Change asserts to STATIC_ASSERT if they can be checked at compilation time. Just in the codegen-xxx.cc files on all platforms.
Review URL: http://codereview.chromium.org/3017018 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@5121 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
This commit is contained in:
parent
b8b12b2722
commit
9deeec0b08
@ -815,7 +815,7 @@ void CodeGenerator::GenericBinaryOperation(Token::Value op,
|
||||
// Check they are both small and positive.
|
||||
__ tst(scratch, Operand(kSmiTagMask | 0xc0000000));
|
||||
ASSERT(rhs.is(r0) || lhs.is(r0)); // r0 is free now.
|
||||
ASSERT_EQ(0, kSmiTag);
|
||||
STATIC_ASSERT(kSmiTag == 0);
|
||||
if (op == Token::ADD) {
|
||||
__ add(r0, lhs, Operand(rhs), LeaveCC, eq);
|
||||
} else {
|
||||
@ -863,7 +863,7 @@ void CodeGenerator::GenericBinaryOperation(Token::Value op,
|
||||
__ and_(r0, lhs, Operand(rhs), LeaveCC, cond);
|
||||
} else {
|
||||
ASSERT(op == Token::BIT_XOR);
|
||||
ASSERT_EQ(0, kSmiTag);
|
||||
STATIC_ASSERT(kSmiTag == 0);
|
||||
__ eor(r0, lhs, Operand(rhs), LeaveCC, cond);
|
||||
}
|
||||
if (cond != al) {
|
||||
@ -1520,8 +1520,8 @@ void CodeGenerator::CallApplyLazy(Expression* applicand,
|
||||
// JS_FUNCTION_TYPE is the last instance type and it is right
|
||||
// after LAST_JS_OBJECT_TYPE, we do not have to check the upper
|
||||
// bound.
|
||||
ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
|
||||
ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
|
||||
STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
|
||||
STATIC_ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
|
||||
__ CompareObjectType(receiver_reg, r2, r3, FIRST_JS_OBJECT_TYPE);
|
||||
__ b(lt, &build_args);
|
||||
|
||||
@ -2610,7 +2610,7 @@ void CodeGenerator::VisitTryCatchStatement(TryCatchStatement* node) {
|
||||
// The next handler address is on top of the frame. Unlink from
|
||||
// the handler list and drop the rest of this handler from the
|
||||
// frame.
|
||||
ASSERT(StackHandlerConstants::kNextOffset == 0);
|
||||
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
|
||||
frame_->EmitPop(r1);
|
||||
__ mov(r3, Operand(handler_address));
|
||||
__ str(r1, MemOperand(r3));
|
||||
@ -2636,7 +2636,7 @@ void CodeGenerator::VisitTryCatchStatement(TryCatchStatement* node) {
|
||||
__ ldr(sp, MemOperand(r3));
|
||||
frame_->Forget(frame_->height() - handler_height);
|
||||
|
||||
ASSERT(StackHandlerConstants::kNextOffset == 0);
|
||||
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
|
||||
frame_->EmitPop(r1);
|
||||
__ str(r1, MemOperand(r3));
|
||||
frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
|
||||
@ -2723,7 +2723,7 @@ void CodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* node) {
|
||||
// chain and set the state on the frame to FALLING.
|
||||
if (has_valid_frame()) {
|
||||
// The next handler address is on top of the frame.
|
||||
ASSERT(StackHandlerConstants::kNextOffset == 0);
|
||||
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
|
||||
frame_->EmitPop(r1);
|
||||
__ mov(r3, Operand(handler_address));
|
||||
__ str(r1, MemOperand(r3));
|
||||
@ -2762,7 +2762,7 @@ void CodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* node) {
|
||||
|
||||
// Unlink this handler and drop it from the frame. The next
|
||||
// handler address is currently on top of the frame.
|
||||
ASSERT(StackHandlerConstants::kNextOffset == 0);
|
||||
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
|
||||
frame_->EmitPop(r1);
|
||||
__ str(r1, MemOperand(r3));
|
||||
frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
|
||||
@ -4181,8 +4181,8 @@ void CodeGenerator::GenerateClassOf(ZoneList<Expression*>* args) {
|
||||
// As long as JS_FUNCTION_TYPE is the last instance type and it is
|
||||
// right after LAST_JS_OBJECT_TYPE, we can avoid checking for
|
||||
// LAST_JS_OBJECT_TYPE.
|
||||
ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
|
||||
ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
|
||||
STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
|
||||
STATIC_ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
|
||||
__ cmp(r1, Operand(JS_FUNCTION_TYPE));
|
||||
function.Branch(eq);
|
||||
|
||||
@ -5128,7 +5128,7 @@ void CodeGenerator::GenerateGetFromCache(ZoneList<Expression*>* args) {
|
||||
|
||||
const int kFingerOffset =
|
||||
FixedArray::OffsetOfElementAt(JSFunctionResultCache::kFingerIndex);
|
||||
ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
|
||||
STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
|
||||
__ ldr(r0, FieldMemOperand(r1, kFingerOffset));
|
||||
// r0 now holds finger offset as a smi.
|
||||
__ add(r3, r1, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
|
||||
@ -6940,7 +6940,7 @@ void ConvertToDoubleStub::Generate(MacroAssembler* masm) {
|
||||
// Move sign bit from source to destination. This works because the sign bit
|
||||
// in the exponent word of the double has the same position and polarity as
|
||||
// the 2's complement sign bit in a Smi.
|
||||
ASSERT(HeapNumber::kSignMask == 0x80000000u);
|
||||
STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
|
||||
__ and_(exponent, source_, Operand(HeapNumber::kSignMask), SetCC);
|
||||
// Subtract from 0 if source was negative.
|
||||
__ rsb(source_, source_, Operand(0), LeaveCC, ne);
|
||||
@ -6993,7 +6993,7 @@ void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) {
|
||||
// the_int_ has the answer which is a signed int32 but not a Smi.
|
||||
// We test for the special value that has a different exponent. This test
|
||||
// has the neat side effect of setting the flags according to the sign.
|
||||
ASSERT(HeapNumber::kSignMask == 0x80000000u);
|
||||
STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
|
||||
__ cmp(the_int_, Operand(0x80000000u));
|
||||
__ b(eq, &max_negative_int);
|
||||
// Set up the correct exponent in scratch_. All non-Smi int32s have the same.
|
||||
@ -7338,7 +7338,7 @@ static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
|
||||
// If either operand is a JSObject or an oddball value, then they are
|
||||
// not equal since their pointers are different.
|
||||
// There is no test for undetectability in strict equality.
|
||||
ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
|
||||
STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
|
||||
Label first_non_object;
|
||||
// Get the type of the first operand into r2 and compare it with
|
||||
// FIRST_JS_OBJECT_TYPE.
|
||||
@ -7364,8 +7364,8 @@ static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
|
||||
|
||||
// Now that we have the types we might as well check for symbol-symbol.
|
||||
// Ensure that no non-strings have the symbol bit set.
|
||||
ASSERT(kNotStringTag + kIsSymbolMask > LAST_TYPE);
|
||||
ASSERT(kSymbolTag != 0);
|
||||
STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask);
|
||||
STATIC_ASSERT(kSymbolTag != 0);
|
||||
__ and_(r2, r2, Operand(r3));
|
||||
__ tst(r2, Operand(kIsSymbolMask));
|
||||
__ b(ne, &return_not_equal);
|
||||
@ -7416,7 +7416,7 @@ static void EmitCheckForSymbolsOrObjects(MacroAssembler* masm,
|
||||
// r2 is object type of rhs.
|
||||
// Ensure that no non-strings have the symbol bit set.
|
||||
Label object_test;
|
||||
ASSERT(kSymbolTag != 0);
|
||||
STATIC_ASSERT(kSymbolTag != 0);
|
||||
__ tst(r2, Operand(kIsNotStringMask));
|
||||
__ b(ne, &object_test);
|
||||
__ tst(r2, Operand(kIsSymbolMask));
|
||||
@ -7487,7 +7487,7 @@ void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm,
|
||||
not_found,
|
||||
true);
|
||||
|
||||
ASSERT_EQ(8, kDoubleSize);
|
||||
STATIC_ASSERT(8 == kDoubleSize);
|
||||
__ add(scratch1,
|
||||
object,
|
||||
Operand(HeapNumber::kValueOffset - kHeapObjectTag));
|
||||
@ -7586,7 +7586,7 @@ void CompareStub::Generate(MacroAssembler* masm) {
|
||||
|
||||
// If either is a Smi (we know that not both are), then they can only
|
||||
// be strictly equal if the other is a HeapNumber.
|
||||
ASSERT_EQ(0, kSmiTag);
|
||||
STATIC_ASSERT(kSmiTag == 0);
|
||||
ASSERT_EQ(0, Smi::FromInt(0));
|
||||
__ and_(r2, lhs_, Operand(rhs_));
|
||||
__ tst(r2, Operand(kSmiTagMask));
|
||||
@ -8589,7 +8589,7 @@ void GenericBinaryOpStub::Generate(MacroAssembler* masm) {
|
||||
Label not_smi;
|
||||
// Fast path.
|
||||
if (ShouldGenerateSmiCode()) {
|
||||
ASSERT(kSmiTag == 0); // Adjust code below.
|
||||
STATIC_ASSERT(kSmiTag == 0); // Adjust code below.
|
||||
__ tst(smi_test_reg, Operand(kSmiTagMask));
|
||||
__ b(ne, ¬_smi);
|
||||
__ add(r0, r1, Operand(r0), SetCC); // Add y optimistically.
|
||||
@ -8605,7 +8605,7 @@ void GenericBinaryOpStub::Generate(MacroAssembler* masm) {
|
||||
Label not_smi;
|
||||
// Fast path.
|
||||
if (ShouldGenerateSmiCode()) {
|
||||
ASSERT(kSmiTag == 0); // Adjust code below.
|
||||
STATIC_ASSERT(kSmiTag == 0); // Adjust code below.
|
||||
__ tst(smi_test_reg, Operand(kSmiTagMask));
|
||||
__ b(ne, ¬_smi);
|
||||
if (lhs.is(r1)) {
|
||||
@ -8627,7 +8627,7 @@ void GenericBinaryOpStub::Generate(MacroAssembler* masm) {
|
||||
case Token::MUL: {
|
||||
Label not_smi, slow;
|
||||
if (ShouldGenerateSmiCode()) {
|
||||
ASSERT(kSmiTag == 0); // adjust code below
|
||||
STATIC_ASSERT(kSmiTag == 0); // adjust code below
|
||||
__ tst(smi_test_reg, Operand(kSmiTagMask));
|
||||
Register scratch2 = smi_test_reg;
|
||||
smi_test_reg = no_reg;
|
||||
@ -8763,7 +8763,7 @@ void GenericBinaryOpStub::Generate(MacroAssembler* masm) {
|
||||
Label slow;
|
||||
Label not_power_of_2;
|
||||
ASSERT(!ShouldGenerateSmiCode());
|
||||
ASSERT(kSmiTag == 0); // Adjust code below.
|
||||
STATIC_ASSERT(kSmiTag == 0); // Adjust code below.
|
||||
// Check for two positive smis.
|
||||
__ orr(smi_test_reg, lhs, Operand(rhs));
|
||||
__ tst(smi_test_reg, Operand(0x80000000u | kSmiTagMask));
|
||||
@ -8823,7 +8823,7 @@ void GenericBinaryOpStub::Generate(MacroAssembler* masm) {
|
||||
case Token::SHR:
|
||||
case Token::SHL: {
|
||||
Label slow;
|
||||
ASSERT(kSmiTag == 0); // adjust code below
|
||||
STATIC_ASSERT(kSmiTag == 0); // adjust code below
|
||||
__ tst(smi_test_reg, Operand(kSmiTagMask));
|
||||
__ b(ne, &slow);
|
||||
Register scratch2 = smi_test_reg;
|
||||
@ -9137,17 +9137,17 @@ void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
|
||||
// r0 holds the exception.
|
||||
|
||||
// Adjust this code if not the case.
|
||||
ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);
|
||||
STATIC_ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);
|
||||
|
||||
// Drop the sp to the top of the handler.
