Change asserts to STATIC_ASSERT if they can be checked at compilation time. Just in the codegen-xxx.cc files on all platforms.

Review URL: http://codereview.chromium.org/3017018

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@5121 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
This commit is contained in:
whesse@chromium.org 2010-07-23 08:25:48 +00:00
parent b8b12b2722
commit 9deeec0b08
3 changed files with 220 additions and 214 deletions

View File

@ -815,7 +815,7 @@ void CodeGenerator::GenericBinaryOperation(Token::Value op,
// Check they are both small and positive. // Check they are both small and positive.
__ tst(scratch, Operand(kSmiTagMask | 0xc0000000)); __ tst(scratch, Operand(kSmiTagMask | 0xc0000000));
ASSERT(rhs.is(r0) || lhs.is(r0)); // r0 is free now. ASSERT(rhs.is(r0) || lhs.is(r0)); // r0 is free now.
ASSERT_EQ(0, kSmiTag); STATIC_ASSERT(kSmiTag == 0);
if (op == Token::ADD) { if (op == Token::ADD) {
__ add(r0, lhs, Operand(rhs), LeaveCC, eq); __ add(r0, lhs, Operand(rhs), LeaveCC, eq);
} else { } else {
@ -863,7 +863,7 @@ void CodeGenerator::GenericBinaryOperation(Token::Value op,
__ and_(r0, lhs, Operand(rhs), LeaveCC, cond); __ and_(r0, lhs, Operand(rhs), LeaveCC, cond);
} else { } else {
ASSERT(op == Token::BIT_XOR); ASSERT(op == Token::BIT_XOR);
ASSERT_EQ(0, kSmiTag); STATIC_ASSERT(kSmiTag == 0);
__ eor(r0, lhs, Operand(rhs), LeaveCC, cond); __ eor(r0, lhs, Operand(rhs), LeaveCC, cond);
} }
if (cond != al) { if (cond != al) {
@ -1520,8 +1520,8 @@ void CodeGenerator::CallApplyLazy(Expression* applicand,
// JS_FUNCTION_TYPE is the last instance type and it is right // JS_FUNCTION_TYPE is the last instance type and it is right
// after LAST_JS_OBJECT_TYPE, we do not have to check the upper // after LAST_JS_OBJECT_TYPE, we do not have to check the upper
// bound. // bound.
ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1); STATIC_ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
__ CompareObjectType(receiver_reg, r2, r3, FIRST_JS_OBJECT_TYPE); __ CompareObjectType(receiver_reg, r2, r3, FIRST_JS_OBJECT_TYPE);
__ b(lt, &build_args); __ b(lt, &build_args);
@ -2610,7 +2610,7 @@ void CodeGenerator::VisitTryCatchStatement(TryCatchStatement* node) {
// The next handler address is on top of the frame. Unlink from // The next handler address is on top of the frame. Unlink from
// the handler list and drop the rest of this handler from the // the handler list and drop the rest of this handler from the
// frame. // frame.
ASSERT(StackHandlerConstants::kNextOffset == 0); STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
frame_->EmitPop(r1); frame_->EmitPop(r1);
__ mov(r3, Operand(handler_address)); __ mov(r3, Operand(handler_address));
__ str(r1, MemOperand(r3)); __ str(r1, MemOperand(r3));
@ -2636,7 +2636,7 @@ void CodeGenerator::VisitTryCatchStatement(TryCatchStatement* node) {
__ ldr(sp, MemOperand(r3)); __ ldr(sp, MemOperand(r3));
frame_->Forget(frame_->height() - handler_height); frame_->Forget(frame_->height() - handler_height);
ASSERT(StackHandlerConstants::kNextOffset == 0); STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
frame_->EmitPop(r1); frame_->EmitPop(r1);
__ str(r1, MemOperand(r3)); __ str(r1, MemOperand(r3));
frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
@ -2723,7 +2723,7 @@ void CodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* node) {
// chain and set the state on the frame to FALLING. // chain and set the state on the frame to FALLING.
if (has_valid_frame()) { if (has_valid_frame()) {
// The next handler address is on top of the frame. // The next handler address is on top of the frame.
ASSERT(StackHandlerConstants::kNextOffset == 0); STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
frame_->EmitPop(r1); frame_->EmitPop(r1);
__ mov(r3, Operand(handler_address)); __ mov(r3, Operand(handler_address));
__ str(r1, MemOperand(r3)); __ str(r1, MemOperand(r3));
@ -2762,7 +2762,7 @@ void CodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* node) {
// Unlink this handler and drop it from the frame. The next // Unlink this handler and drop it from the frame. The next
// handler address is currently on top of the frame. // handler address is currently on top of the frame.
ASSERT(StackHandlerConstants::kNextOffset == 0); STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
frame_->EmitPop(r1); frame_->EmitPop(r1);
__ str(r1, MemOperand(r3)); __ str(r1, MemOperand(r3));
frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
@ -4181,8 +4181,8 @@ void CodeGenerator::GenerateClassOf(ZoneList<Expression*>* args) {
// As long as JS_FUNCTION_TYPE is the last instance type and it is // As long as JS_FUNCTION_TYPE is the last instance type and it is
// right after LAST_JS_OBJECT_TYPE, we can avoid checking for // right after LAST_JS_OBJECT_TYPE, we can avoid checking for
// LAST_JS_OBJECT_TYPE. // LAST_JS_OBJECT_TYPE.
ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1); STATIC_ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
__ cmp(r1, Operand(JS_FUNCTION_TYPE)); __ cmp(r1, Operand(JS_FUNCTION_TYPE));
function.Branch(eq); function.Branch(eq);
@ -5128,7 +5128,7 @@ void CodeGenerator::GenerateGetFromCache(ZoneList<Expression*>* args) {
const int kFingerOffset = const int kFingerOffset =
FixedArray::OffsetOfElementAt(JSFunctionResultCache::kFingerIndex); FixedArray::OffsetOfElementAt(JSFunctionResultCache::kFingerIndex);
ASSERT(kSmiTag == 0 && kSmiTagSize == 1); STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
__ ldr(r0, FieldMemOperand(r1, kFingerOffset)); __ ldr(r0, FieldMemOperand(r1, kFingerOffset));
// r0 now holds finger offset as a smi. // r0 now holds finger offset as a smi.
__ add(r3, r1, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ add(r3, r1, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
@ -6940,7 +6940,7 @@ void ConvertToDoubleStub::Generate(MacroAssembler* masm) {
// Move sign bit from source to destination. This works because the sign bit // Move sign bit from source to destination. This works because the sign bit
// in the exponent word of the double has the same position and polarity as // in the exponent word of the double has the same position and polarity as
// the 2's complement sign bit in a Smi. // the 2's complement sign bit in a Smi.
ASSERT(HeapNumber::kSignMask == 0x80000000u); STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
__ and_(exponent, source_, Operand(HeapNumber::kSignMask), SetCC); __ and_(exponent, source_, Operand(HeapNumber::kSignMask), SetCC);
// Subtract from 0 if source was negative. // Subtract from 0 if source was negative.
__ rsb(source_, source_, Operand(0), LeaveCC, ne); __ rsb(source_, source_, Operand(0), LeaveCC, ne);
@ -6993,7 +6993,7 @@ void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) {
// the_int_ has the answer which is a signed int32 but not a Smi. // the_int_ has the answer which is a signed int32 but not a Smi.
// We test for the special value that has a different exponent. This test // We test for the special value that has a different exponent. This test
// has the neat side effect of setting the flags according to the sign. // has the neat side effect of setting the flags according to the sign.
ASSERT(HeapNumber::kSignMask == 0x80000000u); STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
__ cmp(the_int_, Operand(0x80000000u)); __ cmp(the_int_, Operand(0x80000000u));
__ b(eq, &max_negative_int); __ b(eq, &max_negative_int);
// Set up the correct exponent in scratch_. All non-Smi int32s have the same. // Set up the correct exponent in scratch_. All non-Smi int32s have the same.
@ -7338,7 +7338,7 @@ static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
// If either operand is a JSObject or an oddball value, then they are // If either operand is a JSObject or an oddball value, then they are
// not equal since their pointers are different. // not equal since their pointers are different.
// There is no test for undetectability in strict equality. // There is no test for undetectability in strict equality.
ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
Label first_non_object; Label first_non_object;
// Get the type of the first operand into r2 and compare it with // Get the type of the first operand into r2 and compare it with
// FIRST_JS_OBJECT_TYPE. // FIRST_JS_OBJECT_TYPE.
@ -7364,8 +7364,8 @@ static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
// Now that we have the types we might as well check for symbol-symbol. // Now that we have the types we might as well check for symbol-symbol.
// Ensure that no non-strings have the symbol bit set. // Ensure that no non-strings have the symbol bit set.
ASSERT(kNotStringTag + kIsSymbolMask > LAST_TYPE); STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask);
ASSERT(kSymbolTag != 0); STATIC_ASSERT(kSymbolTag != 0);
__ and_(r2, r2, Operand(r3)); __ and_(r2, r2, Operand(r3));
__ tst(r2, Operand(kIsSymbolMask)); __ tst(r2, Operand(kIsSymbolMask));
__ b(ne, &return_not_equal); __ b(ne, &return_not_equal);
@ -7416,7 +7416,7 @@ static void EmitCheckForSymbolsOrObjects(MacroAssembler* masm,
// r2 is object type of rhs. // r2 is object type of rhs.
// Ensure that no non-strings have the symbol bit set. // Ensure that no non-strings have the symbol bit set.
Label object_test; Label object_test;
ASSERT(kSymbolTag != 0); STATIC_ASSERT(kSymbolTag != 0);
__ tst(r2, Operand(kIsNotStringMask)); __ tst(r2, Operand(kIsNotStringMask));
__ b(ne, &object_test); __ b(ne, &object_test);
__ tst(r2, Operand(kIsSymbolMask)); __ tst(r2, Operand(kIsSymbolMask));
@ -7487,7 +7487,7 @@ void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm,
not_found, not_found,
true); true);
ASSERT_EQ(8, kDoubleSize); STATIC_ASSERT(8 == kDoubleSize);
__ add(scratch1, __ add(scratch1,
object, object,
Operand(HeapNumber::kValueOffset - kHeapObjectTag)); Operand(HeapNumber::kValueOffset - kHeapObjectTag));
@ -7586,7 +7586,7 @@ void CompareStub::Generate(MacroAssembler* masm) {
// If either is a Smi (we know that not both are), then they can only // If either is a Smi (we know that not both are), then they can only
// be strictly equal if the other is a HeapNumber. // be strictly equal if the other is a HeapNumber.
ASSERT_EQ(0, kSmiTag); STATIC_ASSERT(kSmiTag == 0);
ASSERT_EQ(0, Smi::FromInt(0)); ASSERT_EQ(0, Smi::FromInt(0));
__ and_(r2, lhs_, Operand(rhs_)); __ and_(r2, lhs_, Operand(rhs_));
__ tst(r2, Operand(kSmiTagMask)); __ tst(r2, Operand(kSmiTagMask));
@ -8589,7 +8589,7 @@ void GenericBinaryOpStub::Generate(MacroAssembler* masm) {
Label not_smi; Label not_smi;
// Fast path. // Fast path.
if (ShouldGenerateSmiCode()) { if (ShouldGenerateSmiCode()) {
ASSERT(kSmiTag == 0); // Adjust code below. STATIC_ASSERT(kSmiTag == 0); // Adjust code below.
__ tst(smi_test_reg, Operand(kSmiTagMask)); __ tst(smi_test_reg, Operand(kSmiTagMask));
__ b(ne, &not_smi); __ b(ne, &not_smi);
__ add(r0, r1, Operand(r0), SetCC); // Add y optimistically. __ add(r0, r1, Operand(r0), SetCC); // Add y optimistically.
@ -8605,7 +8605,7 @@ void GenericBinaryOpStub::Generate(MacroAssembler* masm) {
Label not_smi; Label not_smi;
// Fast path. // Fast path.
if (ShouldGenerateSmiCode()) { if (ShouldGenerateSmiCode()) {
ASSERT(kSmiTag == 0); // Adjust code below. STATIC_ASSERT(kSmiTag == 0); // Adjust code below.
__ tst(smi_test_reg, Operand(kSmiTagMask)); __ tst(smi_test_reg, Operand(kSmiTagMask));
__ b(ne, &not_smi); __ b(ne, &not_smi);
if (lhs.is(r1)) { if (lhs.is(r1)) {
@ -8627,7 +8627,7 @@ void GenericBinaryOpStub::Generate(MacroAssembler* masm) {
case Token::MUL: { case Token::MUL: {
Label not_smi, slow; Label not_smi, slow;
if (ShouldGenerateSmiCode()) { if (ShouldGenerateSmiCode()) {
ASSERT(kSmiTag == 0); // adjust code below STATIC_ASSERT(kSmiTag == 0); // adjust code below
__ tst(smi_test_reg, Operand(kSmiTagMask)); __ tst(smi_test_reg, Operand(kSmiTagMask));
Register scratch2 = smi_test_reg; Register scratch2 = smi_test_reg;
smi_test_reg = no_reg; smi_test_reg = no_reg;
@ -8763,7 +8763,7 @@ void GenericBinaryOpStub::Generate(MacroAssembler* masm) {
Label slow; Label slow;
Label not_power_of_2; Label not_power_of_2;
ASSERT(!ShouldGenerateSmiCode()); ASSERT(!ShouldGenerateSmiCode());
ASSERT(kSmiTag == 0); // Adjust code below. STATIC_ASSERT(kSmiTag == 0); // Adjust code below.
// Check for two positive smis. // Check for two positive smis.
__ orr(smi_test_reg, lhs, Operand(rhs)); __ orr(smi_test_reg, lhs, Operand(rhs));
__ tst(smi_test_reg, Operand(0x80000000u | kSmiTagMask)); __ tst(smi_test_reg, Operand(0x80000000u | kSmiTagMask));
@ -8823,7 +8823,7 @@ void GenericBinaryOpStub::Generate(MacroAssembler* masm) {
case Token::SHR: case Token::SHR:
case Token::SHL: { case Token::SHL: {
Label slow; Label slow;
ASSERT(kSmiTag == 0); // adjust code below STATIC_ASSERT(kSmiTag == 0); // adjust code below
__ tst(smi_test_reg, Operand(kSmiTagMask)); __ tst(smi_test_reg, Operand(kSmiTagMask));
__ b(ne, &slow); __ b(ne, &slow);
Register scratch2 = smi_test_reg; Register scratch2 = smi_test_reg;
@ -9137,17 +9137,17 @@ void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
// r0 holds the exception. // r0 holds the exception.
