers/double.h"
#if V8_ENABLE_WEBASSEMBLY
#include "src/wasm/wasm-code-manager.h"
@ -4435,7 +4435,7 @@ void CodeGenerator::AssembleMove(InstructionOperand* source,
DoubleRegister dst = destination->IsFPRegister()
? g.ToDoubleRegister(destination)
: kScratchDoubleReg;
Double value;
base::Double value;
#if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64
// casting double precision snan to single precision
// converts it to qnan on ia32/x64
@ -4445,17 +4445,17 @@ void CodeGenerator::AssembleMove(InstructionOperand* source,
uint64_t dval = static_cast<uint64_t>(val);
dval = ((dval & 0xC0000000) << 32) | ((dval & 0x40000000) << 31) |
((dval & 0x40000000) << 30) | ((dval & 0x7FFFFFFF) << 29);
value = Double(dval);
value = base::Double(dval);
} else {
value = Double(static_cast<double>(src.ToFloat32()));
value = base::Double(static_cast<double>(src.ToFloat32()));
}
} else {
value = Double(src.ToFloat64());
value = base::Double(src.ToFloat64());
}
#else
value = src.type() == Constant::kFloat32
? Double(static_cast<double>(src.ToFloat32()))
: Double(src.ToFloat64());
? base::Double(static_cast<double>(src.ToFloat32()))
: base::Double(src.ToFloat64());
#endif
__ LoadDoubleLiteral(dst, value, kScratchReg);
if (destination->IsDoubleStackSlot()) {

View File

@ -544,7 +544,7 @@ Reduction MachineOperatorReducer::Reduce(Node* node) {
case IrOpcode::kFloat64Sub: {
Float64BinopMatcher m(node);
if (allow_signalling_nan_ && m.right().Is(0) &&
(Double(m.right().ResolvedValue()).Sign() > 0)) {
(base::Double(m.right().ResolvedValue()).Sign() > 0)) {
return Replace(m.left().node()); // x - 0 => x
}
if (m.right().IsNaN()) { // x - NaN => NaN

View File

@ -10,13 +10,13 @@
#include "src/base/bounds.h"
#include "src/base/compiler-specific.h"
#include "src/base/numbers/double.h"
#include "src/codegen/external-reference.h"
#include "src/common/globals.h"
#include "src/compiler/common-operator.h"
#include "src/compiler/machine-operator.h"
#include "src/compiler/node.h"
#include "src/compiler/operator.h"
#include "src/numbers/double.h"
#include "src/objects/heap-object.h"
namespace v8 {
@ -216,7 +216,7 @@ struct FloatMatcher final : public ValueMatcher<T, kOpcode> {
if (!this->HasResolvedValue() || (this->ResolvedValue() == 0.0)) {
return false;
}
Double value = Double(this->ResolvedValue());
base::Double value = base::Double(this->ResolvedValue());
return !value.IsInfinite() && base::bits::IsPowerOfTwo(value.Significand());
}
};

View File

@ -79,6 +79,7 @@
#include "torque-generated/class-verifiers.h"
#if V8_ENABLE_WEBASSEMBLY
#include "src/base/strings.h"
#include "src/debug/debug-wasm-objects-inl.h"
#include "src/wasm/wasm-objects-inl.h"
#endif // V8_ENABLE_WEBASSEMBLY

View File

@ -5,6 +5,7 @@
#include "src/extensions/externalize-string-extension.h"
#include "src/api/api-inl.h"
#include "src/base/strings.h"
#include "src/execution/isolate.h"
#include "src/handles/handles.h"
#include "src/objects/objects-inl.h"
@ -34,7 +35,7 @@ class SimpleStringResource : public Base {
using SimpleOneByteStringResource =
SimpleStringResource<char, v8::String::ExternalOneByteStringResource>;
using SimpleTwoByteStringResource =
SimpleStringResource<uc16, v8::String::ExternalStringResource>;
SimpleStringResource<base::uc16, v8::String::ExternalStringResource>;
const char* const ExternalizeStringExtension::kSource =
"native function externalizeString();"
@ -87,7 +88,7 @@ void ExternalizeStringExtension::Externalize(
result = Utils::ToLocal(string)->MakeExternal(resource);
if (!result) delete resource;
} else {
uc16* data = new uc16[string->length()];
base::uc16* data = new base::uc16[string->length()];
String::WriteToFlat(*string, data, 0, string->length());
SimpleTwoByteStringResource* resource = new SimpleTwoByteStringResource(
data, string->length());

View File

@ -530,12 +530,12 @@ Handle<SeqOneByteString> FactoryBase<Impl>::NewOneByteInternalizedString(
template <typename Impl>
Handle<SeqTwoByteString> FactoryBase<Impl>::NewTwoByteInternalizedString(
const base::Vector<const uc16>& str, uint32_t raw_hash_field) {
const base::Vector<const base::uc16>& str, uint32_t raw_hash_field) {
Handle<SeqTwoByteString> result =
AllocateRawTwoByteInternalizedString(str.length(), raw_hash_field);
DisallowGarbageCollection no_gc;
MemCopy(result->GetChars(no_gc, SharedStringAccessGuardIfNeeded::NotNeeded()),
str.begin(), str.length() * kUC16Size);
str.begin(), str.length() * base::kUC16Size);
return result;
}
@ -643,7 +643,7 @@ MaybeHandle<String> FactoryBase<Impl>::NewConsString(
DisallowGarbageCollection no_gc;
SharedStringAccessGuardIfNeeded access_guard(isolate());
uc16* sink = result->GetChars(no_gc, access_guard);
base::uc16* sink = result->GetChars(no_gc, access_guard);
String::WriteToFlat(*left, sink, 0, left->length(), access_guard);
String::WriteToFlat(*right, sink + left->length(), 0, right->length(),
access_guard);

View File

@ -6,6 +6,7 @@
#define V8_HEAP_FACTORY_BASE_H_
#include "src/base/export-template.h"
#include "src/base/strings.h"
#include "src/common/globals.h"
#include "src/objects/function-kind.h"
#include "src/objects/instance-type.h"
@ -182,7 +183,7 @@ class EXPORT_TEMPLATE_DECLARE(V8_EXPORT_PRIVATE) FactoryBase
Handle<SeqOneByteString> NewOneByteInternalizedString(
const base::Vector<const uint8_t>& str, uint32_t raw_hash_field);
Handle<SeqTwoByteString> NewTwoByteInternalizedString(
const base::Vector<const uc16>& str, uint32_t raw_hash_field);
const base::Vector<const base::uc16>& str, uint32_t raw_hash_field);
Handle<SeqOneByteString> AllocateRawOneByteInternalizedString(
int length, uint32_t raw_hash_field);

View File

@ -689,7 +689,7 @@ Handle<String> Factory::InternalizeUtf8String(
std::unique_ptr<uint16_t[]> buffer(new uint16_t[decoder.utf16_length()]);
decoder.Decode(buffer.get(), utf8_data);
return InternalizeString(
base::Vector<const uc16>(buffer.get(), decoder.utf16_length()));
base::Vector<const base::uc16>(buffer.get(), decoder.utf16_length()));
}
template <typename SeqString>
@ -811,7 +811,7 @@ MaybeHandle<String> Factory::NewStringFromUtf8SubString(
return result;
}
MaybeHandle<String> Factory::NewStringFromTwoByte(const uc16* string,
MaybeHandle<String> Factory::NewStringFromTwoByte(const base::uc16* string,
int length,
AllocationType allocation) {
DCHECK_NE(allocation, AllocationType::kReadOnly);
@ -835,12 +835,12 @@ MaybeHandle<String> Factory::NewStringFromTwoByte(const uc16* string,
}
MaybeHandle<String> Factory::NewStringFromTwoByte(
const base::Vector<const uc16>& string, AllocationType allocation) {
const base::Vector<const base::uc16>& string, AllocationType allocation) {
return NewStringFromTwoByte(string.begin(), string.length(), allocation);
}
MaybeHandle<String> Factory::NewStringFromTwoByte(
const ZoneVector<uc16>* string, AllocationType allocation) {
const ZoneVector<base::uc16>* string, AllocationType allocation) {
return NewStringFromTwoByte(string->data(), static_cast<int>(string->size()),
allocation);
}
@ -979,7 +979,7 @@ Handle<String> Factory::NewSurrogatePairString(uint16_t lead, uint16_t trail) {
Handle<SeqTwoByteString> str =
isolate()->factory()->NewRawTwoByteString(2).ToHandleChecked();
DisallowGarbageCollection no_gc;
uc16* dest = str->GetChars(no_gc);
base::uc16* dest = str->GetChars(no_gc);
dest[0] = lead;
dest[1] = trail;
return str;
@ -1020,7 +1020,7 @@ Handle<String> Factory::NewProperSubString(Handle<String> str, int begin,
Handle<SeqTwoByteString> result =
NewRawTwoByteString(length).ToHandleChecked();
DisallowGarbageCollection no_gc;
uc16* dest = result->GetChars(no_gc);
base::uc16* dest = result->GetChars(no_gc);
String::WriteToFlat(*str, dest, begin, end);
return result;
}

View File

@ -7,6 +7,7 @@
// Clients of this interface shouldn't depend on lots of heap internals.
// Do not include anything from src/heap here!
#include "src/base/strings.h"
#include "src/base/vector.h"
#include "src/baseline/baseline.h"
#include "src/builtins/builtins.h"
@ -266,11 +267,11 @@ class V8_EXPORT_PRIVATE Factory : public FactoryBase<Factory> {
AllocationType allocation = AllocationType::kYoung);
V8_WARN_UNUSED_RESULT MaybeHandle<String> NewStringFromTwoByte(
const base::Vector<const uc16>& str,
const base::Vector<const base::uc16>& str,
AllocationType allocation = AllocationType::kYoung);
V8_WARN_UNUSED_RESULT MaybeHandle<String> NewStringFromTwoByte(
const ZoneVector<uc16>* str,
const ZoneVector<base::uc16>* str,
AllocationType allocation = AllocationType::kYoung);
Handle<JSStringIterator> NewJSStringIterator(Handle<String> string);
@ -1007,9 +1008,9 @@ class V8_EXPORT_PRIVATE Factory : public FactoryBase<Factory> {
uint32_t hash_field);
Handle<String> AllocateTwoByteInternalizedString(
const base::Vector<const uc16>& str, uint32_t hash_field);
const base::Vector<const base::uc16>& str, uint32_t hash_field);
MaybeHandle<String> NewStringFromTwoByte(const uc16* string, int length,
MaybeHandle<String> NewStringFromTwoByte(const base::uc16* string, int length,
AllocationType allocation);
// Attempt to find the number in a small cache. If we finds it, return

View File

@ -4,6 +4,7 @@
#include "src/json/json-parser.h"
#include "src/base/strings.h"
#include "src/common/message-template.h"
#include "src/debug/debug.h"
#include "src/numbers/conversions.h"
@ -281,7 +282,7 @@ void JsonParser<Char>::ReportUnexpectedToken(JsonToken token) {
}
template <typename Char>
void JsonParser<Char>::ReportUnexpectedCharacter(uc32 c) {
void JsonParser<Char>::ReportUnexpectedCharacter(base::uc32 c) {
JsonToken token = JsonToken::ILLEGAL;
if (c == kEndOfString) {
token = JsonToken::EOS;
@ -331,10 +332,10 @@ void JsonParser<Char>::SkipWhitespace() {
}
template <typename Char>
uc32 JsonParser<Char>::ScanUnicodeCharacter() {
uc32 value = 0;
base::uc32 JsonParser<Char>::ScanUnicodeCharacter() {
base::uc32 value = 0;
for (int i = 0; i < 4; i++) {
int digit = HexValue(NextCharacter());
int digit = base::HexValue(NextCharacter());
if (V8_UNLIKELY(digit < 0)) return kInvalidUnicodeCharacter;
value = value * 16 + digit;
}
@ -347,7 +348,7 @@ JsonString JsonParser<Char>::ScanJsonPropertyKey(JsonContinuation* cont) {
{
DisallowGarbageCollection no_gc;
const Char* start = cursor_;
uc32 first = CurrentCharacter();
base::uc32 first = CurrentCharacter();
if (first == '\\' && NextCharacter() == 'u') first = ScanUnicodeCharacter();
if (IsDecimalDigit(first)) {
if (first == '0') {
@ -891,7 +892,7 @@ Handle<Object> JsonParser<Char>::ParseJsonNumber() {
const Char* start = cursor_;
DisallowGarbageCollection no_gc;
uc32 c = *cursor_;
base::uc32 c = *cursor_;
if (c == '-') {
sign = -1;
c = NextCharacter();
@ -920,7 +921,7 @@ Handle<Object> JsonParser<Char>::ParseJsonNumber() {
ReportUnexpectedCharacter(CurrentCharacter());
return handle(Smi::FromInt(0), isolate_);
}
uc32 c = CurrentCharacter();
base::uc32 c = CurrentCharacter();
STATIC_ASSERT(Smi::IsValid(-999999999));
STATIC_ASSERT(Smi::IsValid(999999999));
const int kMaxSmiLength = 9;
@ -940,7 +941,7 @@ Handle<Object> JsonParser<Char>::ParseJsonNumber() {
}
if (CurrentCharacter() == '.') {
uc32 c = NextCharacter();
base::uc32 c = NextCharacter();
if (!IsDecimalDigit(c)) {
AllowGarbageCollection allow_before_exception;
ReportUnexpectedCharacter(c);
@ -950,7 +951,7 @@ Handle<Object> JsonParser<Char>::ParseJsonNumber() {
}
if (AsciiAlphaToLower(CurrentCharacter()) == 'e') {
uc32 c = NextCharacter();
base::uc32 c = NextCharacter();
if (c == '-' || c == '+') c = NextCharacter();
if (!IsDecimalDigit(c)) {
AllowGarbageCollection allow_before_exception;
@ -1080,12 +1081,12 @@ void JsonParser<Char>::DecodeString(SinkChar* sink, int start, int length) {
break;
case EscapeKind::kUnicode: {
uc32 value = 0;
base::uc32 value = 0;
for (int i = 0; i < 4; i++) {
value = value * 16 + HexValue(*++cursor);
value = value * 16 + base::HexValue(*++cursor);
}
if (value <=
static_cast<uc32>(unibrow::Utf16::kMaxNonSurrogateCharCode)) {
static_cast<base::uc32>(unibrow::Utf16::kMaxNonSurrogateCharCode)) {
*sink++ = value;
} else {
*sink++ = unibrow::Utf16::LeadSurrogate(value);
@ -1107,7 +1108,7 @@ JsonString JsonParser<Char>::ScanJsonString(bool needs_internalization) {
int start = position();
int offset = start;
bool has_escape = false;
uc32 bits = 0;
base::uc32 bits = 0;
while (true) {
cursor_ = std::find_if(cursor_, end_, [&bits](Char c) {
@ -1136,7 +1137,7 @@ JsonString JsonParser<Char>::ScanJsonString(bool needs_internalization) {
if (*cursor_ == '\\') {
has_escape = true;
uc32 c = NextCharacter();
base::uc32 c = NextCharacter();
if (V8_UNLIKELY(!base::IsInRange(
c, 0, static_cast<int32_t>(unibrow::Latin1::kMaxChar)))) {
AllowGarbageCollection allow_before_exception;
@ -1155,7 +1156,7 @@ JsonString JsonParser<Char>::ScanJsonString(bool needs_internalization) {
break;
case EscapeKind::kUnicode: {
uc32 value = ScanUnicodeCharacter();
base::uc32 value = ScanUnicodeCharacter();
if (value == kInvalidUnicodeCharacter) {
AllowGarbageCollection allow_before_exception;
ReportUnexpectedCharacter(CurrentCharacter());
@ -1164,7 +1165,7 @@ JsonString JsonParser<Char>::ScanJsonString(bool needs_internalization) {
bits |= value;
// \uXXXX results in either 1 or 2 Utf16 characters, depending on
// whether the decoded value requires a surrogate pair.
offset += 5 - (value > static_cast<uc32>(
offset += 5 - (value > static_cast<base::uc32>(
unibrow::Utf16::kMaxNonSurrogateCharCode));
break;
}

View File

@ -6,6 +6,7 @@
#define V8_JSON_JSON_PARSER_H_
#include "src/base/small-vector.h"
#include "src/base/strings.h"
#include "src/execution/isolate.h"
#include "src/heap/factory.h"
#include "src/objects/objects.h"
@ -152,8 +153,9 @@ class JsonParser final {
return result;
}
static constexpr uc32 kEndOfString = static_cast<uc32>(-1);
static constexpr uc32 kInvalidUnicodeCharacter = static_cast<uc32>(-1);
static constexpr base::uc32 kEndOfString = static_cast<base::uc32>(-1);
static constexpr base::uc32 kInvalidUnicodeCharacter =
static_cast<base::uc32>(-1);
private:
template <typename T>
@ -186,12 +188,12 @@ class JsonParser final {
void advance() { ++cursor_; }
uc32 CurrentCharacter() {
base::uc32 CurrentCharacter() {
if (V8_UNLIKELY(is_at_end())) return kEndOfString;
return *cursor_;
}
uc32 NextCharacter() {
base::uc32 NextCharacter() {
advance();
return CurrentCharacter();
}
@ -263,7 +265,7 @@ class JsonParser final {
// four-digit hex escapes (uXXXX). Any other use of backslashes is invalid.
JsonString ScanJsonString(bool needs_internalization);
JsonString ScanJsonPropertyKey(JsonContinuation* cont);
uc32 ScanUnicodeCharacter();
base::uc32 ScanUnicodeCharacter();
Handle<String> MakeString(const JsonString& string,
Handle<String> hint = Handle<String>());
@ -296,7 +298,7 @@ class JsonParser final {
const SmallVector<Handle<Object>>& element_stack);
// Mark that a parsing error has happened at the current character.
void ReportUnexpectedCharacter(uc32 c);
void ReportUnexpectedCharacter(base::uc32 c);
// Mark that a parsing error has happened at the current token.
void ReportUnexpectedToken(JsonToken token);

View File

@ -4,6 +4,7 @@
#include "src/json/json-stringifier.h"
#include "src/base/strings.h"
#include "src/common/message-template.h"
#include "src/numbers/conversions.h"
#include "src/objects/heap-number-inl.h"
@ -127,7 +128,7 @@ class JsonStringifier {
Handle<String> tojson_string_;
Handle<FixedArray> property_list_;
Handle<JSReceiver> replacer_function_;
uc16* gap_;
base::uc16* gap_;
int indent_;
using KeyObject = std::pair<Handle<Object>, Handle<Object>>;
@ -303,7 +304,7 @@ bool JsonStringifier::InitializeGap(Handle<Object> gap) {
Handle<String> gap_string = Handle<String>::cast(gap);
if (gap_string->length() > 0) {
int gap_length = std::min(gap_string->length(), 10);
gap_ = NewArray<uc16>(gap_length + 1);
gap_ = NewArray<base::uc16>(gap_length + 1);
String::WriteToFlat(*gap_string, gap_, 0, gap_length);
for (int i = 0; i < gap_length; i++) {
if (gap_[i] > String::kMaxOneByteCharCode) {
@ -317,7 +318,7 @@ bool JsonStringifier::InitializeGap(Handle<Object> gap) {
int num_value = DoubleToInt32(gap->Number());
if (num_value > 0) {
int gap_length = std::min(num_value, 10);
gap_ = NewArray<uc16>(gap_length + 1);
gap_ = NewArray<base::uc16>(gap_length + 1);
for (int i = 0; i < gap_length; i++) gap_[i] = ' ';
gap_[gap_length] = '\0';
}
@ -877,8 +878,8 @@ template <typename SrcChar, typename DestChar>
void JsonStringifier::SerializeStringUnchecked_(
base::Vector<const SrcChar> src,
IncrementalStringBuilder::NoExtend<DestChar>* dest) {
// Assert that uc16 character is not truncated down to 8 bit.
// The <uc16, char> version of this method must not be called.
// Assert that base::uc16 character is not truncated down to 8 bit.
// The <base::uc16, char> version of this method must not be called.
DCHECK(sizeof(DestChar) >= sizeof(SrcChar));
for (int i = 0; i < src.length(); i++) {
SrcChar c = src[i];
@ -1036,9 +1037,9 @@ void JsonStringifier::SerializeString(Handle<String> object) {
}
} else {
if (String::IsOneByteRepresentationUnderneath(*object)) {
SerializeString_<uint8_t, uc16>(object);
SerializeString_<uint8_t, base::uc16>(object);
} else {
SerializeString_<uc16, uc16>(object);
SerializeString_<base::uc16, base::uc16>(object);
}
}
}

View File

@ -15,10 +15,10 @@
// Extra POSIX/ANSI functions for Win32/MSVC.
#include "src/base/bits.h"
#include "src/base/numbers/double.h"
#include "src/base/platform/platform.h"
#include "src/base/platform/wrappers.h"
#include "src/numbers/conversions.h"
#include "src/numbers/double.h"
#include "src/objects/heap-number-inl.h"
#include "src/objects/objects-inl.h"
@ -94,11 +94,11 @@ int32_t DoubleToInt32(double x) {
// All doubles within these limits are trivially convertable to an int.
return static_cast<int32_t>(x);
}
Double d(x);
base::Double d(x);
int exponent = d.Exponent();
uint64_t bits;
if (exponent < 0) {
if (exponent <= -Double::kSignificandSize) return 0;
if (exponent <= -base::Double::kSignificandSize) return 0;
bits = d.Significand() >> -exponent;
} else {
if (exponent > 31) return 0;

