[turbofan] Optimize add operations to use 'leal' instruction on x64

Add MemoryOperandMatcher that recognizes node clusters in the form
[%r1 + %r2*SCALE + OFFSET] and explicit support in the x64 Int32Add
selector to use it to translate complex adds to 'leal' instructions.

R=titzer@chromium.org

Review URL: https://codereview.chromium.org/704713003

Cr-Commit-Position: refs/heads/master@{#25223}
git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@25223 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
This commit is contained in:
danno@chromium.org 2014-11-07 16:47:25 +00:00
parent b86c30a2b3
commit 9a58807030
6 changed files with 948 additions and 11 deletions

View File

@ -5,6 +5,8 @@
#ifndef V8_COMPILER_NODE_MATCHERS_H_
#define V8_COMPILER_NODE_MATCHERS_H_
#include "src/compiler/generic-node.h"
#include "src/compiler/generic-node-inl.h"
#include "src/compiler/node.h"
#include "src/compiler/operator.h"
#include "src/unique.h"
@ -116,7 +118,7 @@ struct HeapObjectMatcher FINAL
// right hand sides of a binary operation and can put constants on the right
// if they appear on the left hand side of a commutative operation.
template <typename Left, typename Right>
struct BinopMatcher FINAL : public NodeMatcher {
struct BinopMatcher : public NodeMatcher {
explicit BinopMatcher(Node* node)
: NodeMatcher(node), left_(InputAt(0)), right_(InputAt(1)) {
if (HasProperty(Operator::kCommutative)) PutConstantOnRight();
@ -128,12 +130,17 @@ struct BinopMatcher FINAL : public NodeMatcher {
bool IsFoldable() const { return left().HasValue() && right().HasValue(); }
bool LeftEqualsRight() const { return left().node() == right().node(); }
protected:
void SwapInputs() {
std::swap(left_, right_);
node()->ReplaceInput(0, left().node());
node()->ReplaceInput(1, right().node());
}
private:
void PutConstantOnRight() {
if (left().HasValue() && !right().HasValue()) {
std::swap(left_, right_);
node()->ReplaceInput(0, left().node());
node()->ReplaceInput(1, right().node());
SwapInputs();
}
}
@ -150,6 +157,189 @@ typedef BinopMatcher<UintPtrMatcher, UintPtrMatcher> UintPtrBinopMatcher;
typedef BinopMatcher<Float64Matcher, Float64Matcher> Float64BinopMatcher;
typedef BinopMatcher<NumberMatcher, NumberMatcher> NumberBinopMatcher;
struct Int32AddMatcher : public Int32BinopMatcher {
explicit Int32AddMatcher(Node* node)
: Int32BinopMatcher(node), scale_exponent_(-1) {
PutScaledInputOnLeft();
}
bool HasScaledInput() const { return scale_exponent_ != -1; }
Node* ScaledInput() const {
DCHECK(HasScaledInput());
return left().node()->InputAt(0);
}
int ScaleExponent() const {
DCHECK(HasScaledInput());
return scale_exponent_;
}
private:
int GetInputScaleExponent(Node* node) const {
if (node->opcode() == IrOpcode::kWord32Shl) {
Int32BinopMatcher m(node);
if (m.right().HasValue()) {
int32_t value = m.right().Value();
if (value >= 0 && value <= 3) {
return value;
}
}
} else if (node->opcode() == IrOpcode::kInt32Mul) {
Int32BinopMatcher m(node);
if (m.right().HasValue()) {
int32_t value = m.right().Value();
if (value == 1) {
return 0;
} else if (value == 2) {
return 1;
} else if (value == 4) {
return 2;
} else if (value == 8) {
return 3;
}
}
}
return -1;
}
void PutScaledInputOnLeft() {
scale_exponent_ = GetInputScaleExponent(right().node());
if (scale_exponent_ >= 0) {