// Adjust this code if not the case. // Adjust this code if not the case.
ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);
// Drop the sp to the top of the handler. // Drop the sp to the top of the handler.
__ mov(r3, Operand(ExternalReference(Top::k_handler_address))); __ mov(r3, Operand(ExternalReference(Top::k_handler_address)));
__ ldr(sp, MemOperand(r3)); __ ldr(sp, MemOperand(r3));
// Restore the next handler and frame pointer, discard handler state. // Restore the next handler and frame pointer, discard handler state.
ASSERT(StackHandlerConstants::kNextOffset == 0); STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
__ pop(r2); __ pop(r2);
__ str(r2, MemOperand(r3)); __ str(r2, MemOperand(r3));
ASSERT(StackHandlerConstants::kFPOffset == 2 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kFPOffset == 2 * kPointerSize);
__ ldm(ia_w, sp, r3.bit() | fp.bit()); // r3: discarded state. __ ldm(ia_w, sp, r3.bit() | fp.bit()); // r3: discarded state.
// Before returning we restore the context from the frame pointer if // Before returning we restore the context from the frame pointer if
@ -9163,7 +9163,7 @@ void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
__ mov(lr, Operand(pc)); __ mov(lr, Operand(pc));
} }
#endif #endif
ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize);
__ pop(pc); __ pop(pc);
} }
@ -9171,7 +9171,7 @@ void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm, void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm,
UncatchableExceptionType type) { UncatchableExceptionType type) {
// Adjust this code if not the case. // Adjust this code if not the case.
ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);
// Drop sp to the top stack handler. // Drop sp to the top stack handler.
__ mov(r3, Operand(ExternalReference(Top::k_handler_address))); __ mov(r3, Operand(ExternalReference(Top::k_handler_address)));
@ -9192,7 +9192,7 @@ void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm,
__ bind(&done); __ bind(&done);
// Set the top handler address to next handler past the current ENTRY handler. // Set the top handler address to next handler past the current ENTRY handler.
ASSERT(StackHandlerConstants::kNextOffset == 0); STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
__ pop(r2); __ pop(r2);
__ str(r2, MemOperand(r3)); __ str(r2, MemOperand(r3));
@ -9216,7 +9216,7 @@ void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm,
// lr // lr
// Discard handler state (r2 is not used) and restore frame pointer. // Discard handler state (r2 is not used) and restore frame pointer.
ASSERT(StackHandlerConstants::kFPOffset == 2 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kFPOffset == 2 * kPointerSize);
__ ldm(ia_w, sp, r2.bit() | fp.bit()); // r2: discarded state. __ ldm(ia_w, sp, r2.bit() | fp.bit()); // r2: discarded state.
// Before returning we restore the context from the frame pointer if // Before returning we restore the context from the frame pointer if
// not NULL. The frame pointer is NULL in the exception handler of a // not NULL. The frame pointer is NULL in the exception handler of a
@ -9231,7 +9231,7 @@ void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm,
__ mov(lr, Operand(pc)); __ mov(lr, Operand(pc));
} }
#endif #endif
ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize);
__ pop(pc); __ pop(pc);
} }
@ -9326,7 +9326,7 @@ void CEntryStub::GenerateCore(MacroAssembler* masm,
// check for failure result // check for failure result
Label failure_returned; Label failure_returned;
ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0); STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
// Lower 2 bits of r2 are 0 iff r0 has failure tag. // Lower 2 bits of r2 are 0 iff r0 has failure tag.
__ add(r2, r0, Operand(1)); __ add(r2, r0, Operand(1));
__ tst(r2, Operand(kFailureTagMask)); __ tst(r2, Operand(kFailureTagMask));
@ -9341,7 +9341,7 @@ void CEntryStub::GenerateCore(MacroAssembler* masm,
// check if we should retry or throw exception // check if we should retry or throw exception
Label retry; Label retry;
__ bind(&failure_returned); __ bind(&failure_returned);
ASSERT(Failure::RETRY_AFTER_GC == 0); STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0);
__ tst(r0, Operand(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize)); __ tst(r0, Operand(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
__ b(eq, &retry); __ b(eq, &retry);
@ -9744,12 +9744,12 @@ void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) {
} }
// Setup the callee in-object property. // Setup the callee in-object property.
ASSERT(Heap::arguments_callee_index == 0); STATIC_ASSERT(Heap::arguments_callee_index == 0);
__ ldr(r3, MemOperand(sp, 2 * kPointerSize)); __ ldr(r3, MemOperand(sp, 2 * kPointerSize));
__ str(r3, FieldMemOperand(r0, JSObject::kHeaderSize)); __ str(r3, FieldMemOperand(r0, JSObject::kHeaderSize));
// Get the length (smi tagged) and set that as an in-object property too. // Get the length (smi tagged) and set that as an in-object property too.
ASSERT(Heap::arguments_length_index == 1); STATIC_ASSERT(Heap::arguments_length_index == 1);
__ ldr(r1, MemOperand(sp, 0 * kPointerSize)); __ ldr(r1, MemOperand(sp, 0 * kPointerSize));
__ str(r1, FieldMemOperand(r0, JSObject::kHeaderSize + kPointerSize)); __ str(r1, FieldMemOperand(r0, JSObject::kHeaderSize + kPointerSize));
@ -9841,7 +9841,7 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
// Check that the first argument is a JSRegExp object. // Check that the first argument is a JSRegExp object.
__ ldr(r0, MemOperand(sp, kJSRegExpOffset)); __ ldr(r0, MemOperand(sp, kJSRegExpOffset));
ASSERT_EQ(0, kSmiTag); STATIC_ASSERT(kSmiTag == 0);
__ tst(r0, Operand(kSmiTagMask)); __ tst(r0, Operand(kSmiTagMask));
__ b(eq, &runtime); __ b(eq, &runtime);
__ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE); __ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE);
@ -9868,8 +9868,8 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset)); FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
// Calculate number of capture registers (number_of_captures + 1) * 2. This // Calculate number of capture registers (number_of_captures + 1) * 2. This
// uses the asumption that smis are 2 * their untagged value. // uses the asumption that smis are 2 * their untagged value.
ASSERT_EQ(0, kSmiTag); STATIC_ASSERT(kSmiTag == 0);
ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize); STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
__ add(r2, r2, Operand(2)); // r2 was a smi. __ add(r2, r2, Operand(2)); // r2 was a smi.
// Check that the static offsets vector buffer is large enough. // Check that the static offsets vector buffer is large enough.
__ cmp(r2, Operand(OffsetsVector::kStaticOffsetsVectorSize)); __ cmp(r2, Operand(OffsetsVector::kStaticOffsetsVectorSize));
@ -9930,7 +9930,7 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
__ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset)); __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
// First check for flat string. // First check for flat string.
__ tst(r0, Operand(kIsNotStringMask | kStringRepresentationMask)); __ tst(r0, Operand(kIsNotStringMask | kStringRepresentationMask));
ASSERT_EQ(0, kStringTag | kSeqStringTag); STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
__ b(eq, &seq_string); __ b(eq, &seq_string);
// subject: Subject string // subject: Subject string
@ -9940,8 +9940,8 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
// string. In that case the subject string is just the first part of the cons // string. In that case the subject string is just the first part of the cons
// string. Also in this case the first part of the cons string is known to be // string. Also in this case the first part of the cons string is known to be
// a sequential string or an external string. // a sequential string or an external string.
ASSERT(kExternalStringTag !=0); STATIC_ASSERT(kExternalStringTag !=0);
ASSERT_EQ(0, kConsStringTag & kExternalStringTag); STATIC_ASSERT((kConsStringTag & kExternalStringTag) == 0);
__ tst(r0, Operand(kIsNotStringMask | kExternalStringTag)); __ tst(r0, Operand(kIsNotStringMask | kExternalStringTag));
__ b(ne, &runtime); __ b(ne, &runtime);
__ ldr(r0, FieldMemOperand(subject, ConsString::kSecondOffset)); __ ldr(r0, FieldMemOperand(subject, ConsString::kSecondOffset));
@ -9952,7 +9952,7 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
__ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset)); __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
__ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset)); __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
// Is first part a flat string? // Is first part a flat string?
ASSERT_EQ(0, kSeqStringTag); STATIC_ASSERT(kSeqStringTag == 0);
__ tst(r0, Operand(kStringRepresentationMask)); __ tst(r0, Operand(kStringRepresentationMask));
__ b(nz, &runtime); __ b(nz, &runtime);
@ -9960,8 +9960,8 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
// subject: Subject string // subject: Subject string
// regexp_data: RegExp data (FixedArray) // regexp_data: RegExp data (FixedArray)
// r0: Instance type of subject string // r0: Instance type of subject string
ASSERT_EQ(4, kAsciiStringTag); STATIC_ASSERT(4 == kAsciiStringTag);
ASSERT_EQ(0, kTwoByteStringTag); STATIC_ASSERT(kTwoByteStringTag == 0);
// Find the code object based on the assumptions above. // Find the code object based on the assumptions above.
__ and_(r0, r0, Operand(kStringEncodingMask)); __ and_(r0, r0, Operand(kStringEncodingMask));
__ mov(r3, Operand(r0, ASR, 2), SetCC); __ mov(r3, Operand(r0, ASR, 2), SetCC);
@ -10015,7 +10015,7 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
// calculate the shift of the index (0 for ASCII and 1 for two byte). // calculate the shift of the index (0 for ASCII and 1 for two byte).
__ ldr(r0, FieldMemOperand(subject, String::kLengthOffset)); __ ldr(r0, FieldMemOperand(subject, String::kLengthOffset));
__ mov(r0, Operand(r0, ASR, kSmiTagSize)); __ mov(r0, Operand(r0, ASR, kSmiTagSize));
ASSERT_EQ(SeqAsciiString::kHeaderSize, SeqTwoByteString::kHeaderSize); STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize);
__ add(r9, subject, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); __ add(r9, subject, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
__ eor(r3, r3, Operand(1)); __ eor(r3, r3, Operand(1));
// Argument 4 (r3): End of string data // Argument 4 (r3): End of string data
@ -10070,8 +10070,8 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
__ ldr(r1, __ ldr(r1,
FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset)); FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
// Calculate number of capture registers (number_of_captures + 1) * 2. // Calculate number of capture registers (number_of_captures + 1) * 2.
ASSERT_EQ(0, kSmiTag); STATIC_ASSERT(kSmiTag == 0);
ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize); STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
__ add(r1, r1, Operand(2)); // r1 was a smi. __ add(r1, r1, Operand(2)); // r1 was a smi.
// r1: number of capture registers // r1: number of capture registers
@ -10283,7 +10283,7 @@ void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
__ b(ls, index_out_of_range_); __ b(ls, index_out_of_range_);
// We need special handling for non-flat strings. // We need special handling for non-flat strings.
ASSERT(kSeqStringTag == 0); STATIC_ASSERT(kSeqStringTag == 0);
__ tst(result_, Operand(kStringRepresentationMask)); __ tst(result_, Operand(kStringRepresentationMask));
__ b(eq, &flat_string); __ b(eq, &flat_string);
@ -10305,13 +10305,13 @@ void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
__ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
__ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
// If the first cons component is also non-flat, then go to runtime. // If the first cons component is also non-flat, then go to runtime.
ASSERT(kSeqStringTag == 0); STATIC_ASSERT(kSeqStringTag == 0);
__ tst(result_, Operand(kStringRepresentationMask)); __ tst(result_, Operand(kStringRepresentationMask));
__ b(nz, &call_runtime_); __ b(nz, &call_runtime_);
// Check for 1-byte or 2-byte string. // Check for 1-byte or 2-byte string.
__ bind(&flat_string); __ bind(&flat_string);
ASSERT(kAsciiStringTag != 0); STATIC_ASSERT(kAsciiStringTag != 0);
__ tst(result_, Operand(kStringEncodingMask)); __ tst(result_, Operand(kStringEncodingMask));
__ b(nz, &ascii_string); __ b(nz, &ascii_string);
@ -10319,7 +10319,7 @@ void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
// Load the 2-byte character code into the result register. We can // Load the 2-byte character code into the result register. We can
// add without shifting since the smi tag size is the log2 of the // add without shifting since the smi tag size is the log2 of the
// number of bytes in a two-byte character. // number of bytes in a two-byte character.
ASSERT(kSmiTag == 0 && kSmiTagSize == 1 && kSmiShiftSize == 0); STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1 && kSmiShiftSize == 0);
__ add(scratch_, object_, Operand(scratch_)); __ add(scratch_, object_, Operand(scratch_));
__ ldrh(result_, FieldMemOperand(scratch_, SeqTwoByteString::kHeaderSize)); __ ldrh(result_, FieldMemOperand(scratch_, SeqTwoByteString::kHeaderSize));
__ jmp(&got_char_code); __ jmp(&got_char_code);
@ -10396,8 +10396,8 @@ void StringCharCodeAtGenerator::GenerateSlow(
void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) { void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
// Fast case of Heap::LookupSingleCharacterStringFromCode. // Fast case of Heap::LookupSingleCharacterStringFromCode.
ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTag == 0);
ASSERT(kSmiShiftSize == 0); STATIC_ASSERT(kSmiShiftSize == 0);
ASSERT(IsPowerOf2(String::kMaxAsciiCharCode + 1)); ASSERT(IsPowerOf2(String::kMaxAsciiCharCode + 1));
__ tst(code_, __ tst(code_,
Operand(kSmiTagMask | Operand(kSmiTagMask |
@ -10406,7 +10406,7 @@ void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
__ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex); __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
// At this point code register contains smi tagged ascii char code. // At this point code register contains smi tagged ascii char code.
ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTag == 0);
__ add(result_, result_, Operand(code_, LSL, kPointerSizeLog2 - kSmiTagSize)); __ add(result_, result_, Operand(code_, LSL, kPointerSizeLog2 - kSmiTagSize));
__ ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize)); __ ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex); __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
@ -10511,7 +10511,7 @@ void StringHelper::GenerateCopyCharactersLong(MacroAssembler* masm,
// Ensure that reading an entire aligned word containing the last character // Ensure that reading an entire aligned word containing the last character
// of a string will not read outside the allocated area (because we pad up // of a string will not read outside the allocated area (because we pad up
// to kObjectAlignment). // to kObjectAlignment).
