New unified type representation

Not used yet, only unit tests.

R=jkummerow@chromium.org, svenpanne@chromium.org
BUG=

Review URL: https://codereview.chromium.org/16154027

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@14957 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
This commit is contained in:
rossberg@chromium.org 2013-06-05 15:43:53 +00:00
parent 55c8294e05
commit 9e8279e952
7 changed files with 1006 additions and 2 deletions

View File

@ -61,7 +61,7 @@ class Handle {
location_ = reinterpret_cast<T**>(handle.location_);
}
INLINE(T* operator ->() const) { return operator*(); }
INLINE(T* operator->() const) { return operator*(); }
// Check if this handle refers to the exact same object as the other handle.
INLINE(bool is_identical_to(const Handle<T> other) const);

281
src/types.cc Normal file
View File

@ -0,0 +1,281 @@
// Copyright 2013 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "types.h"
namespace v8 {
namespace internal {
// Get the smallest bitset subsuming this type.
int Type::LubBitset() {
if (this->is_bitset()) {
return this->as_bitset();
} else if (this->is_union()) {
Handle<Unioned> unioned = this->as_union();
int bitset = kNone;
for (int i = 0; i < unioned->length(); ++i) {
bitset |= union_get(unioned, i)->LubBitset();
}
return bitset;
} else {
Map* map =
this->is_class() ? *this->as_class() : this->as_constant()->map();
switch (map->instance_type()) {
case STRING_TYPE:
case ASCII_STRING_TYPE:
case CONS_STRING_TYPE:
case CONS_ASCII_STRING_TYPE:
case SLICED_STRING_TYPE:
case EXTERNAL_STRING_TYPE:
case EXTERNAL_ASCII_STRING_TYPE:
case EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
case SHORT_EXTERNAL_STRING_TYPE:
case SHORT_EXTERNAL_ASCII_STRING_TYPE:
case SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
case INTERNALIZED_STRING_TYPE:
case ASCII_INTERNALIZED_STRING_TYPE:
case CONS_INTERNALIZED_STRING_TYPE:
case CONS_ASCII_INTERNALIZED_STRING_TYPE:
case EXTERNAL_INTERNALIZED_STRING_TYPE:
case EXTERNAL_ASCII_INTERNALIZED_STRING_TYPE:
case EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE:
case SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE:
case SHORT_EXTERNAL_ASCII_INTERNALIZED_STRING_TYPE:
case SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE:
return kString;
case SYMBOL_TYPE:
return kSymbol;
case ODDBALL_TYPE:
return kOddball;
case HEAP_NUMBER_TYPE:
return kDouble;
case JS_VALUE_TYPE:
case JS_DATE_TYPE:
case JS_OBJECT_TYPE:
case JS_CONTEXT_EXTENSION_OBJECT_TYPE:
case JS_GENERATOR_OBJECT_TYPE:
case JS_MODULE_TYPE:
case JS_GLOBAL_OBJECT_TYPE:
case JS_BUILTINS_OBJECT_TYPE:
case JS_GLOBAL_PROXY_TYPE:
case JS_ARRAY_BUFFER_TYPE:
case JS_TYPED_ARRAY_TYPE:
case JS_WEAK_MAP_TYPE:
case JS_REGEXP_TYPE:
return kOtherObject;
case JS_ARRAY_TYPE:
return kArray;
case JS_FUNCTION_TYPE:
return kFunction;
case JS_PROXY_TYPE:
case JS_FUNCTION_PROXY_TYPE:
return kProxy;
default:
UNREACHABLE();
return kNone;
}
}
}
// Get the largest bitset subsumed by this type.
int Type::GlbBitset() {
if (this->is_bitset()) {
return this->as_bitset();
} else if (this->is_union()) {
// All but the first are non-bitsets and thus would yield kNone anyway.
return union_get(this->as_union(), 0)->GlbBitset();
} else {
return kNone;
}
}
// Check this <= that.
bool Type::Is(Handle<Type> that) {
// Fast path for bitsets.
if (that->is_bitset()) {
return (this->LubBitset() | that->as_bitset()) == that->as_bitset();
}
if (that->is_class()) {
return this->is_class() && *this->as_class() == *that->as_class();
}
if (that->is_constant()) {
return this->is_constant() && *this->as_constant() == *that->as_constant();
}
// (T1 \/ ... \/ Tn) <= T <=> (T1 <= T) /\ ... /\ (Tn <= T)
if (this->is_union()) {
Handle<Unioned> unioned = this->as_union();
for (int i = 0; i < unioned->length(); ++i) {
Handle<Type> this_i = union_get(unioned, i);
if (!this_i->Is(that)) return false;
}
return true;
}
// T <= (T1 \/ ... \/ Tn) <=> (T <= T1) \/ ... \/ (T <= Tn)
// (iff T is not a union)
if (that->is_union()) {
Handle<Unioned> unioned = that->as_union();