int left_scale_exponent = GetInputScaleExponent(left().node());
if (left_scale_exponent == -1) {
SwapInputs();
} else {
scale_exponent_ = left_scale_exponent;
}
} else {
scale_exponent_ = GetInputScaleExponent(left().node());
if (scale_exponent_ == -1) {
if (right().opcode() == IrOpcode::kInt32Add &&
left().opcode() != IrOpcode::kInt32Add) {
SwapInputs();
}
}
}
}
int scale_exponent_;
};
struct ScaledWithOffsetMatcher {
explicit ScaledWithOffsetMatcher(Node* node)
: matches_(false),
scaled_(NULL),
scale_exponent_(0),
offset_(NULL),
constant_(NULL) {
if (node->opcode() != IrOpcode::kInt32Add) return;
// The Int32AddMatcher canonicalizes the order of constants and scale
// factors that are used as inputs, so instead of enumerating all possible
// patterns by brute force, checking for node clusters using the following
// templates in the following order suffices to find all of the interesting
// cases (S = scaled input, O = offset input, C = constant input):
// (S + (O + C))
// (S + (O + O))
// (S + C)
// (S + O)
// ((S + C) + O)
// ((S + O) + C)
// ((O + C) + O)
// ((O + O) + C)
// (O + C)
// (O + O)
Int32AddMatcher base_matcher(node);
Node* left = base_matcher.left().node();
Node* right = base_matcher.right().node();
if (base_matcher.HasScaledInput() && left->OwnedBy(node)) {
scaled_ = base_matcher.ScaledInput();
scale_exponent_ = base_matcher.ScaleExponent();
if (right->opcode() == IrOpcode::kInt32Add && right->OwnedBy(node)) {
Int32AddMatcher right_matcher(right);
if (right_matcher.right().HasValue()) {
// (S + (O + C))
offset_ = right_matcher.left().node();
constant_ = right_matcher.right().node();
} else {
// (S + (O + O))
offset_ = right;
}
} else if (base_matcher.right().HasValue()) {
// (S + C)
constant_ = right;
} else {
// (S + O)
offset_ = right;
}
} else {
if (left->opcode() == IrOpcode::kInt32Add && left->OwnedBy(node)) {
Int32AddMatcher left_matcher(left);
Node* left_left = left_matcher.left().node();
Node* left_right = left_matcher.right().node();
if (left_matcher.HasScaledInput() && left_left->OwnedBy(left)) {
scaled_ = left_matcher.ScaledInput();
scale_exponent_ = left_matcher.ScaleExponent();
if (left_matcher.right().HasValue()) {
// ((S + C) + O)
constant_ = left_right;
offset_ = right;
} else if (base_matcher.right().HasValue()) {
// ((S + O) + C)
offset_ = left_right;
constant_ = right;
} else {
// (O + O)
scaled_ = left;
offset_ = right;
}
} else {
if (left_matcher.right().HasValue()) {
// ((O + C) + O)
scaled_ = left_left;
constant_ = left_right;
offset_ = right;
} else if (base_matcher.right().HasValue()) {
// ((O + O) + C)
scaled_ = left_left;
offset_ = left_right;
constant_ = right;
} else {
// (O + O)
scaled_ = left;
offset_ = right;
}
}
} else {
if (base_matcher.right().HasValue()) {
// (O + C)
offset_ = left;
constant_ = right;
} else {
// (O + O)
offset_ = left;
scaled_ = right;
}
}
}
matches_ = true;
}
bool matches() const { return matches_; }
Node* scaled() const { return scaled_; }
int scale_exponent() const { return scale_exponent_; }
Node* offset() const { return offset_; }
Node* constant() const { return constant_; }
private:
bool matches_;
protected:
Node* scaled_;
int scale_exponent_;
Node* offset_;
Node* constant_;
};
} // namespace compiler
} // namespace internal
} // namespace v8