ASSERT(kObjectAlignment >= kReadAlignment); STATIC_ASSERT(kObjectAlignment >= kReadAlignment);
// Assumes word reads and writes are little endian. // Assumes word reads and writes are little endian.
// Nothing to do for zero characters. // Nothing to do for zero characters.
Label done; Label done;
@ -10715,7 +10715,7 @@ void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
__ and_(candidate, candidate, Operand(mask)); __ and_(candidate, candidate, Operand(mask));
// Load the entry from the symble table. // Load the entry from the symble table.
ASSERT_EQ(1, SymbolTable::kEntrySize); STATIC_ASSERT(SymbolTable::kEntrySize == 1);
__ ldr(candidate, __ ldr(candidate,
MemOperand(first_symbol_table_element, MemOperand(first_symbol_table_element,
candidate, candidate,
@ -10815,8 +10815,8 @@ void SubStringStub::Generate(MacroAssembler* masm) {
// Check bounds and smi-ness. // Check bounds and smi-ness.
__ ldr(r7, MemOperand(sp, kToOffset)); __ ldr(r7, MemOperand(sp, kToOffset));
__ ldr(r6, MemOperand(sp, kFromOffset)); __ ldr(r6, MemOperand(sp, kFromOffset));
ASSERT_EQ(0, kSmiTag); STATIC_ASSERT(kSmiTag == 0);
ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize); STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
// I.e., arithmetic shift right by one un-smi-tags. // I.e., arithmetic shift right by one un-smi-tags.
__ mov(r2, Operand(r7, ASR, 1), SetCC); __ mov(r2, Operand(r7, ASR, 1), SetCC);
__ mov(r3, Operand(r6, ASR, 1), SetCC, cc); __ mov(r3, Operand(r6, ASR, 1), SetCC, cc);
@ -10839,7 +10839,7 @@ void SubStringStub::Generate(MacroAssembler* masm) {
// Make sure first argument is a sequential (or flat) string. // Make sure first argument is a sequential (or flat) string.
__ ldr(r5, MemOperand(sp, kStringOffset)); __ ldr(r5, MemOperand(sp, kStringOffset));
ASSERT_EQ(0, kSmiTag); STATIC_ASSERT(kSmiTag == 0);
__ tst(r5, Operand(kSmiTagMask)); __ tst(r5, Operand(kSmiTagMask));
__ b(eq, &runtime); __ b(eq, &runtime);
Condition is_string = masm->IsObjectStringType(r5, r1); Condition is_string = masm->IsObjectStringType(r5, r1);
@ -10853,8 +10853,8 @@ void SubStringStub::Generate(MacroAssembler* masm) {
// r7: to (smi) // r7: to (smi)
Label seq_string; Label seq_string;
__ and_(r4, r1, Operand(kStringRepresentationMask)); __ and_(r4, r1, Operand(kStringRepresentationMask));
ASSERT(kSeqStringTag < kConsStringTag); STATIC_ASSERT(kSeqStringTag < kConsStringTag);
ASSERT(kExternalStringTag > kConsStringTag); STATIC_ASSERT(kConsStringTag < kExternalStringTag);
__ cmp(r4, Operand(kConsStringTag)); __ cmp(r4, Operand(kConsStringTag));
__ b(gt, &runtime); // External strings go to runtime. __ b(gt, &runtime); // External strings go to runtime.
__ b(lt, &seq_string); // Sequential strings are handled directly. __ b(lt, &seq_string); // Sequential strings are handled directly.
@ -10866,7 +10866,7 @@ void SubStringStub::Generate(MacroAssembler* masm) {
__ ldr(r4, FieldMemOperand(r5, HeapObject::kMapOffset)); __ ldr(r4, FieldMemOperand(r5, HeapObject::kMapOffset));
__ ldrb(r1, FieldMemOperand(r4, Map::kInstanceTypeOffset)); __ ldrb(r1, FieldMemOperand(r4, Map::kInstanceTypeOffset));
__ tst(r1, Operand(kStringRepresentationMask)); __ tst(r1, Operand(kStringRepresentationMask));
ASSERT_EQ(0, kSeqStringTag); STATIC_ASSERT(kSeqStringTag == 0);
__ b(ne, &runtime); // Cons and External strings go to runtime. __ b(ne, &runtime); // Cons and External strings go to runtime.
// Definitly a sequential string. // Definitly a sequential string.
@ -10890,7 +10890,7 @@ void SubStringStub::Generate(MacroAssembler* masm) {
// Check for flat ascii string. // Check for flat ascii string.
Label non_ascii_flat; Label non_ascii_flat;
__ tst(r1, Operand(kStringEncodingMask)); __ tst(r1, Operand(kStringEncodingMask));
ASSERT_EQ(0, kTwoByteStringTag); STATIC_ASSERT(kTwoByteStringTag == 0);
__ b(eq, &non_ascii_flat); __ b(eq, &non_ascii_flat);
Label result_longer_than_two; Label result_longer_than_two;
@ -10939,7 +10939,7 @@ void SubStringStub::Generate(MacroAssembler* masm) {
// r1: first character of result string. // r1: first character of result string.
// r2: result string length. // r2: result string length.
// r5: first character of sub string to copy. // r5: first character of sub string to copy.
ASSERT_EQ(0, SeqAsciiString::kHeaderSize & kObjectAlignmentMask); STATIC_ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0);
StringHelper::GenerateCopyCharactersLong(masm, r1, r5, r2, r3, r4, r6, r7, r9, StringHelper::GenerateCopyCharactersLong(masm, r1, r5, r2, r3, r4, r6, r7, r9,
COPY_ASCII | DEST_ALWAYS_ALIGNED); COPY_ASCII | DEST_ALWAYS_ALIGNED);
__ IncrementCounter(&Counters::sub_string_native, 1, r3, r4); __ IncrementCounter(&Counters::sub_string_native, 1, r3, r4);
@ -10970,7 +10970,7 @@ void SubStringStub::Generate(MacroAssembler* masm) {
// r1: first character of result. // r1: first character of result.
// r2: result length. // r2: result length.
// r5: first character of string to copy. // r5: first character of string to copy.
ASSERT_EQ(0, SeqTwoByteString::kHeaderSize & kObjectAlignmentMask); STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
StringHelper::GenerateCopyCharactersLong(masm, r1, r5, r2, r3, r4, r6, r7, r9, StringHelper::GenerateCopyCharactersLong(masm, r1, r5, r2, r3, r4, r6, r7, r9,
DEST_ALWAYS_ALIGNED); DEST_ALWAYS_ALIGNED);
__ IncrementCounter(&Counters::sub_string_native, 1, r3, r4); __ IncrementCounter(&Counters::sub_string_native, 1, r3, r4);
@ -10998,7 +10998,7 @@ void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
Register length_delta = scratch3; Register length_delta = scratch3;
__ mov(scratch1, scratch2, LeaveCC, gt); __ mov(scratch1, scratch2, LeaveCC, gt);
Register min_length = scratch1; Register min_length = scratch1;
ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTag == 0);
__ tst(min_length, Operand(min_length)); __ tst(min_length, Operand(min_length));
__ b(eq, &compare_lengths); __ b(eq, &compare_lengths);
@ -11054,8 +11054,8 @@ void StringCompareStub::Generate(MacroAssembler* masm) {
Label not_same; Label not_same;
__ cmp(r0, r1); __ cmp(r0, r1);
__ b(ne, &not_same); __ b(ne, &not_same);
ASSERT_EQ(0, EQUAL); STATIC_ASSERT(EQUAL == 0);
ASSERT_EQ(0, kSmiTag); STATIC_ASSERT(kSmiTag == 0);
__ mov(r0, Operand(Smi::FromInt(EQUAL))); __ mov(r0, Operand(Smi::FromInt(EQUAL)));
__ IncrementCounter(&Counters::string_compare_native, 1, r1, r2); __ IncrementCounter(&Counters::string_compare_native, 1, r1, r2);
__ add(sp, sp, Operand(2 * kPointerSize)); __ add(sp, sp, Operand(2 * kPointerSize));
@ -11090,14 +11090,14 @@ void StringAddStub::Generate(MacroAssembler* masm) {
// Make sure that both arguments are strings if not known in advance. // Make sure that both arguments are strings if not known in advance.
if (string_check_) { if (string_check_) {
ASSERT_EQ(0, kSmiTag); STATIC_ASSERT(kSmiTag == 0);
__ JumpIfEitherSmi(r0, r1, &string_add_runtime); __ JumpIfEitherSmi(r0, r1, &string_add_runtime);
// Load instance types. // Load instance types.
__ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset)); __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
__ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset)); __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
__ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset)); __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
__ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset)); __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
ASSERT_EQ(0, kStringTag); STATIC_ASSERT(kStringTag == 0);
// If either is not a string, go to runtime. // If either is not a string, go to runtime.
__ tst(r4, Operand(kIsNotStringMask)); __ tst(r4, Operand(kIsNotStringMask));
__ tst(r5, Operand(kIsNotStringMask), eq); __ tst(r5, Operand(kIsNotStringMask), eq);
@ -11114,10 +11114,10 @@ void StringAddStub::Generate(MacroAssembler* masm) {
// Check if either of the strings are empty. In that case return the other. // Check if either of the strings are empty. In that case return the other.
__ ldr(r2, FieldMemOperand(r0, String::kLengthOffset)); __ ldr(r2, FieldMemOperand(r0, String::kLengthOffset));
__ ldr(r3, FieldMemOperand(r1, String::kLengthOffset)); __ ldr(r3, FieldMemOperand(r1, String::kLengthOffset));
ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTag == 0);
__ cmp(r2, Operand(Smi::FromInt(0))); // Test if first string is empty. __ cmp(r2, Operand(Smi::FromInt(0))); // Test if first string is empty.
__ mov(r0, Operand(r1), LeaveCC, eq); // If first is empty, return second. __ mov(r0, Operand(r1), LeaveCC, eq); // If first is empty, return second.
ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTag == 0);
// Else test if second string is empty. // Else test if second string is empty.
__ cmp(r3, Operand(Smi::FromInt(0)), ne); __ cmp(r3, Operand(Smi::FromInt(0)), ne);
__ b(ne, &strings_not_empty); // If either string was empty, return r0. __ b(ne, &strings_not_empty); // If either string was empty, return r0.
@ -11141,7 +11141,7 @@ void StringAddStub::Generate(MacroAssembler* masm) {
// Look at the length of the result of adding the two strings. // Look at the length of the result of adding the two strings.
Label string_add_flat_result, longer_than_two; Label string_add_flat_result, longer_than_two;
// Adding two lengths can't overflow. // Adding two lengths can't overflow.
ASSERT(String::kMaxLength * 2 > String::kMaxLength); STATIC_ASSERT(String::kMaxLength < String::kMaxLength * 2);
__ add(r6, r2, Operand(r3)); __ add(r6, r2, Operand(r3));
// Use the runtime system when adding two one character strings, as it // Use the runtime system when adding two one character strings, as it
// contains optimizations for this specific case using the symbol table. // contains optimizations for this specific case using the symbol table.
@ -11189,7 +11189,7 @@ void StringAddStub::Generate(MacroAssembler* masm) {
__ cmp(r6, Operand(String::kMinNonFlatLength)); __ cmp(r6, Operand(String::kMinNonFlatLength));
__ b(lt, &string_add_flat_result); __ b(lt, &string_add_flat_result);
// Handle exceptionally long strings in the runtime system. // Handle exceptionally long strings in the runtime system.
ASSERT((String::kMaxLength & 0x80000000) == 0); STATIC_ASSERT((String::kMaxLength & 0x80000000) == 0);
ASSERT(IsPowerOf2(String::kMaxLength + 1)); ASSERT(IsPowerOf2(String::kMaxLength + 1));
// kMaxLength + 1 is representable as shifted literal, kMaxLength is not. // kMaxLength + 1 is representable as shifted literal, kMaxLength is not.
__ cmp(r6, Operand(String::kMaxLength + 1)); __ cmp(r6, Operand(String::kMaxLength + 1));
@ -11204,7 +11204,7 @@ void StringAddStub::Generate(MacroAssembler* masm) {
__ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset)); __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
} }
Label non_ascii, allocated, ascii_data; Label non_ascii, allocated, ascii_data;
ASSERT_EQ(0, kTwoByteStringTag); STATIC_ASSERT(kTwoByteStringTag == 0);
__ tst(r4, Operand(kStringEncodingMask)); __ tst(r4, Operand(kStringEncodingMask));
__ tst(r5, Operand(kStringEncodingMask), ne); __ tst(r5, Operand(kStringEncodingMask), ne);
__ b(eq, &non_ascii); __ b(eq, &non_ascii);
@ -11230,7 +11230,7 @@ void StringAddStub::Generate(MacroAssembler* masm) {
__ tst(r5, Operand(kAsciiDataHintMask), ne); __ tst(r5, Operand(kAsciiDataHintMask), ne);
__ b(ne, &ascii_data); __ b(ne, &ascii_data);
__ eor(r4, r4, Operand(r5)); __ eor(r4, r4, Operand(r5));
ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0); STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0);
__ and_(r4, r4, Operand(kAsciiStringTag | kAsciiDataHintTag)); __ and_(r4, r4, Operand(kAsciiStringTag | kAsciiDataHintTag));
__ cmp(r4, Operand(kAsciiStringTag | kAsciiDataHintTag)); __ cmp(r4, Operand(kAsciiStringTag | kAsciiDataHintTag));
__ b(eq, &ascii_data); __ b(eq, &ascii_data);
@ -11256,7 +11256,7 @@ void StringAddStub::Generate(MacroAssembler* masm) {
__ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset)); __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
} }
// Check that both strings are sequential. // Check that both strings are sequential.
ASSERT_EQ(0, kSeqStringTag); STATIC_ASSERT(kSeqStringTag == 0);
__ tst(r4, Operand(kStringRepresentationMask)); __ tst(r4, Operand(kStringRepresentationMask));
__ tst(r5, Operand(kStringRepresentationMask), eq); __ tst(r5, Operand(kStringRepresentationMask), eq);
__ b(ne, &string_add_runtime); __ b(ne, &string_add_runtime);

View File

@ -905,7 +905,7 @@ void CodeGenerator::ToBoolean(ControlDestination* dest) {
__ AbortIfNotNumber(value.reg()); __ AbortIfNotNumber(value.reg());
} }
// Smi => false iff zero. // Smi => false iff zero.
ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTag == 0);
__ test(value.reg(), Operand(value.reg())); __ test(value.reg(), Operand(value.reg()));
dest->false_target()->Branch(zero); dest->false_target()->Branch(zero);
__ test(value.reg(), Immediate(kSmiTagMask)); __ test(value.reg(), Immediate(kSmiTagMask));
@ -930,7 +930,7 @@ void CodeGenerator::ToBoolean(ControlDestination* dest) {
dest->false_target()->Branch(equal); dest->false_target()->Branch(equal);
// Smi => false iff zero. // Smi => false iff zero.
ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTag == 0);
__ test(value.reg(), Operand(value.reg())); __ test(value.reg(), Operand(value.reg()));
dest->false_target()->Branch(zero); dest->false_target()->Branch(zero);
__ test(value.reg(), Immediate(kSmiTagMask)); __ test(value.reg(), Immediate(kSmiTagMask));
@ -1169,7 +1169,7 @@ static TypeInfo CalculateTypeInfo(TypeInfo operands_type,
const Result& left) { const Result& left) {
// Set TypeInfo of result according to the operation performed. // Set TypeInfo of result according to the operation performed.
// Rely on the fact that smis have a 31 bit payload on ia32. // Rely on the fact that smis have a 31 bit payload on ia32.
ASSERT(kSmiValueSize == 31); STATIC_ASSERT(kSmiValueSize == 31);
switch (op) { switch (op) {
case Token::COMMA: case Token::COMMA:
return right.type_info(); return right.type_info();
@ -1599,7 +1599,7 @@ Result CodeGenerator::LikelySmiBinaryOperation(BinaryOperation* expr,
// Check for the corner case of dividing the most negative smi by // Check for the corner case of dividing the most negative smi by
// -1. We cannot use the overflow flag, since it is not set by // -1. We cannot use the overflow flag, since it is not set by
// idiv instruction. // idiv instruction.
ASSERT(kSmiTag == 0 && kSmiTagSize == 1); STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
__ cmp(eax, 0x40000000); __ cmp(eax, 0x40000000);
deferred->Branch(equal); deferred->Branch(equal);
// Check that the remainder is zero. // Check that the remainder is zero.
@ -1789,7 +1789,7 @@ Result CodeGenerator::LikelySmiBinaryOperation(BinaryOperation* expr,
case Token::MUL: { case Token::MUL: {
// If the smi tag is 0 we can just leave the tag on one operand. // If the smi tag is 0 we can just leave the tag on one operand.
ASSERT(kSmiTag == 0); // Adjust code below if not the case. STATIC_ASSERT(kSmiTag == 0); // Adjust code below if not the case.
// Remove smi tag from the left operand (but keep sign). // Remove smi tag from the left operand (but keep sign).
// Left-hand operand has been copied into answer. // Left-hand operand has been copied into answer.
__ SmiUntag(answer.reg()); __ SmiUntag(answer.reg());
@ -2296,13 +2296,13 @@ Result CodeGenerator::ConstantSmiBinaryOperation(BinaryOperation* expr,
__ AbortIfNotSmi(operand->reg()); __ AbortIfNotSmi(operand->reg());
} }
__ mov(answer.reg(), operand->reg()); __ mov(answer.reg(), operand->reg());
ASSERT(kSmiTag == 0); // adjust code if not the case STATIC_ASSERT(kSmiTag == 0); // adjust code if not the case
// We do no shifts, only the Smi conversion, if shift_value is 1. // We do no shifts, only the Smi conversion, if shift_value is 1.
if (shift_value > 1) { if (shift_value > 1) {
__ shl(answer.reg(), shift_value - 1); __ shl(answer.reg(), shift_value - 1);
} }
// Convert int result to Smi, checking that it is in int range. // Convert int result to Smi, checking that it is in int range.
ASSERT(kSmiTagSize == 1); // adjust code if not the case STATIC_ASSERT(kSmiTagSize == 1); // adjust code if not the case
__ add(answer.reg(), Operand(answer.reg())); __ add(answer.reg(), Operand(answer.reg()));
deferred->Branch(overflow); deferred->Branch(overflow);
deferred->BindExit(); deferred->BindExit();
@ -2370,8 +2370,8 @@ Result CodeGenerator::ConstantSmiBinaryOperation(BinaryOperation* expr,
overwrite_mode); overwrite_mode);
// Check that lowest log2(value) bits of operand are zero, and test // Check that lowest log2(value) bits of operand are zero, and test
// smi tag at the same time. // smi tag at the same time.
ASSERT_EQ(0, kSmiTag); STATIC_ASSERT(kSmiTag == 0);
ASSERT_EQ(1, kSmiTagSize); STATIC_ASSERT(kSmiTagSize == 1);
__ test(operand->reg(), Immediate(3)); __ test(operand->reg(), Immediate(3));
deferred->Branch(not_zero); // Branch if non-smi or odd smi. deferred->Branch(not_zero); // Branch if non-smi or odd smi.
__ sar(operand->reg(), 1); __ sar(operand->reg(), 1);
@ -2605,9 +2605,9 @@ void CodeGenerator::Comparison(AstNode* node,
// side (which is always a symbol). // side (which is always a symbol).
if (cc == equal) { if (cc == equal) {
Label not_a_symbol; Label not_a_symbol;
ASSERT(kSymbolTag != 0); STATIC_ASSERT(kSymbolTag != 0);
// Ensure that no non-strings have the symbol bit set. // Ensure that no non-strings have the symbol bit set.
ASSERT(kNotStringTag + kIsSymbolMask > LAST_TYPE); STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask);
__ test(temp.reg(), Immediate(kIsSymbolMask)); // Test the symbol bit. __ test(temp.reg(), Immediate(kIsSymbolMask)); // Test the symbol bit.
__ j(zero, &not_a_symbol); __ j(zero, &not_a_symbol);
// They are symbols, so do identity compare. // They are symbols, so do identity compare.
@ -3151,8 +3151,8 @@ void CodeGenerator::CallApplyLazy(Expression* applicand,
// JS_FUNCTION_TYPE is the last instance type and it is right // JS_FUNCTION_TYPE is the last instance type and it is right
// after LAST_JS_OBJECT_TYPE, we do not have to check the upper // after LAST_JS_OBJECT_TYPE, we do not have to check the upper
// bound. // bound.
ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1); STATIC_ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
__ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, ecx); __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, ecx);
__ j(below, &build_args); __ j(below, &build_args);
@ -4476,7 +4476,7 @@ void CodeGenerator::VisitTryCatchStatement(TryCatchStatement* node) {
// The next handler address is on top of the frame. Unlink from // The next handler address is on top of the frame. Unlink from
// the handler list and drop the rest of this handler from the // the handler list and drop the rest of this handler from the
// frame. // frame.
ASSERT(StackHandlerConstants::kNextOffset == 0); STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
frame_->EmitPop(Operand::StaticVariable(handler_address)); frame_->EmitPop(Operand::StaticVariable(handler_address));
frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
if (has_unlinks) { if (has_unlinks) {
@ -4507,7 +4507,7 @@ void CodeGenerator::VisitTryCatchStatement(TryCatchStatement* node) {
__ mov(esp, Operand::StaticVariable(handler_address)); __ mov(esp, Operand::StaticVariable(handler_address));
frame_->Forget(frame_->height() - handler_height); frame_->Forget(frame_->height() - handler_height);
ASSERT(StackHandlerConstants::kNextOffset == 0); STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
frame_->EmitPop(Operand::StaticVariable(handler_address)); frame_->EmitPop(Operand::StaticVariable(handler_address));
frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
@ -4593,7 +4593,7 @@ void CodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* node) {
// chain and set the state on the frame to FALLING. // chain and set the state on the frame to FALLING.
if (has_valid_frame()) { if (has_valid_frame()) {
// The next handler address is on top of the frame. // The next handler address is on top of the frame.
ASSERT(StackHandlerConstants::kNextOffset == 0); STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
frame_->EmitPop(Operand::StaticVariable(handler_address)); frame_->EmitPop(Operand::StaticVariable(handler_address));
frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
@ -4632,7 +4632,7 @@ void CodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* node) {
frame_->Forget(frame_->height() - handler_height); frame_->Forget(frame_->height() - handler_height);
// Unlink this handler and drop it from the frame. // Unlink this handler and drop it from the frame.
ASSERT(StackHandlerConstants::kNextOffset == 0); STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
frame_->EmitPop(Operand::StaticVariable(handler_address)); frame_->EmitPop(Operand::StaticVariable(handler_address));
frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
@ -6573,8 +6573,8 @@ void CodeGenerator::GenerateClassOf(ZoneList<Expression*>* args) {
// As long as JS_FUNCTION_TYPE is the last instance type and it is // As long as JS_FUNCTION_TYPE is the last instance type and it is
// right after LAST_JS_OBJECT_TYPE, we can avoid checking for // right after LAST_JS_OBJECT_TYPE, we can avoid checking for
// LAST_JS_OBJECT_TYPE. // LAST_JS_OBJECT_TYPE.
ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1); STATIC_ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
__ CmpInstanceType(obj.reg(), JS_FUNCTION_TYPE); __ CmpInstanceType(obj.reg(), JS_FUNCTION_TYPE);
function.Branch(equal); function.Branch(equal);
@ -6715,7 +6715,7 @@ void CodeGenerator::GenerateObjectEquals(ZoneList<Expression*>* args) {
void CodeGenerator::GenerateGetFramePointer(ZoneList<Expression*>* args) { void CodeGenerator::GenerateGetFramePointer(ZoneList<Expression*>* args) {
ASSERT(args->length() == 0); ASSERT(args->length() == 0);
ASSERT(kSmiTag == 0); // EBP value is aligned, so it should look like Smi. STATIC_ASSERT(kSmiTag == 0); // EBP value is aligned, so it looks like a Smi.
Result ebp_as_smi = allocator_->Allocate(); Result ebp_as_smi = allocator_->Allocate();
ASSERT(ebp_as_smi.is_valid()); ASSERT(ebp_as_smi.is_valid());
__ mov(ebp_as_smi.reg(), Operand(ebp)); __ mov(ebp_as_smi.reg(), Operand(ebp));
@ -7069,7 +7069,7 @@ void CodeGenerator::GenerateGetFromCache(ZoneList<Expression*>* args) {
key.reg()); key.reg());
// tmp.reg() now holds finger offset as a smi. // tmp.reg() now holds finger offset as a smi.
ASSERT(kSmiTag == 0 && kSmiTagSize == 1); STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
__ mov(tmp.reg(), FieldOperand(cache.reg(), __ mov(tmp.reg(), FieldOperand(cache.reg(),
JSFunctionResultCache::kFingerOffset)); JSFunctionResultCache::kFingerOffset));
__ cmp(key.reg(), FixedArrayElementOperand(cache.reg(), tmp.reg())); __ cmp(key.reg(), FixedArrayElementOperand(cache.reg(), tmp.reg()));
@ -9031,7 +9031,7 @@ Result CodeGenerator::EmitKeyedLoad() {
// Load and check that the result is not the hole. // Load and check that the result is not the hole.
// Key holds a smi. // Key holds a smi.
ASSERT((kSmiTag == 0) && (kSmiTagSize == 1)); STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
__ mov(elements.reg(), __ mov(elements.reg(),
FieldOperand(elements.reg(), FieldOperand(elements.reg(),
key.reg(), key.reg(),
@ -9407,7 +9407,9 @@ void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) {
Label slow_case; Label slow_case;
__ mov(ecx, Operand(esp, 3 * kPointerSize)); __ mov(ecx, Operand(esp, 3 * kPointerSize));
__ mov(eax, Operand(esp, 2 * kPointerSize)); __ mov(eax, Operand(esp, 2 * kPointerSize));
ASSERT((kPointerSize == 4) && (kSmiTagSize == 1) && (kSmiTag == 0)); STATIC_ASSERT(kPointerSize == 4);
STATIC_ASSERT(kSmiTagSize == 1);
STATIC_ASSERT(kSmiTag == 0);
__ mov(ecx, CodeGenerator::FixedArrayElementOperand(ecx, eax)); __ mov(ecx, CodeGenerator::FixedArrayElementOperand(ecx, eax));
__ cmp(ecx, Factory::undefined_value()); __ cmp(ecx, Factory::undefined_value());
__ j(equal, &slow_case); __ j(equal, &slow_case);
@ -9471,7 +9473,7 @@ void ToBooleanStub::Generate(MacroAssembler* masm) {
// String value => false iff empty. // String value => false iff empty.
__ CmpInstanceType(edx, FIRST_NONSTRING_TYPE); __ CmpInstanceType(edx, FIRST_NONSTRING_TYPE);
__ j(above_equal, &not_string); __ j(above_equal, &not_string);
ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTag == 0);
__ cmp(FieldOperand(eax, String::kLengthOffset), Immediate(0)); __ cmp(FieldOperand(eax, String::kLengthOffset), Immediate(0));
__ j(zero, &false_result); __ j(zero, &false_result);
__ jmp(&true_result); __ jmp(&true_result);
@ -9721,7 +9723,7 @@ void GenericBinaryOpStub::GenerateSmiCode(MacroAssembler* masm, Label* slow) {
} }
// 3. Perform the smi check of the operands. // 3. Perform the smi check of the operands.
ASSERT(kSmiTag == 0); // Adjust zero check if not the case. STATIC_ASSERT(kSmiTag == 0); // Adjust zero check if not the case.
__ test(combined, Immediate(kSmiTagMask)); __ test(combined, Immediate(kSmiTagMask));
__ j(not_zero, &not_smis, not_taken); __ j(not_zero, &not_smis, not_taken);
@ -9802,7 +9804,7 @@ void GenericBinaryOpStub::GenerateSmiCode(MacroAssembler* masm, Label* slow) {
case Token::MUL: case Token::MUL:
// If the smi tag is 0 we can just leave the tag on one operand. // If the smi tag is 0 we can just leave the tag on one operand.
ASSERT(kSmiTag == 0); // Adjust code below if not the case. STATIC_ASSERT(kSmiTag == 0); // Adjust code below if not the case.