|
||||
__ mov(r3, Operand(ExternalReference(Top::k_handler_address)));
|
||||
__ ldr(sp, MemOperand(r3));
|
||||
|
||||
// Restore the next handler and frame pointer, discard handler state.
|
||||
ASSERT(StackHandlerConstants::kNextOffset == 0);
|
||||
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
|
||||
__ pop(r2);
|
||||
__ str(r2, MemOperand(r3));
|
||||
ASSERT(StackHandlerConstants::kFPOffset == 2 * kPointerSize);
|
||||
STATIC_ASSERT(StackHandlerConstants::kFPOffset == 2 * kPointerSize);
|
||||
__ ldm(ia_w, sp, r3.bit() | fp.bit()); // r3: discarded state.
|
||||
|
||||
// Before returning we restore the context from the frame pointer if
|
||||
@ -9163,7 +9163,7 @@ void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
|
||||
__ mov(lr, Operand(pc));
|
||||
}
|
||||
#endif
|
||||
ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize);
|
||||
STATIC_ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize);
|
||||
__ pop(pc);
|
||||
}
|
||||
|
||||
@ -9171,7 +9171,7 @@ void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
|
||||
void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm,
|
||||
UncatchableExceptionType type) {
|
||||
// Adjust this code if not the case.
|
||||
ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);
|
||||
STATIC_ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);
|
||||
|
||||
// Drop sp to the top stack handler.
|
||||
__ mov(r3, Operand(ExternalReference(Top::k_handler_address)));
|
||||
@ -9192,7 +9192,7 @@ void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm,
|
||||
__ bind(&done);
|
||||
|
||||
// Set the top handler address to next handler past the current ENTRY handler.
|
||||
ASSERT(StackHandlerConstants::kNextOffset == 0);
|
||||
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
|
||||
__ pop(r2);
|
||||
__ str(r2, MemOperand(r3));
|
||||
|
||||
@ -9216,7 +9216,7 @@ void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm,
|
||||
// lr
|
||||
|
||||
// Discard handler state (r2 is not used) and restore frame pointer.
|
||||
ASSERT(StackHandlerConstants::kFPOffset == 2 * kPointerSize);
|
||||
STATIC_ASSERT(StackHandlerConstants::kFPOffset == 2 * kPointerSize);
|
||||
__ ldm(ia_w, sp, r2.bit() | fp.bit()); // r2: discarded state.
|
||||
// Before returning we restore the context from the frame pointer if
|
||||
// not NULL. The frame pointer is NULL in the exception handler of a
|
||||
@ -9231,7 +9231,7 @@ void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm,
|
||||
__ mov(lr, Operand(pc));
|
||||
}
|
||||
#endif
|
||||
ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize);
|
||||
STATIC_ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize);
|
||||
__ pop(pc);
|
||||
}
|
||||
|
||||
@ -9326,7 +9326,7 @@ void CEntryStub::GenerateCore(MacroAssembler* masm,
|
||||
|
||||
// check for failure result
|
||||
Label failure_returned;
|
||||
ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
|
||||
STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
|
||||
// Lower 2 bits of r2 are 0 iff r0 has failure tag.
|
||||
__ add(r2, r0, Operand(1));
|
||||
__ tst(r2, Operand(kFailureTagMask));
|
||||
@ -9341,7 +9341,7 @@ void CEntryStub::GenerateCore(MacroAssembler* masm,
|
||||
// check if we should retry or throw exception
|
||||
Label retry;
|
||||
__ bind(&failure_returned);
|
||||
ASSERT(Failure::RETRY_AFTER_GC == 0);
|
||||
STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0);
|
||||
__ tst(r0, Operand(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
|
||||
__ b(eq, &retry);
|
||||
|
||||
@ -9744,12 +9744,12 @@ void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) {
|
||||
}
|
||||
|
||||
// Setup the callee in-object property.
|
||||
ASSERT(Heap::arguments_callee_index == 0);
|
||||
STATIC_ASSERT(Heap::arguments_callee_index == 0);
|
||||
__ ldr(r3, MemOperand(sp, 2 * kPointerSize));
|
||||
__ str(r3, FieldMemOperand(r0, JSObject::kHeaderSize));
|
||||
|
||||
// Get the length (smi tagged) and set that as an in-object property too.
|
||||
ASSERT(Heap::arguments_length_index == 1);
|
||||
STATIC_ASSERT(Heap::arguments_length_index == 1);
|
||||
__ ldr(r1, MemOperand(sp, 0 * kPointerSize));
|
||||
__ str(r1, FieldMemOperand(r0, JSObject::kHeaderSize + kPointerSize));
|
||||
|
||||
@ -9841,7 +9841,7 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
|
||||
|
||||
// Check that the first argument is a JSRegExp object.
|
||||
__ ldr(r0, MemOperand(sp, kJSRegExpOffset));
|
||||
ASSERT_EQ(0, kSmiTag);
|
||||
STATIC_ASSERT(kSmiTag == 0);
|
||||
__ tst(r0, Operand(kSmiTagMask));
|
||||
__ b(eq, &runtime);
|
||||
__ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE);
|
||||
@ -9868,8 +9868,8 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
|
||||
FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
|
||||
// Calculate number of capture registers (number_of_captures + 1) * 2. This
|
||||
// uses the asumption that smis are 2 * their untagged value.
|
||||
ASSERT_EQ(0, kSmiTag);
|
||||
ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize);
|
||||
STATIC_ASSERT(kSmiTag == 0);
|
||||
STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
|
||||
__ add(r2, r2, Operand(2)); // r2 was a smi.
|
||||
// Check that the static offsets vector buffer is large enough.
|
||||
__ cmp(r2, Operand(OffsetsVector::kStaticOffsetsVectorSize));
|
||||
@ -9930,7 +9930,7 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
|
||||
__ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
|
||||
// First check for flat string.
|
||||
__ tst(r0, Operand(kIsNotStringMask | kStringRepresentationMask));
|
||||
ASSERT_EQ(0, kStringTag | kSeqStringTag);
|
||||
STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
|
||||
__ b(eq, &seq_string);
|
||||
|
||||
// subject: Subject string
|
||||
@ -9940,8 +9940,8 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
|
||||
// string. In that case the subject string is just the first part of the cons
|
||||
// string. Also in this case the first part of the cons string is known to be
|
||||
// a sequential string or an external string.
|
||||
ASSERT(kExternalStringTag !=0);
|
||||
ASSERT_EQ(0, kConsStringTag & kExternalStringTag);
|
||||
STATIC_ASSERT(kExternalStringTag !=0);
|
||||
STATIC_ASSERT((kConsStringTag & kExternalStringTag) == 0);
|
||||
__ tst(r0, Operand(kIsNotStringMask | kExternalStringTag));
|
||||
__ b(ne, &runtime);
|
||||
__ ldr(r0, FieldMemOperand(subject, ConsString::kSecondOffset));
|
||||
@ -9952,7 +9952,7 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
|
||||
__ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
|
||||
__ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
|
||||
// Is first part a flat string?
|
||||
ASSERT_EQ(0, kSeqStringTag);
|
||||
STATIC_ASSERT(kSeqStringTag == 0);
|
||||
__ tst(r0, Operand(kStringRepresentationMask));
|
||||
__ b(nz, &runtime);
|
||||
|
||||
@ -9960,8 +9960,8 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
|
||||
// subject: Subject string
|
||||
// regexp_data: RegExp data (FixedArray)
|
||||
// r0: Instance type of subject string
|
||||
ASSERT_EQ(4, kAsciiStringTag);
|
||||
ASSERT_EQ(0, kTwoByteStringTag);
|
||||
STATIC_ASSERT(4 == kAsciiStringTag);
|
||||
STATIC_ASSERT(kTwoByteStringTag == 0);
|
||||
// Find the code object based on the assumptions above.
|
||||
__ and_(r0, r0, Operand(kStringEncodingMask));
|
||||
__ mov(r3, Operand(r0, ASR, 2), SetCC);
|
||||
@ -10015,7 +10015,7 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
|
||||
// calculate the shift of the index (0 for ASCII and 1 for two byte).
|
||||
__ ldr(r0, FieldMemOperand(subject, String::kLengthOffset));
|
||||
__ mov(r0, Operand(r0, ASR, kSmiTagSize));
|
||||
ASSERT_EQ(SeqAsciiString::kHeaderSize, SeqTwoByteString::kHeaderSize);
|
||||
STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize);
|
||||
__ add(r9, subject, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
|
||||
__ eor(r3, r3, Operand(1));
|
||||
// Argument 4 (r3): End of string data
|
||||
@ -10070,8 +10070,8 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
|
||||
__ ldr(r1,
|
||||
FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
|
||||
// Calculate number of capture registers (number_of_captures + 1) * 2.
|
||||
ASSERT_EQ(0, kSmiTag);
|
||||
ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize);
|
||||
STATIC_ASSERT(kSmiTag == 0);
|
||||
STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
|
||||
__ add(r1, r1, Operand(2)); // r1 was a smi.
|
||||
|
||||
// r1: number of capture registers
|
||||
@ -10283,7 +10283,7 @@ void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
|
||||
__ b(ls, index_out_of_range_);
|
||||
|
||||
// We need special handling for non-flat strings.
|
||||
ASSERT(kSeqStringTag == 0);
|
||||
STATIC_ASSERT(kSeqStringTag == 0);
|
||||
__ tst(result_, Operand(kStringRepresentationMask));
|
||||
__ b(eq, &flat_string);
|
||||
|
||||
@ -10305,13 +10305,13 @@ void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
|
||||
__ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
|
||||
__ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
|
||||
// If the first cons component is also non-flat, then go to runtime.
|
||||
ASSERT(kSeqStringTag == 0);
|
||||
STATIC_ASSERT(kSeqStringTag == 0);
|
||||
__ tst(result_, Operand(kStringRepresentationMask));
|
||||
__ b(nz, &call_runtime_);
|
||||
|
||||
// Check for 1-byte or 2-byte string.
|
||||
__ bind(&flat_string);
|
||||
ASSERT(kAsciiStringTag != 0);
|
||||
STATIC_ASSERT(kAsciiStringTag != 0);
|
||||
__ tst(result_, Operand(kStringEncodingMask));
|
||||
__ b(nz, &ascii_string);
|
||||
|
||||
@ -10319,7 +10319,7 @@ void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
|
||||
// Load the 2-byte character code into the result register. We can
|
||||
// add without shifting since the smi tag size is the log2 of the
|
||||
// number of bytes in a two-byte character.
|
||||
ASSERT(kSmiTag == 0 && kSmiTagSize == 1 && kSmiShiftSize == 0);
|
||||
STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1 && kSmiShiftSize == 0);
|
||||
__ add(scratch_, object_, Operand(scratch_));
|
||||
__ ldrh(result_, FieldMemOperand(scratch_, SeqTwoByteString::kHeaderSize));
|
||||
__ jmp(&got_char_code);
|
||||
@ -10396,8 +10396,8 @@ void StringCharCodeAtGenerator::GenerateSlow(
|
||||
|
||||
void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
|
||||
// Fast case of Heap::LookupSingleCharacterStringFromCode.
|
||||
ASSERT(kSmiTag == 0);
|
||||
ASSERT(kSmiShiftSize == 0);
|
||||
STATIC_ASSERT(kSmiTag == 0);
|
||||
STATIC_ASSERT(kSmiShiftSize == 0);
|
||||
ASSERT(IsPowerOf2(String::kMaxAsciiCharCode + 1));
|
||||
__ tst(code_,
|
||||
Operand(kSmiTagMask |
|
||||
@ -10406,7 +10406,7 @@ void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
|
||||
|
||||
__ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
|
||||
// At this point code register contains smi tagged ascii char code.
|
||||
ASSERT(kSmiTag == 0);
|
||||
STATIC_ASSERT(kSmiTag == 0);
|
||||
__ add(result_, result_, Operand(code_, LSL, kPointerSizeLog2 - kSmiTagSize));
|
||||
__ ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
|
||||
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
|
||||
@ -10511,7 +10511,7 @@ void StringHelper::GenerateCopyCharactersLong(MacroAssembler* masm,
|
||||
// Ensure that reading an entire aligned word containing the last character
|
||||
// of a string will not read outside the allocated area (because we pad up
|
||||
// to kObjectAlignment).