for (int i = 0; i < unioned->length(); ++i) {
Handle<Type> that_i = union_get(unioned, i);
if (this->Is(that_i)) return true;
if (this->is_bitset()) break; // Fast fail, no other field is a bitset.
}
return false;
}
return false;
}
// Check this overlaps that.
bool Type::Maybe(Handle<Type> that) {
// Fast path for bitsets.
if (this->is_bitset()) {
return (this->as_bitset() & that->LubBitset()) != 0;
}
if (that->is_bitset()) {
return (this->LubBitset() & that->as_bitset()) != 0;
}
if (this->is_class()) {
return that->is_class() && *this->as_class() == *that->as_class();
}
if (this->is_constant()) {
return that->is_constant() && *this->as_constant() == *that->as_constant();
}
// (T1 \/ ... \/ Tn) overlaps T <=> (T1 overlaps T) \/ ... \/ (Tn overlaps T)
if (this->is_union()) {
Handle<Unioned> unioned = this->as_union();
for (int i = 0; i < unioned->length(); ++i) {
Handle<Type> this_i = union_get(unioned, i);
if (this_i->Maybe(that)) return true;
}
return false;
}
// T overlaps (T1 \/ ... \/ Tn) <=> (T overlaps T1) \/ ... \/ (T overlaps Tn)
if (that->is_union()) {
Handle<Unioned> unioned = that->as_union();
for (int i = 0; i < unioned->length(); ++i) {
Handle<Type> that_i = union_get(unioned, i);
if (this->Maybe(that_i)) return true;
}
return false;
}
return false;
}
bool Type::InUnion(Handle<Unioned> unioned, int current_size) {
ASSERT(!this->is_union());
for (int i = 0; i < current_size; ++i) {
Handle<Type> type = union_get(unioned, i);
if (type->is_bitset() ? this->Is(type) : this == *type) return true;
}
return false;
}
// Get non-bitsets from this which are not subsumed by that, store at unioned,
// starting at index. Returns updated index.
int Type::ExtendUnion(Handle<Unioned> result, int current_size) {
int old_size = current_size;
if (this->is_class() || this->is_constant()) {
if (!this->InUnion(result, old_size)) result->set(current_size++, this);
} else if (this->is_union()) {
Handle<Unioned> unioned = this->as_union();
for (int i = 0; i < unioned->length(); ++i) {
Handle<Type> type = union_get(unioned, i);
ASSERT(i == 0 || !(type->is_bitset() || type->Is(union_get(unioned, 0))));
if (type->is_bitset()) continue;
if (!type->InUnion(result, old_size)) result->set(current_size++, *type);
}
}
return current_size;
}
// Union is O(1) on simple bit unions, but O(n*m) on structured unions.
// TODO(rossberg): Should we use object sets somehow? Is it worth it?
Type* Type::Union(Handle<Type> type1, Handle<Type> type2) {
// Fast case: bit sets.
if (type1->is_bitset() && type2->is_bitset()) {
return from_bitset(type1->as_bitset() | type2->as_bitset());
}
// Semi-fast case: Unioned objects are neither involved nor produced.
if (!(type1->is_union() || type2->is_union())) {
if (type1->Is(type2)) return *type2;
if (type2->Is(type1)) return *type1;
}
// Slow case: may need to produce a Unioned object.
Isolate* isolate = NULL;
int size = type1->is_bitset() || type2->is_bitset() ? 1 : 0;
if (!type1->is_bitset()) {
isolate = HeapObject::cast(*type1)->GetIsolate();
size += (type1->is_union() ? type1->as_union()->length() : 1);
}
if (!type2->is_bitset()) {
isolate = HeapObject::cast(*type2)->GetIsolate();
size += (type2->is_union() ? type2->as_union()->length() : 1);
}
ASSERT(isolate != NULL);
ASSERT(size >= 2);
Handle<Unioned> unioned = isolate->factory()->NewFixedArray(size);
size = 0;
int bitset = type1->GlbBitset() | type2->GlbBitset();
if (bitset != kNone) unioned->set(size++, from_bitset(bitset));
size = type1->ExtendUnion(unioned, size);
size = type2->ExtendUnion(unioned, size);
if (size == 1) {
return *union_get(unioned, 0);
} else if (size == unioned->length()) {
return from_handle(unioned);
}
// There was an overlap. Copy to smaller union.
Handle<Unioned> result = isolate->factory()->NewFixedArray(size);
for (int i = 0; i < size; ++i) result->set(i, unioned->get(i));
return from_handle(result);
}
Type* Type::Optional(Handle<Type> type) {
return type->is_bitset()
? from_bitset(type->as_bitset() | kUndefined)
: Union(type, Undefined()->handle_via_isolate_of(*type));
}
} } // namespace v8::internal