View File

@ -364,8 +364,79 @@ void InstructionSelector::VisitWord64Ror(Node* node) {
VisitWord64Shift(this, node, kX64Ror);
}
namespace {
AddressingMode GenerateMemoryOperandInputs(X64OperandGenerator* g, Node* scaled,
int scale_exponent, Node* offset,
Node* constant,
InstructionOperand* inputs[],
size_t* input_count) {
AddressingMode mode = kMode_MRI;
if (offset != NULL) {
inputs[(*input_count)++] = g->UseRegister(offset);
if (scaled != NULL) {
DCHECK(scale_exponent >= 0 && scale_exponent <= 3);
inputs[(*input_count)++] = g->UseRegister(scaled);
if (constant != NULL) {
inputs[(*input_count)++] = g->UseImmediate(constant);
static const AddressingMode kMRnI_modes[] = {kMode_MR1I, kMode_MR2I,
kMode_MR4I, kMode_MR8I};
mode = kMRnI_modes[scale_exponent];
} else {
static const AddressingMode kMRn_modes[] = {kMode_MR1, kMode_MR2,
kMode_MR4, kMode_MR8};
mode = kMRn_modes[scale_exponent];
}
} else {
DCHECK(constant != NULL);
inputs[(*input_count)++] = g->UseImmediate(constant);
mode = kMode_MRI;
}
} else {
DCHECK(scaled != NULL);
DCHECK(scale_exponent >= 0 && scale_exponent <= 3);
inputs[(*input_count)++] = g->UseRegister(scaled);
if (constant != NULL) {
inputs[(*input_count)++] = g->UseImmediate(constant);
static const AddressingMode kMnI_modes[] = {kMode_M1I, kMode_M2I,
kMode_M4I, kMode_M8I};
mode = kMnI_modes[scale_exponent];
} else {
static const AddressingMode kMn_modes[] = {kMode_M1, kMode_M2, kMode_M4,
kMode_M8};
mode = kMn_modes[scale_exponent];
}
}
return mode;
}
} // namespace
void InstructionSelector::VisitInt32Add(Node* node) {
// Try to match the Add to a leal pattern
ScaledWithOffsetMatcher m(node);
X64OperandGenerator g(this);
if (m.matches() && (m.constant() == NULL || g.CanBeImmediate(m.constant()))) {
InstructionOperand* inputs[4];
size_t input_count = 0;
AddressingMode mode = GenerateMemoryOperandInputs(
&g, m.scaled(), m.scale_exponent(), m.offset(), m.constant(), inputs,
&input_count);
DCHECK_NE(0, static_cast<int>(input_count));
DCHECK_GE(arraysize(inputs), input_count);
InstructionOperand* outputs[1];
outputs[0] = g.DefineAsRegister(node);
InstructionCode opcode = AddressingModeField::encode(mode) | kX64Lea32;
Emit(opcode, 1, outputs, input_count, inputs);
return;
}
VisitBinop(this, node, kX64Add32);
}

View File

@ -101,6 +101,7 @@ function CreateTestValues() {
// -----------------------------------------------------------------------------
function TestDivisionLike(ref, construct, values, divisor) {
// Define the function to test.
var OptFun = new Function("dividend", construct(divisor));
@ -111,12 +112,14 @@ function TestDivisionLike(ref, construct, values, divisor) {
%OptimizeFunctionOnNextCall(OptFun);
OptFun(13);
// Check results.
values.forEach(function(dividend) {
function dude(dividend) {
// Avoid deopt caused by overflow, we do not want to test this here.
if (dividend === -2147483648 && divisor === -1) return;
assertEquals(ref(dividend, divisor), OptFun(dividend));
});
}
// Check results.
values.forEach(dude);
}
function Test(ref, construct) {