|
||||
ASSERT(kObjectAlignment >= kReadAlignment);
|
||||
STATIC_ASSERT(kObjectAlignment >= kReadAlignment);
|
||||
// Assumes word reads and writes are little endian.
|
||||
// Nothing to do for zero characters.
|
||||
Label done;
|
||||
@ -10715,7 +10715,7 @@ void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
|
||||
__ and_(candidate, candidate, Operand(mask));
|
||||
|
||||
// Load the entry from the symble table.
|
||||
ASSERT_EQ(1, SymbolTable::kEntrySize);
|
||||
STATIC_ASSERT(SymbolTable::kEntrySize == 1);
|
||||
__ ldr(candidate,
|
||||
MemOperand(first_symbol_table_element,
|
||||
candidate,
|
||||
@ -10815,8 +10815,8 @@ void SubStringStub::Generate(MacroAssembler* masm) {
|
||||
// Check bounds and smi-ness.
|
||||
__ ldr(r7, MemOperand(sp, kToOffset));
|
||||
__ ldr(r6, MemOperand(sp, kFromOffset));
|
||||
ASSERT_EQ(0, kSmiTag);
|
||||
ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize);
|
||||
STATIC_ASSERT(kSmiTag == 0);
|
||||
STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
|
||||
// I.e., arithmetic shift right by one un-smi-tags.
|
||||
__ mov(r2, Operand(r7, ASR, 1), SetCC);
|
||||
__ mov(r3, Operand(r6, ASR, 1), SetCC, cc);
|
||||
@ -10839,7 +10839,7 @@ void SubStringStub::Generate(MacroAssembler* masm) {
|
||||
|
||||
// Make sure first argument is a sequential (or flat) string.
|
||||
__ ldr(r5, MemOperand(sp, kStringOffset));
|
||||
ASSERT_EQ(0, kSmiTag);
|
||||
STATIC_ASSERT(kSmiTag == 0);
|
||||
__ tst(r5, Operand(kSmiTagMask));
|
||||
__ b(eq, &runtime);
|
||||
Condition is_string = masm->IsObjectStringType(r5, r1);
|
||||
@ -10853,8 +10853,8 @@ void SubStringStub::Generate(MacroAssembler* masm) {
|
||||
// r7: to (smi)
|
||||
Label seq_string;
|
||||
__ and_(r4, r1, Operand(kStringRepresentationMask));
|
||||
ASSERT(kSeqStringTag < kConsStringTag);
|
||||
ASSERT(kExternalStringTag > kConsStringTag);
|
||||
STATIC_ASSERT(kSeqStringTag < kConsStringTag);
|
||||
STATIC_ASSERT(kConsStringTag < kExternalStringTag);
|
||||
__ cmp(r4, Operand(kConsStringTag));
|
||||
__ b(gt, &runtime); // External strings go to runtime.
|
||||
__ b(lt, &seq_string); // Sequential strings are handled directly.
|
||||
@ -10866,7 +10866,7 @@ void SubStringStub::Generate(MacroAssembler* masm) {
|
||||
__ ldr(r4, FieldMemOperand(r5, HeapObject::kMapOffset));
|
||||
__ ldrb(r1, FieldMemOperand(r4, Map::kInstanceTypeOffset));
|
||||
__ tst(r1, Operand(kStringRepresentationMask));
|
||||
ASSERT_EQ(0, kSeqStringTag);
|
||||
STATIC_ASSERT(kSeqStringTag == 0);
|
||||
__ b(ne, &runtime); // Cons and External strings go to runtime.
|
||||
|
||||
// Definitly a sequential string.
|
||||
@ -10890,7 +10890,7 @@ void SubStringStub::Generate(MacroAssembler* masm) {
|
||||
// Check for flat ascii string.
|
||||
Label non_ascii_flat;
|
||||
__ tst(r1, Operand(kStringEncodingMask));
|
||||
ASSERT_EQ(0, kTwoByteStringTag);
|
||||
STATIC_ASSERT(kTwoByteStringTag == 0);
|
||||
__ b(eq, &non_ascii_flat);
|
||||
|
||||
Label result_longer_than_two;
|
||||
@ -10939,7 +10939,7 @@ void SubStringStub::Generate(MacroAssembler* masm) {
|
||||
// r1: first character of result string.
|
||||
// r2: result string length.
|
||||
// r5: first character of sub string to copy.
|
||||
ASSERT_EQ(0, SeqAsciiString::kHeaderSize & kObjectAlignmentMask);
|
||||
STATIC_ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0);
|
||||
StringHelper::GenerateCopyCharactersLong(masm, r1, r5, r2, r3, r4, r6, r7, r9,
|
||||
COPY_ASCII | DEST_ALWAYS_ALIGNED);
|
||||
__ IncrementCounter(&Counters::sub_string_native, 1, r3, r4);
|
||||
@ -10970,7 +10970,7 @@ void SubStringStub::Generate(MacroAssembler* masm) {
|
||||
// r1: first character of result.
|
||||
// r2: result length.
|
||||
// r5: first character of string to copy.
|
||||
ASSERT_EQ(0, SeqTwoByteString::kHeaderSize & kObjectAlignmentMask);
|
||||
STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
|
||||
StringHelper::GenerateCopyCharactersLong(masm, r1, r5, r2, r3, r4, r6, r7, r9,
|
||||
DEST_ALWAYS_ALIGNED);
|
||||
__ IncrementCounter(&Counters::sub_string_native, 1, r3, r4);
|
||||
@ -10998,7 +10998,7 @@ void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
|
||||
Register length_delta = scratch3;
|
||||
__ mov(scratch1, scratch2, LeaveCC, gt);
|
||||
Register min_length = scratch1;
|
||||
ASSERT(kSmiTag == 0);
|
||||
STATIC_ASSERT(kSmiTag == 0);
|
||||
__ tst(min_length, Operand(min_length));
|
||||
__ b(eq, &compare_lengths);
|
||||
|
||||
@ -11054,8 +11054,8 @@ void StringCompareStub::Generate(MacroAssembler* masm) {
|
||||
Label not_same;
|
||||
__ cmp(r0, r1);
|
||||
__ b(ne, ¬_same);
|
||||
ASSERT_EQ(0, EQUAL);
|
||||
ASSERT_EQ(0, kSmiTag);
|
||||
STATIC_ASSERT(EQUAL == 0);
|
||||
STATIC_ASSERT(kSmiTag == 0);
|
||||
__ mov(r0, Operand(Smi::FromInt(EQUAL)));
|
||||
__ IncrementCounter(&Counters::string_compare_native, 1, r1, r2);
|
||||
__ add(sp, sp, Operand(2 * kPointerSize));
|
||||
@ -11090,14 +11090,14 @@ void StringAddStub::Generate(MacroAssembler* masm) {
|
||||
|
||||
// Make sure that both arguments are strings if not known in advance.
|
||||
if (string_check_) {
|
||||
ASSERT_EQ(0, kSmiTag);
|
||||
STATIC_ASSERT(kSmiTag == 0);
|
||||
__ JumpIfEitherSmi(r0, r1, &string_add_runtime);
|
||||
// Load instance types.
|
||||
__ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
|
||||
__ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
|
||||
__ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
|
||||
__ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
|
||||
ASSERT_EQ(0, kStringTag);
|
||||
STATIC_ASSERT(kStringTag == 0);
|
||||
// If either is not a string, go to runtime.
|
||||
__ tst(r4, Operand(kIsNotStringMask));
|
||||
__ tst(r5, Operand(kIsNotStringMask), eq);
|
||||
@ -11114,10 +11114,10 @@ void StringAddStub::Generate(MacroAssembler* masm) {
|
||||
// Check if either of the strings are empty. In that case return the other.
|
||||
__ ldr(r2, FieldMemOperand(r0, String::kLengthOffset));
|
||||
__ ldr(r3, FieldMemOperand(r1, String::kLengthOffset));
|
||||
ASSERT(kSmiTag == 0);
|
||||
STATIC_ASSERT(kSmiTag == 0);
|
||||
__ cmp(r2, Operand(Smi::FromInt(0))); // Test if first string is empty.
|
||||
__ mov(r0, Operand(r1), LeaveCC, eq); // If first is empty, return second.
|
||||
ASSERT(kSmiTag == 0);
|
||||
STATIC_ASSERT(kSmiTag == 0);
|
||||
// Else test if second string is empty.
|
||||
__ cmp(r3, Operand(Smi::FromInt(0)), ne);
|
||||
__ b(ne, &strings_not_empty); // If either string was empty, return r0.
|
||||
@ -11141,7 +11141,7 @@ void StringAddStub::Generate(MacroAssembler* masm) {
|
||||
// Look at the length of the result of adding the two strings.
|
||||
Label string_add_flat_result, longer_than_two;
|
||||
// Adding two lengths can't overflow.
|
||||
ASSERT(String::kMaxLength * 2 > String::kMaxLength);
|
||||
STATIC_ASSERT(String::kMaxLength < String::kMaxLength * 2);
|
||||
__ add(r6, r2, Operand(r3));
|
||||
// Use the runtime system when adding two one character strings, as it
|
||||
// contains optimizations for this specific case using the symbol table.
|
||||
@ -11189,7 +11189,7 @@ void StringAddStub::Generate(MacroAssembler* masm) {
|
||||
__ cmp(r6, Operand(String::kMinNonFlatLength));
|
||||
__ b(lt, &string_add_flat_result);
|
||||
// Handle exceptionally long strings in the runtime system.
|
||||
ASSERT((String::kMaxLength & 0x80000000) == 0);
|
||||
STATIC_ASSERT((String::kMaxLength & 0x80000000) == 0);
|
||||
ASSERT(IsPowerOf2(String::kMaxLength + 1));
|
||||
// kMaxLength + 1 is representable as shifted literal, kMaxLength is not.
|
||||
__ cmp(r6, Operand(String::kMaxLength + 1));
|
||||
@ -11204,7 +11204,7 @@ void StringAddStub::Generate(MacroAssembler* masm) {
|
||||
__ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
|
||||
}
|
||||
Label non_ascii, allocated, ascii_data;
|
||||
ASSERT_EQ(0, kTwoByteStringTag);
|
||||
STATIC_ASSERT(kTwoByteStringTag == 0);
|
||||
__ tst(r4, Operand(kStringEncodingMask));
|
||||
__ tst(r5, Operand(kStringEncodingMask), ne);
|
||||
__ b(eq, &non_ascii);
|
||||
@ -11230,7 +11230,7 @@ void StringAddStub::Generate(MacroAssembler* masm) {
|
||||
__ tst(r5, Operand(kAsciiDataHintMask), ne);
|
||||
__ b(ne, &ascii_data);
|
||||
__ eor(r4, r4, Operand(r5));
|
||||
ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0);
|
||||
STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0);
|
||||
__ and_(r4, r4, Operand(kAsciiStringTag | kAsciiDataHintTag));
|
||||
__ cmp(r4, Operand(kAsciiStringTag | kAsciiDataHintTag));
|
||||
__ b(eq, &ascii_data);
|
||||
@ -11256,7 +11256,7 @@ void StringAddStub::Generate(MacroAssembler* masm) {
|
||||
__ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
|
||||
}
|
||||
// Check that both strings are sequential.
|
||||
ASSERT_EQ(0, kSeqStringTag);
|
||||
STATIC_ASSERT(kSeqStringTag == 0);
|
||||
__ tst(r4, Operand(kStringRepresentationMask));
|
||||
__ tst(r5, Operand(kStringRepresentationMask), eq);
|
||||
__ b(ne, &string_add_runtime);
|
||||
|
@ -905,7 +905,7 @@ void CodeGenerator::ToBoolean(ControlDestination* dest) {
|
||||
__ AbortIfNotNumber(value.reg());
|
||||
}
|
||||
// Smi => false iff zero.
|
||||
ASSERT(kSmiTag == 0);
|
||||
STATIC_ASSERT(kSmiTag == 0);
|
||||
__ test(value.reg(), Operand(value.reg()));
|
||||
dest->false_target()->Branch(zero);
|
||||
__ test(value.reg(), Immediate(kSmiTagMask));
|
||||
@ -930,7 +930,7 @@ void CodeGenerator::ToBoolean(ControlDestination* dest) {
|
||||
dest->false_target()->Branch(equal);
|
||||
|
||||
// Smi => false iff zero.