// We can't revert the multiplication if the result is not a smi // We can't revert the multiplication if the result is not a smi
// so save the right operand. // so save the right operand.
__ mov(ebx, right); __ mov(ebx, right);
@ -9830,7 +9832,7 @@ void GenericBinaryOpStub::GenerateSmiCode(MacroAssembler* masm, Label* slow) {
// Check for the corner case of dividing the most negative smi by // Check for the corner case of dividing the most negative smi by
// -1. We cannot use the overflow flag, since it is not set by idiv // -1. We cannot use the overflow flag, since it is not set by idiv
// instruction. // instruction.
ASSERT(kSmiTag == 0 && kSmiTagSize == 1); STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
__ cmp(eax, 0x40000000); __ cmp(eax, 0x40000000);
__ j(equal, &use_fp_on_smis); __ j(equal, &use_fp_on_smis);
// Check for negative zero result. Use combined = left | right. // Check for negative zero result. Use combined = left | right.
@ -10403,7 +10405,7 @@ void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
__ j(not_zero, &input_not_smi); __ j(not_zero, &input_not_smi);
// Input is a smi. Untag and load it onto the FPU stack. // Input is a smi. Untag and load it onto the FPU stack.
// Then load the low and high words of the double into ebx, edx. // Then load the low and high words of the double into ebx, edx.
ASSERT_EQ(1, kSmiTagSize); STATIC_ASSERT(kSmiTagSize == 1);
__ sar(eax, 1); __ sar(eax, 1);
__ sub(Operand(esp), Immediate(2 * kPointerSize)); __ sub(Operand(esp), Immediate(2 * kPointerSize));
__ mov(Operand(esp, 0), eax); __ mov(Operand(esp, 0), eax);
@ -11122,7 +11124,7 @@ void GenericUnaryOpStub::Generate(MacroAssembler* masm) {
__ j(sign, &try_float, not_taken); __ j(sign, &try_float, not_taken);
// Tag the result as a smi and we're done. // Tag the result as a smi and we're done.
ASSERT(kSmiTagSize == 1); STATIC_ASSERT(kSmiTagSize == 1);
__ lea(eax, Operand(ecx, times_2, kSmiTag)); __ lea(eax, Operand(ecx, times_2, kSmiTag));
__ jmp(&done); __ jmp(&done);
@ -11198,7 +11200,8 @@ void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
__ j(above_equal, &slow, not_taken); __ j(above_equal, &slow, not_taken);
// Read the argument from the stack and return it. // Read the argument from the stack and return it.
ASSERT(kSmiTagSize == 1 && kSmiTag == 0); // shifting code depends on this STATIC_ASSERT(kSmiTagSize == 1);
STATIC_ASSERT(kSmiTag == 0); // Shifting code depends on these.
__ lea(ebx, Operand(ebp, eax, times_2, 0)); __ lea(ebx, Operand(ebp, eax, times_2, 0));
__ neg(edx); __ neg(edx);
__ mov(eax, Operand(ebx, edx, times_2, kDisplacement)); __ mov(eax, Operand(ebx, edx, times_2, kDisplacement));
@ -11213,7 +11216,8 @@ void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
__ j(above_equal, &slow, not_taken); __ j(above_equal, &slow, not_taken);
// Read the argument from the stack and return it. // Read the argument from the stack and return it.
ASSERT(kSmiTagSize == 1 && kSmiTag == 0); // shifting code depends on this STATIC_ASSERT(kSmiTagSize == 1);
STATIC_ASSERT(kSmiTag == 0); // Shifting code depends on these.
__ lea(ebx, Operand(ebx, ecx, times_2, 0)); __ lea(ebx, Operand(ebx, ecx, times_2, 0));
__ neg(edx); __ neg(edx);
__ mov(eax, Operand(ebx, edx, times_2, kDisplacement)); __ mov(eax, Operand(ebx, edx, times_2, kDisplacement));
@ -11284,12 +11288,12 @@ void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) {
} }
// Setup the callee in-object property. // Setup the callee in-object property.
ASSERT(Heap::arguments_callee_index == 0); STATIC_ASSERT(Heap::arguments_callee_index == 0);
__ mov(ebx, Operand(esp, 3 * kPointerSize)); __ mov(ebx, Operand(esp, 3 * kPointerSize));
__ mov(FieldOperand(eax, JSObject::kHeaderSize), ebx); __ mov(FieldOperand(eax, JSObject::kHeaderSize), ebx);
// Get the length (smi tagged) and set that as an in-object property too. // Get the length (smi tagged) and set that as an in-object property too.
ASSERT(Heap::arguments_length_index == 1); STATIC_ASSERT(Heap::arguments_length_index == 1);
__ mov(ecx, Operand(esp, 1 * kPointerSize)); __ mov(ecx, Operand(esp, 1 * kPointerSize));
__ mov(FieldOperand(eax, JSObject::kHeaderSize + kPointerSize), ecx); __ mov(FieldOperand(eax, JSObject::kHeaderSize + kPointerSize), ecx);
@ -11368,7 +11372,7 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
// Check that the first argument is a JSRegExp object. // Check that the first argument is a JSRegExp object.
__ mov(eax, Operand(esp, kJSRegExpOffset)); __ mov(eax, Operand(esp, kJSRegExpOffset));
ASSERT_EQ(0, kSmiTag); STATIC_ASSERT(kSmiTag == 0);
__ test(eax, Immediate(kSmiTagMask)); __ test(eax, Immediate(kSmiTagMask));
__ j(zero, &runtime); __ j(zero, &runtime);
__ CmpObjectType(eax, JS_REGEXP_TYPE, ecx); __ CmpObjectType(eax, JS_REGEXP_TYPE, ecx);
@ -11393,8 +11397,8 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
__ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset)); __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
// Calculate number of capture registers (number_of_captures + 1) * 2. This // Calculate number of capture registers (number_of_captures + 1) * 2. This
// uses the asumption that smis are 2 * their untagged value. // uses the asumption that smis are 2 * their untagged value.
ASSERT_EQ(0, kSmiTag); STATIC_ASSERT(kSmiTag == 0);
ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize); STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
__ add(Operand(edx), Immediate(2)); // edx was a smi. __ add(Operand(edx), Immediate(2)); // edx was a smi.
// Check that the static offsets vector buffer is large enough. // Check that the static offsets vector buffer is large enough.
__ cmp(edx, OffsetsVector::kStaticOffsetsVectorSize); __ cmp(edx, OffsetsVector::kStaticOffsetsVectorSize);
@ -11452,7 +11456,7 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
// First check for flat two byte string. // First check for flat two byte string.
__ and_(ebx, __ and_(ebx,
kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask); kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask);
ASSERT_EQ(0, kStringTag | kSeqStringTag | kTwoByteStringTag); STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0);
__ j(zero, &seq_two_byte_string); __ j(zero, &seq_two_byte_string);
// Any other flat string must be a flat ascii string. // Any other flat string must be a flat ascii string.
__ test(Operand(ebx), __ test(Operand(ebx),
@ -11464,8 +11468,8 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
// string. In that case the subject string is just the first part of the cons // string. In that case the subject string is just the first part of the cons
// string. Also in this case the first part of the cons string is known to be // string. Also in this case the first part of the cons string is known to be
// a sequential string or an external string. // a sequential string or an external string.
ASSERT(kExternalStringTag !=0); STATIC_ASSERT(kExternalStringTag != 0);
ASSERT_EQ(0, kConsStringTag & kExternalStringTag); STATIC_ASSERT((kConsStringTag & kExternalStringTag) == 0);
__ test(Operand(ebx), __ test(Operand(ebx),
Immediate(kIsNotStringMask | kExternalStringTag)); Immediate(kIsNotStringMask | kExternalStringTag));
__ j(not_zero, &runtime); __ j(not_zero, &runtime);
@ -11481,7 +11485,7 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
// Is first part a flat two byte string? // Is first part a flat two byte string?
__ test_b(FieldOperand(ebx, Map::kInstanceTypeOffset), __ test_b(FieldOperand(ebx, Map::kInstanceTypeOffset),
kStringRepresentationMask | kStringEncodingMask); kStringRepresentationMask | kStringEncodingMask);
ASSERT_EQ(0, kSeqStringTag | kTwoByteStringTag); STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0);
__ j(zero, &seq_two_byte_string); __ j(zero, &seq_two_byte_string);
// Any other flat string must be ascii. // Any other flat string must be ascii.
__ test_b(FieldOperand(ebx, Map::kInstanceTypeOffset), __ test_b(FieldOperand(ebx, Map::kInstanceTypeOffset),
@ -11552,7 +11556,8 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
__ jmp(&setup_rest); __ jmp(&setup_rest);
__ bind(&setup_two_byte); __ bind(&setup_two_byte);
ASSERT(kSmiTag == 0 && kSmiTagSize == 1); // edi is smi (powered by 2). STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiTagSize == 1); // edi is smi (powered by 2).
__ lea(ecx, FieldOperand(eax, edi, times_1, SeqTwoByteString::kHeaderSize)); __ lea(ecx, FieldOperand(eax, edi, times_1, SeqTwoByteString::kHeaderSize));
__ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4. __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4.
__ lea(ecx, FieldOperand(eax, ebx, times_2, SeqTwoByteString::kHeaderSize)); __ lea(ecx, FieldOperand(eax, ebx, times_2, SeqTwoByteString::kHeaderSize));
@ -11600,8 +11605,8 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
__ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset)); __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
__ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset)); __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
// Calculate number of capture registers (number_of_captures + 1) * 2. // Calculate number of capture registers (number_of_captures + 1) * 2.
ASSERT_EQ(0, kSmiTag); STATIC_ASSERT(kSmiTag == 0);
ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize); STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
__ add(Operand(edx), Immediate(2)); // edx was a smi. __ add(Operand(edx), Immediate(2)); // edx was a smi.
// edx: Number of capture registers // edx: Number of capture registers
@ -11696,7 +11701,7 @@ void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm,
__ SmiUntag(scratch); __ SmiUntag(scratch);
} else { } else {
Label not_smi, hash_calculated; Label not_smi, hash_calculated;
ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTag == 0);
__ test(object, Immediate(kSmiTagMask)); __ test(object, Immediate(kSmiTagMask));
__ j(not_zero, &not_smi); __ j(not_zero, &not_smi);
__ mov(scratch, object); __ mov(scratch, object);
@ -11706,7 +11711,7 @@ void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm,
__ cmp(FieldOperand(object, HeapObject::kMapOffset), __ cmp(FieldOperand(object, HeapObject::kMapOffset),
Factory::heap_number_map()); Factory::heap_number_map());
__ j(not_equal, not_found); __ j(not_equal, not_found);
ASSERT_EQ(8, kDoubleSize); STATIC_ASSERT(8 == kDoubleSize);
__ mov(scratch, FieldOperand(object, HeapNumber::kValueOffset)); __ mov(scratch, FieldOperand(object, HeapNumber::kValueOffset));
__ xor_(scratch, FieldOperand(object, HeapNumber::kValueOffset + 4)); __ xor_(scratch, FieldOperand(object, HeapNumber::kValueOffset + 4));
// Object is heap number and hash is now in scratch. Calculate cache index. // Object is heap number and hash is now in scratch. Calculate cache index.
@ -11837,7 +11842,7 @@ void CompareStub::Generate(MacroAssembler* masm) {
// Value is a QNaN if value & kQuietNaNMask == kQuietNaNMask, i.e., // Value is a QNaN if value & kQuietNaNMask == kQuietNaNMask, i.e.,
// all bits in the mask are set. We only need to check the word // all bits in the mask are set. We only need to check the word
// that contains the exponent and high bit of the mantissa. // that contains the exponent and high bit of the mantissa.
ASSERT_NE(0, (kQuietNaNHighBitsMask << 1) & 0x80000000u); STATIC_ASSERT(((kQuietNaNHighBitsMask << 1) & 0x80000000u) != 0);
__ mov(edx, FieldOperand(edx, HeapNumber::kExponentOffset)); __ mov(edx, FieldOperand(edx, HeapNumber::kExponentOffset));
__ xor_(eax, Operand(eax)); __ xor_(eax, Operand(eax));
// Shift value and mask so kQuietNaNHighBitsMask applies to topmost // Shift value and mask so kQuietNaNHighBitsMask applies to topmost
@ -11845,7 +11850,7 @@ void CompareStub::Generate(MacroAssembler* masm) {
__ add(edx, Operand(edx)); __ add(edx, Operand(edx));
__ cmp(edx, kQuietNaNHighBitsMask << 1); __ cmp(edx, kQuietNaNHighBitsMask << 1);
if (cc_ == equal) { if (cc_ == equal) {
ASSERT_NE(1, EQUAL); STATIC_ASSERT(EQUAL != 1);
__ setcc(above_equal, eax); __ setcc(above_equal, eax);
__ ret(0); __ ret(0);
} else { } else {
@ -11873,7 +11878,7 @@ void CompareStub::Generate(MacroAssembler* masm) {
// slow-case code. // slow-case code.
// If either is a Smi (we know that not both are), then they can only // If either is a Smi (we know that not both are), then they can only
// be equal if the other is a HeapNumber. If so, use the slow case. // be equal if the other is a HeapNumber. If so, use the slow case.
ASSERT_EQ(0, kSmiTag); STATIC_ASSERT(kSmiTag == 0);
ASSERT_EQ(0, Smi::FromInt(0)); ASSERT_EQ(0, Smi::FromInt(0));
__ mov(ecx, Immediate(kSmiTagMask)); __ mov(ecx, Immediate(kSmiTagMask));
__ and_(ecx, Operand(eax)); __ and_(ecx, Operand(eax));
@ -11882,7 +11887,7 @@ void CompareStub::Generate(MacroAssembler* masm) {
// One operand is a smi. // One operand is a smi.
// Check whether the non-smi is a heap number. // Check whether the non-smi is a heap number.
ASSERT_EQ(1, kSmiTagMask); STATIC_ASSERT(kSmiTagMask == 1);
// ecx still holds eax & kSmiTag, which is either zero or one. // ecx still holds eax & kSmiTag, which is either zero or one.
__ sub(Operand(ecx), Immediate(0x01)); __ sub(Operand(ecx), Immediate(0x01));
__ mov(ebx, edx); __ mov(ebx, edx);
@ -11908,13 +11913,13 @@ void CompareStub::Generate(MacroAssembler* masm) {
// Get the type of the first operand. // Get the type of the first operand.