View File

@ -0,0 +1,317 @@
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/common-operator.h"
#include "src/compiler/graph.h"
#include "src/compiler/machine-operator.h"
#include "src/compiler/node.h"
#include "src/compiler/node-matchers.h"
#include "src/compiler/opcodes.h"
#include "test/unittests/compiler/graph-unittest.h"
#include "test/unittests/test-utils.h"
namespace v8 {
namespace internal {
namespace compiler {
class NodeMatcherTest : public GraphTest {
public:
NodeMatcherTest() {}
virtual ~NodeMatcherTest() {}
MachineOperatorBuilder* machine() { return &machine_; }
private:
MachineOperatorBuilder machine_;
};
namespace {
void CheckScaledWithOffsetMatch(ScaledWithOffsetMatcher* matcher, Node* scaled,
int scale_exponent, Node* offset,
Node* constant) {
EXPECT_TRUE(matcher->matches());
EXPECT_EQ(scaled, matcher->scaled());
EXPECT_EQ(scale_exponent, matcher->scale_exponent());
EXPECT_EQ(offset, matcher->offset());
EXPECT_EQ(constant, matcher->constant());
}
};
TEST_F(NodeMatcherTest, ScaledWithOffsetMatcher) {
graph()->SetStart(graph()->NewNode(common()->Start(0)));
const Operator* c0_op = common()->Int32Constant(0);
Node* c0 = graph()->NewNode(c0_op);
USE(c0);
const Operator* c1_op = common()->Int32Constant(1);
Node* c1 = graph()->NewNode(c1_op);
USE(c1);
const Operator* c2_op = common()->Int32Constant(2);
Node* c2 = graph()->NewNode(c2_op);
USE(c2);
const Operator* c3_op = common()->Int32Constant(3);
Node* c3 = graph()->NewNode(c3_op);
USE(c3);
const Operator* c4_op = common()->Int32Constant(4);
Node* c4 = graph()->NewNode(c4_op);
USE(c4);
const Operator* c8_op = common()->Int32Constant(8);
Node* c8 = graph()->NewNode(c8_op);
USE(c8);
const Operator* o0_op = common()->Parameter(0);
Node* o0 = graph()->NewNode(o0_op, graph()->start());
USE(o0);
const Operator* o1_op = common()->Parameter(1);
Node* o1 = graph()->NewNode(o1_op, graph()->start());
USE(o0);
const Operator* p1_op = common()->Parameter(3);
Node* p1 = graph()->NewNode(p1_op, graph()->start());
USE(p1);
const Operator* a_op = machine()->Int32Add();
USE(a_op);
const Operator* m_op = machine()->Int32Mul();
Node* m1 = graph()->NewNode(m_op, p1, c1);
Node* m2 = graph()->NewNode(m_op, p1, c2);
Node* m4 = graph()->NewNode(m_op, p1, c4);
Node* m8 = graph()->NewNode(m_op, p1, c8);
Node* m3 = graph()->NewNode(m_op, p1, c3);
const Operator* s_op = machine()->Word32Shl();
Node* s0 = graph()->NewNode(s_op, p1, c0);
Node* s1 = graph()->NewNode(s_op, p1, c1);
Node* s2 = graph()->NewNode(s_op, p1, c2);
Node* s3 = graph()->NewNode(s_op, p1, c3);
Node* s4 = graph()->NewNode(s_op, p1, c4);
// 1 INPUT
// Only relevant test cases is checking for non-match.
ScaledWithOffsetMatcher match0(c0);