|
||||
ASSERT(kSmiTag == 0);
|
||||
STATIC_ASSERT(kSmiTag == 0);
|
||||
__ test(value.reg(), Operand(value.reg()));
|
||||
dest->false_target()->Branch(zero);
|
||||
__ test(value.reg(), Immediate(kSmiTagMask));
|
||||
@ -1169,7 +1169,7 @@ static TypeInfo CalculateTypeInfo(TypeInfo operands_type,
|
||||
const Result& left) {
|
||||
// Set TypeInfo of result according to the operation performed.
|
||||
// Rely on the fact that smis have a 31 bit payload on ia32.
|
||||
ASSERT(kSmiValueSize == 31);
|
||||
STATIC_ASSERT(kSmiValueSize == 31);
|
||||
switch (op) {
|
||||
case Token::COMMA:
|
||||
return right.type_info();
|
||||
@ -1599,7 +1599,7 @@ Result CodeGenerator::LikelySmiBinaryOperation(BinaryOperation* expr,
|
||||
// Check for the corner case of dividing the most negative smi by
|
||||
// -1. We cannot use the overflow flag, since it is not set by
|
||||
// idiv instruction.
|
||||
ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
|
||||
STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
|
||||
__ cmp(eax, 0x40000000);
|
||||
deferred->Branch(equal);
|
||||
// Check that the remainder is zero.
|
||||
@ -1789,7 +1789,7 @@ Result CodeGenerator::LikelySmiBinaryOperation(BinaryOperation* expr,
|
||||
|
||||
case Token::MUL: {
|
||||
// If the smi tag is 0 we can just leave the tag on one operand.
|
||||
ASSERT(kSmiTag == 0); // Adjust code below if not the case.
|
||||
STATIC_ASSERT(kSmiTag == 0); // Adjust code below if not the case.
|
||||
// Remove smi tag from the left operand (but keep sign).
|
||||
// Left-hand operand has been copied into answer.
|
||||
__ SmiUntag(answer.reg());
|
||||
@ -2296,13 +2296,13 @@ Result CodeGenerator::ConstantSmiBinaryOperation(BinaryOperation* expr,
|
||||
__ AbortIfNotSmi(operand->reg());
|
||||
}
|
||||
__ mov(answer.reg(), operand->reg());
|
||||
ASSERT(kSmiTag == 0); // adjust code if not the case
|
||||
STATIC_ASSERT(kSmiTag == 0); // adjust code if not the case
|
||||
// We do no shifts, only the Smi conversion, if shift_value is 1.
|
||||
if (shift_value > 1) {
|
||||
__ shl(answer.reg(), shift_value - 1);
|
||||
}
|
||||
// Convert int result to Smi, checking that it is in int range.
|
||||
ASSERT(kSmiTagSize == 1); // adjust code if not the case
|
||||
STATIC_ASSERT(kSmiTagSize == 1); // adjust code if not the case
|
||||
__ add(answer.reg(), Operand(answer.reg()));
|
||||
deferred->Branch(overflow);
|
||||
deferred->BindExit();
|
||||
@ -2370,8 +2370,8 @@ Result CodeGenerator::ConstantSmiBinaryOperation(BinaryOperation* expr,
|
||||
overwrite_mode);
|
||||
// Check that lowest log2(value) bits of operand are zero, and test
|
||||
// smi tag at the same time.
|
||||
ASSERT_EQ(0, kSmiTag);
|
||||
ASSERT_EQ(1, kSmiTagSize);
|
||||
STATIC_ASSERT(kSmiTag == 0);
|
||||
STATIC_ASSERT(kSmiTagSize == 1);
|
||||
__ test(operand->reg(), Immediate(3));
|
||||
deferred->Branch(not_zero); // Branch if non-smi or odd smi.
|
||||
__ sar(operand->reg(), 1);
|
||||
@ -2605,9 +2605,9 @@ void CodeGenerator::Comparison(AstNode* node,
|
||||
// side (which is always a symbol).
|
||||
if (cc == equal) {
|
||||
Label not_a_symbol;
|
||||
ASSERT(kSymbolTag != 0);
|
||||
STATIC_ASSERT(kSymbolTag != 0);
|
||||
// Ensure that no non-strings have the symbol bit set.
|
||||
ASSERT(kNotStringTag + kIsSymbolMask > LAST_TYPE);
|
||||
STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask);
|
||||
__ test(temp.reg(), Immediate(kIsSymbolMask)); // Test the symbol bit.
|
||||
__ j(zero, ¬_a_symbol);
|
||||
// They are symbols, so do identity compare.
|
||||
@ -3151,8 +3151,8 @@ void CodeGenerator::CallApplyLazy(Expression* applicand,
|
||||
// JS_FUNCTION_TYPE is the last instance type and it is right
|
||||
// after LAST_JS_OBJECT_TYPE, we do not have to check the upper
|
||||
// bound.
|
||||
ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
|
||||
ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
|
||||
STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
|
||||
STATIC_ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
|
||||
__ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, ecx);
|
||||
__ j(below, &build_args);
|
||||
|
||||
@ -4476,7 +4476,7 @@ void CodeGenerator::VisitTryCatchStatement(TryCatchStatement* node) {
|
||||
// The next handler address is on top of the frame. Unlink from
|
||||
// the handler list and drop the rest of this handler from the
|
||||
// frame.
|
||||
ASSERT(StackHandlerConstants::kNextOffset == 0);
|
||||
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
|
||||
frame_->EmitPop(Operand::StaticVariable(handler_address));
|
||||
frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
|
||||
if (has_unlinks) {
|
||||
@ -4507,7 +4507,7 @@ void CodeGenerator::VisitTryCatchStatement(TryCatchStatement* node) {
|
||||
__ mov(esp, Operand::StaticVariable(handler_address));
|
||||
frame_->Forget(frame_->height() - handler_height);
|
||||
|
||||
ASSERT(StackHandlerConstants::kNextOffset == 0);
|
||||
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
|
||||
frame_->EmitPop(Operand::StaticVariable(handler_address));
|
||||
frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
|
||||
|
||||
@ -4593,7 +4593,7 @@ void CodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* node) {
|
||||
// chain and set the state on the frame to FALLING.
|
||||
if (has_valid_frame()) {
|
||||
// The next handler address is on top of the frame.
|
||||
ASSERT(StackHandlerConstants::kNextOffset == 0);
|
||||
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
|
||||
frame_->EmitPop(Operand::StaticVariable(handler_address));
|
||||
frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
|
||||
|
||||
@ -4632,7 +4632,7 @@ void CodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* node) {
|
||||
frame_->Forget(frame_->height() - handler_height);
|
||||
|
||||
// Unlink this handler and drop it from the frame.
|
||||
ASSERT(StackHandlerConstants::kNextOffset == 0);
|
||||
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
|
||||
frame_->EmitPop(Operand::StaticVariable(handler_address));
|
||||
frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
|
||||
|
||||
@ -6573,8 +6573,8 @@ void CodeGenerator::GenerateClassOf(ZoneList<Expression*>* args) {
|
||||
// As long as JS_FUNCTION_TYPE is the last instance type and it is
|
||||
// right after LAST_JS_OBJECT_TYPE, we can avoid checking for
|
||||
// LAST_JS_OBJECT_TYPE.
|
||||
ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
|
||||
ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
|
||||
STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
|
||||
STATIC_ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
|
||||
__ CmpInstanceType(obj.reg(), JS_FUNCTION_TYPE);
|
||||
function.Branch(equal);
|
||||
|
||||
@ -6715,7 +6715,7 @@ void CodeGenerator::GenerateObjectEquals(ZoneList<Expression*>* args) {
|
||||
|
||||
void CodeGenerator::GenerateGetFramePointer(ZoneList<Expression*>* args) {
|
||||
ASSERT(args->length() == 0);
|
||||
ASSERT(kSmiTag == 0); // EBP value is aligned, so it should look like Smi.
|
||||
STATIC_ASSERT(kSmiTag == 0); // EBP value is aligned, so it looks like a Smi.
|
||||
Result ebp_as_smi = allocator_->Allocate();
|
||||
ASSERT(ebp_as_smi.is_valid());
|
||||
__ mov(ebp_as_smi.reg(), Operand(ebp));
|
||||
@ -7069,7 +7069,7 @@ void CodeGenerator::GenerateGetFromCache(ZoneList<Expression*>* args) {
|
||||
key.reg());
|
||||
|
||||
// tmp.reg() now holds finger offset as a smi.
|
||||
ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
|
||||
STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
|
||||
__ mov(tmp.reg(), FieldOperand(cache.reg(),
|
||||
JSFunctionResultCache::kFingerOffset));
|
||||
__ cmp(key.reg(), FixedArrayElementOperand(cache.reg(), tmp.reg()));
|
||||
@ -9031,7 +9031,7 @@ Result CodeGenerator::EmitKeyedLoad() {
|
||||
|
||||
// Load and check that the result is not the hole.
|
||||
// Key holds a smi.
|
||||
ASSERT((kSmiTag == 0) && (kSmiTagSize == 1));
|
||||
STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
|
||||
__ mov(elements.reg(),
|
||||
FieldOperand(elements.reg(),
|
||||
key.reg(),
|
||||
@ -9407,7 +9407,9 @@ void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) {
|
||||
Label slow_case;
|
||||
__ mov(ecx, Operand(esp, 3 * kPointerSize));
|
||||
__ mov(eax, Operand(esp, 2 * kPointerSize));
|
||||
ASSERT((kPointerSize == 4) && (kSmiTagSize == 1) && (kSmiTag == 0));
|
||||
STATIC_ASSERT(kPointerSize == 4);
|
||||
STATIC_ASSERT(kSmiTagSize == 1);
|
||||
STATIC_ASSERT(kSmiTag == 0);
|
||||
__ mov(ecx, CodeGenerator::FixedArrayElementOperand(ecx, eax));
|
||||
__ cmp(ecx, Factory::undefined_value());
|
||||
__ j(equal, &slow_case);
|
||||
@ -9471,7 +9473,7 @@ void ToBooleanStub::Generate(MacroAssembler* masm) {
|
||||
// String value => false iff empty.
|
||||
__ CmpInstanceType(edx, FIRST_NONSTRING_TYPE);
|
||||
__ j(above_equal, ¬_string);
|
||||
ASSERT(kSmiTag == 0);
|
||||
STATIC_ASSERT(kSmiTag == 0);
|
||||
__ cmp(FieldOperand(eax, String::kLengthOffset), Immediate(0));
|
||||
__ j(zero, &false_result);
|
||||
__ jmp(&true_result);
|
||||
@ -9721,7 +9723,7 @@ void GenericBinaryOpStub::GenerateSmiCode(MacroAssembler* masm, Label* slow) {
|
||||
}
|
||||
|
||||
// 3. Perform the smi check of the operands.
|
||||
ASSERT(kSmiTag == 0); // Adjust zero check if not the case.
|
||||
STATIC_ASSERT(kSmiTag == 0); // Adjust zero check if not the case.
|
||||
__ test(combined, Immediate(kSmiTagMask));
|
||||
__ j(not_zero, ¬_smis, not_taken);
|
||||
|
||||
@ -9802,7 +9804,7 @@ void GenericBinaryOpStub::GenerateSmiCode(MacroAssembler* masm, Label* slow) {
|
||||
|
||||
case Token::MUL:
|
||||
// If the smi tag is 0 we can just leave the tag on one operand.
|
||||
ASSERT(kSmiTag == 0); // Adjust code below if not the case.
|
||||
STATIC_ASSERT(kSmiTag == 0); // Adjust code below if not the case.
|
||||
// We can't revert the multiplication if the result is not a smi
|
||||
// so save the right operand.
|
||||
__ mov(ebx, right);
|
||||
@ -9830,7 +9832,7 @@ void GenericBinaryOpStub::GenerateSmiCode(MacroAssembler* masm, Label* slow) {
|
||||
// Check for the corner case of dividing the most negative smi by
|
||||
// -1. We cannot use the overflow flag, since it is not set by idiv
|
||||
// instruction.