200
src/types.h Normal file
View File

@ -0,0 +1,200 @@
// Copyright 2013 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_TYPES_H_
#define V8_TYPES_H_
#include "v8.h"
#include "objects.h"
namespace v8 {
namespace internal {
// A simple type system for compiler-internal use. It is based entirely on
// union types, and all subtyping hence amounts to set inclusion. Besides the
// obvious primitive types and some predefined unions, the type language also
// can express class types (a.k.a. specific maps) and singleton types (i.e.,
// concrete constants).
//
// The following equations and inequations hold:
//
// None <= T
// T <= Any
//
// Oddball = Boolean \/ Null \/ Undefined
// Number = Smi \/ Double
// Name = String \/ Symbol
// UniqueName = InternalizedString \/ Symbol
// InternalizedString < String
//
// Receiver = Object \/ Proxy
// Array < Object
// Function < Object
//
// Class(map) < T iff instance_type(map) < T
// Constant(x) < T iff instance_type(map(x)) < T
//
// Note that Constant(x) < Class(map(x)) does _not_ hold, since x's map can
// change! (Its instance type cannot, however.)
// TODO(rossberg): the latter is not currently true for proxies, because of fix,
// but will hold once we implement direct proxies.
//
// There are two main functions for testing types:
//
// T1->Is(T2) -- tests whether T1 is included in T2 (i.e., T1 <= T2)
// T1->Maybe(T2) -- tests whether T1 and T2 overlap (i.e., T1 /\ T2 =/= 0)
//
// Typically, the latter should be used to check whether a specific case needs
// handling (e.g., via T->Maybe(Number)).
//
// There is no functionality to discover whether a type is a leaf in the
// lattice. That is intentional. It should always be possible to refine the
// lattice (e.g., splitting up number types further) without invalidating any
// existing assumptions or tests.
//
// Internally, all 'primitive' types, and their unions, are represented as
// bitsets via smis. Class and Constant are heap pointers to the respective
// argument. Only unions containing Class'es or Constant's require allocation.
//
// The type representation is heap-allocated, so cannot (currently) be used in
// a parallel compilation context.
class Type : public Object {
public:
static Type* None() { return from_bitset(kNone); }
static Type* Any() { return from_bitset(kAny); }
static Type* Oddball() { return from_bitset(kOddball); }
static Type* Boolean() { return from_bitset(kBoolean); }
static Type* Null() { return from_bitset(kNull); }
static Type* Undefined() { return from_bitset(kUndefined); }
static Type* Number() { return from_bitset(kNumber); }
static Type* Smi() { return from_bitset(kSmi); }
static Type* Double() { return from_bitset(kDouble); }
static Type* Name() { return from_bitset(kName); }
static Type* UniqueName() { return from_bitset(kUniqueName); }
static Type* String() { return from_bitset(kString); }
static Type* InternalizedString() { return from_bitset(kInternalizedString); }
static Type* Symbol() { return from_bitset(kSymbol); }
static Type* Receiver() { return from_bitset(kReceiver); }
static Type* Object() { return from_bitset(kObject); }
static Type* Array() { return from_bitset(kArray); }
static Type* Function() { return from_bitset(kFunction); }
static Type* Proxy() { return from_bitset(kProxy); }
static Type* Class(Handle<Map> map) { return from_handle(map); }
static Type* Constant(Handle<HeapObject> value) {
ASSERT(!value->IsMap() && !value->IsFixedArray());
return from_handle(value);
}
static Type* Union(Handle<Type> type1, Handle<Type> type2);
static Type* Optional(Handle<Type> type); // type \/ Undefined
bool Is(Handle<Type> that);
bool Maybe(Handle<Type> that);
// TODO(rossberg): method to iterate unions?
private:
// A union is a fixed array containing types. Invariants:
// - its length is at least 2
// - at most one field is a bitset, and it must go into index 0
// - no field is a union
typedef FixedArray Unioned;
enum {
kNull = 1 << 0,
kUndefined = 1 << 1,
kBoolean = 1 << 2,
kSmi = 1 << 3,
kDouble = 1 << 4,
kSymbol = 1 << 5,
kInternalizedString = 1 << 6,
kOtherString = 1 << 7,
kArray = 1 << 8,
kFunction = 1 << 9,
kOtherObject = 1 << 10,
kProxy = 1 << 11,
kOddball = kBoolean | kNull | kUndefined,
kNumber = kSmi | kDouble,
kString = kInternalizedString | kOtherString,
kUniqueName = kSymbol | kInternalizedString,
kName = kSymbol | kString,
kObject = kArray | kFunction | kOtherObject,
kReceiver = kObject | kProxy,
kAny = kOddball | kNumber | kName | kReceiver,
kNone = 0
};
bool is_bitset() { return this->IsSmi(); }
bool is_class() { return this->IsMap(); }
bool is_constant() { return !(is_bitset() || is_class() || is_union()); }
bool is_union() { return this->IsFixedArray(); }
int as_bitset() { return Smi::cast(this)->value(); }
Handle<Map> as_class() { return Handle<Map>::cast(handle()); }
Handle<HeapObject> as_constant() {
ASSERT(is_constant());
return Handle<HeapObject>::cast(handle());
}
Handle<Unioned> as_union() { return Handle<Unioned>::cast(handle()); }
Handle<Type> handle() { return handle_via_isolate_of(this); }
Handle<Type> handle_via_isolate_of(Type* type) {
ASSERT(type->IsHeapObject());
return v8::internal::handle(this, HeapObject::cast(type)->GetIsolate());
}
static Type* from_bitset(int bitset) {
return static_cast<Type*>(Object::cast(Smi::FromInt(bitset)));
}
static Type* from_handle(Handle<HeapObject> handle) {
return static_cast<Type*>(Object::cast(*handle));
}
static Handle<Type> union_get(Handle<Unioned> unioned, int i) {
Type* type = static_cast<Type*>(unioned->get(i));
ASSERT(!type->is_union());
return type->handle_via_isolate_of(from_handle(unioned));
}
int LubBitset(); // least upper bound that's a bitset
int GlbBitset(); // greatest lower bound that's a bitset
bool InUnion(Handle<Unioned> unioned, int current_size);
int ExtendUnion(Handle<Unioned> unioned, int current_size);
};
} } // namespace v8::internal
#endif // V8_TYPES_H_