View File

@ -9,12 +9,12 @@
#include <cmath>
#include "src/base/numbers/dtoa.h"
#include "src/base/numbers/strtod.h"
#include "src/base/platform/wrappers.h"
#include "src/common/assert-scope.h"
#include "src/handles/handles.h"
#include "src/heap/factory.h"
#include "src/numbers/dtoa.h"
#include "src/numbers/strtod.h"
#include "src/objects/bigint.h"
#include "src/objects/objects-inl.h"
#include "src/objects/string-inl.h"
@ -143,7 +143,7 @@ inline double JunkStringValue() {
}
inline double SignedZero(bool negative) {
return negative ? uint64_to_double(Double::kSignMask) : 0.0;
return negative ? base::uint64_to_double(base::Double::kSignMask) : 0.0;
}
inline bool isDigit(int x, int radix) {
@ -340,7 +340,7 @@ class StringToIntHelper {
return subject_->GetFlatContent(no_gc).ToOneByteVector();
}
base::Vector<const uc16> GetTwoByteVector() {
base::Vector<const base::uc16> GetTwoByteVector() {
DisallowGarbageCollection no_gc;
return subject_->GetFlatContent(no_gc).ToUC16Vector();
}
@ -381,7 +381,7 @@ void StringToIntHelper<IsolateT>::ParseInt() {
base::Vector<const uint8_t> vector = GetOneByteVector();
DetectRadixInternal(vector.begin(), vector.length());
} else {
base::Vector<const uc16> vector = GetTwoByteVector();
base::Vector<const base::uc16> vector = GetTwoByteVector();
DetectRadixInternal(vector.begin(), vector.length());
}
}
@ -399,7 +399,7 @@ void StringToIntHelper<IsolateT>::ParseInt() {
break;
}
} else {
base::Vector<const uc16> vector = GetTwoByteVector();
base::Vector<const base::uc16> vector = GetTwoByteVector();
DCHECK_EQ(length_, vector.length());
if (ParseChunkInternal(vector.begin())) {
break;
@ -612,7 +612,7 @@ class NumberParseIntHelper : public StringToIntHelper<Isolate> {
result_ = is_power_of_two ? HandlePowerOfTwoCase(vector.begin())
: HandleBaseTenCase(vector.begin());
} else {
base::Vector<const uc16> vector = GetTwoByteVector();
base::Vector<const base::uc16> vector = GetTwoByteVector();
DCHECK_EQ(length(), vector.length());
result_ = is_power_of_two ? HandlePowerOfTwoCase(vector.begin())
: HandleBaseTenCase(vector.begin());
@ -957,9 +957,9 @@ double StringToDouble(base::Vector<const uint8_t> str, int flags,
empty_string_val);
}
double StringToDouble(base::Vector<const uc16> str, int flags,
double StringToDouble(base::Vector<const base::uc16> str, int flags,
double empty_string_val) {
const uc16* end = str.begin() + str.length();
const base::uc16* end = str.begin() + str.length();
return InternalStringToDouble(str.begin(), end, flags, empty_string_val);
}
@ -1099,13 +1099,14 @@ const char* DoubleToCString(double v, base::Vector<char> buffer) {
SimpleStringBuilder builder(buffer.begin(), buffer.length());
int decimal_point;
int sign;
const int kV8DtoaBufferCapacity = kBase10MaximalLength + 1;
const int kV8DtoaBufferCapacity = base::kBase10MaximalLength + 1;
char decimal_rep[kV8DtoaBufferCapacity];
int length;
DoubleToAscii(v, DTOA_SHORTEST, 0,
base::Vector<char>(decimal_rep, kV8DtoaBufferCapacity),
&sign, &length, &decimal_point);
base::DoubleToAscii(
v, base::DTOA_SHORTEST, 0,
base::Vector<char>(decimal_rep, kV8DtoaBufferCapacity), &sign,
&length, &decimal_point);
if (sign) builder.AddCharacter('-');
@ -1191,9 +1192,9 @@ char* DoubleToFixedCString(double value, int f) {
kMaxDigitsBeforePoint + kMaxFractionDigits + 1;
char decimal_rep[kDecimalRepCapacity];
int decimal_rep_length;
DoubleToAscii(value, DTOA_FIXED, f,
base::Vector<char>(decimal_rep, kDecimalRepCapacity), &sign,
&decimal_rep_length, &decimal_point);
base::DoubleToAscii(value, base::DTOA_FIXED, f,
base::Vector<char>(decimal_rep, kDecimalRepCapacity),
&sign, &decimal_rep_length, &decimal_point);
// Create a representation that is padded with zeros if needed.
int zero_prefix_length = 0;
@ -1281,19 +1282,19 @@ char* DoubleToExponentialCString(double value, int f) {
const int kV8DtoaBufferCapacity = kMaxFractionDigits + 1 + 1;
// Make sure that the buffer is big enough, even if we fall back to the
// shortest representation (which happens when f equals -1).
DCHECK_LE(kBase10MaximalLength, kMaxFractionDigits + 1);
DCHECK_LE(base::kBase10MaximalLength, kMaxFractionDigits + 1);
char decimal_rep[kV8DtoaBufferCapacity];
int decimal_rep_length;
if (f == -1) {
DoubleToAscii(value, DTOA_SHORTEST, 0,
base::Vector<char>(decimal_rep, kV8DtoaBufferCapacity), &sign,
&decimal_rep_length, &decimal_point);
base::DoubleToAscii(value, base::DTOA_SHORTEST, 0,
base::Vector<char>(decimal_rep, kV8DtoaBufferCapacity),
&sign, &decimal_rep_length, &decimal_point);
f = decimal_rep_length - 1;
} else {
DoubleToAscii(value, DTOA_PRECISION, f + 1,
base::Vector<char>(decimal_rep, kV8DtoaBufferCapacity), &sign,
&decimal_rep_length, &decimal_point);
base::DoubleToAscii(value, base::DTOA_PRECISION, f + 1,
base::Vector<char>(decimal_rep, kV8DtoaBufferCapacity),
&sign, &decimal_rep_length, &decimal_point);
}
DCHECK_GT(decimal_rep_length, 0);
DCHECK(decimal_rep_length <= f + 1);
@ -1324,9 +1325,9 @@ char* DoubleToPrecisionCString(double value, int p) {
char decimal_rep[kV8DtoaBufferCapacity];
int decimal_rep_length;
DoubleToAscii(value, DTOA_PRECISION, p,
base::Vector<char>(decimal_rep, kV8DtoaBufferCapacity), &sign,
&decimal_rep_length, &decimal_point);
base::DoubleToAscii(value, base::DTOA_PRECISION, p,
base::Vector<char>(decimal_rep, kV8DtoaBufferCapacity),
&sign, &decimal_rep_length, &decimal_point);
DCHECK(decimal_rep_length <= p);
int exponent = decimal_point - 1;
@ -1398,8 +1399,8 @@ char* DoubleToRadixCString(double value, int radix) {
double integer = std::floor(value);
double fraction = value - integer;
// We only compute fractional digits up to the input double's precision.
double delta = 0.5 * (Double(value).NextDouble() - value);
delta = std::max(Double(0.0).NextDouble(), delta);
double delta = 0.5 * (base::Double(value).NextDouble() - value);
delta = std::max(base::Double(0.0).NextDouble(), delta);
DCHECK_GT(delta, 0.0);
if (fraction >= delta) {
// Insert decimal point.
@ -1440,7 +1441,7 @@ char* DoubleToRadixCString(double value, int radix) {
}
// Compute integer digits. Fill unrepresented digits with zero.
while (Double(integer / radix).Exponent() > 0) {
while (base::Double(integer / radix).Exponent() > 0) {
integer /= radix;
buffer[--integer_cursor] = '0';
}
@ -1487,10 +1488,10 @@ base::Optional<double> TryStringToDouble(LocalIsolate* isolate,
}
const int flags = ALLOW_HEX | ALLOW_OCTAL | ALLOW_BINARY;
auto buffer = std::make_unique<uc16[]>(max_length_for_conversion);
auto buffer = std::make_unique<base::uc16[]>(max_length_for_conversion);
SharedStringAccessGuardIfNeeded access_guard(isolate);
String::WriteToFlat(*object, buffer.get(), 0, length, access_guard);
base::Vector<const uc16> v(buffer.get(), length);
base::Vector<const base::uc16> v(buffer.get(), length);
return StringToDouble(v, flags);
}

View File

@ -8,6 +8,7 @@
#include "src/base/export-template.h"
#include "src/base/logging.h"
#include "src/base/optional.h"
#include "src/base/strings.h"
#include "src/base/vector.h"
#include "src/common/globals.h"
@ -89,7 +90,7 @@ enum ConversionFlags {
// Converts a string into a double value according to ECMA-262 9.3.1
double StringToDouble(base::Vector<const uint8_t> str, int flags,
double empty_string_val = 0);
double StringToDouble(base::Vector<const uc16> str, int flags,
double StringToDouble(base::Vector<const base::uc16> str, int flags,
double empty_string_val = 0);
// This version expects a zero-terminated character array.
double V8_EXPORT_PRIVATE StringToDouble(const char* str, int flags,

View File

@ -19,12 +19,12 @@
#include "src/objects/bigint.h"
#include "src/base/numbers/double.h"
#include "src/bigint/bigint.h"
#include "src/execution/isolate-inl.h"
#include "src/heap/factory.h"
#include "src/heap/heap-write-barrier-inl.h"
#include "src/numbers/conversions.h"
#include "src/numbers/double.h"
#include "src/objects/heap-number-inl.h"
#include "src/objects/instance-type-inl.h"
#include "src/objects/objects-inl.h"
@ -295,7 +295,8 @@ Handle<BigInt> MutableBigInt::NewFromDouble(Isolate* isolate, double value) {
bool sign = value < 0; // -0 was already handled above.
uint64_t double_bits = bit_cast<uint64_t>(value);
int raw_exponent =
static_cast<int>(double_bits >> Double::kPhysicalSignificandSize) & 0x7FF;
static_cast<int>(double_bits >> base::Double::kPhysicalSignificandSize) &
0x7FF;
DCHECK_NE(raw_exponent, 0x7FF);
DCHECK_GE(raw_exponent, 0x3FF);
int exponent = raw_exponent - 0x3FF;
@ -314,8 +315,8 @@ Handle<BigInt> MutableBigInt::NewFromDouble(Isolate* isolate, double value) {
// msd_topbit kDigitBits
//
uint64_t mantissa =
(double_bits & Double::kSignificandMask) | Double::kHiddenBit;
const int kMantissaTopBit = Double::kSignificandSize - 1; // 0-indexed.
(double_bits & base::Double::kSignificandMask) | base::Double::kHiddenBit;
const int kMantissaTopBit = base::Double::kSignificandSize - 1; // 0-indexed.
// 0-indexed position of most significant bit in the most significant digit.
int msd_topbit = exponent % kDigitBits;
// Number of unused bits in {mantissa}. We'll keep them shifted to the
@ -912,8 +913,9 @@ ComparisonResult BigInt::CompareToDouble(Handle<BigInt> x, double y) {
}
uint64_t double_bits = bit_cast<uint64_t>(y);
int raw_exponent =
static_cast<int>(double_bits >> Double::kPhysicalSignificandSize) & 0x7FF;
uint64_t mantissa = double_bits & Double::kSignificandMask;
static_cast<int>(double_bits >> base::Double::kPhysicalSignificandSize) &
0x7FF;
uint64_t mantissa = double_bits & base::Double::kSignificandMask;
// Non-finite doubles are handled above.
DCHECK_NE(raw_exponent, 0x7FF);
int exponent = raw_exponent - 0x3FF;
@ -944,7 +946,7 @@ ComparisonResult BigInt::CompareToDouble(Handle<BigInt> x, double y) {
// <--> <------>
// msd_topbit kDigitBits
//
mantissa |= Double::kHiddenBit;
mantissa |= base::Double::kHiddenBit;
const int kMantissaTopBit = 52; // 0-indexed.
// 0-indexed position of {x}'s most significant bit within the {msd}.
int msd_topbit = kDigitBits - 1 - msd_leading_zeros;
@ -1107,7 +1109,7 @@ double MutableBigInt::ToDouble(Handle<BigIntBase> x) {
mantissa++;
// Incrementing the mantissa can overflow the mantissa bits. In that case
// the new mantissa will be all zero (plus hidden bit).
if ((mantissa >> Double::kPhysicalSignificandSize) != 0) {
if ((mantissa >> base::Double::kPhysicalSignificandSize) != 0) {
mantissa = 0;
exponent++;
// Incrementing the exponent can overflow too.
@ -1118,7 +1120,7 @@ double MutableBigInt::ToDouble(Handle<BigIntBase> x) {
}
// Assemble the result.
uint64_t sign_bit = x->sign() ? (static_cast<uint64_t>(1) << 63) : 0;
exponent = (exponent + 0x3FF) << Double::kPhysicalSignificandSize;
exponent = (exponent + 0x3FF) << base::Double::kPhysicalSignificandSize;
uint64_t double_bits = sign_bit | exponent | mantissa;
return bit_cast<double>(double_bits);
}

View File

@ -14,6 +14,7 @@
#include <vector>
#include "src/api/api-inl.h"
#include "src/base/strings.h"
#include "src/execution/isolate.h"
#include "src/handles/global-handles.h"
#include "src/heap/factory.h"
@ -163,12 +164,12 @@ inline int FindFirstUpperOrNonAscii(String s, int length) {
}
const UChar* GetUCharBufferFromFlat(const String::FlatContent& flat,
std::unique_ptr<uc16[]>* dest,
std::unique_ptr<base::uc16[]>* dest,
int32_t length) {
DCHECK(flat.IsFlat());
if (flat.IsOneByte()) {
if (!*dest) {
dest->reset(NewArray<uc16>(length));
dest->reset(NewArray<base::uc16>(length));
CopyChars(dest->get(), flat.ToOneByteVector().begin(), length);
}
return reinterpret_cast<const UChar*>(dest->get());
@ -195,7 +196,7 @@ icu::UnicodeString Intl::ToICUUnicodeString(Isolate* isolate,
Handle<String> string) {
DCHECK(string->IsFlat());
DisallowGarbageCollection no_gc;
std::unique_ptr<uc16[]> sap;
std::unique_ptr<base::uc16[]> sap;
// Short one-byte strings can be expanded on the stack to avoid allocating a
// temporary buffer.
constexpr int kShortStringSize = 80;
@ -237,7 +238,7 @@ MaybeHandle<String> LocaleConvertCase(Isolate* isolate, Handle<String> s,
int32_t dest_length = src_length;
UErrorCode status;
Handle<SeqTwoByteString> result;
std::unique_ptr<uc16[]> sap;
std::unique_ptr<base::uc16[]> sap;
if (dest_length == 0) return ReadOnlyRoots(isolate).empty_string_handle();
@ -1960,7 +1961,7 @@ MaybeHandle<String> Intl::Normalize(Isolate* isolate, Handle<String> string,
int length = string->length();
string = String::Flatten(isolate, string);
icu::UnicodeString result;
std::unique_ptr<uc16[]> sap;
std::unique_ptr<base::uc16[]> sap;
UErrorCode status = U_ZERO_ERROR;
icu::UnicodeString input = ToICUUnicodeString(isolate, string);
// Getting a singleton. Should not free it.

View File

@ -4,6 +4,7 @@
#include "src/objects/js-regexp.h"
#include "src/base/strings.h"
#include "src/common/globals.h"
#include "src/objects/js-array-inl.h"
#include "src/objects/js-regexp-inl.h"
@ -383,7 +384,7 @@ MaybeHandle<String> EscapeRegExpSource(Isolate* isolate,
bool needs_escapes = false;
int additional_escape_chars =
one_byte ? CountAdditionalEscapeChars<uint8_t>(source, &needs_escapes)
: CountAdditionalEscapeChars<uc16>(source, &needs_escapes);
: CountAdditionalEscapeChars<base::uc16>(source, &needs_escapes);
if (!needs_escapes) return source;
int length = source->length() + additional_escape_chars;
if (one_byte) {
@ -397,7 +398,7 @@ MaybeHandle<String> EscapeRegExpSource(Isolate* isolate,
ASSIGN_RETURN_ON_EXCEPTION(isolate, result,
isolate->factory()->NewRawTwoByteString(length),
String);
return WriteEscapedRegExpSource<uc16>(source, result);
return WriteEscapedRegExpSource<base::uc16>(source, result);
}
}

View File

@ -14,6 +14,7 @@
#include "src/base/bits.h"
#include "src/base/memory.h"
#include "src/base/numbers/double.h"
#include "src/builtins/builtins.h"
#include "src/common/external-pointer-inl.h"
#include "src/common/globals.h"
@ -22,7 +23,6 @@
#include "src/heap/heap-write-barrier-inl.h"
#include "src/heap/read-only-heap-inl.h"
#include "src/numbers/conversions-inl.h"
#include "src/numbers/double.h"
#include "src/objects/bigint.h"
#include "src/objects/heap-number-inl.h"
#include "src/objects/heap-object.h"
@ -1056,7 +1056,7 @@ Object Object::GetSimpleHash(Object object) {
if (num >= kMinInt && num <= kMaxInt && FastI2D(FastD2I(num)) == num) {
hash = ComputeUnseededHash(FastD2I(num));
} else {
hash = ComputeLongHash(double_to_uint64(num));
hash = ComputeLongHash(base::double_to_uint64(num));
}
return Smi::FromInt(hash & Smi::kMaxValue);
}

View File

@ -4,6 +4,7 @@
#include "src/objects/stack-frame-info.h"
#include "src/base/strings.h"
#include "src/objects/shared-function-info.h"
#include "src/objects/stack-frame-info-inl.h"
#include "src/strings/string-builder-inl.h"
@ -618,7 +619,7 @@ bool StringEndsWithMethodName(Isolate* isolate, Handle<String> subject,
return false;
}
const uc32 subject_char = subject_reader.Get(subject_index);
const base::uc32 subject_char = subject_reader.Get(subject_index);
if (i == pattern_reader.length()) {
if (subject_char != '.') return false;
} else if (subject_char != pattern_reader.Get(pattern_index)) {

View File

@ -300,11 +300,11 @@ bool String::IsOneByteRepresentationUnderneath(String string) {
}
}
uc32 FlatStringReader::Get(int index) const {
base::uc32 FlatStringReader::Get(int index) const {
if (is_one_byte_) {
return Get<uint8_t>(index);
} else {
return Get<uc16>(index);
return Get<base::uc16>(index);
}
}
@ -315,7 +315,7 @@ Char FlatStringReader::Get(int index) const {
if (sizeof(Char) == 1) {
return static_cast<Char>(static_cast<const uint8_t*>(start_)[index]);
} else {
return static_cast<Char>(static_cast<const uc16*>(start_)[index]);
return static_cast<Char>(static_cast<const base::uc16*>(start_)[index]);
}
}
@ -766,7 +766,7 @@ inline base::Vector<const uint8_t> String::GetCharVector(
}
template <>
inline base::Vector<const uc16> String::GetCharVector(
inline base::Vector<const base::uc16> String::GetCharVector(
const DisallowGarbageCollection& no_gc) {
String::FlatContent flat = GetFlatContent(no_gc);
DCHECK(flat.IsTwoByte());
@ -813,18 +813,19 @@ Address SeqTwoByteString::GetCharsAddress() const {
return field_address(kHeaderSize);
}
uc16* SeqTwoByteString::GetChars(const DisallowGarbageCollection& no_gc) const {
base::uc16* SeqTwoByteString::GetChars(
const DisallowGarbageCollection& no_gc) const {
USE(no_gc);
DCHECK(!SharedStringAccessGuardIfNeeded::IsNeeded(*this));
return reinterpret_cast<uc16*>(GetCharsAddress());
return reinterpret_cast<base::uc16*>(GetCharsAddress());
}
uc16* SeqTwoByteString::GetChars(
base::uc16* SeqTwoByteString::GetChars(
const DisallowGarbageCollection& no_gc,
const SharedStringAccessGuardIfNeeded& access_guard) const {
USE(no_gc);
USE(access_guard);
return reinterpret_cast<uc16*>(GetCharsAddress());
return reinterpret_cast<base::uc16*>(GetCharsAddress());
}
uint16_t SeqTwoByteString::Get(
@ -1193,13 +1194,13 @@ class SubStringRange::iterator final {
public:
using iterator_category = std::forward_iterator_tag;
using difference_type = int;
using value_type = uc16;
using pointer = uc16*;
using reference = uc16&;
using value_type = base::uc16;
using pointer = base::uc16*;
using reference = base::uc16&;
iterator(const iterator& other) = default;
uc16 operator*() { return content_.Get(offset_); }
base::uc16 operator*() { return content_.Get(offset_); }
bool operator==(const iterator& other) const {
return content_.UsesSameString(other.content_) && offset_ == other.offset_;
}