|
||||
ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
|
||||
STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
|
||||
__ cmp(eax, 0x40000000);
|
||||
__ j(equal, &use_fp_on_smis);
|
||||
// Check for negative zero result. Use combined = left | right.
|
||||
@ -10403,7 +10405,7 @@ void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
|
||||
__ j(not_zero, &input_not_smi);
|
||||
// Input is a smi. Untag and load it onto the FPU stack.
|
||||
// Then load the low and high words of the double into ebx, edx.
|
||||
ASSERT_EQ(1, kSmiTagSize);
|
||||
STATIC_ASSERT(kSmiTagSize == 1);
|
||||
__ sar(eax, 1);
|
||||
__ sub(Operand(esp), Immediate(2 * kPointerSize));
|
||||
__ mov(Operand(esp, 0), eax);
|
||||
@ -11122,7 +11124,7 @@ void GenericUnaryOpStub::Generate(MacroAssembler* masm) {
|
||||
__ j(sign, &try_float, not_taken);
|
||||
|
||||
// Tag the result as a smi and we're done.
|
||||
ASSERT(kSmiTagSize == 1);
|
||||
STATIC_ASSERT(kSmiTagSize == 1);
|
||||
__ lea(eax, Operand(ecx, times_2, kSmiTag));
|
||||
__ jmp(&done);
|
||||
|
||||
@ -11198,7 +11200,8 @@ void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
|
||||
__ j(above_equal, &slow, not_taken);
|
||||
|
||||
// Read the argument from the stack and return it.
|
||||
ASSERT(kSmiTagSize == 1 && kSmiTag == 0); // shifting code depends on this
|
||||
STATIC_ASSERT(kSmiTagSize == 1);
|
||||
STATIC_ASSERT(kSmiTag == 0); // Shifting code depends on these.
|
||||
__ lea(ebx, Operand(ebp, eax, times_2, 0));
|
||||
__ neg(edx);
|
||||
__ mov(eax, Operand(ebx, edx, times_2, kDisplacement));
|
||||
@ -11213,7 +11216,8 @@ void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
|
||||
__ j(above_equal, &slow, not_taken);
|
||||
|
||||
// Read the argument from the stack and return it.
|
||||
ASSERT(kSmiTagSize == 1 && kSmiTag == 0); // shifting code depends on this
|
||||
STATIC_ASSERT(kSmiTagSize == 1);
|
||||
STATIC_ASSERT(kSmiTag == 0); // Shifting code depends on these.
|
||||
__ lea(ebx, Operand(ebx, ecx, times_2, 0));
|
||||
__ neg(edx);
|
||||
__ mov(eax, Operand(ebx, edx, times_2, kDisplacement));
|
||||
@ -11284,12 +11288,12 @@ void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) {
|
||||
}
|
||||
|
||||
// Setup the callee in-object property.
|
||||
ASSERT(Heap::arguments_callee_index == 0);
|
||||
STATIC_ASSERT(Heap::arguments_callee_index == 0);
|
||||
__ mov(ebx, Operand(esp, 3 * kPointerSize));
|
||||
__ mov(FieldOperand(eax, JSObject::kHeaderSize), ebx);
|
||||
|
||||
// Get the length (smi tagged) and set that as an in-object property too.
|
||||
ASSERT(Heap::arguments_length_index == 1);
|
||||
STATIC_ASSERT(Heap::arguments_length_index == 1);
|
||||
__ mov(ecx, Operand(esp, 1 * kPointerSize));
|
||||
__ mov(FieldOperand(eax, JSObject::kHeaderSize + kPointerSize), ecx);
|
||||
|
||||
@ -11368,7 +11372,7 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
|
||||
|
||||
// Check that the first argument is a JSRegExp object.
|
||||
__ mov(eax, Operand(esp, kJSRegExpOffset));
|
||||
ASSERT_EQ(0, kSmiTag);
|
||||
STATIC_ASSERT(kSmiTag == 0);
|
||||
__ test(eax, Immediate(kSmiTagMask));
|
||||
__ j(zero, &runtime);
|
||||
__ CmpObjectType(eax, JS_REGEXP_TYPE, ecx);
|
||||
@ -11393,8 +11397,8 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
|
||||
__ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
|
||||
// Calculate number of capture registers (number_of_captures + 1) * 2. This
|
||||
// uses the asumption that smis are 2 * their untagged value.
|
||||
ASSERT_EQ(0, kSmiTag);
|
||||
ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize);
|
||||
STATIC_ASSERT(kSmiTag == 0);
|
||||
STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
|
||||
__ add(Operand(edx), Immediate(2)); // edx was a smi.
|
||||
// Check that the static offsets vector buffer is large enough.
|
||||
__ cmp(edx, OffsetsVector::kStaticOffsetsVectorSize);
|
||||
@ -11452,7 +11456,7 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
|
||||
// First check for flat two byte string.
|
||||
__ and_(ebx,
|
||||
kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask);
|
||||
ASSERT_EQ(0, kStringTag | kSeqStringTag | kTwoByteStringTag);
|
||||
STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0);
|
||||
__ j(zero, &seq_two_byte_string);
|
||||
// Any other flat string must be a flat ascii string.
|
||||
__ test(Operand(ebx),
|
||||
@ -11464,8 +11468,8 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
|
||||
// string. In that case the subject string is just the first part of the cons
|
||||
// string. Also in this case the first part of the cons string is known to be
|
||||
// a sequential string or an external string.
|
||||
ASSERT(kExternalStringTag !=0);
|
||||
ASSERT_EQ(0, kConsStringTag & kExternalStringTag);
|
||||
STATIC_ASSERT(kExternalStringTag != 0);
|
||||
STATIC_ASSERT((kConsStringTag & kExternalStringTag) == 0);
|
||||
__ test(Operand(ebx),
|
||||
Immediate(kIsNotStringMask | kExternalStringTag));
|
||||
__ j(not_zero, &runtime);
|
||||
@ -11481,7 +11485,7 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
|
||||
// Is first part a flat two byte string?
|
||||
__ test_b(FieldOperand(ebx, Map::kInstanceTypeOffset),
|
||||
kStringRepresentationMask | kStringEncodingMask);
|
||||
ASSERT_EQ(0, kSeqStringTag | kTwoByteStringTag);
|
||||
STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0);
|
||||
__ j(zero, &seq_two_byte_string);
|
||||
// Any other flat string must be ascii.
|
||||
__ test_b(FieldOperand(ebx, Map::kInstanceTypeOffset),
|
||||
@ -11552,7 +11556,8 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
|
||||
__ jmp(&setup_rest);
|
||||
|
||||
__ bind(&setup_two_byte);
|
||||
ASSERT(kSmiTag == 0 && kSmiTagSize == 1); // edi is smi (powered by 2).
|
||||
STATIC_ASSERT(kSmiTag == 0);
|
||||
STATIC_ASSERT(kSmiTagSize == 1); // edi is smi (powered by 2).
|
||||
__ lea(ecx, FieldOperand(eax, edi, times_1, SeqTwoByteString::kHeaderSize));
|
||||
__ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4.
|
||||
__ lea(ecx, FieldOperand(eax, ebx, times_2, SeqTwoByteString::kHeaderSize));
|
||||
@ -11600,8 +11605,8 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
|
||||
__ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
|
||||
__ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
|
||||
// Calculate number of capture registers (number_of_captures + 1) * 2.
|
||||
ASSERT_EQ(0, kSmiTag);
|
||||
ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize);
|
||||
STATIC_ASSERT(kSmiTag == 0);
|
||||
STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
|
||||
__ add(Operand(edx), Immediate(2)); // edx was a smi.
|
||||
|
||||
// edx: Number of capture registers
|
||||
@ -11696,7 +11701,7 @@ void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm,
|
||||
__ SmiUntag(scratch);
|
||||
} else {
|
||||
Label not_smi, hash_calculated;
|
||||
ASSERT(kSmiTag == 0);
|
||||
STATIC_ASSERT(kSmiTag == 0);
|
||||
__ test(object, Immediate(kSmiTagMask));
|
||||
__ j(not_zero, ¬_smi);
|
||||
__ mov(scratch, object);
|
||||
@ -11706,7 +11711,7 @@ void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm,
|
||||
__ cmp(FieldOperand(object, HeapObject::kMapOffset),
|
||||
Factory::heap_number_map());
|
||||
__ j(not_equal, not_found);
|
||||
ASSERT_EQ(8, kDoubleSize);
|
||||
STATIC_ASSERT(8 == kDoubleSize);
|
||||
__ mov(scratch, FieldOperand(object, HeapNumber::kValueOffset));
|
||||
__ xor_(scratch, FieldOperand(object, HeapNumber::kValueOffset + 4));
|
||||
// Object is heap number and hash is now in scratch. Calculate cache index.
|
||||
@ -11837,7 +11842,7 @@ void CompareStub::Generate(MacroAssembler* masm) {
|
||||
// Value is a QNaN if value & kQuietNaNMask == kQuietNaNMask, i.e.,
|
||||
// all bits in the mask are set. We only need to check the word
|
||||
// that contains the exponent and high bit of the mantissa.
|
||||
ASSERT_NE(0, (kQuietNaNHighBitsMask << 1) & 0x80000000u);
|
||||
STATIC_ASSERT(((kQuietNaNHighBitsMask << 1) & 0x80000000u) != 0);
|
||||
__ mov(edx, FieldOperand(edx, HeapNumber::kExponentOffset));
|
||||
__ xor_(eax, Operand(eax));
|
||||
// Shift value and mask so kQuietNaNHighBitsMask applies to topmost
|
||||
@ -11845,7 +11850,7 @@ void CompareStub::Generate(MacroAssembler* masm) {
|
||||
__ add(edx, Operand(edx));
|
||||
__ cmp(edx, kQuietNaNHighBitsMask << 1);
|
||||
if (cc_ == equal) {
|
||||
ASSERT_NE(1, EQUAL);
|
||||
STATIC_ASSERT(EQUAL != 1);
|
||||
__ setcc(above_equal, eax);
|
||||
__ ret(0);
|
||||
} else {
|
||||
@ -11873,7 +11878,7 @@ void CompareStub::Generate(MacroAssembler* masm) {
|
||||
// slow-case code.
|
||||
// If either is a Smi (we know that not both are), then they can only
|
||||
// be equal if the other is a HeapNumber. If so, use the slow case.
|
||||
ASSERT_EQ(0, kSmiTag);
|
||||
STATIC_ASSERT(kSmiTag == 0);
|
||||
ASSERT_EQ(0, Smi::FromInt(0));
|
||||
__ mov(ecx, Immediate(kSmiTagMask));
|
||||
__ and_(ecx, Operand(eax));
|
||||
@ -11882,7 +11887,7 @@ void CompareStub::Generate(MacroAssembler* masm) {
|
||||
// One operand is a smi.
|
||||
|
||||
// Check whether the non-smi is a heap number.
|
||||
ASSERT_EQ(1, kSmiTagMask);
|
||||
STATIC_ASSERT(kSmiTagMask == 1);
|
||||
// ecx still holds eax & kSmiTag, which is either zero or one.
|
||||
__ sub(Operand(ecx), Immediate(0x01));
|
||||
__ mov(ebx, edx);
|
||||
@ -11908,13 +11913,13 @@ void CompareStub::Generate(MacroAssembler* masm) {
|
||||
// Get the type of the first operand.
|
||||
// If the first object is a JS object, we have done pointer comparison.
|
||||
Label first_non_object;
|
||||
ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
|
||||
STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
|
||||
__ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, ecx);
|
||||
__ j(below, &first_non_object);
|
||||
|
||||
// Return non-zero (eax is not zero)
|
||||
Label return_not_equal;
|
||||
ASSERT(kHeapObjectTag != 0);
|
||||
STATIC_ASSERT(kHeapObjectTag != 0);
|
||||
__ bind(&return_not_equal);
|
||||
__ ret(0);
|
||||
|
||||
@ -12034,8 +12039,8 @@ void CompareStub::Generate(MacroAssembler* masm) {
|
||||
// At most one is a smi, so we can test for smi by adding the two.