View File

@ -27,7 +27,6 @@
#include "typing.h"
#include "v8.h"
#include "parser.h" // for CompileTimeValue; TODO(rossberg): should move
#include "scopes.h"

View File

@ -99,6 +99,7 @@
'test-strtod.cc',
'test-thread-termination.cc',
'test-threads.cc',
'test-types.cc',
'test-unbound-queue.cc',
'test-utils.cc',
'test-version.cc',

521
test/cctest/test-types.cc Normal file
View File

@ -0,0 +1,521 @@
// Copyright 2013 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "cctest.h"
#include "types.h"
using namespace v8::internal;
// Testing auxiliaries (breaking the Type abstraction).
static bool IsBitset(Type* type) { return type->IsSmi(); }
static bool IsClass(Type* type) { return type->IsMap(); }
static bool IsUnion(Type* type) { return type->IsFixedArray(); }
static bool IsConstant(Type* type) {
return !(IsBitset(type) || IsClass(type) || IsUnion(type));
}
static int AsBitset(Type* type) { return Smi::cast(type)->value(); }
static Map* AsClass(Type* type) { return Map::cast(type); }
static HeapObject* AsConstant(Type* type) { return HeapObject::cast(type); }
static FixedArray* AsUnion(Type* type) { return FixedArray::cast(type); }
class HandlifiedTypes {
public:
explicit HandlifiedTypes(Isolate* isolate) :
None(Type::None(), isolate),
Any(Type::Any(), isolate),
Oddball(Type::Oddball(), isolate),
Boolean(Type::Boolean(), isolate),
Null(Type::Null(), isolate),
Undefined(Type::Undefined(), isolate),
Number(Type::Number(), isolate),
Smi(Type::Smi(), isolate),
Double(Type::Double(), isolate),
Name(Type::Name(), isolate),
UniqueName(Type::UniqueName(), isolate),
String(Type::String(), isolate),
InternalizedString(Type::InternalizedString(), isolate),
Symbol(Type::Symbol(), isolate),
Receiver(Type::Receiver(), isolate),
Object(Type::Object(), isolate),
Array(Type::Array(), isolate),
Function(Type::Function(), isolate),
Proxy(Type::Proxy(), isolate),
object_map(isolate->factory()->NewMap(JS_OBJECT_TYPE, 3 * kPointerSize)),
array_map(isolate->factory()->NewMap(JS_ARRAY_TYPE, 4 * kPointerSize)),
isolate_(isolate) {
object1 = isolate->factory()->NewJSObjectFromMap(object_map);
object2 = isolate->factory()->NewJSObjectFromMap(object_map);
array = isolate->factory()->NewJSArray(20);
ObjectClass = handle(Type::Class(object_map), isolate);
ArrayClass = handle(Type::Class(array_map), isolate);
ObjectConstant1 = handle(Type::Constant(object1), isolate);
ObjectConstant2 = handle(Type::Constant(object2), isolate);
ArrayConstant = handle(Type::Constant(array), isolate);
}
Handle<Type> None;
Handle<Type> Any;
Handle<Type> Oddball;
Handle<Type> Boolean;
Handle<Type> Null;
Handle<Type> Undefined;
Handle<Type> Number;
Handle<Type> Smi;
Handle<Type> Double;
Handle<Type> Name;
Handle<Type> UniqueName;
Handle<Type> String;
Handle<Type> InternalizedString;
Handle<Type> Symbol;
Handle<Type> Receiver;
Handle<Type> Object;
Handle<Type> Array;
Handle<Type> Function;
Handle<Type> Proxy;
Handle<Type> ObjectClass;
Handle<Type> ArrayClass;
Handle<Type> ObjectConstant1;
Handle<Type> ObjectConstant2;
Handle<Type> ArrayConstant;
Handle<Map> object_map;
Handle<Map> array_map;
Handle<JSObject> object1;
Handle<JSObject> object2;
Handle<JSArray> array;
Handle<Type> Union(Handle<Type> type1, Handle<Type> type2) {
return handle(Type::Union(type1, type2), isolate_);
}
private:
Isolate* isolate_;
};
TEST(Bitset) {
CcTest::InitializeVM();