// If the first object is a JS object, we have done pointer comparison. // If the first object is a JS object, we have done pointer comparison.
Label first_non_object; Label first_non_object;
ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
__ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, ecx); __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, ecx);
__ j(below, &first_non_object); __ j(below, &first_non_object);
// Return non-zero (eax is not zero) // Return non-zero (eax is not zero)
Label return_not_equal; Label return_not_equal;
ASSERT(kHeapObjectTag != 0); STATIC_ASSERT(kHeapObjectTag != 0);
__ bind(&return_not_equal); __ bind(&return_not_equal);
__ ret(0); __ ret(0);
@ -12034,8 +12039,8 @@ void CompareStub::Generate(MacroAssembler* masm) {
// At most one is a smi, so we can test for smi by adding the two. // At most one is a smi, so we can test for smi by adding the two.
// A smi plus a heap object has the low bit set, a heap object plus // A smi plus a heap object has the low bit set, a heap object plus
// a heap object has the low bit clear. // a heap object has the low bit clear.
ASSERT_EQ(0, kSmiTag); STATIC_ASSERT(kSmiTag == 0);
ASSERT_EQ(1, kSmiTagMask); STATIC_ASSERT(kSmiTagMask == 1);
__ lea(ecx, Operand(eax, edx, times_1, 0)); __ lea(ecx, Operand(eax, edx, times_1, 0));
__ test(ecx, Immediate(kSmiTagMask)); __ test(ecx, Immediate(kSmiTagMask));
__ j(not_zero, &not_both_objects); __ j(not_zero, &not_both_objects);
@ -12175,16 +12180,16 @@ void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
// eax holds the exception. // eax holds the exception.
// Adjust this code if not the case. // Adjust this code if not the case.
ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);
// Drop the sp to the top of the handler. // Drop the sp to the top of the handler.
ExternalReference handler_address(Top::k_handler_address); ExternalReference handler_address(Top::k_handler_address);
__ mov(esp, Operand::StaticVariable(handler_address)); __ mov(esp, Operand::StaticVariable(handler_address));
// Restore next handler and frame pointer, discard handler state. // Restore next handler and frame pointer, discard handler state.
ASSERT(StackHandlerConstants::kNextOffset == 0); STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
__ pop(Operand::StaticVariable(handler_address)); __ pop(Operand::StaticVariable(handler_address));
ASSERT(StackHandlerConstants::kFPOffset == 1 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kFPOffset == 1 * kPointerSize);
__ pop(ebp); __ pop(ebp);
__ pop(edx); // Remove state. __ pop(edx); // Remove state.
@ -12198,7 +12203,7 @@ void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
__ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
__ bind(&skip); __ bind(&skip);
ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize);
__ ret(0); __ ret(0);
} }
@ -12218,7 +12223,7 @@ void ApiGetterEntryStub::Generate(MacroAssembler* masm) {
Label prologue; Label prologue;
Label promote_scheduled_exception; Label promote_scheduled_exception;
__ EnterApiExitFrame(ExitFrame::MODE_NORMAL, kStackSpace, kArgc); __ EnterApiExitFrame(ExitFrame::MODE_NORMAL, kStackSpace, kArgc);
ASSERT_EQ(kArgc, 4); STATIC_ASSERT(kArgc == 4);
if (kPassHandlesDirectly) { if (kPassHandlesDirectly) {
// When handles as passed directly we don't have to allocate extra // When handles as passed directly we don't have to allocate extra
// space for and pass an out parameter. // space for and pass an out parameter.
@ -12333,7 +12338,7 @@ void CEntryStub::GenerateCore(MacroAssembler* masm,
// Check for failure result. // Check for failure result.
Label failure_returned; Label failure_returned;
ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0); STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
__ lea(ecx, Operand(eax, 1)); __ lea(ecx, Operand(eax, 1));
// Lower 2 bits of ecx are 0 iff eax has failure tag. // Lower 2 bits of ecx are 0 iff eax has failure tag.
__ test(ecx, Immediate(kFailureTagMask)); __ test(ecx, Immediate(kFailureTagMask));
@ -12348,7 +12353,7 @@ void CEntryStub::GenerateCore(MacroAssembler* masm,
Label retry; Label retry;
// If the returned exception is RETRY_AFTER_GC continue at retry label // If the returned exception is RETRY_AFTER_GC continue at retry label
ASSERT(Failure::RETRY_AFTER_GC == 0); STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0);
__ test(eax, Immediate(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize)); __ test(eax, Immediate(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
__ j(zero, &retry, taken); __ j(zero, &retry, taken);
@ -12379,7 +12384,7 @@ void CEntryStub::GenerateCore(MacroAssembler* masm,
void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm, void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm,
UncatchableExceptionType type) { UncatchableExceptionType type) {
// Adjust this code if not the case. // Adjust this code if not the case.
ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);
// Drop sp to the top stack handler. // Drop sp to the top stack handler.
ExternalReference handler_address(Top::k_handler_address); ExternalReference handler_address(Top::k_handler_address);
@ -12399,7 +12404,7 @@ void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm,
__ bind(&done); __ bind(&done);
// Set the top handler address to next handler past the current ENTRY handler. // Set the top handler address to next handler past the current ENTRY handler.
ASSERT(StackHandlerConstants::kNextOffset == 0); STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
__ pop(Operand::StaticVariable(handler_address)); __ pop(Operand::StaticVariable(handler_address));
if (type == OUT_OF_MEMORY) { if (type == OUT_OF_MEMORY) {
@ -12418,11 +12423,11 @@ void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm,
__ xor_(esi, Operand(esi)); __ xor_(esi, Operand(esi));
// Restore fp from handler and discard handler state. // Restore fp from handler and discard handler state.
ASSERT(StackHandlerConstants::kFPOffset == 1 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kFPOffset == 1 * kPointerSize);
__ pop(ebp); __ pop(ebp);
__ pop(edx); // State. __ pop(edx); // State.
ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize);
__ ret(0); __ ret(0);
} }
@ -12733,7 +12738,7 @@ void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
Label got_char_code; Label got_char_code;
// If the receiver is a smi trigger the non-string case. // If the receiver is a smi trigger the non-string case.
ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTag == 0);
__ test(object_, Immediate(kSmiTagMask)); __ test(object_, Immediate(kSmiTagMask));
__ j(zero, receiver_not_string_); __ j(zero, receiver_not_string_);
@ -12745,7 +12750,7 @@ void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
__ j(not_zero, receiver_not_string_); __ j(not_zero, receiver_not_string_);
// If the index is non-smi trigger the non-smi case. // If the index is non-smi trigger the non-smi case.
ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTag == 0);
__ test(index_, Immediate(kSmiTagMask)); __ test(index_, Immediate(kSmiTagMask));
__ j(not_zero, &index_not_smi_); __ j(not_zero, &index_not_smi_);
@ -12758,7 +12763,7 @@ void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
__ j(above_equal, index_out_of_range_); __ j(above_equal, index_out_of_range_);
// We need special handling for non-flat strings. // We need special handling for non-flat strings.
ASSERT(kSeqStringTag == 0); STATIC_ASSERT(kSeqStringTag == 0);
__ test(result_, Immediate(kStringRepresentationMask)); __ test(result_, Immediate(kStringRepresentationMask));
__ j(zero, &flat_string); __ j(zero, &flat_string);
@ -12779,19 +12784,19 @@ void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
__ mov(result_, FieldOperand(object_, HeapObject::kMapOffset)); __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
__ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
// If the first cons component is also non-flat, then go to runtime. // If the first cons component is also non-flat, then go to runtime.
ASSERT(kSeqStringTag == 0); STATIC_ASSERT(kSeqStringTag == 0);
__ test(result_, Immediate(kStringRepresentationMask)); __ test(result_, Immediate(kStringRepresentationMask));
__ j(not_zero, &call_runtime_); __ j(not_zero, &call_runtime_);
// Check for 1-byte or 2-byte string. // Check for 1-byte or 2-byte string.
__ bind(&flat_string); __ bind(&flat_string);
ASSERT(kAsciiStringTag != 0); STATIC_ASSERT(kAsciiStringTag != 0);
__ test(result_, Immediate(kStringEncodingMask)); __ test(result_, Immediate(kStringEncodingMask));
__ j(not_zero, &ascii_string); __ j(not_zero, &ascii_string);
// 2-byte string. // 2-byte string.
// Load the 2-byte character code into the result register. // Load the 2-byte character code into the result register.
ASSERT(kSmiTag == 0 && kSmiTagSize == 1); STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
__ movzx_w(result_, FieldOperand(object_, __ movzx_w(result_, FieldOperand(object_,
scratch_, times_1, // Scratch is smi-tagged. scratch_, times_1, // Scratch is smi-tagged.
SeqTwoByteString::kHeaderSize)); SeqTwoByteString::kHeaderSize));
@ -12841,7 +12846,7 @@ void StringCharCodeAtGenerator::GenerateSlow(
__ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
call_helper.AfterCall(masm); call_helper.AfterCall(masm);
// If index is still not a smi, it must be out of range. // If index is still not a smi, it must be out of range.
ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTag == 0);
__ test(scratch_, Immediate(kSmiTagMask)); __ test(scratch_, Immediate(kSmiTagMask));
__ j(not_zero, index_out_of_range_); __ j(not_zero, index_out_of_range_);
// Otherwise, return to the fast path. // Otherwise, return to the fast path.
@ -12870,8 +12875,8 @@ void StringCharCodeAtGenerator::GenerateSlow(
void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) { void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
// Fast case of Heap::LookupSingleCharacterStringFromCode. // Fast case of Heap::LookupSingleCharacterStringFromCode.
ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTag == 0);
ASSERT(kSmiShiftSize == 0); STATIC_ASSERT(kSmiShiftSize == 0);
ASSERT(IsPowerOf2(String::kMaxAsciiCharCode + 1)); ASSERT(IsPowerOf2(String::kMaxAsciiCharCode + 1));
__ test(code_, __ test(code_,
Immediate(kSmiTagMask | Immediate(kSmiTagMask |
@ -12879,9 +12884,9 @@ void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
__ j(not_zero, &slow_case_, not_taken); __ j(not_zero, &slow_case_, not_taken);
__ Set(result_, Immediate(Factory::single_character_string_cache())); __ Set(result_, Immediate(Factory::single_character_string_cache()));
ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTag == 0);
ASSERT(kSmiTagSize == 1); STATIC_ASSERT(kSmiTagSize == 1);
ASSERT(kSmiShiftSize == 0); STATIC_ASSERT(kSmiShiftSize == 0);
// At this point code register contains smi tagged ascii char code. // At this point code register contains smi tagged ascii char code.
__ mov(result_, FieldOperand(result_, __ mov(result_, FieldOperand(result_,
code_, times_half_pointer_size, code_, times_half_pointer_size,
@ -12953,7 +12958,7 @@ void StringAddStub::Generate(MacroAssembler* masm) {
// Check if either of the strings are empty. In that case return the other. // Check if either of the strings are empty. In that case return the other.
Label second_not_zero_length, both_not_zero_length; Label second_not_zero_length, both_not_zero_length;
__ mov(ecx, FieldOperand(edx, String::kLengthOffset)); __ mov(ecx, FieldOperand(edx, String::kLengthOffset));
ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTag == 0);
__ test(ecx, Operand(ecx)); __ test(ecx, Operand(ecx));
__ j(not_zero, &second_not_zero_length); __ j(not_zero, &second_not_zero_length);
// Second string is empty, result is first string which is already in eax. // Second string is empty, result is first string which is already in eax.
@ -12961,7 +12966,7 @@ void StringAddStub::Generate(MacroAssembler* masm) {
__ ret(2 * kPointerSize); __ ret(2 * kPointerSize);
__ bind(&second_not_zero_length); __ bind(&second_not_zero_length);
__ mov(ebx, FieldOperand(eax, String::kLengthOffset)); __ mov(ebx, FieldOperand(eax, String::kLengthOffset));
ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTag == 0);
__ test(ebx, Operand(ebx)); __ test(ebx, Operand(ebx));
__ j(not_zero, &both_not_zero_length); __ j(not_zero, &both_not_zero_length);
// First string is empty, result is second string which is in edx. // First string is empty, result is second string which is in edx.
@ -12978,7 +12983,7 @@ void StringAddStub::Generate(MacroAssembler* masm) {
Label string_add_flat_result, longer_than_two; Label string_add_flat_result, longer_than_two;
__ bind(&both_not_zero_length); __ bind(&both_not_zero_length);
__ add(ebx, Operand(ecx)); __ add(ebx, Operand(ecx));
ASSERT(Smi::kMaxValue == String::kMaxLength); STATIC_ASSERT(Smi::kMaxValue == String::kMaxLength);
// Handle exceptionally long strings in the runtime system. // Handle exceptionally long strings in the runtime system.
__ j(overflow, &string_add_runtime); __ j(overflow, &string_add_runtime);
// Use the runtime system when adding two one character strings, as it // Use the runtime system when adding two one character strings, as it
@ -13019,7 +13024,7 @@ void StringAddStub::Generate(MacroAssembler* masm) {
__ mov(edi, FieldOperand(edx, HeapObject::kMapOffset)); __ mov(edi, FieldOperand(edx, HeapObject::kMapOffset));
__ movzx_b(edi, FieldOperand(edi, Map::kInstanceTypeOffset)); __ movzx_b(edi, FieldOperand(edi, Map::kInstanceTypeOffset));
__ and_(ecx, Operand(edi)); __ and_(ecx, Operand(edi));
ASSERT(kStringEncodingMask == kAsciiStringTag); STATIC_ASSERT(kStringEncodingMask == kAsciiStringTag);
__ test(ecx, Immediate(kAsciiStringTag)); __ test(ecx, Immediate(kAsciiStringTag));
__ j(zero, &non_ascii); __ j(zero, &non_ascii);
__ bind(&ascii_data); __ bind(&ascii_data);
@ -13046,7 +13051,7 @@ void StringAddStub::Generate(MacroAssembler* masm) {
__ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset)); __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
__ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
__ xor_(edi, Operand(ecx)); __ xor_(edi, Operand(ecx));
ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0); STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0);
__ and_(edi, kAsciiStringTag | kAsciiDataHintTag); __ and_(edi, kAsciiStringTag | kAsciiDataHintTag);
__ cmp(edi, kAsciiStringTag | kAsciiDataHintTag); __ cmp(edi, kAsciiStringTag | kAsciiDataHintTag);
__ j(equal, &ascii_data); __ j(equal, &ascii_data);
@ -13075,7 +13080,7 @@ void StringAddStub::Generate(MacroAssembler* masm) {
// ebx: length of resulting flat string as a smi // ebx: length of resulting flat string as a smi
// edx: second string // edx: second string
Label non_ascii_string_add_flat_result; Label non_ascii_string_add_flat_result;
ASSERT(kStringEncodingMask == kAsciiStringTag); STATIC_ASSERT(kStringEncodingMask == kAsciiStringTag);
__ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset)); __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
__ test_b(FieldOperand(ecx, Map::kInstanceTypeOffset), kAsciiStringTag); __ test_b(FieldOperand(ecx, Map::kInstanceTypeOffset), kAsciiStringTag);
__ j(zero, &non_ascii_string_add_flat_result); __ j(zero, &non_ascii_string_add_flat_result);
@ -13194,9 +13199,9 @@ void StringHelper::GenerateCopyCharactersREP(MacroAssembler* masm,
Register count, Register count,
Register scratch, Register scratch,
bool ascii) { bool ascii) {
// Copy characters using rep movs of doublewords. Align destination on 4 byte // Copy characters using rep movs of doublewords.