View File

@ -156,7 +156,7 @@ bool String::MakeExternal(v8::String::ExternalStringResource* resource) {
if (FLAG_enable_slow_asserts) {
// Assert that the resource and the string are equivalent.
DCHECK(static_cast<size_t>(this->length()) == resource->length());
base::ScopedVector<uc16> smart_chars(this->length());
base::ScopedVector<base::uc16> smart_chars(this->length());
String::WriteToFlat(*this, smart_chars.begin(), 0, this->length());
DCHECK_EQ(0, memcmp(smart_chars.begin(), resource->data(),
resource->length() * sizeof(smart_chars[0])));
@ -572,7 +572,7 @@ String::FlatContent String::GetFlatContent(
return FlatContent(start + offset, length, no_gc);
} else {
DCHECK_EQ(shape.encoding_tag(), kTwoByteStringTag);
const uc16* start;
const base::uc16* start;
if (shape.representation_tag() == kSeqStringTag) {
start = SeqTwoByteString::cast(string).GetChars(no_gc);
} else {
@ -654,7 +654,7 @@ void String::WriteToFlat(String source, sinkchar* sink, int from, int to,
return;
}
case kTwoByteStringTag | kExternalStringTag: {
const uc16* data = ExternalTwoByteString::cast(source).GetChars();
const base::uc16* data = ExternalTwoByteString::cast(source).GetChars();
CopyChars(sink, data + from, to - from);
return;
}
@ -947,16 +947,16 @@ ComparisonResult String::Compare(Isolate* isolate, Handle<String> x,
base::Vector<const uint8_t> y_chars = y_content.ToOneByteVector();
r = CompareChars(x_chars.begin(), y_chars.begin(), prefix_length);
} else {
base::Vector<const uc16> y_chars = y_content.ToUC16Vector();
base::Vector<const base::uc16> y_chars = y_content.ToUC16Vector();
r = CompareChars(x_chars.begin(), y_chars.begin(), prefix_length);
}
} else {
base::Vector<const uc16> x_chars = x_content.ToUC16Vector();
base::Vector<const base::uc16> x_chars = x_content.ToUC16Vector();
if (y_content.IsOneByte()) {
base::Vector<const uint8_t> y_chars = y_content.ToOneByteVector();
r = CompareChars(x_chars.begin(), y_chars.begin(), prefix_length);
} else {
base::Vector<const uc16> y_chars = y_content.ToUC16Vector();
base::Vector<const base::uc16> y_chars = y_content.ToUC16Vector();
r = CompareChars(x_chars.begin(), y_chars.begin(), prefix_length);
}
}
@ -1043,9 +1043,9 @@ int String::IndexOf(Isolate* isolate, Handle<String> receiver,
return SearchString<const uint8_t>(isolate, receiver_content, pat_vector,
start_index);
}
base::Vector<const uc16> pat_vector = search_content.ToUC16Vector();
return SearchString<const uc16>(isolate, receiver_content, pat_vector,
start_index);
base::Vector<const base::uc16> pat_vector = search_content.ToUC16Vector();
return SearchString<const base::uc16>(isolate, receiver_content, pat_vector,
start_index);
}
MaybeHandle<String> String::GetSubstitution(Isolate* isolate, Match* match,
@ -1219,7 +1219,7 @@ int StringMatchBackwards(base::Vector<const schar> subject,
if (sizeof(schar) == 1 && sizeof(pchar) > 1) {
for (int i = 0; i < pattern_length; i++) {
uc16 c = pattern[i];
base::uc16 c = pattern[i];
if (c > String::kMaxOneByteCharCode) {
return -1;
}
@ -1304,7 +1304,7 @@ Object String::LastIndexOf(Isolate* isolate, Handle<Object> receiver,
pat_vector, start_index);
}
} else {
base::Vector<const uc16> pat_vector = search_content.ToUC16Vector();
base::Vector<const base::uc16> pat_vector = search_content.ToUC16Vector();
if (receiver_content.IsOneByte()) {
last_index = StringMatchBackwards(receiver_content.ToOneByteVector(),
pat_vector, start_index);
@ -1469,7 +1469,7 @@ void SeqOneByteString::clear_padding() {
}
void SeqTwoByteString::clear_padding() {
int data_size = SeqString::kHeaderSize + length() * kUC16Size;
int data_size = SeqString::kHeaderSize + length() * base::kUC16Size;
memset(reinterpret_cast<void*>(address() + data_size), 0,
SizeFor(length()) - data_size);
}

View File

@ -9,6 +9,7 @@
#include "src/base/bits.h"
#include "src/base/export-template.h"
#include "src/base/strings.h"
#include "src/objects/instance-type.h"
#include "src/objects/name.h"
#include "src/objects/smi.h"
@ -124,12 +125,12 @@ class String : public TorqueGeneratedString<String, Name> {
}
// Return the two-byte content of the string. Only use if IsTwoByte()
// returns true.
base::Vector<const uc16> ToUC16Vector() const {
base::Vector<const base::uc16> ToUC16Vector() const {
DCHECK_EQ(TWO_BYTE, state_);
return base::Vector<const uc16>(twobyte_start, length_);
return base::Vector<const base::uc16>(twobyte_start, length_);
}
uc16 Get(int i) const {
base::uc16 Get(int i) const {
DCHECK(i < length_);
DCHECK(state_ != NON_FLAT);
if (state_ == ONE_BYTE) return onebyte_start[i];
@ -150,7 +151,7 @@ class String : public TorqueGeneratedString<String, Name> {
length_(length),
state_(ONE_BYTE),
no_gc_(no_gc) {}
FlatContent(const uc16* start, int length,
FlatContent(const base::uc16* start, int length,
const DisallowGarbageCollection& no_gc)
: twobyte_start(start),
length_(length),
@ -161,7 +162,7 @@ class String : public TorqueGeneratedString<String, Name> {
union {
const uint8_t* onebyte_start;
const uc16* twobyte_start;
const base::uc16* twobyte_start;
};
int length_;
State state_;
@ -250,7 +251,7 @@ class String : public TorqueGeneratedString<String, Name> {
AllocationType allocation = AllocationType::kYoung);
// Tries to return the content of a flat string as a structure holding either
// a flat vector of char or of uc16.
// a flat vector of char or of base::uc16.
// If the string isn't flat, and therefore doesn't have flat content, the
// returned structure will report so, and can't provide a vector of either
// kind.
@ -432,7 +433,7 @@ class String : public TorqueGeneratedString<String, Name> {
static const uint32_t kMaxOneByteCharCodeU = unibrow::Latin1::kMaxChar;
static const int kMaxUtf16CodeUnit = 0xffff;
static const uint32_t kMaxUtf16CodeUnitU = kMaxUtf16CodeUnit;
static const uc32 kMaxCodePoint = 0x10ffff;
static const base::uc32 kMaxCodePoint = 0x10ffff;
// Maximal string length.
// The max length is different on 32 and 64 bit platforms. Max length for
@ -481,8 +482,8 @@ class String : public TorqueGeneratedString<String, Name> {
return NonAsciiStart(chars, length) >= length;
}
static inline int NonOneByteStart(const uc16* chars, int length) {
DCHECK(IsAligned(reinterpret_cast<Address>(chars), sizeof(uc16)));
static inline int NonOneByteStart(const base::uc16* chars, int length) {
DCHECK(IsAligned(reinterpret_cast<Address>(chars), sizeof(base::uc16)));
const uint16_t* start = chars;
const uint16_t* limit = chars + length;
@ -506,7 +507,7 @@ class String : public TorqueGeneratedString<String, Name> {
if (*reinterpret_cast<const uintptr_t*>(chars) & non_one_byte_mask) {
break;
}
chars += (sizeof(uintptr_t) / sizeof(uc16));
chars += (sizeof(uintptr_t) / sizeof(base::uc16));
}
}
@ -521,7 +522,7 @@ class String : public TorqueGeneratedString<String, Name> {
return static_cast<int>(chars - start);
}
static inline bool IsOneByte(const uc16* chars, int length) {
static inline bool IsOneByte(const base::uc16* chars, int length) {
return NonOneByteStart(chars, length) >= length;
}
@ -700,10 +701,10 @@ class SeqTwoByteString
// Get a pointer to the characters of the string. May only be called when a
// SharedStringAccessGuard is not needed (i.e. on the main thread or on
// read-only strings).
inline uc16* GetChars(const DisallowGarbageCollection& no_gc) const;
inline base::uc16* GetChars(const DisallowGarbageCollection& no_gc) const;
// Get a pointer to the characters of the string.
inline uc16* GetChars(
inline base::uc16* GetChars(
const DisallowGarbageCollection& no_gc,
const SharedStringAccessGuardIfNeeded& access_guard) const;
@ -958,7 +959,7 @@ class V8_EXPORT_PRIVATE FlatStringReader : public Relocatable {
public:
FlatStringReader(Isolate* isolate, Handle<String> str);
void PostGarbageCollection() override;
inline uc32 Get(int index) const;
inline base::uc32 Get(int index) const;
template <typename Char>
inline Char Get(int index) const;
int length() { return length_; }

View File

@ -315,10 +315,10 @@ void ValueSerializer::WriteOneByteString(base::Vector<const uint8_t> chars) {
WriteRawBytes(chars.begin(), chars.length() * sizeof(uint8_t));
}
void ValueSerializer::WriteTwoByteString(base::Vector<const uc16> chars) {
void ValueSerializer::WriteTwoByteString(base::Vector<const base::uc16> chars) {
// Warning: this uses host endianness.
WriteVarint<uint32_t>(chars.length() * sizeof(uc16));
WriteRawBytes(chars.begin(), chars.length() * sizeof(uc16));
WriteVarint<uint32_t>(chars.length() * sizeof(base::uc16));
WriteRawBytes(chars.begin(), chars.length() * sizeof(base::uc16));
}
void ValueSerializer::WriteBigIntContents(BigInt bigint) {
@ -497,8 +497,8 @@ void ValueSerializer::WriteString(Handle<String> string) {
WriteTag(SerializationTag::kOneByteString);
WriteOneByteString(chars);
} else if (flat.IsTwoByte()) {
base::Vector<const uc16> chars = flat.ToUC16Vector();
uint32_t byte_length = chars.length() * sizeof(uc16);
base::Vector<const base::uc16> chars = flat.ToUC16Vector();
uint32_t byte_length = chars.length() * sizeof(base::uc16);
// The existing reading code expects 16-byte strings to be aligned.
if ((buffer_size_ + 1 + BytesNeededForVarint(byte_length)) & 1)
WriteTag(SerializationTag::kPadding);
@ -1447,7 +1447,7 @@ MaybeHandle<String> ValueDeserializer::ReadTwoByteString() {
if (!ReadVarint<uint32_t>().To(&byte_length) ||
byte_length >
static_cast<uint32_t>(std::numeric_limits<int32_t>::max()) ||
byte_length % sizeof(uc16) != 0 ||
byte_length % sizeof(base::uc16) != 0 ||
!ReadRawBytes(byte_length).To(&bytes)) {
return MaybeHandle<String>();
}
@ -1457,7 +1457,7 @@ MaybeHandle<String> ValueDeserializer::ReadTwoByteString() {
if (byte_length == 0) return isolate_->factory()->empty_string();
Handle<SeqTwoByteString> string;
if (!isolate_->factory()
->NewRawTwoByteString(byte_length / sizeof(uc16))
->NewRawTwoByteString(byte_length / sizeof(base::uc16))
.ToHandle(&string)) {
return MaybeHandle<String>();
}
@ -1496,8 +1496,9 @@ bool ValueDeserializer::ReadExpectedString(Handle<String> expected) {
return true;
}
} else if (tag == SerializationTag::kTwoByteString && flat.IsTwoByte()) {
base::Vector<const uc16> chars = flat.ToUC16Vector();
if (byte_length == static_cast<unsigned>(chars.length()) * sizeof(uc16) &&
base::Vector<const base::uc16> chars = flat.ToUC16Vector();
if (byte_length ==
static_cast<unsigned>(chars.length()) * sizeof(base::uc16) &&
memcmp(bytes.begin(), chars.begin(), byte_length) == 0) {
return true;
}

View File

@ -11,6 +11,7 @@
#include "include/v8.h"
#include "src/base/compiler-specific.h"
#include "src/base/macros.h"
#include "src/base/strings.h"
#include "src/base/vector.h"
#include "src/common/message-template.h"
#include "src/handles/maybe-handles.h"
@ -106,7 +107,7 @@ class ValueSerializer {
template <typename T>
void WriteZigZag(T value);
void WriteOneByteString(base::Vector<const uint8_t> chars);
void WriteTwoByteString(base::Vector<const uc16> chars);
void WriteTwoByteString(base::Vector<const base::uc16> chars);
void WriteBigIntContents(BigInt bigint);
Maybe<uint8_t*> ReserveRawBytes(size_t bytes);

View File

@ -4,6 +4,7 @@
#include "src/parsing/literal-buffer.h"
#include "src/base/strings.h"
#include "src/execution/isolate.h"
#include "src/execution/local-isolate.h"
#include "src/heap/factory.h"
@ -43,7 +44,7 @@ void LiteralBuffer::ExpandBuffer() {
void LiteralBuffer::ConvertToTwoByte() {
DCHECK(is_one_byte());
base::Vector<byte> new_store;
int new_content_size = position_ * kUC16Size;
int new_content_size = position_ * base::kUC16Size;
if (new_content_size >= backing_store_.length()) {
// Ensure room for all currently read code units as UC16 as well
// as the code unit about to be stored.
@ -64,21 +65,21 @@ void LiteralBuffer::ConvertToTwoByte() {
is_one_byte_ = false;
}
void LiteralBuffer::AddTwoByteChar(uc32 code_unit) {
void LiteralBuffer::AddTwoByteChar(base::uc32 code_unit) {
DCHECK(!is_one_byte());
if (position_ >= backing_store_.length()) ExpandBuffer();
if (code_unit <=
static_cast<uc32>(unibrow::Utf16::kMaxNonSurrogateCharCode)) {
static_cast<base::uc32>(unibrow::Utf16::kMaxNonSurrogateCharCode)) {
*reinterpret_cast<uint16_t*>(&backing_store_[position_]) = code_unit;
position_ += kUC16Size;
position_ += base::kUC16Size;
} else {
*reinterpret_cast<uint16_t*>(&backing_store_[position_]) =
unibrow::Utf16::LeadSurrogate(code_unit);
position_ += kUC16Size;
position_ += base::kUC16Size;
if (position_ >= backing_store_.length()) ExpandBuffer();
*reinterpret_cast<uint16_t*>(&backing_store_[position_]) =
unibrow::Utf16::TrailSurrogate(code_unit);
position_ += kUC16Size;
position_ += base::kUC16Size;
}
}

View File

@ -5,6 +5,7 @@
#ifndef V8_PARSING_LITERAL_BUFFER_H_
#define V8_PARSING_LITERAL_BUFFER_H_
#include "src/base/strings.h"
#include "src/base/vector.h"
#include "src/strings/unicode-decoder.h"
@ -26,9 +27,9 @@ class LiteralBuffer final {
AddOneByteChar(static_cast<byte>(code_unit));
}
V8_INLINE void AddChar(uc32 code_unit) {
V8_INLINE void AddChar(base::uc32 code_unit) {
if (is_one_byte()) {
if (code_unit <= static_cast<uc32>(unibrow::Latin1::kMaxChar)) {
if (code_unit <= static_cast<base::uc32>(unibrow::Latin1::kMaxChar)) {
AddOneByteChar(static_cast<byte>(code_unit));
return;
}
@ -91,7 +92,7 @@ class LiteralBuffer final {
position_ += kOneByteSize;
}
void AddTwoByteChar(uc32 code_unit);
void AddTwoByteChar(base::uc32 code_unit);
int NewCapacity(int min_capacity);
void ExpandBuffer();
void ConvertToTwoByte();

View File

@ -8,6 +8,7 @@
#include <vector>
#include "include/v8.h"
#include "src/base/strings.h"
#include "src/common/globals.h"
#include "src/handles/handles.h"
#include "src/logging/runtime-call-stats-scope.h"
@ -278,7 +279,7 @@ class BufferedCharacterStream : public Utf16CharacterStream {
: byte_stream_(other.byte_stream_) {}
static const size_t kBufferSize = 512;
uc16 buffer_[kBufferSize];
base::uc16 buffer_[kBufferSize];
ByteStream<uint8_t> byte_stream_;
};
@ -392,7 +393,7 @@ class BufferedUtf16CharacterStream : public Utf16CharacterStream {
// Fixed sized buffer that this class reads from.
// The base class' buffer_start_ should always point to buffer_.
uc16 buffer_[kBufferSize];
base::uc16 buffer_[kBufferSize];
};
BufferedUtf16CharacterStream::BufferedUtf16CharacterStream()
@ -418,7 +419,7 @@ bool BufferedUtf16CharacterStream::ReadBlock() {
namespace {
static const uc16 kWindows1252ToUC16[256] = {
static const base::uc16 kWindows1252ToUC16[256] = {
0x0000, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007, // 00-07
0x0008, 0x0009, 0x000A, 0x000B, 0x000C, 0x000D, 0x000E, 0x000F, // 08-0F
0x0010, 0x0011, 0x0012, 0x0013, 0x0014, 0x0015, 0x0016, 0x0017, // 10-17
@ -504,7 +505,7 @@ class Windows1252CharacterStream final : public Utf16CharacterStream {
V8_NOEXCEPT : byte_stream_(other.byte_stream_) {}
static const size_t kBufferSize = 512;
uc16 buffer_[kBufferSize];
base::uc16 buffer_[kBufferSize];
ChunkedStream<uint8_t> byte_stream_;
};
@ -653,7 +654,7 @@ void Utf8ExternalStreamingStream::FillBufferFromCurrentChunk() {
unibrow::uchar t = unibrow::Utf8::ValueOfIncrementalFinish(&state);
if (t != unibrow::Utf8::kBufferEmpty) {
DCHECK_EQ(t, unibrow::Utf8::kBadChar);
*output_cursor = static_cast<uc16>(t);
*output_cursor = static_cast<base::uc16>(t);
buffer_end_++;
current_.pos.chars++;
current_.pos.incomplete_char = 0;
@ -672,13 +673,14 @@ void Utf8ExternalStreamingStream::FillBufferFromCurrentChunk() {
unibrow::uchar t =
unibrow::Utf8::ValueOfIncremental(&cursor, &state, &incomplete_char);
if (V8_LIKELY(t < kUtf8Bom)) {
*(output_cursor++) = static_cast<uc16>(t); // The most frequent case.
*(output_cursor++) =
static_cast<base::uc16>(t); // The most frequent case.
} else if (t == unibrow::Utf8::kIncomplete) {
continue;
} else if (t == kUtf8Bom) {
// BOM detected at beginning of the stream. Don't copy it.
} else if (t <= unibrow::Utf16::kMaxNonSurrogateCharCode) {
*(output_cursor++) = static_cast<uc16>(t);
*(output_cursor++) = static_cast<base::uc16>(t);
} else {
*(output_cursor++) = unibrow::Utf16::LeadSurrogate(t);
*(output_cursor++) = unibrow::Utf16::TrailSurrogate(t);
@ -692,7 +694,8 @@ void Utf8ExternalStreamingStream::FillBufferFromCurrentChunk() {
unibrow::uchar t =
unibrow::Utf8::ValueOfIncremental(&cursor, &state, &incomplete_char);
if (V8_LIKELY(t <= unibrow::Utf16::kMaxNonSurrogateCharCode)) {
*(output_cursor++) = static_cast<uc16>(t); // The most frequent case.
*(output_cursor++) =
static_cast<base::uc16>(t); // The most frequent case.
} else if (t == unibrow::Utf8::kIncomplete) {
continue;
} else {

View File

@ -251,7 +251,7 @@ static constexpr const uint8_t character_scan_flags[128] = {
#undef CALL_GET_SCAN_FLAGS
};
inline bool CharCanBeKeyword(uc32 c) {
inline bool CharCanBeKeyword(base::uc32 c) {
return static_cast<uint32_t>(c) < arraysize(character_scan_flags) &&
CanBeKeyword(character_scan_flags[c]);
}
@ -273,7 +273,7 @@ V8_INLINE Token::Value Scanner::ScanIdentifierOrKeywordInner() {
// Otherwise we'll fall into the slow path after scanning the identifier.
DCHECK(!IdentifierNeedsSlowPath(scan_flags));
AddLiteralChar(static_cast<char>(c0_));
AdvanceUntil([this, &scan_flags](uc32 c0) {
AdvanceUntil([this, &scan_flags](base::uc32 c0) {
if (V8_UNLIKELY(static_cast<uint32_t>(c0) > kMaxAscii)) {
// A non-ascii character means we need to drop through to the slow
// path.
@ -305,7 +305,7 @@ V8_INLINE Token::Value Scanner::ScanIdentifierOrKeywordInner() {
} else {
// Special case for escapes at the start of an identifier.
escaped = true;
uc32 c = ScanIdentifierUnicodeEscape();
base::uc32 c = ScanIdentifierUnicodeEscape();
DCHECK(!IsIdentifierStart(Invalid()));
if (c == '\\' || !IsIdentifierStart(c)) {
return Token::ILLEGAL;
@ -454,7 +454,7 @@ V8_INLINE Token::Value Scanner::ScanSingleToken() {
// / // /* /=
Advance();
if (c0_ == '/') {
uc32 c = Peek();
base::uc32 c = Peek();
if (c == '#' || c == '@') {
Advance();
Advance();