Isolate* isolate = Isolate::Current();
HandleScope scope(isolate);
HandlifiedTypes T(isolate);
CHECK(IsBitset(*T.None));
CHECK(IsBitset(*T.Any));
CHECK(IsBitset(*T.String));
CHECK(IsBitset(*T.Object));
CHECK(IsBitset(Type::Union(T.String, T.Number)));
CHECK(IsBitset(Type::Union(T.String, T.Receiver)));
CHECK(IsBitset(Type::Optional(T.Object)));
CHECK_EQ(0, AsBitset(*T.None));
CHECK_EQ(AsBitset(*T.Number) | AsBitset(*T.String),
AsBitset(Type::Union(T.String, T.Number)));
CHECK_EQ(AsBitset(*T.Receiver),
AsBitset(Type::Union(T.Receiver, T.Object)));
CHECK_EQ(AsBitset(*T.String) | AsBitset(*T.Undefined),
AsBitset(Type::Optional(T.String)));
}
TEST(Class) {
CcTest::InitializeVM();
Isolate* isolate = Isolate::Current();
HandleScope scope(isolate);
HandlifiedTypes T(isolate);
CHECK(IsClass(*T.ObjectClass));
CHECK(IsClass(*T.ArrayClass));
CHECK(*T.object_map == AsClass(*T.ObjectClass));
CHECK(*T.array_map == AsClass(*T.ArrayClass));
}
TEST(Constant) {
CcTest::InitializeVM();
Isolate* isolate = Isolate::Current();
HandleScope scope(isolate);
HandlifiedTypes T(isolate);
CHECK(IsConstant(*T.ObjectConstant1));
CHECK(IsConstant(*T.ObjectConstant2));
CHECK(IsConstant(*T.ArrayConstant));
CHECK(*T.object1 == AsConstant(*T.ObjectConstant1));
CHECK(*T.object2 == AsConstant(*T.ObjectConstant2));
CHECK(*T.object1 != AsConstant(*T.ObjectConstant2));
CHECK(*T.array == AsConstant(*T.ArrayConstant));
}
static void CheckSub(Handle<Type> type1, Handle<Type> type2) {
CHECK(type1->Is(type2));
CHECK(!type2->Is(type1));
if (IsBitset(*type1) && IsBitset(*type2)) {
CHECK_NE(AsBitset(*type1), AsBitset(*type2));
}
}
static void CheckUnordered(Handle<Type> type1, Handle<Type> type2) {
CHECK(!type1->Is(type2));
CHECK(!type2->Is(type1));
if (IsBitset(*type1) && IsBitset(*type2)) {
CHECK_NE(AsBitset(*type1), AsBitset(*type2));
}
}
TEST(Is) {
CcTest::InitializeVM();
Isolate* isolate = Isolate::Current();
HandleScope scope(isolate);
HandlifiedTypes T(isolate);
// Reflexivity
CHECK(T.None->Is(T.None));
CHECK(T.Any->Is(T.Any));
CHECK(T.Object->Is(T.Object));
CHECK(T.ObjectClass->Is(T.ObjectClass));
CHECK(T.ObjectConstant1->Is(T.ObjectConstant1));
// Symmetry and Transitivity
CheckSub(T.None, T.Number);
CheckSub(T.None, T.Any);
CheckSub(T.Oddball, T.Any);
CheckSub(T.Boolean, T.Oddball);
CheckSub(T.Null, T.Oddball);
CheckSub(T.Undefined, T.Oddball);
CheckUnordered(T.Boolean, T.Null);
CheckUnordered(T.Undefined, T.Null);
CheckUnordered(T.Boolean, T.Undefined);
CheckSub(T.Number, T.Any);
CheckSub(T.Smi, T.Number);
CheckSub(T.Double, T.Number);
CheckUnordered(T.Smi, T.Double);
CheckSub(T.Name, T.Any);
CheckSub(T.UniqueName, T.Any);
CheckSub(T.UniqueName, T.Name);
CheckSub(T.String, T.Name);
CheckSub(T.InternalizedString, T.String);
CheckSub(T.InternalizedString, T.UniqueName);
CheckSub(T.InternalizedString, T.Name);
CheckSub(T.Symbol, T.UniqueName);
CheckSub(T.Symbol, T.Name);
CheckUnordered(T.String, T.UniqueName);
CheckUnordered(T.String, T.Symbol);
CheckUnordered(T.InternalizedString, T.Symbol);
CheckSub(T.Receiver, T.Any);
CheckSub(T.Object, T.Any);
CheckSub(T.Object, T.Receiver);
CheckSub(T.Array, T.Object);
CheckSub(T.Function, T.Object);
CheckSub(T.Proxy, T.Receiver);
CheckUnordered(T.Object, T.Proxy);
CheckUnordered(T.Array, T.Function);
// Structured subtyping
CheckSub(T.ObjectClass, T.Object);
CheckSub(T.ArrayClass, T.Object);
CheckUnordered(T.ObjectClass, T.ArrayClass);
