[mips32] Delete mips32 from v8

Bug: v8:13206
Change-Id: Ifb5daeff2a1e91fd098bc5abe9f81339575636bf
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/3837160
Reviewed-by: Hannes Payer <hpayer@chromium.org>
Reviewed-by: Jakob Linke <jgruber@chromium.org>
Reviewed-by: Michael Achenbach <machenbach@chromium.org>
Auto-Submit: Liu Yu <liuyu@loongson.cn>
Commit-Queue: Liu Yu <liuyu@loongson.cn>
Cr-Commit-Position: refs/heads/main@{#83148}
This commit is contained in:
Liu Yu 2022-09-08 19:39:11 +08:00 committed by V8 LUCI CQ
parent 36559d91ca
commit a26ca5ed14
117 changed files with 149 additions and 61418 deletions

102
BUILD.gn
View File

@ -1119,49 +1119,11 @@ config("toolchain") {
}
}
# Mips64el/mipsel simulators.
if (target_is_simulator &&
(v8_current_cpu == "mipsel" || v8_current_cpu == "mips64el")) {
# Mips64el simulators.
if (target_is_simulator && v8_current_cpu == "mips64el") {
defines += [ "_MIPS_TARGET_SIMULATOR" ]
}
if (v8_current_cpu == "mipsel" || v8_current_cpu == "mips") {
defines += [ "V8_TARGET_ARCH_MIPS" ]
if (v8_can_use_fpu_instructions) {
defines += [ "CAN_USE_FPU_INSTRUCTIONS" ]
}
if (v8_use_mips_abi_hardfloat) {
defines += [
"__mips_hard_float=1",
"CAN_USE_FPU_INSTRUCTIONS",
]
} else {
defines += [ "__mips_soft_float=1" ]
}
if (mips_arch_variant == "r6") {
defines += [
"_MIPS_ARCH_MIPS32R6",
"FPU_MODE_FP64",
]
if (mips_use_msa) {
defines += [ "_MIPS_MSA" ]
}
} else if (mips_arch_variant == "r2") {
defines += [ "_MIPS_ARCH_MIPS32R2" ]
if (mips_fpu_mode == "fp64") {
defines += [ "FPU_MODE_FP64" ]
} else if (mips_fpu_mode == "fpxx") {
defines += [ "FPU_MODE_FPXX" ]
} else if (mips_fpu_mode == "fp32") {
defines += [ "FPU_MODE_FP32" ]
}
} else if (mips_arch_variant == "r1") {
defines += [ "FPU_MODE_FP32" ]
}
# TODO(infra): Add support for mips_arch_variant rx and loongson.
}
if (v8_current_cpu == "mips64el" || v8_current_cpu == "mips64") {
defines += [ "V8_TARGET_ARCH_MIPS64" ]
if (v8_can_use_fpu_instructions) {
@ -1335,6 +1297,7 @@ config("toolchain") {
if (is_clang) {
cflags += [
"-Wmissing-field-initializers",
"-Wunreachable-code",
# Google3 enables this warning, so we should also enable it to find issue
# earlier. See https://reviews.llvm.org/D56731 for details about this
@ -1345,11 +1308,6 @@ config("toolchain") {
"-Wno-shadow",
]
if (v8_current_cpu != "mips" && v8_current_cpu != "mipsel") {
# We exclude MIPS because the IsMipsArchVariant macro causes trouble.
cflags += [ "-Wunreachable-code" ]
}
if (v8_current_cpu == "x64" || v8_current_cpu == "arm64" ||
v8_current_cpu == "mips64el" || v8_current_cpu == "riscv64") {
cflags += [ "-Wshorten-64-to-32" ]
@ -1609,8 +1567,7 @@ if (is_android && enable_java_templates) {
if (v8_use_external_startup_data) {
deps = [ "//v8" ]
renaming_sources = [ "$root_out_dir/snapshot_blob.bin" ]
if (current_cpu == "arm" || current_cpu == "x86" ||
current_cpu == "mipsel") {
if (current_cpu == "arm" || current_cpu == "x86") {
renaming_destinations = [ "snapshot_blob_32.bin" ]
} else {
renaming_destinations = [ "snapshot_blob_64.bin" ]