// boundary before starting rep movs. Copy remaining characters after running // The destination is aligned on a 4 byte boundary because we are
// rep movs. // copying to the beginning of a newly allocated string.
ASSERT(dest.is(edi)); // rep movs destination ASSERT(dest.is(edi)); // rep movs destination
ASSERT(src.is(esi)); // rep movs source ASSERT(src.is(esi)); // rep movs source
ASSERT(count.is(ecx)); // rep movs count ASSERT(count.is(ecx)); // rep movs count
@ -13317,9 +13322,9 @@ void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
} }
__ and_(scratch, Operand(mask)); __ and_(scratch, Operand(mask));
// Load the entry from the symble table. // Load the entry from the symbol table.
Register candidate = scratch; // Scratch register contains candidate. Register candidate = scratch; // Scratch register contains candidate.
ASSERT_EQ(1, SymbolTable::kEntrySize); STATIC_ASSERT(SymbolTable::kEntrySize == 1);
__ mov(candidate, __ mov(candidate,
FieldOperand(symbol_table, FieldOperand(symbol_table,
scratch, scratch,
@ -13362,7 +13367,7 @@ void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
// Scratch register contains result when we fall through to here. // Scratch register contains result when we fall through to here.
Register result = scratch; Register result = scratch;
__ bind(&found_in_symbol_table); __ bind(&found_in_symbol_table);
__ pop(mask); // Pop temporally saved mask from the stack. __ pop(mask); // Pop saved mask from the stack.
if (!result.is(eax)) { if (!result.is(eax)) {
__ mov(eax, result); __ mov(eax, result);
} }
@ -13437,7 +13442,7 @@ void SubStringStub::Generate(MacroAssembler* masm) {
// Make sure first argument is a string. // Make sure first argument is a string.
__ mov(eax, Operand(esp, 3 * kPointerSize)); __ mov(eax, Operand(esp, 3 * kPointerSize));
ASSERT_EQ(0, kSmiTag); STATIC_ASSERT(kSmiTag == 0);
__ test(eax, Immediate(kSmiTagMask)); __ test(eax, Immediate(kSmiTagMask));
__ j(zero, &runtime); __ j(zero, &runtime);
Condition is_string = masm->IsObjectStringType(eax, ebx, ebx); Condition is_string = masm->IsObjectStringType(eax, ebx, ebx);
@ -13445,6 +13450,7 @@ void SubStringStub::Generate(MacroAssembler* masm) {
// eax: string // eax: string
// ebx: instance type // ebx: instance type
// Calculate length of sub string using the smi values. // Calculate length of sub string using the smi values.
Label result_longer_than_two; Label result_longer_than_two;
__ mov(ecx, Operand(esp, 1 * kPointerSize)); // To index. __ mov(ecx, Operand(esp, 1 * kPointerSize)); // To index.
@ -13550,8 +13556,8 @@ void SubStringStub::Generate(MacroAssembler* masm) {
__ mov(ebx, Operand(esp, 2 * kPointerSize)); // from __ mov(ebx, Operand(esp, 2 * kPointerSize)); // from
// As from is a smi it is 2 times the value which matches the size of a two // As from is a smi it is 2 times the value which matches the size of a two
// byte character. // byte character.
ASSERT_EQ(0, kSmiTag); STATIC_ASSERT(kSmiTag == 0);
ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize); STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
__ add(esi, Operand(ebx)); __ add(esi, Operand(ebx));
// eax: result string // eax: result string
@ -13637,8 +13643,8 @@ void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
__ j(not_zero, &result_not_equal); __ j(not_zero, &result_not_equal);
// Result is EQUAL. // Result is EQUAL.
ASSERT_EQ(0, EQUAL); STATIC_ASSERT(EQUAL == 0);
ASSERT_EQ(0, kSmiTag); STATIC_ASSERT(kSmiTag == 0);
__ Set(eax, Immediate(Smi::FromInt(EQUAL))); __ Set(eax, Immediate(Smi::FromInt(EQUAL)));
__ ret(0); __ ret(0);
@ -13670,8 +13676,8 @@ void StringCompareStub::Generate(MacroAssembler* masm) {
Label not_same; Label not_same;
__ cmp(edx, Operand(eax)); __ cmp(edx, Operand(eax));
__ j(not_equal, &not_same); __ j(not_equal, &not_same);
ASSERT_EQ(0, EQUAL); STATIC_ASSERT(EQUAL == 0);
ASSERT_EQ(0, kSmiTag); STATIC_ASSERT(kSmiTag == 0);
__ Set(eax, Immediate(Smi::FromInt(EQUAL))); __ Set(eax, Immediate(Smi::FromInt(EQUAL)));
__ IncrementCounter(&Counters::string_compare_native, 1); __ IncrementCounter(&Counters::string_compare_native, 1);
__ ret(2 * kPointerSize); __ ret(2 * kPointerSize);

View File

@ -2100,9 +2100,9 @@ void CodeGenerator::Comparison(AstNode* node,
// side (which is always a symbol). // side (which is always a symbol).
if (cc == equal) { if (cc == equal) {
Label not_a_symbol; Label not_a_symbol;
ASSERT(kSymbolTag != 0); STATIC_ASSERT(kSymbolTag != 0);
// Ensure that no non-strings have the symbol bit set. // Ensure that no non-strings have the symbol bit set.
ASSERT(kNotStringTag + kIsSymbolMask > LAST_TYPE); STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask);
__ testb(temp.reg(), Immediate(kIsSymbolMask)); // Test the symbol bit. __ testb(temp.reg(), Immediate(kIsSymbolMask)); // Test the symbol bit.
__ j(zero, &not_a_symbol); __ j(zero, &not_a_symbol);
// They are symbols, so do identity compare. // They are symbols, so do identity compare.
@ -2567,8 +2567,8 @@ void CodeGenerator::CallApplyLazy(Expression* applicand,
// JS_FUNCTION_TYPE is the last instance type and it is right // JS_FUNCTION_TYPE is the last instance type and it is right
// after LAST_JS_OBJECT_TYPE, we do not have to check the upper // after LAST_JS_OBJECT_TYPE, we do not have to check the upper
// bound. // bound.
ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1); STATIC_ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
__ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx); __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx);
__ j(below, &build_args); __ j(below, &build_args);
@ -4011,7 +4011,7 @@ void CodeGenerator::VisitTryCatchStatement(TryCatchStatement* node) {
// The next handler address is on top of the frame. Unlink from // The next handler address is on top of the frame. Unlink from
// the handler list and drop the rest of this handler from the // the handler list and drop the rest of this handler from the
// frame. // frame.
ASSERT(StackHandlerConstants::kNextOffset == 0); STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
__ movq(kScratchRegister, handler_address); __ movq(kScratchRegister, handler_address);
frame_->EmitPop(Operand(kScratchRegister, 0)); frame_->EmitPop(Operand(kScratchRegister, 0));
frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
@ -4044,7 +4044,7 @@ void CodeGenerator::VisitTryCatchStatement(TryCatchStatement* node) {
__ movq(rsp, Operand(kScratchRegister, 0)); __ movq(rsp, Operand(kScratchRegister, 0));
frame_->Forget(frame_->height() - handler_height); frame_->Forget(frame_->height() - handler_height);
ASSERT(StackHandlerConstants::kNextOffset == 0); STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
__ movq(kScratchRegister, handler_address); __ movq(kScratchRegister, handler_address);
frame_->EmitPop(Operand(kScratchRegister, 0)); frame_->EmitPop(Operand(kScratchRegister, 0));
frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
@ -4131,7 +4131,7 @@ void CodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* node) {
// chain and set the state on the frame to FALLING. // chain and set the state on the frame to FALLING.
if (has_valid_frame()) { if (has_valid_frame()) {
// The next handler address is on top of the frame. // The next handler address is on top of the frame.
ASSERT(StackHandlerConstants::kNextOffset == 0); STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
__ movq(kScratchRegister, handler_address); __ movq(kScratchRegister, handler_address);
frame_->EmitPop(Operand(kScratchRegister, 0)); frame_->EmitPop(Operand(kScratchRegister, 0));
frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
@ -4172,7 +4172,7 @@ void CodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* node) {
frame_->Forget(frame_->height() - handler_height); frame_->Forget(frame_->height() - handler_height);
// Unlink this handler and drop it from the frame. // Unlink this handler and drop it from the frame.
ASSERT(StackHandlerConstants::kNextOffset == 0); STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
__ movq(kScratchRegister, handler_address); __ movq(kScratchRegister, handler_address);
frame_->EmitPop(Operand(kScratchRegister, 0)); frame_->EmitPop(Operand(kScratchRegister, 0));
frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1);
@ -6192,7 +6192,7 @@ void CodeGenerator::GenerateGetFramePointer(ZoneList<Expression*>* args) {
ASSERT(args->length() == 0); ASSERT(args->length() == 0);
// RBP value is aligned, so it should be tagged as a smi (without necesarily // RBP value is aligned, so it should be tagged as a smi (without necesarily
// being padded as a smi, so it should not be treated as a smi.). // being padded as a smi, so it should not be treated as a smi.).
ASSERT(kSmiTag == 0 && kSmiTagSize == 1); STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
Result rbp_as_smi = allocator_->Allocate(); Result rbp_as_smi = allocator_->Allocate();
ASSERT(rbp_as_smi.is_valid()); ASSERT(rbp_as_smi.is_valid());
__ movq(rbp_as_smi.reg(), rbp); __ movq(rbp_as_smi.reg(), rbp);
@ -10111,7 +10111,7 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
__ j(not_equal, &runtime); __ j(not_equal, &runtime);
// Check that the last match info has space for the capture registers and the // Check that the last match info has space for the capture registers and the
// additional information. Ensure no overflow in add. // additional information. Ensure no overflow in add.
ASSERT(FixedArray::kMaxLength < kMaxInt - FixedArray::kLengthOffset); STATIC_ASSERT(FixedArray::kMaxLength < kMaxInt - FixedArray::kLengthOffset);
__ SmiToInteger32(rax, FieldOperand(rbx, FixedArray::kLengthOffset)); __ SmiToInteger32(rax, FieldOperand(rbx, FixedArray::kLengthOffset));
__ addl(rdx, Immediate(RegExpImpl::kLastMatchOverhead)); __ addl(rdx, Immediate(RegExpImpl::kLastMatchOverhead));
__ cmpl(rdx, rax); __ cmpl(rdx, rax);
@ -10126,7 +10126,7 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
// First check for flat two byte string. // First check for flat two byte string.
__ andb(rbx, Immediate( __ andb(rbx, Immediate(
kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask)); kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask));
ASSERT_EQ(0, kStringTag | kSeqStringTag | kTwoByteStringTag); STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0);
__ j(zero, &seq_two_byte_string); __ j(zero, &seq_two_byte_string);
// Any other flat string must be a flat ascii string. // Any other flat string must be a flat ascii string.
__ testb(rbx, Immediate(kIsNotStringMask | kStringRepresentationMask)); __ testb(rbx, Immediate(kIsNotStringMask | kStringRepresentationMask));
@ -10137,8 +10137,8 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
// string. In that case the subject string is just the first part of the cons // string. In that case the subject string is just the first part of the cons
// string. Also in this case the first part of the cons string is known to be // string. Also in this case the first part of the cons string is known to be
// a sequential string or an external string. // a sequential string or an external string.
ASSERT(kExternalStringTag !=0); STATIC_ASSERT(kExternalStringTag !=0);
ASSERT_EQ(0, kConsStringTag & kExternalStringTag); STATIC_ASSERT((kConsStringTag & kExternalStringTag) == 0);
__ testb(rbx, Immediate(kIsNotStringMask | kExternalStringTag)); __ testb(rbx, Immediate(kIsNotStringMask | kExternalStringTag));
__ j(not_zero, &runtime); __ j(not_zero, &runtime);
// String is a cons string. // String is a cons string.
@ -10153,7 +10153,7 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
// Is first part a flat two byte string? // Is first part a flat two byte string?
__ testb(FieldOperand(rbx, Map::kInstanceTypeOffset), __ testb(FieldOperand(rbx, Map::kInstanceTypeOffset),
Immediate(kStringRepresentationMask | kStringEncodingMask)); Immediate(kStringRepresentationMask | kStringEncodingMask));
ASSERT_EQ(0, kSeqStringTag | kTwoByteStringTag); STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0);
__ j(zero, &seq_two_byte_string); __ j(zero, &seq_two_byte_string);
// Any other flat string must be ascii. // Any other flat string must be ascii.