CheckSub(T.ObjectConstant1, T.Object);
CheckSub(T.ObjectConstant2, T.Object);
CheckSub(T.ArrayConstant, T.Object);
CheckSub(T.ArrayConstant, T.Array);
CheckUnordered(T.ObjectConstant1, T.ObjectConstant2);
CheckUnordered(T.ObjectConstant1, T.ArrayConstant);
CheckUnordered(T.ObjectConstant1, T.ObjectClass);
CheckUnordered(T.ObjectConstant2, T.ObjectClass);
CheckUnordered(T.ObjectConstant1, T.ArrayClass);
CheckUnordered(T.ObjectConstant2, T.ArrayClass);
CheckUnordered(T.ArrayConstant, T.ObjectClass);
}
static void CheckOverlap(Handle<Type> type1, Handle<Type> type2) {
CHECK(type1->Maybe(type2));
CHECK(type2->Maybe(type1));
if (IsBitset(*type1) && IsBitset(*type2)) {
CHECK_NE(0, AsBitset(*type1) & AsBitset(*type2));
}
}
static void CheckDisjoint(Handle<Type> type1, Handle<Type> type2) {
CHECK(!type1->Is(type2));
CHECK(!type2->Is(type1));
CHECK(!type1->Maybe(type2));
CHECK(!type2->Maybe(type1));
if (IsBitset(*type1) && IsBitset(*type2)) {
CHECK_EQ(0, AsBitset(*type1) & AsBitset(*type2));
}
}
TEST(Maybe) {
CcTest::InitializeVM();
Isolate* isolate = Isolate::Current();
HandleScope scope(isolate);
HandlifiedTypes T(isolate);
CheckOverlap(T.Any, T.Any);
CheckOverlap(T.Object, T.Object);
CheckOverlap(T.Oddball, T.Any);
CheckOverlap(T.Boolean, T.Oddball);
CheckOverlap(T.Null, T.Oddball);
CheckOverlap(T.Undefined, T.Oddball);
CheckDisjoint(T.Boolean, T.Null);
CheckDisjoint(T.Undefined, T.Null);
CheckDisjoint(T.Boolean, T.Undefined);
CheckOverlap(T.Number, T.Any);
CheckOverlap(T.Smi, T.Number);
CheckOverlap(T.Double, T.Number);
CheckDisjoint(T.Smi, T.Double);
CheckOverlap(T.Name, T.Any);
CheckOverlap(T.UniqueName, T.Any);
CheckOverlap(T.UniqueName, T.Name);
CheckOverlap(T.String, T.Name);
CheckOverlap(T.InternalizedString, T.String);
CheckOverlap(T.InternalizedString, T.UniqueName);
CheckOverlap(T.InternalizedString, T.Name);
CheckOverlap(T.Symbol, T.UniqueName);
CheckOverlap(T.Symbol, T.Name);
CheckOverlap(T.String, T.UniqueName);
CheckDisjoint(T.String, T.Symbol);
CheckDisjoint(T.InternalizedString, T.Symbol);
CheckOverlap(T.Receiver, T.Any);
CheckOverlap(T.Object, T.Any);
CheckOverlap(T.Object, T.Receiver);
CheckOverlap(T.Array, T.Object);
CheckOverlap(T.Function, T.Object);
CheckOverlap(T.Proxy, T.Receiver);
CheckDisjoint(T.Object, T.Proxy);
CheckDisjoint(T.Array, T.Function);
CheckOverlap(T.ObjectClass, T.Object);
CheckOverlap(T.ArrayClass, T.Object);
CheckOverlap(T.ObjectClass, T.ObjectClass);
CheckOverlap(T.ArrayClass, T.ArrayClass);
CheckDisjoint(T.ObjectClass, T.ArrayClass);
CheckOverlap(T.ObjectConstant1, T.Object);
CheckOverlap(T.ObjectConstant2, T.Object);
CheckOverlap(T.ArrayConstant, T.Object);
CheckOverlap(T.ArrayConstant, T.Array);
CheckOverlap(T.ObjectConstant1, T.ObjectConstant1);
CheckDisjoint(T.ObjectConstant1, T.ObjectConstant2);
CheckDisjoint(T.ObjectConstant1, T.ArrayConstant);
CheckDisjoint(T.ObjectConstant1, T.ObjectClass);
CheckDisjoint(T.ObjectConstant2, T.ObjectClass);
CheckDisjoint(T.ObjectConstant1, T.ArrayClass);
CheckDisjoint(T.ObjectConstant2, T.ArrayClass);
CheckDisjoint(T.ArrayConstant, T.ObjectClass);
}
static void CheckEqual(Handle<Type> type1, Handle<Type> type2) {
CHECK_EQ(IsBitset(*type1), IsBitset(*type2));
CHECK_EQ(IsClass(*type1), IsClass(*type2));
CHECK_EQ(IsConstant(*type1), IsConstant(*type2));
CHECK_EQ(IsUnion(*type1), IsUnion(*type2));
if (IsBitset(*type1)) {