View File

@ -12,6 +12,7 @@
#include "src/ast/ast-value-factory.h"
#include "src/base/platform/wrappers.h"
#include "src/base/strings.h"
#include "src/numbers/conversions-inl.h"
#include "src/objects/bigint.h"
#include "src/parsing/parse-info.h"
@ -109,19 +110,19 @@ void Scanner::Initialize() {
}
// static
bool Scanner::IsInvalid(uc32 c) {
bool Scanner::IsInvalid(base::uc32 c) {
DCHECK(c == Invalid() || base::IsInRange(c, 0u, String::kMaxCodePoint));
return c == Scanner::Invalid();
}
template <bool capture_raw, bool unicode>
uc32 Scanner::ScanHexNumber(int expected_length) {
base::uc32 Scanner::ScanHexNumber(int expected_length) {
DCHECK_LE(expected_length, 4); // prevent overflow
int begin = source_pos() - 2;
uc32 x = 0;
base::uc32 x = 0;
for (int i = 0; i < expected_length; i++) {
int d = HexValue(c0_);
int d = base::HexValue(c0_);
if (d < 0) {
ReportScannerError(Location(begin, begin + expected_length + 2),
unicode
@ -137,9 +138,10 @@ uc32 Scanner::ScanHexNumber(int expected_length) {
}
template <bool capture_raw>
uc32 Scanner::ScanUnlimitedLengthHexNumber(uc32 max_value, int beg_pos) {
uc32 x = 0;
int d = HexValue(c0_);
base::uc32 Scanner::ScanUnlimitedLengthHexNumber(base::uc32 max_value,
int beg_pos) {
base::uc32 x = 0;
int d = base::HexValue(c0_);
if (d < 0) return Invalid();
while (d >= 0) {
@ -150,7 +152,7 @@ uc32 Scanner::ScanUnlimitedLengthHexNumber(uc32 max_value, int beg_pos) {
return Invalid();
}
Advance<capture_raw>();
d = HexValue(c0_);
d = base::HexValue(c0_);
}
return x;
@ -209,7 +211,7 @@ Token::Value Scanner::SkipSingleLineComment() {
// separately by the lexical grammar and becomes part of the
// stream of input elements for the syntactic grammar (see
// ECMA-262, section 7.4).
AdvanceUntil([](uc32 c0_) { return unibrow::IsLineTerminator(c0_); });
AdvanceUntil([](base::uc32 c0_) { return unibrow::IsLineTerminator(c0_); });
return Token::WHITESPACE;
}
@ -276,7 +278,7 @@ Token::Value Scanner::SkipMultiLineComment() {
// Until we see the first newline, check for * and newline characters.
if (!next().after_line_terminator) {
do {
AdvanceUntil([](uc32 c0) {
AdvanceUntil([](base::uc32 c0) {
if (V8_UNLIKELY(static_cast<uint32_t>(c0) > kMaxAscii)) {
return unibrow::IsLineTerminator(c0);
}
@ -301,7 +303,7 @@ Token::Value Scanner::SkipMultiLineComment() {
// After we've seen newline, simply try to find '*/'.
while (c0_ != kEndOfInput) {
AdvanceUntil([](uc32 c0) { return c0 == '*'; });
AdvanceUntil([](base::uc32 c0) { return c0 == '*'; });
while (c0_ == '*') {
Advance();
@ -369,7 +371,7 @@ void Scanner::SeekForward(int pos) {
template <bool capture_raw>
bool Scanner::ScanEscape() {
uc32 c = c0_;
base::uc32 c = c0_;
Advance<capture_raw>();
// Skip escaped newlines.
@ -425,9 +427,9 @@ bool Scanner::ScanEscape() {
}
template <bool capture_raw>
uc32 Scanner::ScanOctalEscape(uc32 c, int length) {
base::uc32 Scanner::ScanOctalEscape(base::uc32 c, int length) {
DCHECK('0' <= c && c <= '7');
uc32 x = c - '0';
base::uc32 x = c - '0';
int i = 0;
for (; i < length; i++) {
int d = c0_ - '0';
@ -451,11 +453,11 @@ uc32 Scanner::ScanOctalEscape(uc32 c, int length) {
}
Token::Value Scanner::ScanString() {
uc32 quote = c0_;
base::uc32 quote = c0_;
next().literal_chars.Start();
while (true) {
AdvanceUntil([this](uc32 c0) {
AdvanceUntil([this](base::uc32 c0) {
if (V8_UNLIKELY(static_cast<uint32_t>(c0) > kMaxAscii)) {
if (V8_UNLIKELY(unibrow::IsStringLiteralLineTerminator(c0))) {
return true;
@ -531,7 +533,7 @@ Token::Value Scanner::ScanTemplateSpan() {
next().raw_literal_chars.Start();
const bool capture_raw = true;
while (true) {
uc32 c = c0_;
base::uc32 c = c0_;
if (c == '`') {
Advance(); // Consume '`'
result = Token::TEMPLATE_TAIL;
@ -547,7 +549,7 @@ Token::Value Scanner::ScanTemplateSpan() {
if (unibrow::IsLineTerminator(c0_)) {
// The TV of LineContinuation :: \ LineTerminatorSequence is the empty
// code unit sequence.
uc32 lastChar = c0_;
base::uc32 lastChar = c0_;
Advance();
if (lastChar == '\r') {
// Also skip \n.
@ -610,7 +612,7 @@ Handle<String> Scanner::SourceMappingUrl(IsolateT* isolate) const {
template Handle<String> Scanner::SourceMappingUrl(Isolate* isolate) const;
template Handle<String> Scanner::SourceMappingUrl(LocalIsolate* isolate) const;
bool Scanner::ScanDigitsWithNumericSeparators(bool (*predicate)(uc32 ch),
bool Scanner::ScanDigitsWithNumericSeparators(bool (*predicate)(base::uc32 ch),
bool is_check_first_digit) {
// we must have at least one digit after 'x'/'b'/'o'
if (is_check_first_digit && !predicate(c0_)) return false;
@ -670,7 +672,7 @@ bool Scanner::ScanDecimalAsSmiWithNumericSeparators(uint64_t* value) {
}
separator_seen = false;
*value = 10 * *value + (c0_ - '0');
uc32 first_char = c0_;
base::uc32 first_char = c0_;
Advance();
AddLiteralChar(first_char);
}
@ -691,7 +693,7 @@ bool Scanner::ScanDecimalAsSmi(uint64_t* value, bool allow_numeric_separator) {
while (IsDecimalDigit(c0_)) {
*value = 10 * *value + (c0_ - '0');
uc32 first_char = c0_;
base::uc32 first_char = c0_;
Advance();
AddLiteralChar(first_char);
}
@ -869,7 +871,7 @@ Token::Value Scanner::ScanNumber(bool seen_period) {
return is_bigint ? Token::BIGINT : Token::NUMBER;
}
uc32 Scanner::ScanIdentifierUnicodeEscape() {
base::uc32 Scanner::ScanIdentifierUnicodeEscape() {
Advance();
if (c0_ != 'u') return Invalid();
Advance();
@ -877,13 +879,13 @@ uc32 Scanner::ScanIdentifierUnicodeEscape() {
}
template <bool capture_raw>
uc32 Scanner::ScanUnicodeEscape() {
base::uc32 Scanner::ScanUnicodeEscape() {
// Accept both \uxxxx and \u{xxxxxx}. In the latter case, the number of
// hex digits between { } is arbitrary. \ and u have already been read.
if (c0_ == '{') {
int begin = source_pos() - 2;
Advance<capture_raw>();
uc32 cp =
base::uc32 cp =
ScanUnlimitedLengthHexNumber<capture_raw>(String::kMaxCodePoint, begin);
if (cp == kInvalidSequence || c0_ != '}') {
ReportScannerError(source_pos(),
@ -902,7 +904,7 @@ Token::Value Scanner::ScanIdentifierOrKeywordInnerSlow(bool escaped,
while (true) {
if (c0_ == '\\') {
escaped = true;
uc32 c = ScanIdentifierUnicodeEscape();
base::uc32 c = ScanIdentifierUnicodeEscape();
// Only allow legal identifier part characters.
// TODO(verwaest): Make this true.
// DCHECK(!IsIdentifierPart('\'));

View File

@ -12,6 +12,7 @@
#include "include/v8.h"
#include "src/base/logging.h"
#include "src/base/strings.h"
#include "src/common/globals.h"
#include "src/common/message-template.h"
#include "src/parsing/literal-buffer.h"
@ -39,7 +40,7 @@ class Zone;
// or one part of a surrogate pair that make a single 21 bit code point.
class Utf16CharacterStream {
public:
static constexpr uc32 kEndOfInput = static_cast<uc32>(-1);
static constexpr base::uc32 kEndOfInput = static_cast<base::uc32>(-1);
virtual ~Utf16CharacterStream() = default;
@ -50,11 +51,11 @@ class Utf16CharacterStream {
V8_INLINE void reset_parser_error_flag() { has_parser_error_ = false; }
V8_INLINE bool has_parser_error() const { return has_parser_error_; }
inline uc32 Peek() {
inline base::uc32 Peek() {
if (V8_LIKELY(buffer_cursor_ < buffer_end_)) {
return static_cast<uc32>(*buffer_cursor_);
return static_cast<base::uc32>(*buffer_cursor_);
} else if (ReadBlockChecked()) {
return static_cast<uc32>(*buffer_cursor_);
return static_cast<base::uc32>(*buffer_cursor_);
} else {
return kEndOfInput;
}
@ -62,8 +63,8 @@ class Utf16CharacterStream {
// Returns and advances past the next UTF-16 code unit in the input
// stream. If there are no more code units it returns kEndOfInput.
inline uc32 Advance() {
uc32 result = Peek();
inline base::uc32 Advance() {
base::uc32 result = Peek();
buffer_cursor_++;
return result;
}
@ -72,11 +73,11 @@ class Utf16CharacterStream {
// that meets the checks requirement. If there are no more code units it
// returns kEndOfInput.
template <typename FunctionType>
V8_INLINE uc32 AdvanceUntil(FunctionType check) {
V8_INLINE base::uc32 AdvanceUntil(FunctionType check) {
while (true) {
auto next_cursor_pos =
std::find_if(buffer_cursor_, buffer_end_, [&check](uint16_t raw_c0_) {
uc32 c0_ = static_cast<uc32>(raw_c0_);
base::uc32 c0_ = static_cast<base::uc32>(raw_c0_);
return check(c0_);
});
@ -88,7 +89,7 @@ class Utf16CharacterStream {
}
} else {
buffer_cursor_ = next_cursor_pos + 1;
return static_cast<uc32>(*next_cursor_pos);
return static_cast<base::uc32>(*next_cursor_pos);
}
}
}
@ -267,11 +268,11 @@ class V8_EXPORT_PRIVATE Scanner {
};
// -1 is outside of the range of any real source code.
static constexpr uc32 kEndOfInput = Utf16CharacterStream::kEndOfInput;
static constexpr uc32 kInvalidSequence = static_cast<uc32>(-1);
static constexpr base::uc32 kEndOfInput = Utf16CharacterStream::kEndOfInput;
static constexpr base::uc32 kInvalidSequence = static_cast<base::uc32>(-1);
static constexpr uc32 Invalid() { return Scanner::kInvalidSequence; }
static bool IsInvalid(uc32 c);
static constexpr base::uc32 Invalid() { return Scanner::kInvalidSequence; }
static bool IsInvalid(base::uc32 c);
explicit Scanner(Utf16CharacterStream* source, UnoptimizedCompileFlags flags);
@ -471,7 +472,7 @@ class V8_EXPORT_PRIVATE Scanner {
// Scans octal escape sequence. Also accepts "\0" decimal escape sequence.
template <bool capture_raw>
uc32 ScanOctalEscape(uc32 c, int length);
base::uc32 ScanOctalEscape(base::uc32 c, int length);
// Call this after setting source_ to the input.
void Init() {
@ -502,11 +503,13 @@ class V8_EXPORT_PRIVATE Scanner {
// Seek to the next_ token at the given position.
void SeekNext(size_t position);
V8_INLINE void AddLiteralChar(uc32 c) { next().literal_chars.AddChar(c); }
V8_INLINE void AddLiteralChar(base::uc32 c) {
next().literal_chars.AddChar(c);
}
V8_INLINE void AddLiteralChar(char c) { next().literal_chars.AddChar(c); }
V8_INLINE void AddRawLiteralChar(uc32 c) {
V8_INLINE void AddRawLiteralChar(base::uc32 c) {
next().raw_literal_chars.AddChar(c);
}
@ -532,7 +535,7 @@ class V8_EXPORT_PRIVATE Scanner {
bool CombineSurrogatePair() {
DCHECK(!unibrow::Utf16::IsLeadSurrogate(kEndOfInput));
if (unibrow::Utf16::IsLeadSurrogate(c0_)) {
uc32 c1 = source_->Advance();
base::uc32 c1 = source_->Advance();
DCHECK(!unibrow::Utf16::IsTrailSurrogate(kEndOfInput));
if (unibrow::Utf16::IsTrailSurrogate(c1)) {
c0_ = unibrow::Utf16::CombineSurrogatePair(c0_, c1);
@ -543,21 +546,22 @@ class V8_EXPORT_PRIVATE Scanner {
return false;
}
void PushBack(uc32 ch) {
void PushBack(base::uc32 ch) {
DCHECK(IsInvalid(c0_) ||
base::IsInRange(c0_, 0u, unibrow::Utf16::kMaxNonSurrogateCharCode));
source_->Back();
c0_ = ch;
}
uc32 Peek() const { return source_->Peek(); }
base::uc32 Peek() const { return source_->Peek(); }
inline Token::Value Select(Token::Value tok) {
Advance();
return tok;
}
inline Token::Value Select(uc32 next, Token::Value then, Token::Value else_) {
inline Token::Value Select(base::uc32 next, Token::Value then,
Token::Value else_) {
Advance();
if (c0_ == next) {
Advance();
@ -622,12 +626,12 @@ class V8_EXPORT_PRIVATE Scanner {
}
template <bool capture_raw, bool unicode = false>
uc32 ScanHexNumber(int expected_length);
base::uc32 ScanHexNumber(int expected_length);
// Scan a number of any length but not bigger than max_value. For example, the
// number can be 000000001, so it's very long in characters but its value is
// small.
template <bool capture_raw>
uc32 ScanUnlimitedLengthHexNumber(uc32 max_value, int beg_pos);
base::uc32 ScanUnlimitedLengthHexNumber(base::uc32 max_value, int beg_pos);
// Scans a single JavaScript token.
V8_INLINE Token::Value ScanSingleToken();
@ -647,7 +651,7 @@ class V8_EXPORT_PRIVATE Scanner {
// Scans a possible HTML comment -- begins with '<!'.
Token::Value ScanHtmlComment();
bool ScanDigitsWithNumericSeparators(bool (*predicate)(uc32 ch),
bool ScanDigitsWithNumericSeparators(bool (*predicate)(base::uc32 ch),
bool is_check_first_digit);
bool ScanDecimalDigits(bool allow_numeric_separator);
// Optimized function to scan decimal number as Smi.
@ -676,10 +680,10 @@ class V8_EXPORT_PRIVATE Scanner {
// Decodes a Unicode escape-sequence which is part of an identifier.
// If the escape sequence cannot be decoded the result is kBadChar.
uc32 ScanIdentifierUnicodeEscape();
base::uc32 ScanIdentifierUnicodeEscape();
// Helper for the above functions.
template <bool capture_raw>
uc32 ScanUnicodeEscape();
base::uc32 ScanUnicodeEscape();
Token::Value ScanTemplateSpan();
@ -718,7 +722,7 @@ class V8_EXPORT_PRIVATE Scanner {
Utf16CharacterStream* const source_;
// One Unicode character look-ahead; c0_ < 0 at the end of the input.
uc32 c0_;
base::uc32 c0_;
TokenDesc token_storage_[3];

View File

@ -191,8 +191,8 @@ void RegExpMacroAssemblerARM::CheckCharacter(uint32_t c, Label* on_equal) {
BranchOrBacktrack(eq, on_equal);
}
void RegExpMacroAssemblerARM::CheckCharacterGT(uc16 limit, Label* on_greater) {
void RegExpMacroAssemblerARM::CheckCharacterGT(base::uc16 limit,
Label* on_greater) {
__ cmp(current_character(), Operand(limit));
BranchOrBacktrack(gt, on_greater);
}
@ -214,13 +214,12 @@ void RegExpMacroAssemblerARM::CheckNotAtStart(int cp_offset,
BranchOrBacktrack(ne, on_not_at_start);
}
void RegExpMacroAssemblerARM::CheckCharacterLT(uc16 limit, Label* on_less) {
void RegExpMacroAssemblerARM::CheckCharacterLT(base::uc16 limit,
Label* on_less) {
__ cmp(current_character(), Operand(limit));
BranchOrBacktrack(lt, on_less);
}
void RegExpMacroAssemblerARM::CheckGreedyLoop(Label* on_equal) {
__ ldr(r0, MemOperand(backtrack_stackpointer(), 0));
__ cmp(current_input_offset(), r0);
@ -458,12 +457,8 @@ void RegExpMacroAssemblerARM::CheckNotCharacterAfterAnd(unsigned c,
BranchOrBacktrack(ne, on_not_equal);
}
void RegExpMacroAssemblerARM::CheckNotCharacterAfterMinusAnd(
uc16 c,
uc16 minus,
uc16 mask,
Label* on_not_equal) {
base::uc16 c, base::uc16 minus, base::uc16 mask, Label* on_not_equal) {
DCHECK_GT(String::kMaxUtf16CodeUnit, minus);
__ sub(r0, current_character(), Operand(minus));
__ and_(r0, r0, Operand(mask));
@ -471,27 +466,22 @@ void RegExpMacroAssemblerARM::CheckNotCharacterAfterMinusAnd(
BranchOrBacktrack(ne, on_not_equal);
}
void RegExpMacroAssemblerARM::CheckCharacterInRange(
uc16 from,
uc16 to,
Label* on_in_range) {
void RegExpMacroAssemblerARM::CheckCharacterInRange(base::uc16 from,
base::uc16 to,
Label* on_in_range) {
__ sub(r0, current_character(), Operand(from));
__ cmp(r0, Operand(to - from));
BranchOrBacktrack(ls, on_in_range); // Unsigned lower-or-same condition.
}
void RegExpMacroAssemblerARM::CheckCharacterNotInRange(
uc16 from,
uc16 to,
Label* on_not_in_range) {
void RegExpMacroAssemblerARM::CheckCharacterNotInRange(base::uc16 from,
base::uc16 to,
Label* on_not_in_range) {
__ sub(r0, current_character(), Operand(from));
__ cmp(r0, Operand(to - from));
BranchOrBacktrack(hi, on_not_in_range); // Unsigned higher condition.
}
void RegExpMacroAssemblerARM::CheckBitInTable(
Handle<ByteArray> table,
Label* on_bit_set) {
@ -509,8 +499,7 @@ void RegExpMacroAssemblerARM::CheckBitInTable(
BranchOrBacktrack(ne, on_bit_set);
}
bool RegExpMacroAssemblerARM::CheckSpecialCharacterClass(uc16 type,
bool RegExpMacroAssemblerARM::CheckSpecialCharacterClass(base::uc16 type,
Label* on_no_match) {
// Range checks (c in min..max) are generally implemented by an unsigned
// (c - min) <= (max - min) check
@ -625,7 +614,6 @@ bool RegExpMacroAssemblerARM::CheckSpecialCharacterClass(uc16 type,
}
}
void RegExpMacroAssemblerARM::Fail() {
__ mov(r0, Operand(FAILURE));
__ jmp(&exit_label_);
@ -828,8 +816,7 @@ Handle<HeapObject> RegExpMacroAssemblerARM::GetCode(Handle<String> source) {
// Advance current position after a zero-length match.
Label advance;
__ bind(&advance);
__ add(current_input_offset(),
current_input_offset(),
__ add(current_input_offset(), current_input_offset(),
Operand((mode_ == UC16) ? 2 : 1));
if (global_unicode()) CheckNotInSurrogatePair(0, &advance);
}

View File

@ -5,6 +5,7 @@
#ifndef V8_REGEXP_ARM_REGEXP_MACRO_ASSEMBLER_ARM_H_
#define V8_REGEXP_ARM_REGEXP_MACRO_ASSEMBLER_ARM_H_
#include "src/base/strings.h"
#include "src/codegen/arm/assembler-arm.h"
#include "src/codegen/macro-assembler.h"
#include "src/regexp/regexp-macro-assembler.h"
@ -28,8 +29,8 @@ class V8_EXPORT_PRIVATE RegExpMacroAssemblerARM
virtual void CheckCharacterAfterAnd(unsigned c,
unsigned mask,
Label* on_equal);
virtual void CheckCharacterGT(uc16 limit, Label* on_greater);
virtual void CheckCharacterLT(uc16 limit, Label* on_less);
virtual void CheckCharacterGT(base::uc16 limit, Label* on_greater);
virtual void CheckCharacterLT(base::uc16 limit, Label* on_less);
// A "greedy loop" is a loop that is both greedy and with a simple
// body. It has a particularly simple implementation.
virtual void CheckGreedyLoop(Label* on_tos_equals_current_position);
@ -43,23 +44,19 @@ class V8_EXPORT_PRIVATE RegExpMacroAssemblerARM
virtual void CheckNotCharacterAfterAnd(unsigned c,
unsigned mask,
Label* on_not_equal);
virtual void CheckNotCharacterAfterMinusAnd(uc16 c,
uc16 minus,
uc16 mask,
virtual void CheckNotCharacterAfterMinusAnd(base::uc16 c, base::uc16 minus,
base::uc16 mask,
Label* on_not_equal);
virtual void CheckCharacterInRange(uc16 from,
uc16 to,
virtual void CheckCharacterInRange(base::uc16 from, base::uc16 to,
Label* on_in_range);
virtual void CheckCharacterNotInRange(uc16 from,
uc16 to,
virtual void CheckCharacterNotInRange(base::uc16 from, base::uc16 to,
Label* on_not_in_range);
virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set);
// Checks whether the given offset from the current position is before
// the end of the string.
virtual void CheckPosition(int cp_offset, Label* on_outside_input);
virtual bool CheckSpecialCharacterClass(uc16 type,
Label* on_no_match);
virtual bool CheckSpecialCharacterClass(base::uc16 type, Label* on_no_match);
virtual void Fail();
virtual Handle<HeapObject> GetCode(Handle<String> source);
virtual void GoTo(Label* label);