EXPECT_FALSE(match0.matches());
// 2 INPUT
// (O0 + O1) -> [O0, 0, O1, NULL]
ScaledWithOffsetMatcher match1(graph()->NewNode(a_op, o0, o1));
CheckScaledWithOffsetMatch(&match1, o1, 0, o0, NULL);
// (O0 + C0) -> [NULL, 0, O0, C0]
ScaledWithOffsetMatcher match2(graph()->NewNode(a_op, o0, c0));
CheckScaledWithOffsetMatch(&match2, NULL, 0, o0, c0);
// (C0 + O0) -> [NULL, 0, O0, C0]
ScaledWithOffsetMatcher match3(graph()->NewNode(a_op, c0, o0));
CheckScaledWithOffsetMatch(&match3, NULL, 0, o0, c0);
// (O0 + M1) -> [p1, 0, O0, NULL]
ScaledWithOffsetMatcher match4(graph()->NewNode(a_op, o0, m1));
CheckScaledWithOffsetMatch(&match4, p1, 0, o0, NULL);
// (M1 + O0) -> [p1, 0, O0, NULL]
m1 = graph()->NewNode(m_op, p1, c1);
ScaledWithOffsetMatcher match5(graph()->NewNode(a_op, m1, o0));
CheckScaledWithOffsetMatch(&match5, p1, 0, o0, NULL);
// (C0 + M1) -> [P1, 0, NULL, C0]
m1 = graph()->NewNode(m_op, p1, c1);
ScaledWithOffsetMatcher match6(graph()->NewNode(a_op, c0, m1));
CheckScaledWithOffsetMatch(&match6, p1, 0, NULL, c0);
// (M1 + C0) -> [P1, 0, NULL, C0]
m1 = graph()->NewNode(m_op, p1, c1);
ScaledWithOffsetMatcher match7(graph()->NewNode(a_op, m1, c0));
CheckScaledWithOffsetMatch(&match7, p1, 0, NULL, c0);
// (O0 + S0) -> [p1, 0, O0, NULL]
ScaledWithOffsetMatcher match8(graph()->NewNode(a_op, o0, s0));
CheckScaledWithOffsetMatch(&match8, p1, 0, o0, NULL);
// (S0 + O0) -> [p1, 0, O0, NULL]
s0 = graph()->NewNode(s_op, p1, c0);
ScaledWithOffsetMatcher match9(graph()->NewNode(a_op, s0, o0));
CheckScaledWithOffsetMatch(&match9, p1, 0, o0, NULL);
// (C0 + S0) -> [P1, 0, NULL, C0]
s0 = graph()->NewNode(s_op, p1, c0);
ScaledWithOffsetMatcher match10(graph()->NewNode(a_op, c0, s0));
CheckScaledWithOffsetMatch(&match10, p1, 0, NULL, c0);
// (S0 + C0) -> [P1, 0, NULL, C0]
s0 = graph()->NewNode(s_op, p1, c0);
ScaledWithOffsetMatcher match11(graph()->NewNode(a_op, s0, c0));
CheckScaledWithOffsetMatch(&match11, p1, 0, NULL, c0);
// (O0 + M2) -> [p1, 1, O0, NULL]
ScaledWithOffsetMatcher match12(graph()->NewNode(a_op, o0, m2));
CheckScaledWithOffsetMatch(&match12, p1, 1, o0, NULL);
// (M2 + O0) -> [p1, 1, O0, NULL]
m2 = graph()->NewNode(m_op, p1, c2);
ScaledWithOffsetMatcher match13(graph()->NewNode(a_op, m2, o0));
CheckScaledWithOffsetMatch(&match13, p1, 1, o0, NULL);
// (C0 + M2) -> [P1, 1, NULL, C0]
m2 = graph()->NewNode(m_op, p1, c2);
ScaledWithOffsetMatcher match14(graph()->NewNode(a_op, c0, m2));
CheckScaledWithOffsetMatch(&match14, p1, 1, NULL, c0);
// (M2 + C0) -> [P1, 1, NULL, C0]
m2 = graph()->NewNode(m_op, p1, c2);
ScaledWithOffsetMatcher match15(graph()->NewNode(a_op, m2, c0));
CheckScaledWithOffsetMatch(&match15, p1, 1, NULL, c0);