CHECK_EQ(AsBitset(*type1), AsBitset(*type2));
} else if (IsClass(*type1)) {
CHECK_EQ(AsClass(*type1), AsClass(*type2));
} else if (IsConstant(*type1)) {
CHECK_EQ(AsConstant(*type1), AsConstant(*type2));
} else if (IsUnion(*type1)) {
CHECK_EQ(AsUnion(*type1)->length(), AsUnion(*type2)->length());
}
CHECK(type1->Is(type2));
CHECK(type2->Is(type1));
}
TEST(Union) {
CcTest::InitializeVM();
Isolate* isolate = Isolate::Current();
HandleScope scope(isolate);
HandlifiedTypes T(isolate);
// Bitset-bitset
CHECK(IsBitset(Type::Union(T.Object, T.Number)));
CHECK(IsBitset(Type::Union(T.Object, T.Object)));
CHECK(IsBitset(Type::Union(T.Any, T.None)));
CheckEqual(T.Union(T.None, T.Number), T.Number);
CheckEqual(T.Union(T.Object, T.Proxy), T.Receiver);
CheckEqual(T.Union(T.Number, T.String), T.Union(T.String, T.Number));
CheckSub(T.Union(T.Number, T.String), T.Any);
// Class-class
CHECK(IsClass(Type::Union(T.ObjectClass, T.ObjectClass)));
CHECK(IsUnion(Type::Union(T.ObjectClass, T.ArrayClass)));
CheckEqual(T.Union(T.ObjectClass, T.ObjectClass), T.ObjectClass);
CheckSub(T.ObjectClass, T.Union(T.ObjectClass, T.ArrayClass));
CheckSub(T.ArrayClass, T.Union(T.ObjectClass, T.ArrayClass));
CheckSub(T.Union(T.ObjectClass, T.ArrayClass), T.Object);
CheckUnordered(T.Union(T.ObjectClass, T.ArrayClass), T.Array);
CheckOverlap(T.Union(T.ObjectClass, T.ArrayClass), T.Array);
CheckDisjoint(T.Union(T.ObjectClass, T.ArrayClass), T.Number);
// Constant-constant
CHECK(IsConstant(Type::Union(T.ObjectConstant1, T.ObjectConstant1)));
CHECK(IsUnion(Type::Union(T.ObjectConstant1, T.ObjectConstant2)));
CheckEqual(T.Union(T.ObjectConstant1, T.ObjectConstant1), T.ObjectConstant1);
CheckSub(T.ObjectConstant1, T.Union(T.ObjectConstant1, T.ObjectConstant2));
CheckSub(T.ObjectConstant2, T.Union(T.ObjectConstant1, T.ObjectConstant2));
CheckSub(T.Union(T.ObjectConstant1, T.ObjectConstant2), T.Object);
CheckUnordered(T.Union(T.ObjectConstant1, T.ObjectConstant2), T.ObjectClass);
CheckUnordered(T.Union(T.ObjectConstant1, T.ArrayConstant), T.Array);
CheckOverlap(T.Union(T.ObjectConstant1, T.ArrayConstant), T.Array);
CheckDisjoint(T.Union(T.ObjectConstant1, T.ArrayConstant), T.Number);
CheckDisjoint(T.Union(T.ObjectConstant1, T.ArrayConstant), T.ObjectClass);
// Bitset-class
CHECK(IsBitset(Type::Union(T.ObjectClass, T.Object)));
CHECK(IsUnion(Type::Union(T.ObjectClass, T.Number)));
CheckEqual(T.Union(T.ObjectClass, T.Object), T.Object);
CheckSub(T.Union(T.ObjectClass, T.Number), T.Any);
CheckSub(T.Union(T.ObjectClass, T.Smi), T.Union(T.Object, T.Number));
CheckSub(T.Union(T.ObjectClass, T.Array), T.Object);
CheckUnordered(T.Union(T.ObjectClass, T.String), T.Array);
CheckOverlap(T.Union(T.ObjectClass, T.String), T.Object);
CheckDisjoint(T.Union(T.ObjectClass, T.String), T.Number);
// Bitset-constant
CHECK(IsBitset(Type::Union(T.ObjectConstant1, T.Object)));
CHECK(IsUnion(Type::Union(T.ObjectConstant2, T.Number)));
CheckEqual(T.Union(T.ObjectConstant1, T.Object), T.Object);
CheckSub(T.Union(T.ObjectConstant1, T.Number), T.Any);
CheckSub(T.Union(T.ObjectConstant1, T.Smi), T.Union(T.Object, T.Number));
CheckSub(T.Union(T.ObjectConstant1, T.Array), T.Object);
CheckUnordered(T.Union(T.ObjectConstant1, T.String), T.Array);
CheckOverlap(T.Union(T.ObjectConstant1, T.String), T.Object);
CheckDisjoint(T.Union(T.ObjectConstant1, T.String), T.Number);
// Class-constant