View File

@ -231,8 +231,7 @@ void RegExpMacroAssemblerARM64::CheckCharacter(uint32_t c, Label* on_equal) {
CompareAndBranchOrBacktrack(current_character(), c, eq, on_equal);
}
void RegExpMacroAssemblerARM64::CheckCharacterGT(uc16 limit,
void RegExpMacroAssemblerARM64::CheckCharacterGT(base::uc16 limit,
Label* on_greater) {
CompareAndBranchOrBacktrack(current_character(), limit, hi, on_greater);
}
@ -253,15 +252,14 @@ void RegExpMacroAssemblerARM64::CheckNotAtStart(int cp_offset,
BranchOrBacktrack(ne, on_not_at_start);
}
void RegExpMacroAssemblerARM64::CheckCharacterLT(uc16 limit, Label* on_less) {
void RegExpMacroAssemblerARM64::CheckCharacterLT(base::uc16 limit,
Label* on_less) {
CompareAndBranchOrBacktrack(current_character(), limit, lo, on_less);
}
void RegExpMacroAssemblerARM64::CheckCharacters(base::Vector<const uc16> str,
int cp_offset,
Label* on_failure,
bool check_end_of_string) {
void RegExpMacroAssemblerARM64::CheckCharacters(
base::Vector<const base::uc16> str, int cp_offset, Label* on_failure,
bool check_end_of_string) {
// This method is only ever called from the cctests.
if (check_end_of_string) {
@ -557,39 +555,29 @@ void RegExpMacroAssemblerARM64::CheckNotCharacterAfterAnd(unsigned c,
CompareAndBranchOrBacktrack(w10, c, ne, on_not_equal);
}
void RegExpMacroAssemblerARM64::CheckNotCharacterAfterMinusAnd(
uc16 c,
uc16 minus,
uc16 mask,
Label* on_not_equal) {
base::uc16 c, base::uc16 minus, base::uc16 mask, Label* on_not_equal) {
DCHECK_GT(String::kMaxUtf16CodeUnit, minus);
__ Sub(w10, current_character(), minus);
__ And(w10, w10, mask);
CompareAndBranchOrBacktrack(w10, c, ne, on_not_equal);
}
void RegExpMacroAssemblerARM64::CheckCharacterInRange(
uc16 from,
uc16 to,
Label* on_in_range) {
void RegExpMacroAssemblerARM64::CheckCharacterInRange(base::uc16 from,
base::uc16 to,
Label* on_in_range) {
__ Sub(w10, current_character(), from);
// Unsigned lower-or-same condition.
CompareAndBranchOrBacktrack(w10, to - from, ls, on_in_range);
}
void RegExpMacroAssemblerARM64::CheckCharacterNotInRange(
uc16 from,
uc16 to,
Label* on_not_in_range) {
base::uc16 from, base::uc16 to, Label* on_not_in_range) {
__ Sub(w10, current_character(), from);
// Unsigned higher condition.
CompareAndBranchOrBacktrack(w10, to - from, hi, on_not_in_range);
}
void RegExpMacroAssemblerARM64::CheckBitInTable(
Handle<ByteArray> table,
Label* on_bit_set) {
@ -604,8 +592,7 @@ void RegExpMacroAssemblerARM64::CheckBitInTable(
CompareAndBranchOrBacktrack(w11, 0, ne, on_bit_set);
}
bool RegExpMacroAssemblerARM64::CheckSpecialCharacterClass(uc16 type,
bool RegExpMacroAssemblerARM64::CheckSpecialCharacterClass(base::uc16 type,
Label* on_no_match) {
// Range checks (c in min..max) are generally implemented by an unsigned
// (c - min) <= (max - min) check
@ -708,7 +695,6 @@ bool RegExpMacroAssemblerARM64::CheckSpecialCharacterClass(uc16 type,
}
}
void RegExpMacroAssemblerARM64::Fail() {
__ Mov(w0, FAILURE);
__ B(&exit_label_);
@ -1016,8 +1002,7 @@ Handle<HeapObject> RegExpMacroAssemblerARM64::GetCode(Handle<String> source) {
// Advance current position after a zero-length match.
Label advance;
__ bind(&advance);
__ Add(current_input_offset(),
current_input_offset(),
__ Add(current_input_offset(), current_input_offset(),
Operand((mode_ == UC16) ? 2 : 1));
if (global_unicode()) CheckNotInSurrogatePair(0, &advance);
}

View File

@ -5,6 +5,7 @@
#ifndef V8_REGEXP_ARM64_REGEXP_MACRO_ASSEMBLER_ARM64_H_
#define V8_REGEXP_ARM64_REGEXP_MACRO_ASSEMBLER_ARM64_H_
#include "src/base/strings.h"
#include "src/codegen/arm64/assembler-arm64.h"
#include "src/codegen/macro-assembler.h"
#include "src/regexp/regexp-macro-assembler.h"
@ -29,10 +30,11 @@ class V8_EXPORT_PRIVATE RegExpMacroAssemblerARM64
virtual void CheckCharacterAfterAnd(unsigned c,
unsigned mask,
Label* on_equal);
virtual void CheckCharacterGT(uc16 limit, Label* on_greater);
virtual void CheckCharacterLT(uc16 limit, Label* on_less);
virtual void CheckCharacters(base::Vector<const uc16> str, int cp_offset,
Label* on_failure, bool check_end_of_string);
virtual void CheckCharacterGT(base::uc16 limit, Label* on_greater);
virtual void CheckCharacterLT(base::uc16 limit, Label* on_less);
virtual void CheckCharacters(base::Vector<const base::uc16> str,
int cp_offset, Label* on_failure,
bool check_end_of_string);
// A "greedy loop" is a loop that is both greedy and with a simple
// body. It has a particularly simple implementation.
virtual void CheckGreedyLoop(Label* on_tos_equals_current_position);
@ -46,23 +48,19 @@ class V8_EXPORT_PRIVATE RegExpMacroAssemblerARM64
virtual void CheckNotCharacterAfterAnd(unsigned c,
unsigned mask,
Label* on_not_equal);
virtual void CheckNotCharacterAfterMinusAnd(uc16 c,
uc16 minus,
uc16 mask,
virtual void CheckNotCharacterAfterMinusAnd(base::uc16 c, base::uc16 minus,
base::uc16 mask,
Label* on_not_equal);
virtual void CheckCharacterInRange(uc16 from,
uc16 to,
virtual void CheckCharacterInRange(base::uc16 from, base::uc16 to,
Label* on_in_range);
virtual void CheckCharacterNotInRange(uc16 from,
uc16 to,
virtual void CheckCharacterNotInRange(base::uc16 from, base::uc16 to,
Label* on_not_in_range);
virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set);
// Checks whether the given offset from the current position is before
// the end of the string.
virtual void CheckPosition(int cp_offset, Label* on_outside_input);
virtual bool CheckSpecialCharacterClass(uc16 type,
Label* on_no_match);
virtual bool CheckSpecialCharacterClass(base::uc16 type, Label* on_no_match);
virtual void BindJumpTarget(Label* label = nullptr);
virtual void Fail();
virtual Handle<HeapObject> GetCode(Handle<String> source);

View File

@ -11,7 +11,7 @@ namespace internal {
namespace {
std::ostream& PrintAsciiOrHex(std::ostream& os, uc16 c) {
std::ostream& PrintAsciiOrHex(std::ostream& os, base::uc16 c) {
if (c < 128 && std::isprint(c)) {
os << static_cast<char>(c);
} else {

View File

@ -7,6 +7,7 @@
#include <ios>
#include "src/base/strings.h"
#include "src/base/vector.h"
#include "src/regexp/regexp-ast.h"
@ -102,11 +103,11 @@ struct RegExpInstruction {
};
struct Uc16Range {
uc16 min; // Inclusive.
uc16 max; // Inclusive.
base::uc16 min; // Inclusive.
base::uc16 max; // Inclusive.
};
static RegExpInstruction ConsumeRange(uc16 min, uc16 max) {
static RegExpInstruction ConsumeRange(base::uc16 min, base::uc16 max) {
RegExpInstruction result;
result.opcode = CONSUME_RANGE;
result.payload.consume_range = Uc16Range{min, max};

View File

@ -4,6 +4,7 @@
#include "src/regexp/experimental/experimental-compiler.h"
#include "src/base/strings.h"
#include "src/regexp/experimental/experimental.h"
#include "src/zone/zone-list-inl.h"
@ -14,7 +15,7 @@ namespace {
// TODO(mbid, v8:10765): Currently the experimental engine doesn't support
// UTF-16, but this shouldn't be too hard to implement.
constexpr uc32 kMaxSupportedCodepoint = 0xFFFFu;
constexpr base::uc32 kMaxSupportedCodepoint = 0xFFFFu;
class CanBeHandledVisitor final : private RegExpVisitor {
// Visitor to implement `ExperimentalRegExp::CanBeHandled`.
@ -229,7 +230,7 @@ class BytecodeAssembler {
code_.Add(RegExpInstruction::ClearRegister(register_index), zone_);
}
void ConsumeRange(uc16 from, uc16 to) {
void ConsumeRange(base::uc16 from, base::uc16 to) {
code_.Add(RegExpInstruction::ConsumeRange(from, to), zone_);
}
@ -402,16 +403,18 @@ class CompileVisitor : private RegExpVisitor {
CompileDisjunction(ranges->length(), [&](int i) {
// We don't support utf16 for now, so only ranges that can be specified
// by (complements of) ranges with uc16 bounds.
STATIC_ASSERT(kMaxSupportedCodepoint <= std::numeric_limits<uc16>::max());
// by (complements of) ranges with base::uc16 bounds.
STATIC_ASSERT(kMaxSupportedCodepoint <=
std::numeric_limits<base::uc16>::max());
uc32 from = (*ranges)[i].from();
base::uc32 from = (*ranges)[i].from();
DCHECK_LE(from, kMaxSupportedCodepoint);
uc16 from_uc16 = static_cast<uc16>(from);
base::uc16 from_uc16 = static_cast<base::uc16>(from);
uc32 to = (*ranges)[i].to();
base::uc32 to = (*ranges)[i].to();
DCHECK_IMPLIES(to > kMaxSupportedCodepoint, to == String::kMaxCodePoint);
uc16 to_uc16 = static_cast<uc16>(std::min(to, kMaxSupportedCodepoint));
base::uc16 to_uc16 =
static_cast<base::uc16>(std::min(to, kMaxSupportedCodepoint));
assembler_.ConsumeRange(from_uc16, to_uc16);
});
@ -419,7 +422,7 @@ class CompileVisitor : private RegExpVisitor {
}
void* VisitAtom(RegExpAtom* node, void*) override {
for (uc16 c : node->data()) {
for (base::uc16 c : node->data()) {
assembler_.ConsumeRange(c, c);
}
return nullptr;

View File

@ -5,6 +5,7 @@
#include "src/regexp/experimental/experimental-interpreter.h"
#include "src/base/optional.h"
#include "src/base/strings.h"
#include "src/common/assert-scope.h"
#include "src/objects/fixed-array-inl.h"
#include "src/objects/string-inl.h"
@ -76,7 +77,7 @@ base::Vector<const uint8_t> ToCharacterVector<uint8_t>(
}
template <>
base::Vector<const uc16> ToCharacterVector<uc16>(
base::Vector<const base::uc16> ToCharacterVector<base::uc16>(
String str, const DisallowGarbageCollection& no_gc) {
DCHECK(str.IsFlat());
String::FlatContent content = str.GetFlatContent(no_gc);
@ -87,8 +88,8 @@ base::Vector<const uc16> ToCharacterVector<uc16>(
template <class Character>
class NfaInterpreter {
// Executes a bytecode program in breadth-first mode, without backtracking.
// `Character` can be instantiated with `uint8_t` or `uc16` for one byte or
// two byte input strings.
// `Character` can be instantiated with `uint8_t` or `base::uc16` for one byte
// or two byte input strings.
//
// In contrast to the backtracking implementation, this has linear time
// complexity in the length of the input string. Breadth-first mode means
@ -343,7 +344,7 @@ class NfaInterpreter {
while (input_index_ != input_.length() &&
!(FoundMatch() && blocked_threads_.is_empty())) {
DCHECK(active_threads_.is_empty());
uc16 input_char = input_[input_index_];
base::uc16 input_char = input_[input_index_];
++input_index_;
static constexpr int kTicksBetweenInterruptHandling = 64;
@ -439,7 +440,7 @@ class NfaInterpreter {
// Unblock all blocked_threads_ by feeding them an `input_char`. Should only
// be called with `input_index_` pointing to the character *after*
// `input_char` so that `pc_last_input_index_` is updated correctly.
void FlushBlockedThreads(uc16 input_char) {
void FlushBlockedThreads(base::uc16 input_char) {
// The threads in blocked_threads_ are sorted from high to low priority,
// but active_threads_ needs to be sorted from low to high priority, so we
// need to activate blocked threads in reverse order.
@ -568,9 +569,9 @@ int ExperimentalRegExpInterpreter::FindMatches(
return interpreter.FindMatches(output_registers, output_register_count);
} else {
DCHECK(input.GetFlatContent(no_gc).IsTwoByte());
NfaInterpreter<uc16> interpreter(isolate, call_origin, bytecode,
register_count_per_match, input,
start_index, zone);
NfaInterpreter<base::uc16> interpreter(isolate, call_origin, bytecode,
register_count_per_match, input,
start_index, zone);
return interpreter.FindMatches(output_registers, output_register_count);
}
}

View File

@ -7,14 +7,15 @@
#include <iostream>
#include <sstream>
#include "src/base/strings.h"
#include "src/regexp/special-case.h"
namespace v8 {
namespace internal {
static const uc32 kSurrogateStart = 0xd800;
static const uc32 kSurrogateEnd = 0xdfff;
static const uc32 kNonBmpStart = 0x10000;
static const base::uc32 kSurrogateStart = 0xd800;
static const base::uc32 kSurrogateEnd = 0xdfff;
static const base::uc32 kNonBmpStart = 0x10000;
// The following code generates "src/regexp/special-case.cc".
void PrintSet(std::ofstream& out, const char* name,

View File

@ -176,8 +176,8 @@ void RegExpMacroAssemblerIA32::CheckCharacter(uint32_t c, Label* on_equal) {
BranchOrBacktrack(equal, on_equal);
}
void RegExpMacroAssemblerIA32::CheckCharacterGT(uc16 limit, Label* on_greater) {
void RegExpMacroAssemblerIA32::CheckCharacterGT(base::uc16 limit,
Label* on_greater) {
__ cmp(current_character(), limit);
BranchOrBacktrack(greater, on_greater);
}
@ -195,13 +195,12 @@ void RegExpMacroAssemblerIA32::CheckNotAtStart(int cp_offset,
BranchOrBacktrack(not_equal, on_not_at_start);
}
void RegExpMacroAssemblerIA32::CheckCharacterLT(uc16 limit, Label* on_less) {
void RegExpMacroAssemblerIA32::CheckCharacterLT(base::uc16 limit,
Label* on_less) {
__ cmp(current_character(), limit);
BranchOrBacktrack(less, on_less);
}
void RegExpMacroAssemblerIA32::CheckGreedyLoop(Label* on_equal) {
Label fallthrough;
__ cmp(edi, Operand(backtrack_stackpointer(), 0));
@ -481,12 +480,8 @@ void RegExpMacroAssemblerIA32::CheckNotCharacterAfterAnd(uint32_t c,
BranchOrBacktrack(not_equal, on_not_equal);
}
void RegExpMacroAssemblerIA32::CheckNotCharacterAfterMinusAnd(
uc16 c,
uc16 minus,
uc16 mask,
Label* on_not_equal) {
base::uc16 c, base::uc16 minus, base::uc16 mask, Label* on_not_equal) {
DCHECK_GT(String::kMaxUtf16CodeUnit, minus);
__ lea(eax, Operand(current_character(), -minus));
if (c == 0) {
@ -498,27 +493,21 @@ void RegExpMacroAssemblerIA32::CheckNotCharacterAfterMinusAnd(
BranchOrBacktrack(not_equal, on_not_equal);
}
void RegExpMacroAssemblerIA32::CheckCharacterInRange(
uc16 from,
uc16 to,
Label* on_in_range) {
void RegExpMacroAssemblerIA32::CheckCharacterInRange(base::uc16 from,
base::uc16 to,
Label* on_in_range) {
__ lea(eax, Operand(current_character(), -from));
__ cmp(eax, to - from);
BranchOrBacktrack(below_equal, on_in_range);
}
void RegExpMacroAssemblerIA32::CheckCharacterNotInRange(
uc16 from,
uc16 to,
Label* on_not_in_range) {
base::uc16 from, base::uc16 to, Label* on_not_in_range) {
__ lea(eax, Operand(current_character(), -from));
__ cmp(eax, to - from);
BranchOrBacktrack(above, on_not_in_range);
}
void RegExpMacroAssemblerIA32::CheckBitInTable(
Handle<ByteArray> table,
Label* on_bit_set) {
@ -534,8 +523,7 @@ void RegExpMacroAssemblerIA32::CheckBitInTable(
BranchOrBacktrack(not_equal, on_bit_set);
}
bool RegExpMacroAssemblerIA32::CheckSpecialCharacterClass(uc16 type,
bool RegExpMacroAssemblerIA32::CheckSpecialCharacterClass(base::uc16 type,
Label* on_no_match) {
// Range checks (c in min..max) are generally implemented by an unsigned
// (c - min) <= (max - min) check
@ -659,7 +647,6 @@ bool RegExpMacroAssemblerIA32::CheckSpecialCharacterClass(uc16 type,
}
}
void RegExpMacroAssemblerIA32::Fail() {
STATIC_ASSERT(FAILURE == 0); // Return value for failure is zero.
if (!global()) {
@ -1263,11 +1250,11 @@ void RegExpMacroAssemblerIA32::LoadCurrentCharacterUnchecked(int cp_offset,
DCHECK(mode_ == UC16);
if (characters == 2) {
__ mov(current_character(),
Operand(esi, edi, times_1, cp_offset * sizeof(uc16)));
Operand(esi, edi, times_1, cp_offset * sizeof(base::uc16)));
} else {
DCHECK_EQ(1, characters);
__ movzx_w(current_character(),
Operand(esi, edi, times_1, cp_offset * sizeof(uc16)));
Operand(esi, edi, times_1, cp_offset * sizeof(base::uc16)));
}
}
}

View File

@ -5,6 +5,7 @@
#ifndef V8_REGEXP_IA32_REGEXP_MACRO_ASSEMBLER_IA32_H_
#define V8_REGEXP_IA32_REGEXP_MACRO_ASSEMBLER_IA32_H_
#include "src/base/strings.h"
#include "src/codegen/ia32/assembler-ia32.h"
#include "src/codegen/macro-assembler.h"
#include "src/regexp/regexp-macro-assembler.h"
@ -28,8 +29,8 @@ class V8_EXPORT_PRIVATE RegExpMacroAssemblerIA32
virtual void CheckCharacterAfterAnd(uint32_t c,
uint32_t mask,
Label* on_equal);
virtual void CheckCharacterGT(uc16 limit, Label* on_greater);
virtual void CheckCharacterLT(uc16 limit, Label* on_less);
virtual void CheckCharacterGT(base::uc16 limit, Label* on_greater);
virtual void CheckCharacterLT(base::uc16 limit, Label* on_less);
// A "greedy loop" is a loop that is both greedy and with a simple
// body. It has a particularly simple implementation.
virtual void CheckGreedyLoop(Label* on_tos_equals_current_position);
@ -43,22 +44,19 @@ class V8_EXPORT_PRIVATE RegExpMacroAssemblerIA32
virtual void CheckNotCharacterAfterAnd(uint32_t c,
uint32_t mask,
Label* on_not_equal);
virtual void CheckNotCharacterAfterMinusAnd(uc16 c,
uc16 minus,
uc16 mask,
virtual void CheckNotCharacterAfterMinusAnd(base::uc16 c, base::uc16 minus,
base::uc16 mask,
Label* on_not_equal);
virtual void CheckCharacterInRange(uc16 from,
uc16 to,
virtual void CheckCharacterInRange(base::uc16 from, base::uc16 to,
Label* on_in_range);
virtual void CheckCharacterNotInRange(uc16 from,
uc16 to,
virtual void CheckCharacterNotInRange(base::uc16 from, base::uc16 to,
Label* on_not_in_range);
virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set);
// Checks whether the given offset from the current position is before
// the end of the string.
virtual void CheckPosition(int cp_offset, Label* on_outside_input);
virtual bool CheckSpecialCharacterClass(uc16 type, Label* on_no_match);
virtual bool CheckSpecialCharacterClass(base::uc16 type, Label* on_no_match);
virtual void Fail();
virtual Handle<HeapObject> GetCode(Handle<String> source);
virtual void GoTo(Label* label);