|
||||
// A smi plus a heap object has the low bit set, a heap object plus
|
||||
// a heap object has the low bit clear.
|
||||
ASSERT_EQ(0, kSmiTag);
|
||||
ASSERT_EQ(1, kSmiTagMask);
|
||||
STATIC_ASSERT(kSmiTag == 0);
|
||||
STATIC_ASSERT(kSmiTagMask == 1);
|
||||
__ lea(ecx, Operand(eax, edx, times_1, 0));
|
||||
__ test(ecx, Immediate(kSmiTagMask));
|
||||
__ j(not_zero, ¬_both_objects);
|
||||
@ -12175,16 +12180,16 @@ void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
|
||||
// eax holds the exception.
|
||||
|
||||
// Adjust this code if not the case.
|
||||
ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);
|
||||
STATIC_ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);
|
||||
|
||||
// Drop the sp to the top of the handler.
|
||||
ExternalReference handler_address(Top::k_handler_address);
|
||||
__ mov(esp, Operand::StaticVariable(handler_address));
|
||||
|
||||
// Restore next handler and frame pointer, discard handler state.
|
||||
ASSERT(StackHandlerConstants::kNextOffset == 0);
|
||||
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
|
||||
__ pop(Operand::StaticVariable(handler_address));
|
||||
ASSERT(StackHandlerConstants::kFPOffset == 1 * kPointerSize);
|
||||
STATIC_ASSERT(StackHandlerConstants::kFPOffset == 1 * kPointerSize);
|
||||
__ pop(ebp);
|
||||
__ pop(edx); // Remove state.
|
||||
|
||||
@ -12198,7 +12203,7 @@ void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
|
||||
__ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
|
||||
__ bind(&skip);
|
||||
|
||||
ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize);
|
||||
STATIC_ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize);
|
||||
__ ret(0);
|
||||
}
|
||||
|
||||
@ -12218,7 +12223,7 @@ void ApiGetterEntryStub::Generate(MacroAssembler* masm) {
|
||||
Label prologue;
|
||||
Label promote_scheduled_exception;
|
||||
__ EnterApiExitFrame(ExitFrame::MODE_NORMAL, kStackSpace, kArgc);
|
||||
ASSERT_EQ(kArgc, 4);
|
||||
STATIC_ASSERT(kArgc == 4);
|
||||
if (kPassHandlesDirectly) {
|
||||
// When handles as passed directly we don't have to allocate extra
|
||||
// space for and pass an out parameter.
|
||||
@ -12333,7 +12338,7 @@ void CEntryStub::GenerateCore(MacroAssembler* masm,
|
||||
|
||||
// Check for failure result.
|
||||
Label failure_returned;
|
||||
ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
|
||||
STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
|
||||
__ lea(ecx, Operand(eax, 1));
|
||||
// Lower 2 bits of ecx are 0 iff eax has failure tag.
|
||||
__ test(ecx, Immediate(kFailureTagMask));
|
||||
@ -12348,7 +12353,7 @@ void CEntryStub::GenerateCore(MacroAssembler* masm,
|
||||
|
||||
Label retry;
|
||||
// If the returned exception is RETRY_AFTER_GC continue at retry label
|
||||
ASSERT(Failure::RETRY_AFTER_GC == 0);
|
||||
STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0);
|
||||
__ test(eax, Immediate(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
|
||||
__ j(zero, &retry, taken);
|
||||
|
||||
@ -12379,7 +12384,7 @@ void CEntryStub::GenerateCore(MacroAssembler* masm,
|
||||
void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm,
|
||||
UncatchableExceptionType type) {
|
||||
// Adjust this code if not the case.
|
||||
ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);
|
||||
STATIC_ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);
|
||||
|
||||
// Drop sp to the top stack handler.
|
||||
ExternalReference handler_address(Top::k_handler_address);
|
||||
@ -12399,7 +12404,7 @@ void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm,
|
||||
__ bind(&done);
|
||||
|
||||
// Set the top handler address to next handler past the current ENTRY handler.
|
||||
ASSERT(StackHandlerConstants::kNextOffset == 0);
|
||||
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
|
||||
__ pop(Operand::StaticVariable(handler_address));
|
||||
|
||||
if (type == OUT_OF_MEMORY) {
|
||||
@ -12418,11 +12423,11 @@ void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm,
|
||||
__ xor_(esi, Operand(esi));
|
||||
|
||||
// Restore fp from handler and discard handler state.
|
||||
ASSERT(StackHandlerConstants::kFPOffset == 1 * kPointerSize);
|
||||
STATIC_ASSERT(StackHandlerConstants::kFPOffset == 1 * kPointerSize);
|
||||
__ pop(ebp);
|
||||
__ pop(edx); // State.
|
||||
|
||||
ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize);
|
||||
STATIC_ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize);
|
||||
__ ret(0);
|
||||
}
|
||||
|
||||
@ -12733,7 +12738,7 @@ void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
|
||||
Label got_char_code;
|
||||
|
||||
// If the receiver is a smi trigger the non-string case.
|
||||
ASSERT(kSmiTag == 0);
|
||||
STATIC_ASSERT(kSmiTag == 0);
|
||||
__ test(object_, Immediate(kSmiTagMask));
|
||||
__ j(zero, receiver_not_string_);
|
||||
|
||||
@ -12745,7 +12750,7 @@ void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
|
||||
__ j(not_zero, receiver_not_string_);
|
||||
|
||||
// If the index is non-smi trigger the non-smi case.
|
||||
ASSERT(kSmiTag == 0);
|
||||
STATIC_ASSERT(kSmiTag == 0);
|
||||
__ test(index_, Immediate(kSmiTagMask));
|
||||
__ j(not_zero, &index_not_smi_);
|
||||
|
||||
@ -12758,7 +12763,7 @@ void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
|
||||
__ j(above_equal, index_out_of_range_);
|
||||
|
||||
// We need special handling for non-flat strings.
|
||||
ASSERT(kSeqStringTag == 0);
|
||||
STATIC_ASSERT(kSeqStringTag == 0);
|
||||
__ test(result_, Immediate(kStringRepresentationMask));
|
||||
__ j(zero, &flat_string);
|
||||
|
||||
@ -12779,19 +12784,19 @@ void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
|
||||
__ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
|
||||
__ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
|
||||
// If the first cons component is also non-flat, then go to runtime.
|
||||
ASSERT(kSeqStringTag == 0);
|
||||
STATIC_ASSERT(kSeqStringTag == 0);
|
||||
__ test(result_, Immediate(kStringRepresentationMask));
|
||||
__ j(not_zero, &call_runtime_);
|
||||
|
||||
// Check for 1-byte or 2-byte string.
|
||||
__ bind(&flat_string);
|
||||
ASSERT(kAsciiStringTag != 0);
|
||||
STATIC_ASSERT(kAsciiStringTag != 0);
|
||||
__ test(result_, Immediate(kStringEncodingMask));
|
||||
__ j(not_zero, &ascii_string);
|
||||
|
||||
// 2-byte string.
|
||||
// Load the 2-byte character code into the result register.
|
||||
ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
|
||||
STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
|
||||
__ movzx_w(result_, FieldOperand(object_,
|
||||
scratch_, times_1, // Scratch is smi-tagged.
|
||||
SeqTwoByteString::kHeaderSize));
|
||||
@ -12841,7 +12846,7 @@ void StringCharCodeAtGenerator::GenerateSlow(
|
||||
__ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
|
||||
call_helper.AfterCall(masm);
|
||||
// If index is still not a smi, it must be out of range.
|
||||
ASSERT(kSmiTag == 0);
|
||||
STATIC_ASSERT(kSmiTag == 0);
|
||||
__ test(scratch_, Immediate(kSmiTagMask));
|
||||
__ j(not_zero, index_out_of_range_);
|
||||
// Otherwise, return to the fast path.
|
||||
@ -12870,8 +12875,8 @@ void StringCharCodeAtGenerator::GenerateSlow(
|
||||
|
||||
void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
|
||||
// Fast case of Heap::LookupSingleCharacterStringFromCode.
|
||||
ASSERT(kSmiTag == 0);
|
||||
ASSERT(kSmiShiftSize == 0);
|
||||
STATIC_ASSERT(kSmiTag == 0);
|
||||
STATIC_ASSERT(kSmiShiftSize == 0);
|
||||
ASSERT(IsPowerOf2(String::kMaxAsciiCharCode + 1));
|
||||
__ test(code_,
|
||||
Immediate(kSmiTagMask |
|
||||
@ -12879,9 +12884,9 @@ void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
|
||||
__ j(not_zero, &slow_case_, not_taken);
|
||||
|
||||
__ Set(result_, Immediate(Factory::single_character_string_cache()));
|
||||
ASSERT(kSmiTag == 0);
|
||||
ASSERT(kSmiTagSize == 1);
|
||||
ASSERT(kSmiShiftSize == 0);
|
||||
STATIC_ASSERT(kSmiTag == 0);
|
||||
STATIC_ASSERT(kSmiTagSize == 1);
|
||||
STATIC_ASSERT(kSmiShiftSize == 0);
|
||||
// At this point code register contains smi tagged ascii char code.
|
||||
__ mov(result_, FieldOperand(result_,
|
||||
code_, times_half_pointer_size,
|
||||
@ -12953,7 +12958,7 @@ void StringAddStub::Generate(MacroAssembler* masm) {
|
||||
// Check if either of the strings are empty. In that case return the other.
|
||||
Label second_not_zero_length, both_not_zero_length;
|
||||
__ mov(ecx, FieldOperand(edx, String::kLengthOffset));
|
||||
ASSERT(kSmiTag == 0);
|
||||
STATIC_ASSERT(kSmiTag == 0);
|
||||
__ test(ecx, Operand(ecx));
|
||||
__ j(not_zero, &second_not_zero_length);
|
||||
// Second string is empty, result is first string which is already in eax.
|
||||
@ -12961,7 +12966,7 @@ void StringAddStub::Generate(MacroAssembler* masm) {
|
||||
__ ret(2 * kPointerSize);
|
||||
__ bind(&second_not_zero_length);
|
||||
__ mov(ebx, FieldOperand(eax, String::kLengthOffset));
|
||||
ASSERT(kSmiTag == 0);
|
||||
STATIC_ASSERT(kSmiTag == 0);
|
||||
__ test(ebx, Operand(ebx));
|
||||
__ j(not_zero, &both_not_zero_length);
|
||||
// First string is empty, result is second string which is in edx.
|
||||
@ -12978,7 +12983,7 @@ void StringAddStub::Generate(MacroAssembler* masm) {
|
||||
Label string_add_flat_result, longer_than_two;
|
||||
__ bind(&both_not_zero_length);
|
||||
__ add(ebx, Operand(ecx));
|
||||
ASSERT(Smi::kMaxValue == String::kMaxLength);
|
||||
STATIC_ASSERT(Smi::kMaxValue == String::kMaxLength);
|
||||
// Handle exceptionally long strings in the runtime system.
|
||||
__ j(overflow, &string_add_runtime);
|
||||
// Use the runtime system when adding two one character strings, as it
|
||||
@ -13019,7 +13024,7 @@ void StringAddStub::Generate(MacroAssembler* masm) {
|
||||
__ mov(edi, FieldOperand(edx, HeapObject::kMapOffset));
|
||||
__ movzx_b(edi, FieldOperand(edi, Map::kInstanceTypeOffset));
|
||||
__ and_(ecx, Operand(edi));
|
||||
ASSERT(kStringEncodingMask == kAsciiStringTag);
|
||||
STATIC_ASSERT(kStringEncodingMask == kAsciiStringTag);
|
||||
__ test(ecx, Immediate(kAsciiStringTag));
|
||||
__ j(zero, &non_ascii);
|
||||
__ bind(&ascii_data);
|
||||
@ -13046,7 +13051,7 @@ void StringAddStub::Generate(MacroAssembler* masm) {
|
||||
__ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
|
||||
__ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
|
||||
__ xor_(edi, Operand(ecx));
|
||||
ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0);
|
||||
STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0);
|
||||
__ and_(edi, kAsciiStringTag | kAsciiDataHintTag);
|
||||
__ cmp(edi, kAsciiStringTag | kAsciiDataHintTag);
|
||||
__ j(equal, &ascii_data);
|
||||
@ -13075,7 +13080,7 @@ void StringAddStub::Generate(MacroAssembler* masm) {
|
||||
// ebx: length of resulting flat string as a smi
|
||||
// edx: second string
|
||||
Label non_ascii_string_add_flat_result;
|
||||
ASSERT(kStringEncodingMask == kAsciiStringTag);
|
||||
STATIC_ASSERT(kStringEncodingMask == kAsciiStringTag);
|
||||
__ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
|
||||
__ test_b(FieldOperand(ecx, Map::kInstanceTypeOffset), kAsciiStringTag);
|
||||
__ j(zero, &non_ascii_string_add_flat_result);
|
||||
@ -13194,9 +13199,9 @@ void StringHelper::GenerateCopyCharactersREP(MacroAssembler* masm,
|
||||
Register count,
|
||||
Register scratch,
|
||||
bool ascii) {
|
||||
// Copy characters using rep movs of doublewords. Align destination on 4 byte
|
||||
// boundary before starting rep movs. Copy remaining characters after running
|
||||
// rep movs.