// (O0 + S1) -> [p1, 1, O0, NULL]
ScaledWithOffsetMatcher match16(graph()->NewNode(a_op, o0, s1));
CheckScaledWithOffsetMatch(&match16, p1, 1, o0, NULL);
// (S1 + O0) -> [p1, 1, O0, NULL]
s1 = graph()->NewNode(s_op, p1, c1);
ScaledWithOffsetMatcher match17(graph()->NewNode(a_op, s1, o0));
CheckScaledWithOffsetMatch(&match17, p1, 1, o0, NULL);
// (C0 + S1) -> [P1, 1, NULL, C0]
s1 = graph()->NewNode(s_op, p1, c1);
ScaledWithOffsetMatcher match18(graph()->NewNode(a_op, c0, s1));
CheckScaledWithOffsetMatch(&match18, p1, 1, NULL, c0);
// (S1 + C0) -> [P1, 1, NULL, C0]
s1 = graph()->NewNode(s_op, p1, c1);
ScaledWithOffsetMatcher match19(graph()->NewNode(a_op, s1, c0));
CheckScaledWithOffsetMatch(&match19, p1, 1, NULL, c0);
// (O0 + M4) -> [p1, 2, O0, NULL]
ScaledWithOffsetMatcher match20(graph()->NewNode(a_op, o0, m4));
CheckScaledWithOffsetMatch(&match20, p1, 2, o0, NULL);
// (M4 + O0) -> [p1, 2, O0, NULL]
m4 = graph()->NewNode(m_op, p1, c4);
ScaledWithOffsetMatcher match21(graph()->NewNode(a_op, m4, o0));
CheckScaledWithOffsetMatch(&match21, p1, 2, o0, NULL);
// (C0 + M4) -> [p1, 2, NULL, C0]
m4 = graph()->NewNode(m_op, p1, c4);
ScaledWithOffsetMatcher match22(graph()->NewNode(a_op, c0, m4));
CheckScaledWithOffsetMatch(&match22, p1, 2, NULL, c0);
// (M4 + C0) -> [p1, 2, NULL, C0]
m4 = graph()->NewNode(m_op, p1, c4);
ScaledWithOffsetMatcher match23(graph()->NewNode(a_op, m4, c0));
CheckScaledWithOffsetMatch(&match23, p1, 2, NULL, c0);
// (O0 + S2) -> [p1, 2, O0, NULL]
ScaledWithOffsetMatcher match24(graph()->NewNode(a_op, o0, s2));
CheckScaledWithOffsetMatch(&match24, p1, 2, o0, NULL);
// (S2 + O0) -> [p1, 2, O0, NULL]
s2 = graph()->NewNode(s_op, p1, c2);
ScaledWithOffsetMatcher match25(graph()->NewNode(a_op, s2, o0));
CheckScaledWithOffsetMatch(&match25, p1, 2, o0, NULL);
// (C0 + S2) -> [p1, 2, NULL, C0]
s2 = graph()->NewNode(s_op, p1, c2);
ScaledWithOffsetMatcher match26(graph()->NewNode(a_op, c0, s2));
CheckScaledWithOffsetMatch(&match26, p1, 2, NULL, c0);
// (S2 + C0) -> [p1, 2, NULL, C0]
s2 = graph()->NewNode(s_op, p1, c2);
ScaledWithOffsetMatcher match27(graph()->NewNode(a_op, s2, c0));
CheckScaledWithOffsetMatch(&match27, p1, 2, NULL, c0);
// (O0 + M8) -> [p1, 2, O0, NULL]
ScaledWithOffsetMatcher match28(graph()->NewNode(a_op, o0, m8));
CheckScaledWithOffsetMatch(&match28, p1, 3, o0, NULL);
// (M8 + O0) -> [p1, 2, O0, NULL]
m8 = graph()->NewNode(m_op, p1, c8);
ScaledWithOffsetMatcher match29(graph()->NewNode(a_op, m8, o0));
CheckScaledWithOffsetMatch(&match29, p1, 3, o0, NULL);
// (C0 + M8) -> [p1, 2, NULL, C0]
m8 = graph()->NewNode(m_op, p1, c8);
ScaledWithOffsetMatcher match30(graph()->NewNode(a_op, c0, m8));
CheckScaledWithOffsetMatch(&match30, p1, 3, NULL, c0);