View File

@ -192,12 +192,11 @@ void RegExpMacroAssemblerMIPS::CheckCharacter(uint32_t c, Label* on_equal) {
BranchOrBacktrack(on_equal, eq, current_character(), Operand(c));
}
void RegExpMacroAssemblerMIPS::CheckCharacterGT(uc16 limit, Label* on_greater) {
void RegExpMacroAssemblerMIPS::CheckCharacterGT(base::uc16 limit,
Label* on_greater) {
BranchOrBacktrack(on_greater, gt, current_character(), Operand(limit));
}
void RegExpMacroAssemblerMIPS::CheckAtStart(int cp_offset, Label* on_at_start) {
__ lw(a1, MemOperand(frame_pointer(), kStringStartMinusOne));
__ Addu(a0, current_input_offset(),
@ -214,12 +213,11 @@ void RegExpMacroAssemblerMIPS::CheckNotAtStart(int cp_offset,
BranchOrBacktrack(on_not_at_start, ne, a0, Operand(a1));
}
void RegExpMacroAssemblerMIPS::CheckCharacterLT(uc16 limit, Label* on_less) {
void RegExpMacroAssemblerMIPS::CheckCharacterLT(base::uc16 limit,
Label* on_less) {
BranchOrBacktrack(on_less, lt, current_character(), Operand(limit));
}
void RegExpMacroAssemblerMIPS::CheckGreedyLoop(Label* on_equal) {
Label backtrack_non_equal;
__ lw(a0, MemOperand(backtrack_stackpointer(), 0));
@ -462,39 +460,29 @@ void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterAnd(uint32_t c,
BranchOrBacktrack(on_not_equal, ne, a0, rhs);
}
void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterMinusAnd(
uc16 c,
uc16 minus,
uc16 mask,
Label* on_not_equal) {
base::uc16 c, base::uc16 minus, base::uc16 mask, Label* on_not_equal) {
DCHECK_GT(String::kMaxUtf16CodeUnit, minus);
__ Subu(a0, current_character(), Operand(minus));
__ And(a0, a0, Operand(mask));
BranchOrBacktrack(on_not_equal, ne, a0, Operand(c));
}
void RegExpMacroAssemblerMIPS::CheckCharacterInRange(
uc16 from,
uc16 to,
Label* on_in_range) {
void RegExpMacroAssemblerMIPS::CheckCharacterInRange(base::uc16 from,
base::uc16 to,
Label* on_in_range) {
__ Subu(a0, current_character(), Operand(from));
// Unsigned lower-or-same condition.
BranchOrBacktrack(on_in_range, ls, a0, Operand(to - from));
}
void RegExpMacroAssemblerMIPS::CheckCharacterNotInRange(
uc16 from,
uc16 to,
Label* on_not_in_range) {
base::uc16 from, base::uc16 to, Label* on_not_in_range) {
__ Subu(a0, current_character(), Operand(from));
// Unsigned higher condition.
BranchOrBacktrack(on_not_in_range, hi, a0, Operand(to - from));
}
void RegExpMacroAssemblerMIPS::CheckBitInTable(
Handle<ByteArray> table,
Label* on_bit_set) {
@ -510,8 +498,7 @@ void RegExpMacroAssemblerMIPS::CheckBitInTable(
BranchOrBacktrack(on_bit_set, ne, a0, Operand(zero_reg));
}
bool RegExpMacroAssemblerMIPS::CheckSpecialCharacterClass(uc16 type,
bool RegExpMacroAssemblerMIPS::CheckSpecialCharacterClass(base::uc16 type,
Label* on_no_match) {
// Range checks (c in min..max) are generally implemented by an unsigned
// (c - min) <= (max - min) check.
@ -615,7 +602,6 @@ bool RegExpMacroAssemblerMIPS::CheckSpecialCharacterClass(uc16 type,
}
}
void RegExpMacroAssemblerMIPS::Fail() {
__ li(v0, Operand(FAILURE));
__ jmp(&exit_label_);
@ -827,8 +813,7 @@ Handle<HeapObject> RegExpMacroAssemblerMIPS::GetCode(Handle<String> source) {
// Advance current position after a zero-length match.
Label advance;
__ bind(&advance);
__ Addu(current_input_offset(),
current_input_offset(),
__ Addu(current_input_offset(), current_input_offset(),
Operand((mode_ == UC16) ? 2 : 1));
if (global_unicode()) CheckNotInSurrogatePair(0, &advance);
}

View File

@ -5,6 +5,7 @@
#ifndef V8_REGEXP_MIPS_REGEXP_MACRO_ASSEMBLER_MIPS_H_
#define V8_REGEXP_MIPS_REGEXP_MACRO_ASSEMBLER_MIPS_H_
#include "src/base/strings.h"
#include "src/codegen/macro-assembler.h"
#include "src/codegen/mips/assembler-mips.h"
#include "src/regexp/regexp-macro-assembler.h"
@ -28,8 +29,8 @@ class V8_EXPORT_PRIVATE RegExpMacroAssemblerMIPS
virtual void CheckCharacterAfterAnd(uint32_t c,
uint32_t mask,
Label* on_equal);
virtual void CheckCharacterGT(uc16 limit, Label* on_greater);
virtual void CheckCharacterLT(uc16 limit, Label* on_less);
virtual void CheckCharacterGT(base::uc16 limit, Label* on_greater);
virtual void CheckCharacterLT(base::uc16 limit, Label* on_less);
// A "greedy loop" is a loop that is both greedy and with a simple
// body. It has a particularly simple implementation.
virtual void CheckGreedyLoop(Label* on_tos_equals_current_position);
@ -43,23 +44,19 @@ class V8_EXPORT_PRIVATE RegExpMacroAssemblerMIPS
virtual void CheckNotCharacterAfterAnd(uint32_t c,
uint32_t mask,
Label* on_not_equal);
virtual void CheckNotCharacterAfterMinusAnd(uc16 c,
uc16 minus,
uc16 mask,
virtual void CheckNotCharacterAfterMinusAnd(base::uc16 c, base::uc16 minus,
base::uc16 mask,
Label* on_not_equal);
virtual void CheckCharacterInRange(uc16 from,
uc16 to,
virtual void CheckCharacterInRange(base::uc16 from, base::uc16 to,
Label* on_in_range);
virtual void CheckCharacterNotInRange(uc16 from,
uc16 to,
virtual void CheckCharacterNotInRange(base::uc16 from, base::uc16 to,
Label* on_not_in_range);
virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set);
// Checks whether the given offset from the current position is before
// the end of the string.
virtual void CheckPosition(int cp_offset, Label* on_outside_input);
virtual bool CheckSpecialCharacterClass(uc16 type,
Label* on_no_match);
virtual bool CheckSpecialCharacterClass(base::uc16 type, Label* on_no_match);
virtual void Fail();
virtual Handle<HeapObject> GetCode(Handle<String> source);
virtual void GoTo(Label* label);

View File

@ -228,12 +228,11 @@ void RegExpMacroAssemblerMIPS::CheckCharacter(uint32_t c, Label* on_equal) {
BranchOrBacktrack(on_equal, eq, current_character(), Operand(c));
}
void RegExpMacroAssemblerMIPS::CheckCharacterGT(uc16 limit, Label* on_greater) {
void RegExpMacroAssemblerMIPS::CheckCharacterGT(base::uc16 limit,
Label* on_greater) {
BranchOrBacktrack(on_greater, gt, current_character(), Operand(limit));
}
void RegExpMacroAssemblerMIPS::CheckAtStart(int cp_offset, Label* on_at_start) {
__ Ld(a1, MemOperand(frame_pointer(), kStringStartMinusOne));
__ Daddu(a0, current_input_offset(),
@ -250,12 +249,11 @@ void RegExpMacroAssemblerMIPS::CheckNotAtStart(int cp_offset,
BranchOrBacktrack(on_not_at_start, ne, a0, Operand(a1));
}
void RegExpMacroAssemblerMIPS::CheckCharacterLT(uc16 limit, Label* on_less) {
void RegExpMacroAssemblerMIPS::CheckCharacterLT(base::uc16 limit,
Label* on_less) {
BranchOrBacktrack(on_less, lt, current_character(), Operand(limit));
}
void RegExpMacroAssemblerMIPS::CheckGreedyLoop(Label* on_equal) {
Label backtrack_non_equal;
__ Lw(a0, MemOperand(backtrack_stackpointer(), 0));
@ -492,39 +490,29 @@ void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterAnd(uint32_t c,
BranchOrBacktrack(on_not_equal, ne, a0, rhs);
}
void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterMinusAnd(
uc16 c,
uc16 minus,
uc16 mask,
Label* on_not_equal) {
base::uc16 c, base::uc16 minus, base::uc16 mask, Label* on_not_equal) {
DCHECK_GT(String::kMaxUtf16CodeUnit, minus);
__ Dsubu(a0, current_character(), Operand(minus));
__ And(a0, a0, Operand(mask));
BranchOrBacktrack(on_not_equal, ne, a0, Operand(c));
}
void RegExpMacroAssemblerMIPS::CheckCharacterInRange(
uc16 from,
uc16 to,
Label* on_in_range) {
void RegExpMacroAssemblerMIPS::CheckCharacterInRange(base::uc16 from,
base::uc16 to,
Label* on_in_range) {
__ Dsubu(a0, current_character(), Operand(from));
// Unsigned lower-or-same condition.
BranchOrBacktrack(on_in_range, ls, a0, Operand(to - from));
}
void RegExpMacroAssemblerMIPS::CheckCharacterNotInRange(
uc16 from,
uc16 to,
Label* on_not_in_range) {
base::uc16 from, base::uc16 to, Label* on_not_in_range) {
__ Dsubu(a0, current_character(), Operand(from));
// Unsigned higher condition.
BranchOrBacktrack(on_not_in_range, hi, a0, Operand(to - from));
}
void RegExpMacroAssemblerMIPS::CheckBitInTable(
Handle<ByteArray> table,
Label* on_bit_set) {
@ -540,8 +528,7 @@ void RegExpMacroAssemblerMIPS::CheckBitInTable(
BranchOrBacktrack(on_bit_set, ne, a0, Operand(zero_reg));
}
bool RegExpMacroAssemblerMIPS::CheckSpecialCharacterClass(uc16 type,
bool RegExpMacroAssemblerMIPS::CheckSpecialCharacterClass(base::uc16 type,
Label* on_no_match) {
// Range checks (c in min..max) are generally implemented by an unsigned
// (c - min) <= (max - min) check.
@ -645,7 +632,6 @@ bool RegExpMacroAssemblerMIPS::CheckSpecialCharacterClass(uc16 type,
}
}
void RegExpMacroAssemblerMIPS::Fail() {
__ li(v0, Operand(FAILURE));
__ jmp(&exit_label_);
@ -863,9 +849,8 @@ Handle<HeapObject> RegExpMacroAssemblerMIPS::GetCode(Handle<String> source) {
// Advance current position after a zero-length match.
Label advance;
__ bind(&advance);
__ Daddu(current_input_offset(),
current_input_offset(),
Operand((mode_ == UC16) ? 2 : 1));
__ Daddu(current_input_offset(), current_input_offset(),
Operand((mode_ == UC16) ? 2 : 1));
if (global_unicode()) CheckNotInSurrogatePair(0, &advance);
}

View File

@ -5,6 +5,7 @@
#ifndef V8_REGEXP_MIPS64_REGEXP_MACRO_ASSEMBLER_MIPS64_H_
#define V8_REGEXP_MIPS64_REGEXP_MACRO_ASSEMBLER_MIPS64_H_
#include "src/base/strings.h"
#include "src/codegen/macro-assembler.h"
#include "src/codegen/mips64/assembler-mips64.h"
#include "src/regexp/regexp-macro-assembler.h"
@ -28,8 +29,8 @@ class V8_EXPORT_PRIVATE RegExpMacroAssemblerMIPS
virtual void CheckCharacterAfterAnd(uint32_t c,
uint32_t mask,
Label* on_equal);
virtual void CheckCharacterGT(uc16 limit, Label* on_greater);
virtual void CheckCharacterLT(uc16 limit, Label* on_less);
virtual void CheckCharacterGT(base::uc16 limit, Label* on_greater);
virtual void CheckCharacterLT(base::uc16 limit, Label* on_less);
// A "greedy loop" is a loop that is both greedy and with a simple
// body. It has a particularly simple implementation.
virtual void CheckGreedyLoop(Label* on_tos_equals_current_position);
@ -43,23 +44,19 @@ class V8_EXPORT_PRIVATE RegExpMacroAssemblerMIPS
virtual void CheckNotCharacterAfterAnd(uint32_t c,
uint32_t mask,
Label* on_not_equal);
virtual void CheckNotCharacterAfterMinusAnd(uc16 c,
uc16 minus,
uc16 mask,
virtual void CheckNotCharacterAfterMinusAnd(base::uc16 c, base::uc16 minus,
base::uc16 mask,
Label* on_not_equal);
virtual void CheckCharacterInRange(uc16 from,
uc16 to,
virtual void CheckCharacterInRange(base::uc16 from, base::uc16 to,
Label* on_in_range);
virtual void CheckCharacterNotInRange(uc16 from,
uc16 to,
virtual void CheckCharacterNotInRange(base::uc16 from, base::uc16 to,
Label* on_not_in_range);
virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set);
// Checks whether the given offset from the current position is before
// the end of the string.
virtual void CheckPosition(int cp_offset, Label* on_outside_input);
virtual bool CheckSpecialCharacterClass(uc16 type,
Label* on_no_match);
virtual bool CheckSpecialCharacterClass(base::uc16 type, Label* on_no_match);
virtual void Fail();
virtual Handle<HeapObject> GetCode(Handle<String> source);
virtual void GoTo(Label* label);

View File

@ -206,8 +206,8 @@ void RegExpMacroAssemblerPPC::CheckCharacter(uint32_t c, Label* on_equal) {
BranchOrBacktrack(eq, on_equal);
}
void RegExpMacroAssemblerPPC::CheckCharacterGT(uc16 limit, Label* on_greater) {
void RegExpMacroAssemblerPPC::CheckCharacterGT(base::uc16 limit,
Label* on_greater) {
__ Cmpli(current_character(), Operand(limit), r0);
BranchOrBacktrack(gt, on_greater);
}
@ -229,13 +229,12 @@ void RegExpMacroAssemblerPPC::CheckNotAtStart(int cp_offset,
BranchOrBacktrack(ne, on_not_at_start);
}
void RegExpMacroAssemblerPPC::CheckCharacterLT(uc16 limit, Label* on_less) {
void RegExpMacroAssemblerPPC::CheckCharacterLT(base::uc16 limit,
Label* on_less) {
__ Cmpli(current_character(), Operand(limit), r0);
BranchOrBacktrack(lt, on_less);
}
void RegExpMacroAssemblerPPC::CheckGreedyLoop(Label* on_equal) {
Label backtrack_non_equal;
__ LoadU64(r3, MemOperand(backtrack_stackpointer(), 0));
@ -488,9 +487,8 @@ void RegExpMacroAssemblerPPC::CheckNotCharacterAfterAnd(unsigned c,
BranchOrBacktrack(ne, on_not_equal, cr0);
}
void RegExpMacroAssemblerPPC::CheckNotCharacterAfterMinusAnd(
uc16 c, uc16 minus, uc16 mask, Label* on_not_equal) {
base::uc16 c, base::uc16 minus, base::uc16 mask, Label* on_not_equal) {
DCHECK_GT(String::kMaxUtf16CodeUnit, minus);
__ subi(r3, current_character(), Operand(minus));
__ mov(r0, Operand(mask));
@ -499,8 +497,8 @@ void RegExpMacroAssemblerPPC::CheckNotCharacterAfterMinusAnd(
BranchOrBacktrack(ne, on_not_equal);
}
void RegExpMacroAssemblerPPC::CheckCharacterInRange(uc16 from, uc16 to,
void RegExpMacroAssemblerPPC::CheckCharacterInRange(base::uc16 from,
base::uc16 to,
Label* on_in_range) {
__ mov(r0, Operand(from));
__ sub(r3, current_character(), r0);
@ -508,8 +506,8 @@ void RegExpMacroAssemblerPPC::CheckCharacterInRange(uc16 from, uc16 to,
BranchOrBacktrack(le, on_in_range); // Unsigned lower-or-same condition.
}
void RegExpMacroAssemblerPPC::CheckCharacterNotInRange(uc16 from, uc16 to,
void RegExpMacroAssemblerPPC::CheckCharacterNotInRange(base::uc16 from,
base::uc16 to,
Label* on_not_in_range) {
__ mov(r0, Operand(from));
__ sub(r3, current_character(), r0);
@ -517,7 +515,6 @@ void RegExpMacroAssemblerPPC::CheckCharacterNotInRange(uc16 from, uc16 to,
BranchOrBacktrack(gt, on_not_in_range); // Unsigned higher condition.
}
void RegExpMacroAssemblerPPC::CheckBitInTable(Handle<ByteArray> table,
Label* on_bit_set) {
__ mov(r3, Operand(table));
@ -533,8 +530,7 @@ void RegExpMacroAssemblerPPC::CheckBitInTable(Handle<ByteArray> table,
BranchOrBacktrack(ne, on_bit_set);
}
bool RegExpMacroAssemblerPPC::CheckSpecialCharacterClass(uc16 type,
bool RegExpMacroAssemblerPPC::CheckSpecialCharacterClass(base::uc16 type,
Label* on_no_match) {
// Range checks (c in min..max) are generally implemented by an unsigned
// (c - min) <= (max - min) check
@ -651,7 +647,6 @@ bool RegExpMacroAssemblerPPC::CheckSpecialCharacterClass(uc16 type,
}
}
void RegExpMacroAssemblerPPC::Fail() {
__ li(r3, Operand(FAILURE));
__ b(&exit_label_);

View File

@ -5,6 +5,7 @@
#ifndef V8_REGEXP_PPC_REGEXP_MACRO_ASSEMBLER_PPC_H_
#define V8_REGEXP_PPC_REGEXP_MACRO_ASSEMBLER_PPC_H_
#include "src/base/strings.h"
#include "src/codegen/macro-assembler.h"
#include "src/codegen/ppc/assembler-ppc.h"
#include "src/regexp/regexp-macro-assembler.h"
@ -27,8 +28,8 @@ class V8_EXPORT_PRIVATE RegExpMacroAssemblerPPC
virtual void CheckCharacter(unsigned c, Label* on_equal);
virtual void CheckCharacterAfterAnd(unsigned c, unsigned mask,
Label* on_equal);
virtual void CheckCharacterGT(uc16 limit, Label* on_greater);
virtual void CheckCharacterLT(uc16 limit, Label* on_less);
virtual void CheckCharacterGT(base::uc16 limit, Label* on_greater);
virtual void CheckCharacterLT(base::uc16 limit, Label* on_less);
// A "greedy loop" is a loop that is both greedy and with a simple
// body. It has a particularly simple implementation.
virtual void CheckGreedyLoop(Label* on_tos_equals_current_position);
@ -41,17 +42,19 @@ class V8_EXPORT_PRIVATE RegExpMacroAssemblerPPC
virtual void CheckNotCharacter(unsigned c, Label* on_not_equal);
virtual void CheckNotCharacterAfterAnd(unsigned c, unsigned mask,
Label* on_not_equal);
virtual void CheckNotCharacterAfterMinusAnd(uc16 c, uc16 minus, uc16 mask,
virtual void CheckNotCharacterAfterMinusAnd(base::uc16 c, base::uc16 minus,
base::uc16 mask,
Label* on_not_equal);
virtual void CheckCharacterInRange(uc16 from, uc16 to, Label* on_in_range);
virtual void CheckCharacterNotInRange(uc16 from, uc16 to,
virtual void CheckCharacterInRange(base::uc16 from, base::uc16 to,
Label* on_in_range);
virtual void CheckCharacterNotInRange(base::uc16 from, base::uc16 to,
Label* on_not_in_range);
virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set);
// Checks whether the given offset from the current position is before
// the end of the string.
virtual void CheckPosition(int cp_offset, Label* on_outside_input);
virtual bool CheckSpecialCharacterClass(uc16 type, Label* on_no_match);
virtual bool CheckSpecialCharacterClass(base::uc16 type, Label* on_no_match);
virtual void Fail();
virtual Handle<HeapObject> GetCode(Handle<String> source);
virtual void GoTo(Label* label);

View File

@ -42,7 +42,7 @@ const generateData = (property) => {
buffer.push(' ' + codePoints.join(', ') + ', 0,');
}
const output =
`const uc32 UnicodePropertySequences::k${ id }[] = {\n` +
`const base::uc32 UnicodePropertySequences::k${ id }[] = {\n` +
`${ buffer.join('\n') }\n 0 // null-terminating the list\n};\n`;
return output;
};
@ -60,7 +60,7 @@ for (const property of properties) {
*/
// clang-format off
const uc32 UnicodePropertySequences::kEmojiFlagSequences[] = {
const base::uc32 UnicodePropertySequences::kEmojiFlagSequences[] = {
0x01F1E6, 0x01F1E8, 0,
0x01F1FF, 0x01F1FC, 0,
0x01F1E6, 0x01F1EA, 0,
@ -322,14 +322,14 @@ const uc32 UnicodePropertySequences::kEmojiFlagSequences[] = {
0 // null-terminating the list
};
const uc32 UnicodePropertySequences::kEmojiTagSequences[] = {
const base::uc32 UnicodePropertySequences::kEmojiTagSequences[] = {
0x01F3F4, 0x0E0067, 0x0E0062, 0x0E0065, 0x0E006E, 0x0E0067, 0x0E007F, 0,
0x01F3F4, 0x0E0067, 0x0E0062, 0x0E0073, 0x0E0063, 0x0E0074, 0x0E007F, 0,
0x01F3F4, 0x0E0067, 0x0E0062, 0x0E0077, 0x0E006C, 0x0E0073, 0x0E007F, 0,
0 // null-terminating the list
};
const uc32 UnicodePropertySequences::kEmojiZWJSequences[] = {
const base::uc32 UnicodePropertySequences::kEmojiZWJSequences[] = {
0x01F468, 0x00200D, 0x002764, 0x00FE0F, 0x00200D, 0x01F468, 0,
0x01F441, 0x00FE0F, 0x00200D, 0x01F5E8, 0x00FE0F, 0,
0x01F468, 0x00200D, 0x01F466, 0,