|
||||
// Copy characters using rep movs of doublewords.
|
||||
// The destination is aligned on a 4 byte boundary because we are
|
||||
// copying to the beginning of a newly allocated string.
|
||||
ASSERT(dest.is(edi)); // rep movs destination
|
||||
ASSERT(src.is(esi)); // rep movs source
|
||||
ASSERT(count.is(ecx)); // rep movs count
|
||||
@ -13317,9 +13322,9 @@ void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
|
||||
}
|
||||
__ and_(scratch, Operand(mask));
|
||||
|
||||
// Load the entry from the symble table.
|
||||
// Load the entry from the symbol table.
|
||||
Register candidate = scratch; // Scratch register contains candidate.
|
||||
ASSERT_EQ(1, SymbolTable::kEntrySize);
|
||||
STATIC_ASSERT(SymbolTable::kEntrySize == 1);
|
||||
__ mov(candidate,
|
||||
FieldOperand(symbol_table,
|
||||
scratch,
|
||||
@ -13362,7 +13367,7 @@ void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
|
||||
// Scratch register contains result when we fall through to here.
|
||||
Register result = scratch;
|
||||
__ bind(&found_in_symbol_table);
|
||||
__ pop(mask); // Pop temporally saved mask from the stack.
|
||||
__ pop(mask); // Pop saved mask from the stack.
|
||||
if (!result.is(eax)) {
|
||||
__ mov(eax, result);
|
||||
}
|
||||
@ -13437,7 +13442,7 @@ void SubStringStub::Generate(MacroAssembler* masm) {
|
||||
|
||||
// Make sure first argument is a string.
|
||||
__ mov(eax, Operand(esp, 3 * kPointerSize));
|
||||
ASSERT_EQ(0, kSmiTag);
|
||||
STATIC_ASSERT(kSmiTag == 0);
|
||||
__ test(eax, Immediate(kSmiTagMask));
|
||||
__ j(zero, &runtime);
|
||||
Condition is_string = masm->IsObjectStringType(eax, ebx, ebx);
|
||||
@ -13445,6 +13450,7 @@ void SubStringStub::Generate(MacroAssembler* masm) {
|
||||
|
||||
// eax: string
|
||||
// ebx: instance type
|
||||
|
||||
// Calculate length of sub string using the smi values.
|
||||
Label result_longer_than_two;
|
||||
__ mov(ecx, Operand(esp, 1 * kPointerSize)); // To index.
|
||||
@ -13550,8 +13556,8 @@ void SubStringStub::Generate(MacroAssembler* masm) {
|
||||
__ mov(ebx, Operand(esp, 2 * kPointerSize)); // from
|
||||
// As from is a smi it is 2 times the value which matches the size of a two
|
||||
// byte character.
|
||||
ASSERT_EQ(0, kSmiTag);
|
||||
ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize);
|
||||
STATIC_ASSERT(kSmiTag == 0);
|
||||
STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
|
||||
__ add(esi, Operand(ebx));
|
||||
|
||||
// eax: result string
|
||||
@ -13637,8 +13643,8 @@ void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
|
||||
__ j(not_zero, &result_not_equal);
|
||||
|
||||
// Result is EQUAL.
|
||||
ASSERT_EQ(0, EQUAL);
|
||||
ASSERT_EQ(0, kSmiTag);
|
||||
STATIC_ASSERT(EQUAL == 0);
|
||||
STATIC_ASSERT(kSmiTag == 0);
|
||||
__ Set(eax, Immediate(Smi::FromInt(EQUAL)));
|
||||
__ ret(0);
|
||||
|
||||
@ -13670,8 +13676,8 @@ void StringCompareStub::Generate(MacroAssembler* masm) {
|
||||
Label not_same;
|
||||
__ cmp(edx, Operand(eax));
|
||||
__ j(not_equal, ¬_same);
|
||||
ASSERT_EQ(0, EQUAL);
|
||||
ASSERT_EQ(0, kSmiTag);
|
||||
STATIC_ASSERT(EQUAL == 0);
|
||||
STATIC_ASSERT(kSmiTag == 0);
|
||||
__ Set(eax, Immediate(Smi::FromInt(EQUAL)));
|
||||
__ IncrementCounter(&Counters::string_compare_native, 1);
|
||||
__ ret(2 * kPointerSize);
|
||||
|
@ -2100,9 +2100,9 @@ void CodeGenerator::Comparison(AstNode* node,
|
||||
// side (which is always a symbol).
|
||||
if (cc == equal) {
|
||||
Label not_a_symbol;
|
||||
ASSERT(kSymbolTag != 0);
|
||||
STATIC_ASSERT(kSymbolTag != 0);
|
||||
// Ensure that no non-strings have the symbol bit set.
|
||||
ASSERT(kNotStringTag + kIsSymbolMask > LAST_TYPE);
|
||||
STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask);
|
||||
__ testb(temp.reg(), Immediate(kIsSymbolMask)); // Test the symbol bit.
|
||||
__ j(zero, ¬_a_symbol);
|
||||
// They are symbols, so do identity compare.
|
||||
@ -2567,8 +2567,8 @@ void CodeGenerator::CallApplyLazy(Expression* applicand,
|
||||
// JS_FUNCTION_TYPE is the last instance type and it is right
|
||||
// after LAST_JS_OBJECT_TYPE, we do not have to check the upper
|
||||
// bound.
|
||||
ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
|
||||
ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
|
||||
STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
|
||||
STATIC_ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
|
||||
__ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx);
|
||||
__ j(below, &build_args);
|
||||
|
||||
@ -4011,7 +4011,7 @@ void CodeGenerator::VisitTryCatchStatement(TryCatchStatement* node) {
|
||||
// The next handler address is on top of the frame. Unlink from
|
||||
// the handler list and drop the rest of this handler from the
|
||||
// frame.
|
||||
ASSERT(StackHandlerConstants::kNextOffset == 0);
|
||||
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
|
||||
__ movq(kScratchRegister, handler_address);
|
||||
frame_->EmitPop(Operand(kScratchRegister, 0));
|
||||
frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
|
||||
@ -4044,7 +4044,7 @@ void CodeGenerator::VisitTryCatchStatement(TryCatchStatement* node) {
|
||||
__ movq(rsp, Operand(kScratchRegister, 0));
|
||||
frame_->Forget(frame_->height() - handler_height);
|
||||
|
||||
ASSERT(StackHandlerConstants::kNextOffset == 0);
|
||||
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
|
||||
__ movq(kScratchRegister, handler_address);
|
||||
frame_->EmitPop(Operand(kScratchRegister, 0));
|
||||
frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
|
||||
@ -4131,7 +4131,7 @@ void CodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* node) {
|
||||
// chain and set the state on the frame to FALLING.
|
||||
if (has_valid_frame()) {
|
||||
// The next handler address is on top of the frame.
|
||||
ASSERT(StackHandlerConstants::kNextOffset == 0);
|
||||
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
|
||||
__ movq(kScratchRegister, handler_address);
|
||||
frame_->EmitPop(Operand(kScratchRegister, 0));
|
||||
frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
|
||||
@ -4172,7 +4172,7 @@ void CodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* node) {
|
||||
frame_->Forget(frame_->height() - handler_height);
|
||||
|
||||
// Unlink this handler and drop it from the frame.
|
||||
ASSERT(StackHandlerConstants::kNextOffset == 0);
|
||||
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
|
||||
__ movq(kScratchRegister, handler_address);
|
||||
frame_->EmitPop(Operand(kScratchRegister, 0));
|
||||
frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
|
||||
@ -6192,7 +6192,7 @@ void CodeGenerator::GenerateGetFramePointer(ZoneList<Expression*>* args) {
|
||||
ASSERT(args->length() == 0);
|
||||
// RBP value is aligned, so it should be tagged as a smi (without necesarily
|
||||
// being padded as a smi, so it should not be treated as a smi.).
|
||||
ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
|
||||
STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
|
||||
Result rbp_as_smi = allocator_->Allocate();
|
||||
ASSERT(rbp_as_smi.is_valid());
|
||||
__ movq(rbp_as_smi.reg(), rbp);
|
||||
@ -10111,7 +10111,7 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
|
||||
__ j(not_equal, &runtime);
|
||||
// Check that the last match info has space for the capture registers and the
|
||||
// additional information. Ensure no overflow in add.
|
||||
ASSERT(FixedArray::kMaxLength < kMaxInt - FixedArray::kLengthOffset);
|
||||
STATIC_ASSERT(FixedArray::kMaxLength < kMaxInt - FixedArray::kLengthOffset);
|
||||
__ SmiToInteger32(rax, FieldOperand(rbx, FixedArray::kLengthOffset));
|
||||
__ addl(rdx, Immediate(RegExpImpl::kLastMatchOverhead));
|
||||
__ cmpl(rdx, rax);
|
||||
@ -10126,7 +10126,7 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
|
||||
// First check for flat two byte string.
|
||||
__ andb(rbx, Immediate(
|
||||
kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask));
|
||||
ASSERT_EQ(0, kStringTag | kSeqStringTag | kTwoByteStringTag);
|
||||
STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0);
|
||||
__ j(zero, &seq_two_byte_string);
|
||||
// Any other flat string must be a flat ascii string.
|
||||
__ testb(rbx, Immediate(kIsNotStringMask | kStringRepresentationMask));
|
||||
@ -10137,8 +10137,8 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
|
||||
// string. In that case the subject string is just the first part of the cons
|
||||
// string. Also in this case the first part of the cons string is known to be
|
||||
// a sequential string or an external string.
|
||||
ASSERT(kExternalStringTag !=0);
|
||||
ASSERT_EQ(0, kConsStringTag & kExternalStringTag);
|
||||
STATIC_ASSERT(kExternalStringTag !=0);
|
||||
STATIC_ASSERT((kConsStringTag & kExternalStringTag) == 0);
|
||||
__ testb(rbx, Immediate(kIsNotStringMask | kExternalStringTag));
|
||||
__ j(not_zero, &runtime);
|
||||
// String is a cons string.
|
||||
@ -10153,7 +10153,7 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
|
||||
// Is first part a flat two byte string?
|
||||
__ testb(FieldOperand(rbx, Map::kInstanceTypeOffset),
|
||||
Immediate(kStringRepresentationMask | kStringEncodingMask));
|
||||
ASSERT_EQ(0, kSeqStringTag | kTwoByteStringTag);
|
||||
STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0);
|
||||
__ j(zero, &seq_two_byte_string);
|
||||
// Any other flat string must be ascii.
|
||||
__ testb(FieldOperand(rbx, Map::kInstanceTypeOffset),
|
||||
@ -10390,7 +10390,7 @@ void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm,
|
||||
__ JumpIfSmi(object, &is_smi);
|
||||
__ CheckMap(object, Factory::heap_number_map(), not_found, true);
|
||||
|
||||
ASSERT_EQ(8, kDoubleSize);
|
||||
STATIC_ASSERT(8 == kDoubleSize);
|
||||
__ movl(scratch, FieldOperand(object, HeapNumber::kValueOffset + 4));
|
||||
__ xor_(scratch, FieldOperand(object, HeapNumber::kValueOffset));
|
||||
GenerateConvertHashCodeToIndex(masm, scratch, mask);
|
||||
@ -10571,13 +10571,13 @@ void CompareStub::Generate(MacroAssembler* masm) {
|
||||
// There is no test for undetectability in strict equality.