CHECK(IsUnion(Type::Union(T.ObjectConstant1, T.ObjectClass)));
CHECK(IsUnion(Type::Union(T.ArrayClass, T.ObjectConstant2)));
CheckSub(T.Union(T.ObjectConstant1, T.ArrayClass), T.Object);
CheckSub(T.ObjectConstant1, T.Union(T.ObjectConstant1, T.ArrayClass));
CheckSub(T.ArrayClass, T.Union(T.ObjectConstant1, T.ArrayClass));
CheckUnordered(T.ObjectClass, T.Union(T.ObjectConstant1, T.ArrayClass));
CheckSub(
T.Union(T.ObjectConstant1, T.ArrayClass), T.Union(T.Array, T.Object));
CheckUnordered(T.Union(T.ObjectConstant1, T.ArrayClass), T.ArrayConstant);
CheckDisjoint(T.Union(T.ObjectConstant1, T.ArrayClass), T.ObjectConstant2);
CheckDisjoint(T.Union(T.ObjectConstant1, T.ArrayClass), T.ObjectClass);
// Bitset-union
CHECK(IsBitset(
Type::Union(T.Object, T.Union(T.ObjectConstant1, T.ObjectClass))));
CHECK(IsUnion(
Type::Union(T.Union(T.ArrayClass, T.ObjectConstant2), T.Number)));
CheckEqual(
T.Union(T.Object, T.Union(T.ObjectConstant1, T.ObjectClass)),
T.Object);
CheckEqual(
T.Union(T.Union(T.ArrayClass, T.ObjectConstant1), T.Number),
T.Union(T.ObjectConstant1, T.Union(T.Number, T.ArrayClass)));
CheckSub(
T.Double,
T.Union(T.Union(T.ArrayClass, T.ObjectConstant1), T.Number));
CheckSub(
T.ObjectConstant1,
T.Union(T.Union(T.ArrayClass, T.ObjectConstant1), T.Double));
CheckSub(
T.Union(T.Union(T.ArrayClass, T.ObjectConstant1), T.Double),
T.Any);
CheckSub(
T.Union(T.Union(T.ArrayClass, T.ObjectConstant1), T.Double),
T.Union(T.ObjectConstant1, T.Union(T.Number, T.ArrayClass)));
// Class-union
CHECK(IsUnion(
Type::Union(T.Union(T.ArrayClass, T.ObjectConstant2), T.ArrayClass)));
CHECK(IsUnion(
Type::Union(T.Union(T.ArrayClass, T.ObjectConstant2), T.ObjectClass)));
CheckEqual(
T.Union(T.ObjectClass, T.Union(T.ObjectConstant1, T.ObjectClass)),
T.Union(T.ObjectClass, T.ObjectConstant1));
CheckSub(
T.Union(T.ObjectClass, T.Union(T.ObjectConstant1, T.ObjectClass)),
T.Object);
CheckEqual(
T.Union(T.Union(T.ArrayClass, T.ObjectConstant2), T.ArrayClass),
T.Union(T.ArrayClass, T.ObjectConstant2));
// Constant-union
CHECK(IsUnion(Type::Union(
T.ObjectConstant1, T.Union(T.ObjectConstant1, T.ObjectConstant2))));
CHECK(IsUnion(Type::Union(
T.Union(T.ArrayConstant, T.ObjectClass), T.ObjectConstant1)));
CHECK(IsUnion(Type::Union(
T.Union(T.ArrayConstant, T.ObjectConstant2), T.ObjectConstant1)));
CheckEqual(
T.Union(T.ObjectConstant1, T.Union(T.ObjectConstant1, T.ObjectConstant2)),
T.Union(T.ObjectConstant2, T.ObjectConstant1));
CheckEqual(
T.Union(T.Union(T.ArrayConstant, T.ObjectConstant2), T.ObjectConstant1),
T.Union(T.ObjectConstant2, T.Union(T.ArrayConstant, T.ObjectConstant1)));
// Union-union
CHECK(IsBitset(
Type::Union(T.Union(T.Number, T.ArrayClass), T.Union(T.Smi, T.Array))));
CheckEqual(
T.Union(T.Union(T.ObjectConstant2, T.ObjectConstant1),
T.Union(T.ObjectConstant1, T.ObjectConstant2)),
T.Union(T.ObjectConstant2, T.ObjectConstant1));
CheckEqual(
T.Union(T.Union(T.ObjectConstant2, T.ArrayConstant),
T.Union(T.ObjectConstant1, T.ArrayConstant)),
T.Union(T.Union(T.ObjectConstant1, T.ObjectConstant2), T.ArrayConstant));
CheckEqual(
T.Union(T.Union(T.Number, T.ArrayClass), T.Union(T.Smi, T.Array)),
T.Union(T.Number, T.Array));
}

View File

@ -456,6 +456,8 @@
'../../src/transitions.h',
'../../src/type-info.cc',
'../../src/type-info.h',
'../../src/types.cc',
'../../src/types.h',
'../../src/typing.cc',
'../../src/typing.h',
'../../src/unbound-queue-inl.h',