// (M8 + C0) -> [p1, 2, NULL, C0]
m8 = graph()->NewNode(m_op, p1, c8);
ScaledWithOffsetMatcher match31(graph()->NewNode(a_op, m8, c0));
CheckScaledWithOffsetMatch(&match31, p1, 3, NULL, c0);
// (O0 + S3) -> [p1, 2, O0, NULL]
ScaledWithOffsetMatcher match32(graph()->NewNode(a_op, o0, s3));
CheckScaledWithOffsetMatch(&match32, p1, 3, o0, NULL);
// (S3 + O0) -> [p1, 2, O0, NULL]
s3 = graph()->NewNode(s_op, p1, c3);
ScaledWithOffsetMatcher match33(graph()->NewNode(a_op, s3, o0));
CheckScaledWithOffsetMatch(&match33, p1, 3, o0, NULL);
// (C0 + S3) -> [p1, 2, NULL, C0]
s3 = graph()->NewNode(s_op, p1, c3);
ScaledWithOffsetMatcher match34(graph()->NewNode(a_op, c0, s3));
CheckScaledWithOffsetMatch(&match34, p1, 3, NULL, c0);
// (S3 + C0) -> [p1, 2, NULL, C0]
s3 = graph()->NewNode(s_op, p1, c3);
ScaledWithOffsetMatcher match35(graph()->NewNode(a_op, s3, c0));
CheckScaledWithOffsetMatch(&match35, p1, 3, NULL, c0);
// 2 INPUT - NEGATIVE CASES
// (M3 + O1) -> [O0, 0, M3, NULL]
ScaledWithOffsetMatcher match36(graph()->NewNode(a_op, o1, m3));
CheckScaledWithOffsetMatch(&match36, m3, 0, o1, NULL);
// (S4 + O1) -> [O0, 0, S4, NULL]
ScaledWithOffsetMatcher match37(graph()->NewNode(a_op, o1, s4));
CheckScaledWithOffsetMatch(&match37, s4, 0, o1, NULL);
// 3 INPUT
// (C0 + S3) + O0 -> [p1, 2, o0, c0]
s3 = graph()->NewNode(s_op, p1, c3);
ScaledWithOffsetMatcher match38(
graph()->NewNode(a_op, graph()->NewNode(a_op, c0, s3), o0));
CheckScaledWithOffsetMatch(&match38, p1, 3, o0, c0);
// (O0 + C0) + S3 -> [p1, 2, o0, c0]
s3 = graph()->NewNode(s_op, p1, c3);
ScaledWithOffsetMatcher match39(
graph()->NewNode(a_op, graph()->NewNode(a_op, o0, c0), s3));
CheckScaledWithOffsetMatch(&match39, p1, 3, o0, c0);
// (S3 + O0) + C0 -> [p1, 2, o0, c0]
s3 = graph()->NewNode(s_op, p1, c3);
ScaledWithOffsetMatcher match40(
graph()->NewNode(a_op, graph()->NewNode(a_op, s3, o0), c0));
CheckScaledWithOffsetMatch(&match40, p1, 3, o0, c0);
// C0 + (S3 + O0) -> [p1, 2, o0, c0]
s3 = graph()->NewNode(s_op, p1, c3);
ScaledWithOffsetMatcher match41(
graph()->NewNode(a_op, c0, graph()->NewNode(a_op, s3, o0)));
CheckScaledWithOffsetMatch(&match41, p1, 3, o0, c0);
// O0 + (C0 + S3) -> [p1, 2, o0, c0]
s3 = graph()->NewNode(s_op, p1, c3);
ScaledWithOffsetMatcher match42(
graph()->NewNode(a_op, o0, graph()->NewNode(a_op, c0, s3)));
CheckScaledWithOffsetMatch(&match42, p1, 3, o0, c0);
// S3 + (O0 + C0) -> [p1, 2, o0, c0]
s3 = graph()->NewNode(s_op, p1, c3);
ScaledWithOffsetMatcher match43(
graph()->NewNode(a_op, s3, graph()->NewNode(a_op, o0, c0)));
CheckScaledWithOffsetMatch(&match43, p1, 3, o0, c0);
}
} // namespace compiler
} // namespace internal
} // namespace v8