|
||||
|
||||
// If the first object is a JS object, we have done pointer comparison.
|
||||
ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
|
||||
STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
|
||||
Label first_non_object;
|
||||
__ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx);
|
||||
__ j(below, &first_non_object);
|
||||
// Return non-zero (eax (not rax) is not zero)
|
||||
Label return_not_equal;
|
||||
ASSERT(kHeapObjectTag != 0);
|
||||
STATIC_ASSERT(kHeapObjectTag != 0);
|
||||
__ bind(&return_not_equal);
|
||||
__ ret(0);
|
||||
|
||||
@ -10669,8 +10669,8 @@ void CompareStub::Generate(MacroAssembler* masm) {
|
||||
// At most one is a smi, so we can test for smi by adding the two.
|
||||
// A smi plus a heap object has the low bit set, a heap object plus
|
||||
// a heap object has the low bit clear.
|
||||
ASSERT_EQ(0, kSmiTag);
|
||||
ASSERT_EQ(static_cast<int64_t>(1), kSmiTagMask);
|
||||
STATIC_ASSERT(kSmiTag == 0);
|
||||
STATIC_ASSERT(kSmiTagMask == 1);
|
||||
__ lea(rcx, Operand(rax, rdx, times_1, 0));
|
||||
__ testb(rcx, Immediate(kSmiTagMask));
|
||||
__ j(not_zero, ¬_both_objects);
|
||||
@ -10726,8 +10726,8 @@ void CompareStub::BranchIfNonSymbol(MacroAssembler* masm,
|
||||
__ movzxbq(scratch,
|
||||
FieldOperand(scratch, Map::kInstanceTypeOffset));
|
||||
// Ensure that no non-strings have the symbol bit set.
|
||||
ASSERT(kNotStringTag + kIsSymbolMask > LAST_TYPE);
|
||||
ASSERT(kSymbolTag != 0);
|
||||
STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask);
|
||||
STATIC_ASSERT(kSymbolTag != 0);
|
||||
__ testb(scratch, Immediate(kIsSymbolMask));
|
||||
__ j(zero, label);
|
||||
}
|
||||
@ -10806,9 +10806,9 @@ void CallFunctionStub::Generate(MacroAssembler* masm) {
|
||||
void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
|
||||
// Check that stack should contain next handler, frame pointer, state and
|
||||
// return address in that order.
|
||||
ASSERT_EQ(StackHandlerConstants::kFPOffset + kPointerSize,
|
||||
STATIC_ASSERT(StackHandlerConstants::kFPOffset + kPointerSize ==
|
||||
StackHandlerConstants::kStateOffset);
|
||||
ASSERT_EQ(StackHandlerConstants::kStateOffset + kPointerSize,
|
||||
STATIC_ASSERT(StackHandlerConstants::kStateOffset + kPointerSize ==
|
||||
StackHandlerConstants::kPCOffset);
|
||||
|
||||
ExternalReference handler_address(Top::k_handler_address);
|
||||
@ -10918,7 +10918,7 @@ void CEntryStub::GenerateCore(MacroAssembler* masm,
|
||||
|
||||
// Check for failure result.
|
||||
Label failure_returned;
|
||||
ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
|
||||
STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
|
||||
#ifdef _WIN64
|
||||
// If return value is on the stack, pop it to registers.
|
||||
if (result_size_ > 1) {
|
||||
@ -10944,7 +10944,7 @@ void CEntryStub::GenerateCore(MacroAssembler* masm,
|
||||
|
||||
Label retry;
|
||||
// If the returned exception is RETRY_AFTER_GC continue at retry label
|
||||
ASSERT(Failure::RETRY_AFTER_GC == 0);
|
||||
STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0);
|
||||
__ testl(rax, Immediate(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
|
||||
__ j(zero, &retry);
|
||||
|
||||
@ -11014,14 +11014,14 @@ void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm,
|
||||
__ xor_(rsi, rsi);
|
||||
|
||||
// Restore registers from handler.
|
||||
ASSERT_EQ(StackHandlerConstants::kNextOffset + kPointerSize,
|
||||
STATIC_ASSERT(StackHandlerConstants::kNextOffset + kPointerSize ==
|
||||
StackHandlerConstants::kFPOffset);
|
||||
__ pop(rbp); // FP
|
||||
ASSERT_EQ(StackHandlerConstants::kFPOffset + kPointerSize,
|
||||
STATIC_ASSERT(StackHandlerConstants::kFPOffset + kPointerSize ==
|
||||
StackHandlerConstants::kStateOffset);
|
||||
__ pop(rdx); // State
|
||||
|
||||
ASSERT_EQ(StackHandlerConstants::kStateOffset + kPointerSize,
|
||||
STATIC_ASSERT(StackHandlerConstants::kStateOffset + kPointerSize ==
|
||||
StackHandlerConstants::kPCOffset);
|
||||
__ ret(0);
|
||||
}
|
||||
@ -11296,7 +11296,7 @@ void InstanceofStub::Generate(MacroAssembler* masm) {
|
||||
__ bind(&is_instance);
|
||||
__ xorl(rax, rax);
|
||||
// Store bitwise zero in the cache. This is a Smi in GC terms.
|
||||
ASSERT_EQ(0, kSmiTag);
|
||||
STATIC_ASSERT(kSmiTag == 0);
|
||||
__ StoreRoot(rax, Heap::kInstanceofCacheAnswerRootIndex);
|
||||
__ ret(2 * kPointerSize);
|
||||
|
||||
@ -11401,7 +11401,7 @@ void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
|
||||
__ j(above_equal, index_out_of_range_);
|
||||
|
||||
// We need special handling for non-flat strings.
|
||||
ASSERT(kSeqStringTag == 0);
|
||||
STATIC_ASSERT(kSeqStringTag == 0);
|
||||
__ testb(result_, Immediate(kStringRepresentationMask));
|
||||
__ j(zero, &flat_string);
|
||||
|
||||
@ -11422,13 +11422,13 @@ void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
|
||||
__ movq(result_, FieldOperand(object_, HeapObject::kMapOffset));
|
||||
__ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
|
||||
// If the first cons component is also non-flat, then go to runtime.
|
||||
ASSERT(kSeqStringTag == 0);
|
||||
STATIC_ASSERT(kSeqStringTag == 0);
|
||||
__ testb(result_, Immediate(kStringRepresentationMask));
|
||||
__ j(not_zero, &call_runtime_);
|
||||
|
||||
// Check for 1-byte or 2-byte string.
|
||||
__ bind(&flat_string);
|
||||
ASSERT(kAsciiStringTag != 0);
|
||||
STATIC_ASSERT(kAsciiStringTag != 0);
|
||||
__ testb(result_, Immediate(kStringEncodingMask));
|
||||
__ j(not_zero, &ascii_string);
|
||||
|
||||
@ -11622,7 +11622,7 @@ void StringAddStub::Generate(MacroAssembler* masm) {
|
||||
__ movzxbl(r9, FieldOperand(r9, Map::kInstanceTypeOffset));
|
||||
|
||||
// Look at the length of the result of adding the two strings.
|
||||
ASSERT(String::kMaxLength <= Smi::kMaxValue / 2);
|
||||
STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue / 2);
|
||||
__ SmiAdd(rbx, rbx, rcx, NULL);
|
||||
// Use the runtime system when adding two one character strings, as it
|
||||
// contains optimizations for this specific case using the symbol table.
|
||||
@ -11654,7 +11654,7 @@ void StringAddStub::Generate(MacroAssembler* masm) {
|
||||
__ SmiCompare(rbx, Smi::FromInt(String::kMinNonFlatLength));
|
||||
__ j(below, &string_add_flat_result);
|
||||
// Handle exceptionally long strings in the runtime system.
|
||||
ASSERT((String::kMaxLength & 0x80000000) == 0);
|
||||
STATIC_ASSERT((String::kMaxLength & 0x80000000) == 0);
|
||||
__ SmiCompare(rbx, Smi::FromInt(String::kMaxLength));
|
||||
__ j(above, &string_add_runtime);
|
||||
|
||||
@ -11668,7 +11668,7 @@ void StringAddStub::Generate(MacroAssembler* masm) {
|
||||
Label non_ascii, allocated, ascii_data;
|
||||
__ movl(rcx, r8);
|
||||
__ and_(rcx, r9);
|
||||
ASSERT(kStringEncodingMask == kAsciiStringTag);
|
||||
STATIC_ASSERT(kStringEncodingMask == kAsciiStringTag);
|
||||
__ testl(rcx, Immediate(kAsciiStringTag));
|
||||
__ j(zero, &non_ascii);
|
||||
__ bind(&ascii_data);
|
||||
@ -11693,7 +11693,7 @@ void StringAddStub::Generate(MacroAssembler* masm) {
|
||||
__ testb(rcx, Immediate(kAsciiDataHintMask));
|
||||
__ j(not_zero, &ascii_data);
|
||||
__ xor_(r8, r9);
|
||||
ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0);
|
||||
STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0);
|
||||
__ andb(r8, Immediate(kAsciiStringTag | kAsciiDataHintTag));
|
||||
__ cmpb(r8, Immediate(kAsciiStringTag | kAsciiDataHintTag));
|
||||
__ j(equal, &ascii_data);
|
||||
@ -11725,7 +11725,7 @@ void StringAddStub::Generate(MacroAssembler* masm) {
|
||||
// r8: instance type of first string
|
||||
// r9: instance type of second string
|
||||
Label non_ascii_string_add_flat_result;
|
||||
ASSERT(kStringEncodingMask == kAsciiStringTag);
|
||||
STATIC_ASSERT(kStringEncodingMask == kAsciiStringTag);
|
||||
__ testl(r8, Immediate(kAsciiStringTag));
|
||||
__ j(zero, &non_ascii_string_add_flat_result);
|
||||
__ testl(r9, Immediate(kAsciiStringTag));
|
||||
@ -11847,7 +11847,7 @@ void StringHelper::GenerateCopyCharactersREP(MacroAssembler* masm,
|
||||
|
||||
// Make count the number of bytes to copy.
|
||||
if (!ascii) {
|
||||
ASSERT_EQ(2, static_cast<int>(sizeof(uc16))); // NOLINT
|
||||
STATIC_ASSERT(2 == sizeof(uc16));
|
||||
__ addl(count, count);
|
||||
}
|
||||
|
||||
@ -11954,7 +11954,7 @@ void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
|
||||
|
||||
// Load the entry from the symble table.
|
||||
Register candidate = scratch; // Scratch register contains candidate.
|
||||
ASSERT_EQ(1, SymbolTable::kEntrySize);
|
||||
STATIC_ASSERT(SymbolTable::kEntrySize == 1);
|
||||
__ movq(candidate,
|
||||
FieldOperand(symbol_table,
|
||||
scratch,
|
||||
@ -12069,7 +12069,7 @@ void SubStringStub::Generate(MacroAssembler* masm) {
|
||||
|
||||
// Make sure first argument is a string.
|
||||
__ movq(rax, Operand(rsp, kStringOffset));
|
||||
ASSERT_EQ(0, kSmiTag);
|
||||
STATIC_ASSERT(kSmiTag == 0);
|
||||
__ testl(rax, Immediate(kSmiTagMask));
|
||||
__ j(zero, &runtime);
|
||||
Condition is_string = masm->IsObjectStringType(rax, rbx, rbx);
|
||||
@ -12209,7 +12209,7 @@ void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
|
||||
Register scratch4) {
|
||||
// Ensure that you can always subtract a string length from a non-negative
|
||||
// number (e.g. another length).
|
||||
ASSERT(String::kMaxLength < 0x7fffffff);
|
||||
STATIC_ASSERT(String::kMaxLength < 0x7fffffff);
|
||||
|
||||
// Find minimum length and length difference.
|
||||
__ movq(scratch1, FieldOperand(left, String::kLengthOffset));
|
||||
|
Loading…
Reference in New Issue
Block a user