View File

@ -7,6 +7,7 @@
#ifdef V8_INTL_SUPPORT
#include "src/base/strings.h"
#include "src/common/globals.h"
namespace v8 {
@ -14,9 +15,9 @@ namespace internal {
class UnicodePropertySequences : public AllStatic {
public:
static const uc32 kEmojiFlagSequences[];
static const uc32 kEmojiTagSequences[];
static const uc32 kEmojiZWJSequences[];
static const base::uc32 kEmojiFlagSequences[];
static const base::uc32 kEmojiTagSequences[];
static const base::uc32 kEmojiZWJSequences[];
};
} // namespace internal

View File

@ -219,7 +219,7 @@ void* RegExpUnparser::VisitAssertion(RegExpAssertion* that, void* data) {
void* RegExpUnparser::VisitAtom(RegExpAtom* that, void* data) {
os_ << "'";
base::Vector<const uc16> chardata = that->data();
base::Vector<const base::uc16> chardata = that->data();
for (int i = 0; i < chardata.length(); i++) {
os_ << AsUC16(chardata[i]);
}

View File

@ -5,6 +5,7 @@
#ifndef V8_REGEXP_REGEXP_AST_H_
#define V8_REGEXP_REGEXP_AST_H_
#include "src/base/strings.h"
#include "src/objects/js-regexp.h"
#include "src/objects/objects.h"
#include "src/objects/string.h"
@ -92,10 +93,10 @@ class CharacterRange {
char type, ZoneList<CharacterRange>* ranges,
bool add_unicode_case_equivalents, Zone* zone);
static base::Vector<const int> GetWordBounds();
static inline CharacterRange Singleton(uc32 value) {
static inline CharacterRange Singleton(base::uc32 value) {
return CharacterRange(value, value);
}
static inline CharacterRange Range(uc32 from, uc32 to) {
static inline CharacterRange Range(base::uc32 from, base::uc32 to) {
DCHECK(0 <= from && to <= String::kMaxCodePoint);
DCHECK(static_cast<uint32_t>(from) <= static_cast<uint32_t>(to));
return CharacterRange(from, to);
@ -110,13 +111,13 @@ class CharacterRange {
list->Add(range, zone);
return list;
}
bool Contains(uc32 i) { return from_ <= i && i <= to_; }
uc32 from() const { return from_; }
void set_from(uc32 value) { from_ = value; }
uc32 to() const { return to_; }
void set_to(uc32 value) { to_ = value; }
bool Contains(base::uc32 i) { return from_ <= i && i <= to_; }
base::uc32 from() const { return from_; }
void set_from(base::uc32 value) { from_ = value; }
base::uc32 to() const { return to_; }
void set_to(base::uc32 value) { to_ = value; }
bool is_valid() { return from_ <= to_; }
bool IsEverything(uc32 max) { return from_ == 0 && to_ >= max; }
bool IsEverything(base::uc32 max) { return from_ == 0 && to_ >= max; }
bool IsSingleton() { return (from_ == to_); }
V8_EXPORT_PRIVATE static void AddCaseEquivalents(
Isolate* isolate, Zone* zone, ZoneList<CharacterRange>* ranges,
@ -136,21 +137,21 @@ class CharacterRange {
static const int kPayloadMask = (1 << 24) - 1;
private:
CharacterRange(uc32 from, uc32 to) : from_(from), to_(to) {}
CharacterRange(base::uc32 from, base::uc32 to) : from_(from), to_(to) {}
uc32 from_;
uc32 to_;
base::uc32 from_;
base::uc32 to_;
};
class CharacterSet final {
public:
explicit CharacterSet(uc16 standard_set_type)
explicit CharacterSet(base::uc16 standard_set_type)
: ranges_(nullptr), standard_set_type_(standard_set_type) {}
explicit CharacterSet(ZoneList<CharacterRange>* ranges)
: ranges_(ranges), standard_set_type_(0) {}
ZoneList<CharacterRange>* ranges(Zone* zone);
uc16 standard_set_type() const { return standard_set_type_; }
void set_standard_set_type(uc16 special_set_type) {
base::uc16 standard_set_type() const { return standard_set_type_; }
void set_standard_set_type(base::uc16 special_set_type) {
standard_set_type_ = special_set_type;
}
bool is_standard() { return standard_set_type_ != 0; }
@ -160,7 +161,7 @@ class CharacterSet final {
ZoneList<CharacterRange>* ranges_;
// If non-zero, the value represents a standard set (e.g., all whitespace
// characters) without having to expand the ranges.
uc16 standard_set_type_;
base::uc16 standard_set_type_;
};
class TextElement final {
@ -322,7 +323,7 @@ class RegExpCharacterClass final : public RegExpTree {
character_class_flags_ ^= NEGATED;
}
}
RegExpCharacterClass(uc16 type, JSRegExp::Flags flags)
RegExpCharacterClass(base::uc16 type, JSRegExp::Flags flags)
: set_(type),
flags_(flags),
character_class_flags_(CharacterClassFlags()) {}
@ -352,7 +353,7 @@ class RegExpCharacterClass final : public RegExpTree {
// D : non-ASCII digit
// . : non-newline
// * : All characters, for advancing unanchored regexp
uc16 standard_type() const { return set_.standard_set_type(); }
base::uc16 standard_type() const { return set_.standard_set_type(); }
ZoneList<CharacterRange>* ranges(Zone* zone) { return set_.ranges(zone); }
bool is_negated() const { return (character_class_flags_ & NEGATED) != 0; }
JSRegExp::Flags flags() const { return flags_; }
@ -369,7 +370,8 @@ class RegExpCharacterClass final : public RegExpTree {
class RegExpAtom final : public RegExpTree {
public:
explicit RegExpAtom(base::Vector<const uc16> data, JSRegExp::Flags flags)
explicit RegExpAtom(base::Vector<const base::uc16> data,
JSRegExp::Flags flags)
: data_(data), flags_(flags) {}
void* Accept(RegExpVisitor* visitor, void* data) override;
RegExpNode* ToNode(RegExpCompiler* compiler, RegExpNode* on_success) override;
@ -379,13 +381,13 @@ class RegExpAtom final : public RegExpTree {
int min_match() override { return data_.length(); }
int max_match() override { return data_.length(); }
void AppendToText(RegExpText* text, Zone* zone) override;
base::Vector<const uc16> data() { return data_; }
base::Vector<const base::uc16> data() { return data_; }
int length() { return data_.length(); }
JSRegExp::Flags flags() const { return flags_; }
bool ignore_case() const { return (flags_ & JSRegExp::kIgnoreCase) != 0; }
private:
base::Vector<const uc16> data_;
base::Vector<const base::uc16> data_;
const JSRegExp::Flags flags_;
};
@ -486,8 +488,8 @@ class RegExpCapture final : public RegExpTree {
max_match_ = body->max_match();
}
int index() const { return index_; }
const ZoneVector<uc16>* name() const { return name_; }
void set_name(const ZoneVector<uc16>* name) { name_ = name; }
const ZoneVector<base::uc16>* name() const { return name_; }
void set_name(const ZoneVector<base::uc16>* name) { name_ = name; }
static int StartRegister(int index) { return index * 2; }
static int EndRegister(int index) { return index * 2 + 1; }
@ -496,7 +498,7 @@ class RegExpCapture final : public RegExpTree {
int index_;
int min_match_;
int max_match_;
const ZoneVector<uc16>* name_;
const ZoneVector<base::uc16>* name_;
};
class RegExpGroup final : public RegExpTree {
@ -593,12 +595,12 @@ class RegExpBackReference final : public RegExpTree {
int index() { return capture_->index(); }
RegExpCapture* capture() { return capture_; }
void set_capture(RegExpCapture* capture) { capture_ = capture; }
const ZoneVector<uc16>* name() const { return name_; }
void set_name(const ZoneVector<uc16>* name) { name_ = name; }
const ZoneVector<base::uc16>* name() const { return name_; }
void set_name(const ZoneVector<base::uc16>* name) { name_ = name; }
private:
RegExpCapture* capture_;
const ZoneVector<uc16>* name_;
const ZoneVector<base::uc16>* name_;
const JSRegExp::Flags flags_;
};

View File

@ -220,12 +220,14 @@ void RegExpBytecodeGenerator::LoadCurrentCharacterImpl(int cp_offset,
if (check_bounds) EmitOrLink(on_failure);
}
void RegExpBytecodeGenerator::CheckCharacterLT(uc16 limit, Label* on_less) {
void RegExpBytecodeGenerator::CheckCharacterLT(base::uc16 limit,
Label* on_less) {
Emit(BC_CHECK_LT, limit);
EmitOrLink(on_less);
}
void RegExpBytecodeGenerator::CheckCharacterGT(uc16 limit, Label* on_greater) {
void RegExpBytecodeGenerator::CheckCharacterGT(base::uc16 limit,
Label* on_greater) {
Emit(BC_CHECK_GT, limit);
EmitOrLink(on_greater);
}
@ -288,14 +290,15 @@ void RegExpBytecodeGenerator::CheckNotCharacterAfterAnd(uint32_t c,
}
void RegExpBytecodeGenerator::CheckNotCharacterAfterMinusAnd(
uc16 c, uc16 minus, uc16 mask, Label* on_not_equal) {
base::uc16 c, base::uc16 minus, base::uc16 mask, Label* on_not_equal) {
Emit(BC_MINUS_AND_CHECK_NOT_CHAR, c);
Emit16(minus);
Emit16(mask);
EmitOrLink(on_not_equal);
}
void RegExpBytecodeGenerator::CheckCharacterInRange(uc16 from, uc16 to,
void RegExpBytecodeGenerator::CheckCharacterInRange(base::uc16 from,
base::uc16 to,
Label* on_in_range) {
Emit(BC_CHECK_CHAR_IN_RANGE, 0);
Emit16(from);
@ -303,7 +306,8 @@ void RegExpBytecodeGenerator::CheckCharacterInRange(uc16 from, uc16 to,
EmitOrLink(on_in_range);
}
void RegExpBytecodeGenerator::CheckCharacterNotInRange(uc16 from, uc16 to,
void RegExpBytecodeGenerator::CheckCharacterNotInRange(base::uc16 from,
base::uc16 to,
Label* on_not_in_range) {
Emit(BC_CHECK_CHAR_NOT_IN_RANGE, 0);
Emit16(from);

View File

@ -5,6 +5,7 @@
#ifndef V8_REGEXP_REGEXP_BYTECODE_GENERATOR_H_
#define V8_REGEXP_REGEXP_BYTECODE_GENERATOR_H_
#include "src/base/strings.h"
#include "src/regexp/regexp-macro-assembler.h"
namespace v8 {
@ -52,18 +53,20 @@ class V8_EXPORT_PRIVATE RegExpBytecodeGenerator : public RegExpMacroAssembler {
void CheckCharacter(unsigned c, Label* on_equal) override;
void CheckCharacterAfterAnd(unsigned c, unsigned mask,
Label* on_equal) override;
void CheckCharacterGT(uc16 limit, Label* on_greater) override;
void CheckCharacterLT(uc16 limit, Label* on_less) override;
void CheckCharacterGT(base::uc16 limit, Label* on_greater) override;
void CheckCharacterLT(base::uc16 limit, Label* on_less) override;
void CheckGreedyLoop(Label* on_tos_equals_current_position) override;
void CheckAtStart(int cp_offset, Label* on_at_start) override;
void CheckNotAtStart(int cp_offset, Label* on_not_at_start) override;
void CheckNotCharacter(unsigned c, Label* on_not_equal) override;
void CheckNotCharacterAfterAnd(unsigned c, unsigned mask,
Label* on_not_equal) override;
void CheckNotCharacterAfterMinusAnd(uc16 c, uc16 minus, uc16 mask,
void CheckNotCharacterAfterMinusAnd(base::uc16 c, base::uc16 minus,
base::uc16 mask,
Label* on_not_equal) override;
void CheckCharacterInRange(uc16 from, uc16 to, Label* on_in_range) override;
void CheckCharacterNotInRange(uc16 from, uc16 to,
void CheckCharacterInRange(base::uc16 from, base::uc16 to,
Label* on_in_range) override;
void CheckCharacterNotInRange(base::uc16 from, base::uc16 to,
Label* on_not_in_range) override;
void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set) override;
void CheckNotBackReference(int start_reg, bool read_backward,

View File

@ -7,6 +7,7 @@
#include "src/base/bounds.h"
#include "src/base/macros.h"
#include "src/base/strings.h"
#include "src/common/globals.h"
namespace v8 {
@ -87,12 +88,14 @@ STATIC_ASSERT(1 << BYTECODE_SHIFT > BYTECODE_MASK);
/* 0x10 - 0x1F: Character to match against (after mask aplied) */ \
/* 0x20 - 0x3F: Bitmask bitwise and combined with current character */ \
/* 0x40 - 0x5F: Address of bytecode when matched */ \
V(AND_CHECK_CHAR, 28, 12) /* bc8 pad8 uint16 uint32 addr32 */ \
V(AND_CHECK_NOT_4_CHARS, 29, 16) /* bc8 pad24 uint32 uint32 addr32 */ \
V(AND_CHECK_NOT_CHAR, 30, 12) /* bc8 pad8 uint16 uint32 addr32 */ \
V(MINUS_AND_CHECK_NOT_CHAR, 31, 12) /* bc8 pad8 uc16 uc16 uc16 addr32 */ \
V(CHECK_CHAR_IN_RANGE, 32, 12) /* bc8 pad24 uc16 uc16 addr32 */ \
V(CHECK_CHAR_NOT_IN_RANGE, 33, 12) /* bc8 pad24 uc16 uc16 addr32 */ \
V(AND_CHECK_CHAR, 28, 12) /* bc8 pad8 uint16 uint32 addr32 */ \
V(AND_CHECK_NOT_4_CHARS, 29, 16) /* bc8 pad24 uint32 uint32 addr32 */ \
V(AND_CHECK_NOT_CHAR, 30, 12) /* bc8 pad8 uint16 uint32 addr32 */ \
V(MINUS_AND_CHECK_NOT_CHAR, 31, \
12) /* bc8 pad8 base::uc16 base::uc16 base::uc16 addr32 */ \
V(CHECK_CHAR_IN_RANGE, 32, 12) /* bc8 pad24 base::uc16 base::uc16 addr32 */ \
V(CHECK_CHAR_NOT_IN_RANGE, 33, \
12) /* bc8 pad24 base::uc16 base::uc16 addr32 */ \
/* Checks if the current character matches any of the characters encoded */ \
/* in a bit table. Similar to/inspired by boyer moore string search */ \
/* Bit Layout: */ \
@ -101,8 +104,8 @@ STATIC_ASSERT(1 << BYTECODE_SHIFT > BYTECODE_MASK);
/* 0x20 - 0x3F: Address of bytecode when bit is set */ \
/* 0x40 - 0xBF: Bit table */ \
V(CHECK_BIT_IN_TABLE, 34, 24) /* bc8 pad24 addr32 bits128 */ \
V(CHECK_LT, 35, 8) /* bc8 pad8 uc16 addr32 */ \
V(CHECK_GT, 36, 8) /* bc8 pad8 uc16 addr32 */ \
V(CHECK_LT, 35, 8) /* bc8 pad8 base::uc16 addr32 */ \
V(CHECK_GT, 36, 8) /* bc8 pad8 base::uc16 addr32 */ \
V(CHECK_NOT_BACK_REF, 37, 8) /* bc8 reg_idx24 addr32 */ \
V(CHECK_NOT_BACK_REF_NO_CASE, 38, 8) /* bc8 reg_idx24 addr32 */ \
V(CHECK_NOT_BACK_REF_NO_CASE_UNICODE, 39, 8) \