__ testb(FieldOperand(rbx, Map::kInstanceTypeOffset), __ testb(FieldOperand(rbx, Map::kInstanceTypeOffset),
@ -10390,7 +10390,7 @@ void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm,
__ JumpIfSmi(object, &is_smi); __ JumpIfSmi(object, &is_smi);
__ CheckMap(object, Factory::heap_number_map(), not_found, true); __ CheckMap(object, Factory::heap_number_map(), not_found, true);
ASSERT_EQ(8, kDoubleSize); STATIC_ASSERT(8 == kDoubleSize);
__ movl(scratch, FieldOperand(object, HeapNumber::kValueOffset + 4)); __ movl(scratch, FieldOperand(object, HeapNumber::kValueOffset + 4));
__ xor_(scratch, FieldOperand(object, HeapNumber::kValueOffset)); __ xor_(scratch, FieldOperand(object, HeapNumber::kValueOffset));
GenerateConvertHashCodeToIndex(masm, scratch, mask); GenerateConvertHashCodeToIndex(masm, scratch, mask);
@ -10571,13 +10571,13 @@ void CompareStub::Generate(MacroAssembler* masm) {
// There is no test for undetectability in strict equality. // There is no test for undetectability in strict equality.
// If the first object is a JS object, we have done pointer comparison. // If the first object is a JS object, we have done pointer comparison.
ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
Label first_non_object; Label first_non_object;
__ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx); __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx);
__ j(below, &first_non_object); __ j(below, &first_non_object);
// Return non-zero (eax (not rax) is not zero) // Return non-zero (eax (not rax) is not zero)
Label return_not_equal; Label return_not_equal;
ASSERT(kHeapObjectTag != 0); STATIC_ASSERT(kHeapObjectTag != 0);
__ bind(&return_not_equal); __ bind(&return_not_equal);
__ ret(0); __ ret(0);
@ -10669,8 +10669,8 @@ void CompareStub::Generate(MacroAssembler* masm) {
// At most one is a smi, so we can test for smi by adding the two. // At most one is a smi, so we can test for smi by adding the two.
// A smi plus a heap object has the low bit set, a heap object plus // A smi plus a heap object has the low bit set, a heap object plus
// a heap object has the low bit clear. // a heap object has the low bit clear.
ASSERT_EQ(0, kSmiTag); STATIC_ASSERT(kSmiTag == 0);
ASSERT_EQ(static_cast<int64_t>(1), kSmiTagMask); STATIC_ASSERT(kSmiTagMask == 1);
__ lea(rcx, Operand(rax, rdx, times_1, 0)); __ lea(rcx, Operand(rax, rdx, times_1, 0));
__ testb(rcx, Immediate(kSmiTagMask)); __ testb(rcx, Immediate(kSmiTagMask));
__ j(not_zero, &not_both_objects); __ j(not_zero, &not_both_objects);
@ -10726,8 +10726,8 @@ void CompareStub::BranchIfNonSymbol(MacroAssembler* masm,
__ movzxbq(scratch, __ movzxbq(scratch,
FieldOperand(scratch, Map::kInstanceTypeOffset)); FieldOperand(scratch, Map::kInstanceTypeOffset));
// Ensure that no non-strings have the symbol bit set. // Ensure that no non-strings have the symbol bit set.
ASSERT(kNotStringTag + kIsSymbolMask > LAST_TYPE); STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask);
ASSERT(kSymbolTag != 0); STATIC_ASSERT(kSymbolTag != 0);
__ testb(scratch, Immediate(kIsSymbolMask)); __ testb(scratch, Immediate(kIsSymbolMask));
__ j(zero, label); __ j(zero, label);
} }
@ -10806,9 +10806,9 @@ void CallFunctionStub::Generate(MacroAssembler* masm) {
void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) { void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
// Check that stack should contain next handler, frame pointer, state and // Check that stack should contain next handler, frame pointer, state and
// return address in that order. // return address in that order.
ASSERT_EQ(StackHandlerConstants::kFPOffset + kPointerSize, STATIC_ASSERT(StackHandlerConstants::kFPOffset + kPointerSize ==
StackHandlerConstants::kStateOffset); StackHandlerConstants::kStateOffset);
ASSERT_EQ(StackHandlerConstants::kStateOffset + kPointerSize, STATIC_ASSERT(StackHandlerConstants::kStateOffset + kPointerSize ==
StackHandlerConstants::kPCOffset); StackHandlerConstants::kPCOffset);
ExternalReference handler_address(Top::k_handler_address); ExternalReference handler_address(Top::k_handler_address);
@ -10918,7 +10918,7 @@ void CEntryStub::GenerateCore(MacroAssembler* masm,
// Check for failure result. // Check for failure result.
Label failure_returned; Label failure_returned;
ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0); STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
#ifdef _WIN64 #ifdef _WIN64
// If return value is on the stack, pop it to registers. // If return value is on the stack, pop it to registers.
if (result_size_ > 1) { if (result_size_ > 1) {
@ -10944,7 +10944,7 @@ void CEntryStub::GenerateCore(MacroAssembler* masm,
Label retry; Label retry;
// If the returned exception is RETRY_AFTER_GC continue at retry label // If the returned exception is RETRY_AFTER_GC continue at retry label
ASSERT(Failure::RETRY_AFTER_GC == 0); STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0);
__ testl(rax, Immediate(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize)); __ testl(rax, Immediate(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
__ j(zero, &retry); __ j(zero, &retry);
@ -11014,14 +11014,14 @@ void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm,
__ xor_(rsi, rsi); __ xor_(rsi, rsi);
// Restore registers from handler. // Restore registers from handler.
ASSERT_EQ(StackHandlerConstants::kNextOffset + kPointerSize, STATIC_ASSERT(StackHandlerConstants::kNextOffset + kPointerSize ==
StackHandlerConstants::kFPOffset); StackHandlerConstants::kFPOffset);
__ pop(rbp); // FP __ pop(rbp); // FP
ASSERT_EQ(StackHandlerConstants::kFPOffset + kPointerSize, STATIC_ASSERT(StackHandlerConstants::kFPOffset + kPointerSize ==
StackHandlerConstants::kStateOffset); StackHandlerConstants::kStateOffset);
__ pop(rdx); // State __ pop(rdx); // State
ASSERT_EQ(StackHandlerConstants::kStateOffset + kPointerSize, STATIC_ASSERT(StackHandlerConstants::kStateOffset + kPointerSize ==
StackHandlerConstants::kPCOffset); StackHandlerConstants::kPCOffset);
__ ret(0); __ ret(0);
} }
@ -11296,7 +11296,7 @@ void InstanceofStub::Generate(MacroAssembler* masm) {
__ bind(&is_instance); __ bind(&is_instance);
__ xorl(rax, rax); __ xorl(rax, rax);
// Store bitwise zero in the cache. This is a Smi in GC terms. // Store bitwise zero in the cache. This is a Smi in GC terms.
ASSERT_EQ(0, kSmiTag); STATIC_ASSERT(kSmiTag == 0);
__ StoreRoot(rax, Heap::kInstanceofCacheAnswerRootIndex); __ StoreRoot(rax, Heap::kInstanceofCacheAnswerRootIndex);
__ ret(2 * kPointerSize); __ ret(2 * kPointerSize);
@ -11401,7 +11401,7 @@ void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
__ j(above_equal, index_out_of_range_); __ j(above_equal, index_out_of_range_);
// We need special handling for non-flat strings. // We need special handling for non-flat strings.
ASSERT(kSeqStringTag == 0); STATIC_ASSERT(kSeqStringTag == 0);
__ testb(result_, Immediate(kStringRepresentationMask)); __ testb(result_, Immediate(kStringRepresentationMask));
__ j(zero, &flat_string); __ j(zero, &flat_string);
@ -11422,13 +11422,13 @@ void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
__ movq(result_, FieldOperand(object_, HeapObject::kMapOffset)); __ movq(result_, FieldOperand(object_, HeapObject::kMapOffset));
__ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
// If the first cons component is also non-flat, then go to runtime. // If the first cons component is also non-flat, then go to runtime.
ASSERT(kSeqStringTag == 0); STATIC_ASSERT(kSeqStringTag == 0);
__ testb(result_, Immediate(kStringRepresentationMask)); __ testb(result_, Immediate(kStringRepresentationMask));
__ j(not_zero, &call_runtime_); __ j(not_zero, &call_runtime_);
// Check for 1-byte or 2-byte string. // Check for 1-byte or 2-byte string.
__ bind(&flat_string); __ bind(&flat_string);
ASSERT(kAsciiStringTag != 0); STATIC_ASSERT(kAsciiStringTag != 0);
__ testb(result_, Immediate(kStringEncodingMask)); __ testb(result_, Immediate(kStringEncodingMask));
__ j(not_zero, &ascii_string); __ j(not_zero, &ascii_string);
@ -11622,7 +11622,7 @@ void StringAddStub::Generate(MacroAssembler* masm) {
__ movzxbl(r9, FieldOperand(r9, Map::kInstanceTypeOffset)); __ movzxbl(r9, FieldOperand(r9, Map::kInstanceTypeOffset));
// Look at the length of the result of adding the two strings. // Look at the length of the result of adding the two strings.
ASSERT(String::kMaxLength <= Smi::kMaxValue / 2); STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue / 2);
__ SmiAdd(rbx, rbx, rcx, NULL); __ SmiAdd(rbx, rbx, rcx, NULL);
// Use the runtime system when adding two one character strings, as it // Use the runtime system when adding two one character strings, as it
// contains optimizations for this specific case using the symbol table. // contains optimizations for this specific case using the symbol table.
@ -11654,7 +11654,7 @@ void StringAddStub::Generate(MacroAssembler* masm) {
__ SmiCompare(rbx, Smi::FromInt(String::kMinNonFlatLength)); __ SmiCompare(rbx, Smi::FromInt(String::kMinNonFlatLength));
__ j(below, &string_add_flat_result); __ j(below, &string_add_flat_result);
// Handle exceptionally long strings in the runtime system. // Handle exceptionally long strings in the runtime system.
ASSERT((String::kMaxLength & 0x80000000) == 0); STATIC_ASSERT((String::kMaxLength & 0x80000000) == 0);
__ SmiCompare(rbx, Smi::FromInt(String::kMaxLength)); __ SmiCompare(rbx, Smi::FromInt(String::kMaxLength));
__ j(above, &string_add_runtime); __ j(above, &string_add_runtime);
@ -11668,7 +11668,7 @@ void StringAddStub::Generate(MacroAssembler* masm) {
Label non_ascii, allocated, ascii_data; Label non_ascii, allocated, ascii_data;
__ movl(rcx, r8); __ movl(rcx, r8);
__ and_(rcx, r9); __ and_(rcx, r9);
ASSERT(kStringEncodingMask == kAsciiStringTag); STATIC_ASSERT(kStringEncodingMask == kAsciiStringTag);
__ testl(rcx, Immediate(kAsciiStringTag)); __ testl(rcx, Immediate(kAsciiStringTag));
__ j(zero, &non_ascii); __ j(zero, &non_ascii);
__ bind(&ascii_data); __ bind(&ascii_data);
@ -11693,7 +11693,7 @@ void StringAddStub::Generate(MacroAssembler* masm) {
__ testb(rcx, Immediate(kAsciiDataHintMask)); __ testb(rcx, Immediate(kAsciiDataHintMask));
__ j(not_zero, &ascii_data); __ j(not_zero, &ascii_data);
__ xor_(r8, r9); __ xor_(r8, r9);
ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0); STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0);
__ andb(r8, Immediate(kAsciiStringTag | kAsciiDataHintTag)); __ andb(r8, Immediate(kAsciiStringTag | kAsciiDataHintTag));
__ cmpb(r8, Immediate(kAsciiStringTag | kAsciiDataHintTag)); __ cmpb(r8, Immediate(kAsciiStringTag | kAsciiDataHintTag));
__ j(equal, &ascii_data); __ j(equal, &ascii_data);
@ -11725,7 +11725,7 @@ void StringAddStub::Generate(MacroAssembler* masm) {
// r8: instance type of first string // r8: instance type of first string
// r9: instance type of second string // r9: instance type of second string
Label non_ascii_string_add_flat_result; Label non_ascii_string_add_flat_result;
ASSERT(kStringEncodingMask == kAsciiStringTag); STATIC_ASSERT(kStringEncodingMask == kAsciiStringTag);
__ testl(r8, Immediate(kAsciiStringTag)); __ testl(r8, Immediate(kAsciiStringTag));
__ j(zero, &non_ascii_string_add_flat_result); __ j(zero, &non_ascii_string_add_flat_result);
__ testl(r9, Immediate(kAsciiStringTag)); __ testl(r9, Immediate(kAsciiStringTag));
@ -11847,7 +11847,7 @@ void StringHelper::GenerateCopyCharactersREP(MacroAssembler* masm,
// Make count the number of bytes to copy. // Make count the number of bytes to copy.
if (!ascii) { if (!ascii) {
ASSERT_EQ(2, static_cast<int>(sizeof(uc16))); // NOLINT STATIC_ASSERT(2 == sizeof(uc16));
__ addl(count, count); __ addl(count, count);
} }
@ -11954,7 +11954,7 @@ void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
// Load the entry from the symble table. // Load the entry from the symble table.
Register candidate = scratch; // Scratch register contains candidate. Register candidate = scratch; // Scratch register contains candidate.
ASSERT_EQ(1, SymbolTable::kEntrySize); STATIC_ASSERT(SymbolTable::kEntrySize == 1);
__ movq(candidate, __ movq(candidate,
FieldOperand(symbol_table, FieldOperand(symbol_table,
scratch, scratch,
@ -12069,7 +12069,7 @@ void SubStringStub::Generate(MacroAssembler* masm) {
// Make sure first argument is a string. // Make sure first argument is a string.
__ movq(rax, Operand(rsp, kStringOffset)); __ movq(rax, Operand(rsp, kStringOffset));
ASSERT_EQ(0, kSmiTag); STATIC_ASSERT(kSmiTag == 0);
__ testl(rax, Immediate(kSmiTagMask)); __ testl(rax, Immediate(kSmiTagMask));
__ j(zero, &runtime); __ j(zero, &runtime);
Condition is_string = masm->IsObjectStringType(rax, rbx, rbx); Condition is_string = masm->IsObjectStringType(rax, rbx, rbx);
@ -12209,7 +12209,7 @@ void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
Register scratch4) { Register scratch4) {
// Ensure that you can always subtract a string length from a non-negative // Ensure that you can always subtract a string length from a non-negative
// number (e.g. another length). // number (e.g. another length).
ASSERT(String::kMaxLength < 0x7fffffff); STATIC_ASSERT(String::kMaxLength < 0x7fffffff);
// Find minimum length and length difference. // Find minimum length and length difference.
__ movq(scratch1, FieldOperand(left, String::kLengthOffset)); __ movq(scratch1, FieldOperand(left, String::kLengthOffset));