View File

@ -252,10 +252,366 @@ TEST_F(InstructionSelectorTest, Int32AddWithInt32AddWithParameters) {
m.Return(m.Int32Add(a0, p0));
Stream s = m.Build();
ASSERT_EQ(2U, s.size());
EXPECT_EQ(kX64Add32, s[0]->arch_opcode());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(1)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
}
TEST_F(InstructionSelectorTest, Int32AddConstantAsLea) {
StreamBuilder m(this, kMachInt32, kMachInt32);
Node* const p0 = m.Parameter(0);
Node* const c0 = m.Int32Constant(15);
m.Return(m.Int32Add(p0, c0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MRI, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_TRUE(s[0]->InputAt(1)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32AddCommutedConstantAsLea) {
StreamBuilder m(this, kMachInt32, kMachInt32);
Node* const p0 = m.Parameter(0);
Node* const c0 = m.Int32Constant(15);
m.Return(m.Int32Add(c0, p0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MRI, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_TRUE(s[0]->InputAt(1)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32AddScaled2Mul) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Int32Mul(p1, m.Int32Constant(2));
m.Return(m.Int32Add(p0, s0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, Int32AddCommutedScaled2Mul) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Int32Mul(p1, m.Int32Constant(2));
m.Return(m.Int32Add(s0, p0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, Int32AddScaled2Shl) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Word32Shl(p1, m.Int32Constant(1));
m.Return(m.Int32Add(p0, s0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, Int32AddCommutedScaled2Shl) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Word32Shl(p1, m.Int32Constant(1));
m.Return(m.Int32Add(s0, p0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, Int32AddScaled4Mul) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Int32Mul(p1, m.Int32Constant(4));
m.Return(m.Int32Add(p0, s0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR4, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, Int32AddScaled4Shl) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Word32Shl(p1, m.Int32Constant(2));
m.Return(m.Int32Add(p0, s0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR4, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, Int32AddScaled8Mul) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Int32Mul(p1, m.Int32Constant(8));
m.Return(m.Int32Add(p0, s0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR8, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, Int32AddScaled8Shl) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Word32Shl(p1, m.Int32Constant(3));
m.Return(m.Int32Add(p0, s0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR8, s[0]->addressing_mode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
}
TEST_F(InstructionSelectorTest, Int32AddScaled2MulWithConstant) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Int32Mul(p1, m.Int32Constant(2));
Node* const c0 = m.Int32Constant(15);
m.Return(m.Int32Add(c0, m.Int32Add(p0, s0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32AddScaled2MulWithConstantShuffle1) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Int32Mul(p1, m.Int32Constant(2));
Node* const c0 = m.Int32Constant(15);
m.Return(m.Int32Add(p0, m.Int32Add(s0, c0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32AddScaled2MulWithConstantShuffle2) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Int32Mul(p1, m.Int32Constant(2));
Node* const c0 = m.Int32Constant(15);
m.Return(m.Int32Add(s0, m.Int32Add(c0, p0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32AddScaled2MulWithConstantShuffle3) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Int32Mul(p1, m.Int32Constant(2));
Node* const c0 = m.Int32Constant(15);
m.Return(m.Int32Add(m.Int32Add(s0, c0), p0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32AddScaled2MulWithConstantShuffle4) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Int32Mul(p1, m.Int32Constant(2));
Node* const c0 = m.Int32Constant(15);
m.Return(m.Int32Add(m.Int32Add(c0, p0), s0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32AddScaled2MulWithConstantShuffle5) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Int32Mul(p1, m.Int32Constant(2));
Node* const c0 = m.Int32Constant(15);
m.Return(m.Int32Add(m.Int32Add(p0, s0), c0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32AddScaled2ShlWithConstant) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Word32Shl(p1, m.Int32Constant(1));
Node* const c0 = m.Int32Constant(15);
m.Return(m.Int32Add(c0, m.Int32Add(p0, s0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR2I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32AddScaled4MulWithConstant) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Int32Mul(p1, m.Int32Constant(4));
Node* const c0 = m.Int32Constant(15);
m.Return(m.Int32Add(c0, m.Int32Add(p0, s0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR4I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32AddScaled4ShlWithConstant) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Word32Shl(p1, m.Int32Constant(2));
Node* const c0 = m.Int32Constant(15);
m.Return(m.Int32Add(c0, m.Int32Add(p0, s0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR4I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32AddScaled8MulWithConstant) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Int32Mul(p1, m.Int32Constant(8));
Node* const c0 = m.Int32Constant(15);
m.Return(m.Int32Add(c0, m.Int32Add(p0, s0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR8I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}
TEST_F(InstructionSelectorTest, Int32AddScaled8ShlWithConstant) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
Node* const p0 = m.Parameter(0);
Node* const p1 = m.Parameter(1);
Node* const s0 = m.Word32Shl(p1, m.Int32Constant(3));
Node* const c0 = m.Int32Constant(15);
m.Return(m.Int32Add(c0, m.Int32Add(p0, s0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kX64Lea32, s[0]->arch_opcode());
EXPECT_EQ(kMode_MR8I, s[0]->addressing_mode());
ASSERT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0)));
EXPECT_EQ(s.ToVreg(p1), s.ToVreg(s[0]->InputAt(1)));
EXPECT_TRUE(s[0]->InputAt(2)->IsImmediate());
}

View File

@ -49,7 +49,7 @@
'compiler/js-operator-unittest.cc',
'compiler/js-typed-lowering-unittest.cc',
'compiler/machine-operator-reducer-unittest.cc',
'compiler/machine-operator-unittest.cc',
'compiler/node-matchers-unittest.cc',
'compiler/node-test-utils.cc',
'compiler/node-test-utils.h',
'compiler/register-allocator-unittest.cc',