View File

@ -13,6 +13,7 @@
#include "src/zone/zone-list-inl.h"
#ifdef V8_INTL_SUPPORT
#include "src/base/strings.h"
#include "unicode/locid.h"
#include "unicode/uniset.h"
#include "unicode/utypes.h"
@ -56,11 +57,11 @@ static bool CompareInverseRanges(ZoneList<CharacterRange>* ranges,
return false;
}
for (int i = 0; i < length; i += 2) {
if (static_cast<uc32>(special_class[i]) != (range.to() + 1)) {
if (static_cast<base::uc32>(special_class[i]) != (range.to() + 1)) {
return false;
}
range = ranges->at((i >> 1) + 1);
if (static_cast<uc32>(special_class[i + 1]) != range.from()) {
if (static_cast<base::uc32>(special_class[i + 1]) != range.from()) {
return false;
}
}
@ -79,8 +80,8 @@ static bool CompareRanges(ZoneList<CharacterRange>* ranges,
}
for (int i = 0; i < length; i += 2) {
CharacterRange range = ranges->at(i >> 1);
if (range.from() != static_cast<uc32>(special_class[i]) ||
range.to() != static_cast<uc32>(special_class[i + 1] - 1)) {
if (range.from() != static_cast<base::uc32>(special_class[i]) ||
range.to() != static_cast<base::uc32>(special_class[i + 1] - 1)) {
return false;
}
}
@ -138,10 +139,10 @@ UnicodeRangeSplitter::UnicodeRangeSplitter(ZoneList<CharacterRange>* base) {
}
void UnicodeRangeSplitter::AddRange(CharacterRange range) {
static constexpr uc32 kBmp1Start = 0;
static constexpr uc32 kBmp1End = kLeadSurrogateStart - 1;
static constexpr uc32 kBmp2Start = kTrailSurrogateEnd + 1;
static constexpr uc32 kBmp2End = kNonBmpStart - 1;
static constexpr base::uc32 kBmp1Start = 0;
static constexpr base::uc32 kBmp1End = kLeadSurrogateStart - 1;
static constexpr base::uc32 kBmp2Start = kTrailSurrogateEnd + 1;
static constexpr base::uc32 kBmp2End = kNonBmpStart - 1;
// Ends are all inclusive.
STATIC_ASSERT(kBmp1Start == 0);
@ -155,12 +156,12 @@ void UnicodeRangeSplitter::AddRange(CharacterRange range) {
STATIC_ASSERT(kBmp2End + 1 == kNonBmpStart);
STATIC_ASSERT(kNonBmpStart < kNonBmpEnd);
static constexpr uc32 kStarts[] = {
static constexpr base::uc32 kStarts[] = {
kBmp1Start, kLeadSurrogateStart, kTrailSurrogateStart,
kBmp2Start, kNonBmpStart,
};
static constexpr uc32 kEnds[] = {
static constexpr base::uc32 kEnds[] = {
kBmp1End, kLeadSurrogateEnd, kTrailSurrogateEnd, kBmp2End, kNonBmpEnd,
};
@ -174,8 +175,8 @@ void UnicodeRangeSplitter::AddRange(CharacterRange range) {
for (int i = 0; i < kCount; i++) {
if (kStarts[i] > range.to()) break;
const uc32 from = std::max(kStarts[i], range.from());
const uc32 to = std::min(kEnds[i], range.to());
const base::uc32 from = std::max(kStarts[i], range.from());
const base::uc32 to = std::min(kEnds[i], range.to());
if (from > to) continue;
kTargets[i]->emplace_back(CharacterRange::Range(from, to));
}
@ -224,12 +225,12 @@ void AddNonBmpSurrogatePairs(RegExpCompiler* compiler, ChoiceNode* result,
// \ud800[\udc05-\udfff]|
// [\ud801-\ud803][\udc00-\udfff]|
// \ud804[\udc00-\udc05]
uc32 from = non_bmp->at(i).from();
uc32 to = non_bmp->at(i).to();
uc16 from_l = unibrow::Utf16::LeadSurrogate(from);
uc16 from_t = unibrow::Utf16::TrailSurrogate(from);
uc16 to_l = unibrow::Utf16::LeadSurrogate(to);
uc16 to_t = unibrow::Utf16::TrailSurrogate(to);
base::uc32 from = non_bmp->at(i).from();
base::uc32 to = non_bmp->at(i).to();
base::uc16 from_l = unibrow::Utf16::LeadSurrogate(from);
base::uc16 from_t = unibrow::Utf16::TrailSurrogate(from);
base::uc16 to_l = unibrow::Utf16::LeadSurrogate(to);
base::uc16 to_t = unibrow::Utf16::TrailSurrogate(to);
if (from_l == to_l) {
// The lead surrogate is the same.
result->AddAlternative(
@ -447,8 +448,8 @@ RegExpNode* RegExpCharacterClass::ToNode(RegExpCompiler* compiler,
int CompareFirstChar(RegExpTree* const* a, RegExpTree* const* b) {
RegExpAtom* atom1 = (*a)->AsAtom();
RegExpAtom* atom2 = (*b)->AsAtom();
uc16 character1 = atom1->data().at(0);
uc16 character2 = atom2->data().at(0);
base::uc16 character1 = atom1->data().at(0);
base::uc16 character2 = atom2->data().at(0);
if (character1 < character2) return -1;
if (character1 > character2) return 1;
return 0;
@ -1060,7 +1061,7 @@ static void AddClassNegated(const int* elmv, int elmc,
DCHECK_EQ(kRangeEndMarker, elmv[elmc]);
DCHECK_NE(0x0000, elmv[0]);
DCHECK_NE(String::kMaxCodePoint, elmv[elmc - 1]);
uc16 last = 0x0000;
base::uc16 last = 0x0000;
for (int i = 0; i < elmc; i += 2) {
DCHECK(last <= elmv[i] - 1);
DCHECK(elmv[i] < elmv[i + 1]);
@ -1148,9 +1149,9 @@ void CharacterRange::AddCaseEquivalents(Isolate* isolate, Zone* zone,
icu::UnicodeSet others;
for (int i = 0; i < range_count; i++) {
CharacterRange range = ranges->at(i);
uc32 from = range.from();
base::uc32 from = range.from();
if (from > String::kMaxUtf16CodeUnit) continue;
uc32 to = std::min({range.to(), String::kMaxUtf16CodeUnitU});
base::uc32 to = std::min({range.to(), String::kMaxUtf16CodeUnitU});
// Nothing to be done for surrogates.
if (from >= kLeadSurrogateStart && to <= kTrailSurrogateEnd) continue;
if (is_one_byte && !RangeContainsLatin1Equivalents(range)) {
@ -1191,9 +1192,9 @@ void CharacterRange::AddCaseEquivalents(Isolate* isolate, Zone* zone,
#else
for (int i = 0; i < range_count; i++) {
CharacterRange range = ranges->at(i);
uc32 bottom = range.from();
base::uc32 bottom = range.from();
if (bottom > String::kMaxUtf16CodeUnit) continue;
uc32 top = std::min({range.to(), String::kMaxUtf16CodeUnitU});
base::uc32 top = std::min({range.to(), String::kMaxUtf16CodeUnitU});
// Nothing to be done for surrogates.
if (bottom >= kLeadSurrogateStart && top <= kTrailSurrogateEnd) continue;
if (is_one_byte && !RangeContainsLatin1Equivalents(range)) {
@ -1205,7 +1206,7 @@ void CharacterRange::AddCaseEquivalents(Isolate* isolate, Zone* zone,
// If this is a singleton we just expand the one character.
int length = isolate->jsregexp_uncanonicalize()->get(bottom, '\0', chars);
for (int i = 0; i < length; i++) {
uc32 chr = chars[i];
base::uc32 chr = chars[i];
if (chr != bottom) {
ranges->Add(CharacterRange::Singleton(chars[i]), zone);
}
@ -1228,11 +1229,11 @@ void CharacterRange::AddCaseEquivalents(Isolate* isolate, Zone* zone,
// block we do this for all the blocks covered by the range (handling
// characters that is not in a block as a "singleton block").
unibrow::uchar equivalents[unibrow::Ecma262UnCanonicalize::kMaxWidth];
uc32 pos = bottom;
base::uc32 pos = bottom;
while (pos <= top) {
int length =
isolate->jsregexp_canonrange()->get(pos, '\0', equivalents);
uc32 block_end;
base::uc32 block_end;
if (length == 0) {
block_end = pos;
} else {
@ -1243,9 +1244,9 @@ void CharacterRange::AddCaseEquivalents(Isolate* isolate, Zone* zone,
length = isolate->jsregexp_uncanonicalize()->get(block_end, '\0',
equivalents);
for (int i = 0; i < length; i++) {
uc32 c = equivalents[i];
uc32 range_from = c - (block_end - pos);
uc32 range_to = c - (block_end - end);
base::uc32 c = equivalents[i];
base::uc32 range_from = c - (block_end - pos);
base::uc32 range_to = c - (block_end - end);
if (!(bottom <= range_from && range_to <= top)) {
ranges->Add(CharacterRange::Range(range_from, range_to), zone);
}
@ -1261,7 +1262,7 @@ bool CharacterRange::IsCanonical(ZoneList<CharacterRange>* ranges) {
DCHECK_NOT_NULL(ranges);
int n = ranges->length();
if (n <= 1) return true;
uc32 max = ranges->at(0).to();
base::uc32 max = ranges->at(0).to();
for (int i = 1; i < n; i++) {
CharacterRange next_range = ranges->at(i);
if (next_range.from() <= max + 1) return false;
@ -1301,8 +1302,8 @@ static int InsertRangeInCanonicalList(ZoneList<CharacterRange>* list, int count,
// list[0..count] for the result. Returns the number of resulting
// canonicalized ranges. Inserting a range may collapse existing ranges into
// fewer ranges, so the return value can be anything in the range 1..count+1.
uc32 from = insert.from();
uc32 to = insert.to();
base::uc32 from = insert.from();
base::uc32 to = insert.to();
int start_pos = 0;
int end_pos = count;
for (int i = count - 1; i >= 0; i--) {
@ -1362,7 +1363,7 @@ void CharacterRange::Canonicalize(ZoneList<CharacterRange>* character_ranges) {
// Check whether ranges are already canonical (increasing, non-overlapping,
// non-adjacent).
int n = character_ranges->length();
uc32 max = character_ranges->at(0).to();
base::uc32 max = character_ranges->at(0).to();
int i = 1;
while (i < n) {
CharacterRange current = character_ranges->at(i);
@ -1398,7 +1399,7 @@ void CharacterRange::Negate(ZoneList<CharacterRange>* ranges,
DCHECK(CharacterRange::IsCanonical(ranges));
DCHECK_EQ(0, negated_ranges->length());
int range_count = ranges->length();
uc32 from = 0;
base::uc32 from = 0;
int i = 0;
if (range_count > 0 && ranges->at(0).from() == 0) {
from = ranges->at(0).to() + 1;

View File

@ -176,7 +176,7 @@ using namespace regexp_compiler_constants; // NOLINT(build/namespaces)
namespace {
constexpr uc32 MaxCodeUnit(const bool one_byte) {
constexpr base::uc32 MaxCodeUnit(const bool one_byte) {
STATIC_ASSERT(String::kMaxOneByteCharCodeU <=
std::numeric_limits<uint16_t>::max());
STATIC_ASSERT(String::kMaxUtf16CodeUnitU <=
@ -751,7 +751,7 @@ bool ContainsOnlyUtf16CodeUnits(unibrow::uchar* chars, int length) {
// Returns the number of characters in the equivalence class, omitting those
// that cannot occur in the source string because it is Latin1.
static int GetCaseIndependentLetters(Isolate* isolate, uc16 character,
static int GetCaseIndependentLetters(Isolate* isolate, base::uc16 character,
bool one_byte_subject,
unibrow::uchar* letters,
int letter_length) {
@ -815,7 +815,7 @@ static int GetCaseIndependentLetters(Isolate* isolate, uc16 character,
}
static inline bool EmitSimpleCharacter(Isolate* isolate,
RegExpCompiler* compiler, uc16 c,
RegExpCompiler* compiler, base::uc16 c,
Label* on_failure, int cp_offset,
bool check, bool preloaded) {
RegExpMacroAssembler* assembler = compiler->macro_assembler();
@ -831,8 +831,9 @@ static inline bool EmitSimpleCharacter(Isolate* isolate,
// Only emits non-letters (things that don't have case). Only used for case
// independent matches.
static inline bool EmitAtomNonLetter(Isolate* isolate, RegExpCompiler* compiler,
uc16 c, Label* on_failure, int cp_offset,
bool check, bool preloaded) {
base::uc16 c, Label* on_failure,
int cp_offset, bool check,
bool preloaded) {
RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
bool one_byte = compiler->one_byte();
unibrow::uchar chars[4];
@ -860,27 +861,27 @@ static inline bool EmitAtomNonLetter(Isolate* isolate, RegExpCompiler* compiler,
}
static bool ShortCutEmitCharacterPair(RegExpMacroAssembler* macro_assembler,
bool one_byte, uc16 c1, uc16 c2,
Label* on_failure) {
bool one_byte, base::uc16 c1,
base::uc16 c2, Label* on_failure) {
const uint32_t char_mask = CharMask(one_byte);
uc16 exor = c1 ^ c2;
base::uc16 exor = c1 ^ c2;
// Check whether exor has only one bit set.
if (((exor - 1) & exor) == 0) {
// If c1 and c2 differ only by one bit.
// Ecma262UnCanonicalize always gives the highest number last.
DCHECK(c2 > c1);
uc16 mask = char_mask ^ exor;
base::uc16 mask = char_mask ^ exor;
macro_assembler->CheckNotCharacterAfterAnd(c1, mask, on_failure);
return true;
}
DCHECK(c2 > c1);
uc16 diff = c2 - c1;
base::uc16 diff = c2 - c1;
if (((diff - 1) & diff) == 0 && c1 >= diff) {
// If the characters differ by 2^n but don't differ by one bit then
// subtract the difference from the found character, then do the or
// trick. We avoid the theoretical case where negative numbers are
// involved in order to simplify code generation.
uc16 mask = char_mask ^ diff;
base::uc16 mask = char_mask ^ diff;
macro_assembler->CheckNotCharacterAfterMinusAnd(c1 - diff, diff, mask,
on_failure);
return true;
@ -891,8 +892,8 @@ static bool ShortCutEmitCharacterPair(RegExpMacroAssembler* macro_assembler,
// Only emits letters (things that have case). Only used for case independent
// matches.
static inline bool EmitAtomLetter(Isolate* isolate, RegExpCompiler* compiler,
uc16 c, Label* on_failure, int cp_offset,
bool check, bool preloaded) {
base::uc16 c, Label* on_failure,
int cp_offset, bool check, bool preloaded) {
RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
bool one_byte = compiler->one_byte();
unibrow::uchar chars[4];
@ -963,14 +964,14 @@ static void EmitDoubleBoundaryTest(RegExpMacroAssembler* masm, int first,
// even_label is for ranges[i] to ranges[i + 1] where i - start_index is even.
// odd_label is for ranges[i] to ranges[i + 1] where i - start_index is odd.
static void EmitUseLookupTable(RegExpMacroAssembler* masm,
ZoneList<uc32>* ranges, uint32_t start_index,
uint32_t end_index, uc32 min_char,
Label* fall_through, Label* even_label,
Label* odd_label) {
ZoneList<base::uc32>* ranges,
uint32_t start_index, uint32_t end_index,
base::uc32 min_char, Label* fall_through,
Label* even_label, Label* odd_label) {
static const uint32_t kSize = RegExpMacroAssembler::kTableSize;
static const uint32_t kMask = RegExpMacroAssembler::kTableMask;
uc32 base = (min_char & ~kMask);
base::uc32 base = (min_char & ~kMask);
USE(base);
// Assert that everything is on one kTableSize page.
@ -1017,10 +1018,10 @@ static void EmitUseLookupTable(RegExpMacroAssembler* masm,
if (on_bit_clear != fall_through) masm->GoTo(on_bit_clear);
}
static void CutOutRange(RegExpMacroAssembler* masm, ZoneList<uc32>* ranges,
uint32_t start_index, uint32_t end_index,
uint32_t cut_index, Label* even_label,
Label* odd_label) {
static void CutOutRange(RegExpMacroAssembler* masm,
ZoneList<base::uc32>* ranges, uint32_t start_index,
uint32_t end_index, uint32_t cut_index,
Label* even_label, Label* odd_label) {
bool odd = (((cut_index - start_index) & 1) == 1);
Label* in_range_label = odd ? odd_label : even_label;
Label dummy;
@ -1041,14 +1042,14 @@ static void CutOutRange(RegExpMacroAssembler* masm, ZoneList<uc32>* ranges,
// Unicode case. Split the search space into kSize spaces that are handled
// with recursion.
static void SplitSearchSpace(ZoneList<uc32>* ranges, uint32_t start_index,
static void SplitSearchSpace(ZoneList<base::uc32>* ranges, uint32_t start_index,
uint32_t end_index, uint32_t* new_start_index,
uint32_t* new_end_index, uc32* border) {
uint32_t* new_end_index, base::uc32* border) {
static const uint32_t kSize = RegExpMacroAssembler::kTableSize;
static const uint32_t kMask = RegExpMacroAssembler::kTableMask;
uc32 first = ranges->at(start_index);
uc32 last = ranges->at(end_index) - 1;
base::uc32 first = ranges->at(start_index);
base::uc32 last = ranges->at(end_index) - 1;
*new_start_index = start_index;
*border = (ranges->at(start_index) & ~kMask) + kSize;
@ -1107,15 +1108,16 @@ static void SplitSearchSpace(ZoneList<uc32>* ranges, uint32_t start_index,
// know that the character is in the range of min_char to max_char inclusive.
// Either label can be nullptr indicating backtracking. Either label can also
// be equal to the fall_through label.
static void GenerateBranches(RegExpMacroAssembler* masm, ZoneList<uc32>* ranges,
uint32_t start_index, uint32_t end_index,
uc32 min_char, uc32 max_char, Label* fall_through,
static void GenerateBranches(RegExpMacroAssembler* masm,
ZoneList<base::uc32>* ranges, uint32_t start_index,
uint32_t end_index, base::uc32 min_char,
base::uc32 max_char, Label* fall_through,
Label* even_label, Label* odd_label) {
DCHECK_LE(min_char, String::kMaxUtf16CodeUnit);
DCHECK_LE(max_char, String::kMaxUtf16CodeUnit);
uc32 first = ranges->at(start_index);
uc32 last = ranges->at(end_index) - 1;
base::uc32 first = ranges->at(start_index);
base::uc32 last = ranges->at(end_index) - 1;
DCHECK_LT(min_char, first);
@ -1175,7 +1177,7 @@ static void GenerateBranches(RegExpMacroAssembler* masm, ZoneList<uc32>* ranges,
uint32_t new_start_index = 0;
uint32_t new_end_index = 0;
uc32 border = 0;
base::uc32 border = 0;
SplitSearchSpace(ranges, start_index, end_index, &new_start_index,
&new_end_index, &border);
@ -1225,7 +1227,7 @@ static void EmitCharClass(RegExpMacroAssembler* macro_assembler,
ZoneList<CharacterRange>* ranges = cc->ranges(zone);
CharacterRange::Canonicalize(ranges);
const uc32 max_char = MaxCodeUnit(one_byte);
const base::uc32 max_char = MaxCodeUnit(one_byte);
int range_count = ranges->length();
int last_valid_range = range_count - 1;
@ -1272,8 +1274,8 @@ static void EmitCharClass(RegExpMacroAssembler* macro_assembler,
// entry at zero which goes to the failure label, but if there
// was already one there we fall through for success on that entry.
// Subsequent entries have alternating meaning (success/failure).
ZoneList<uc32>* range_boundaries =
zone->New<ZoneList<uc32>>(last_valid_range, zone);
ZoneList<base::uc32>* range_boundaries =
zone->New<ZoneList<base::uc32>>(last_valid_range, zone);
bool zeroth_entry_is_failure = !cc->is_negated();
@ -1579,11 +1581,11 @@ void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
for (int k = 0; k < elements()->length(); k++) {
TextElement elm = elements()->at(k);
if (elm.text_type() == TextElement::ATOM) {
base::Vector<const uc16> quarks = elm.atom()->data();
base::Vector<const base::uc16> quarks = elm.atom()->data();
for (int i = 0; i < characters && i < quarks.length(); i++) {
QuickCheckDetails::Position* pos =
details->positions(characters_filled_in);
uc16 c = quarks[i];
base::uc16 c = quarks[i];
if (elm.atom()->ignore_case()) {
unibrow::uchar chars[4];
int length = GetCaseIndependentLetters(
@ -1664,8 +1666,9 @@ void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
}
}
CharacterRange range = ranges->at(first_range);
const uc32 first_from = range.from();
const uc32 first_to = (range.to() > char_mask) ? char_mask : range.to();
const base::uc32 first_from = range.from();
const base::uc32 first_to =
(range.to() > char_mask) ? char_mask : range.to();
const uint32_t differing_bits = (first_from ^ first_to);
// A mask and compare is only perfect if the differing bits form a
// number like 00011111 with one single block of trailing 1s.
@ -1677,9 +1680,10 @@ void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
uint32_t bits = (first_from & common_bits);
for (int i = first_range + 1; i < ranges->length(); i++) {
CharacterRange range = ranges->at(i);
const uc32 from = range.from();
const base::uc32 from = range.from();
if (from > char_mask) continue;
const uc32 to = (range.to() > char_mask) ? char_mask : range.to();
const base::uc32 to =
(range.to() > char_mask) ? char_mask : range.to();
// Here we are combining more ranges into the mask and compare
// value. With each new range the mask becomes more sparse and
// so the chances of a false positive rise. A character class
@ -1851,15 +1855,15 @@ RegExpNode* TextNode::FilterOneByte(int depth) {
for (int i = 0; i < element_count; i++) {
TextElement elm = elements()->at(i);
if (elm.text_type() == TextElement::ATOM) {
base::Vector<const uc16> quarks = elm.atom()->data();
base::Vector<const base::uc16> quarks = elm.atom()->data();
for (int j = 0; j < quarks.length(); j++) {
uc16 c = quarks[j];
base::uc16 c = quarks[j];
if (elm.atom()->ignore_case()) {
c = unibrow::Latin1::TryConvertToLatin1(c);
}
if (c > unibrow::Latin1::kMaxChar) return set_replacement(nullptr);
// Replace quark in case we converted to Latin-1.
uc16* writable_quarks = const_cast<uc16*>(quarks.begin());
base::uc16* writable_quarks = const_cast<base::uc16*>(quarks.begin());
writable_quarks[j] = c;
}
} else {
@ -2314,11 +2318,11 @@ void TextNode::TextEmitPass(RegExpCompiler* compiler, TextEmitPassType pass,
int cp_offset = trace->cp_offset() + elm.cp_offset() + backward_offset;
if (elm.text_type() == TextElement::ATOM) {
if (SkipPass(pass, elm.atom()->ignore_case())) continue;
base::Vector<const uc16> quarks = elm.atom()->data();
base::Vector<const base::uc16> quarks = elm.atom()->data();
for (int j = preloaded ? 0 : quarks.length() - 1; j >= 0; j--) {
if (first_element_checked && i == 0 && j == 0) continue;
if (DeterminedAlready(quick_check, elm.cp_offset() + j)) continue;
uc16 quark = quarks[j];
base::uc16 quark = quarks[j];
if (elm.atom()->ignore_case()) {
// Everywhere else we assume that a non-Latin-1 character cannot match
// a Latin-1 character. Avoid the cases where this is assumption is
@ -2523,7 +2527,7 @@ RegExpNode* TextNode::GetSuccessorOfOmnivorousTextNode(
return ranges->length() == 0 ? on_success() : nullptr;
}
if (ranges->length() != 1) return nullptr;
const uc32 max_char = MaxCodeUnit(compiler->one_byte());
const base::uc32 max_char = MaxCodeUnit(compiler->one_byte());
return ranges->at(0).IsEverything(max_char) ? on_success() : nullptr;
}
@ -3803,7 +3807,7 @@ void TextNode::FillInBMInfo(Isolate* isolate, int initial_offset, int budget,
if (initial_offset == 0) set_bm_info(not_at_start, bm);
return;
}
uc16 character = atom->data()[j];
base::uc16 character = atom->data()[j];
if (IgnoreCase(atom->flags())) {
unibrow::uchar chars[4];
int length = GetCaseIndependentLetters(

View File

@ -8,6 +8,7 @@
#include <bitset>
#include "src/base/small-vector.h"
#include "src/base/strings.h"
#include "src/regexp/regexp-nodes.h"
namespace v8 {
@ -21,7 +22,7 @@ namespace regexp_compiler_constants {
// The '2' variant is has inclusive from and exclusive to.
// This covers \s as defined in ECMA-262 5.1, 15.10.2.12,
// which include WhiteSpace (7.2) or LineTerminator (7.3) values.
constexpr uc32 kRangeEndMarker = 0x110000;
constexpr base::uc32 kRangeEndMarker = 0x110000;
constexpr int kSpaceRanges[] = {
'\t', '\r' + 1, ' ', ' ' + 1, 0x00A0, 0x00A1, 0x1680,
0x1681, 0x2000, 0x200B, 0x2028, 0x202A, 0x202F, 0x2030,
@ -96,8 +97,8 @@ class QuickCheckDetails {
void set_cannot_match() { cannot_match_ = true; }
struct Position {
Position() : mask(0), value(0), determines_perfectly(false) {}
uc32 mask;
uc32 value;
base::uc32 mask;
base::uc32 value;
bool determines_perfectly;
};
int characters() { return characters_; }

View File

@ -4,6 +4,7 @@
#include "src/regexp/regexp-dotprinter.h"
#include "src/base/strings.h"
#include "src/regexp/regexp-compiler.h"
#include "src/utils/ostreams.h"
@ -128,7 +129,7 @@ void DotPrinterImpl::VisitText(TextNode* that) {
TextElement elm = that->elements()->at(i);
switch (elm.text_type()) {
case TextElement::ATOM: {
base::Vector<const uc16> data = elm.atom()->data();
base::Vector<const base::uc16> data = elm.atom()->data();
for (int i = 0; i < data.length(); i++) {
os_ << static_cast<char>(data[i]);
}

Some files were not shown because too many files have changed in this diff Show More