@ -2340,8 +2297,7 @@ action("v8_dump_build_config") {
"v8_enable_cet_shadow_stack=$v8_enable_cet_shadow_stack",
]
if (v8_current_cpu == "mips" || v8_current_cpu == "mipsel" ||
v8_current_cpu == "mips64" || v8_current_cpu == "mips64el") {
if (v8_current_cpu == "mips64" || v8_current_cpu == "mips64el") {
args += [
"mips_arch_variant=\"$mips_arch_variant\"",
"mips_use_msa=$mips_use_msa",
@ -2514,11 +2470,6 @@ v8_source_set("v8_initializers") {
### gcmole(arch:arm64) ###
"src/builtins/arm64/builtins-arm64.cc",
]
} else if (v8_current_cpu == "mips" || v8_current_cpu == "mipsel") {
sources += [
### gcmole(arch:mipsel) ###
"src/builtins/mips/builtins-mips.cc",
]
} else if (v8_current_cpu == "mips64" || v8_current_cpu == "mips64el") {
sources += [
### gcmole(arch:mips64el) ###
@ -3898,22 +3849,6 @@ v8_header_set("v8_internal_headers") {
if (is_win) {
sources += [ "src/diagnostics/unwinding-info-win64.h" ]
}
} else if (v8_current_cpu == "mips" || v8_current_cpu == "mipsel") {
sources += [ ### gcmole(arch:mipsel) ###
"src/baseline/mips/baseline-assembler-mips-inl.h",
"src/baseline/mips/baseline-compiler-mips-inl.h",
"src/codegen/mips/assembler-mips-inl.h",
"src/codegen/mips/assembler-mips.h",
"src/codegen/mips/constants-mips.h",
"src/codegen/mips/macro-assembler-mips.h",
"src/codegen/mips/register-mips.h",
"src/codegen/mips/reglist-mips.h",
"src/compiler/backend/mips/instruction-codes-mips.h",
"src/execution/mips/frame-constants-mips.h",
"src/execution/mips/simulator-mips.h",
"src/regexp/mips/regexp-macro-assembler-mips.h",
"src/wasm/baseline/mips/liftoff-assembler-mips.h",
]
} else if (v8_current_cpu == "mips64" || v8_current_cpu == "mips64el") {
sources += [ ### gcmole(arch:mips64el) ###
"src/baseline/mips64/baseline-assembler-mips64-inl.h",
@ -5004,23 +4939,6 @@ v8_source_set("v8_base_without_compiler") {
if (is_win) {
sources += [ "src/diagnostics/unwinding-info-win64.cc" ]
}
} else if (v8_current_cpu == "mips" || v8_current_cpu == "mipsel") {
sources += [ ### gcmole(arch:mipsel) ###
"src/codegen/mips/assembler-mips.cc",
"src/codegen/mips/constants-mips.cc",
"src/codegen/mips/cpu-mips.cc",
"src/codegen/mips/interface-descriptors-mips-inl.h",
"src/codegen/mips/macro-assembler-mips.cc",
"src/compiler/backend/mips/code-generator-mips.cc",
"src/compiler/backend/mips/instruction-scheduler-mips.cc",
"src/compiler/backend/mips/instruction-selector-mips.cc",
"src/deoptimizer/mips/deoptimizer-mips.cc",
"src/diagnostics/mips/disasm-mips.cc",
"src/diagnostics/mips/unwinder-mips.cc",
"src/execution/mips/frame-constants-mips.cc",
"src/execution/mips/simulator-mips.cc",
"src/regexp/mips/regexp-macro-assembler-mips.cc",
]
} else if (v8_current_cpu == "mips64" || v8_current_cpu == "mips64el") {
sources += [ ### gcmole(arch:mips64el) ###
"src/codegen/mips64/assembler-mips64.cc",
@ -5246,8 +5164,7 @@ v8_source_set("v8_base_without_compiler") {
# Platforms that don't have CAS support need to link atomic library
# to implement atomic memory access
if (v8_current_cpu == "mips" || v8_current_cpu == "mipsel" ||
v8_current_cpu == "mips64" || v8_current_cpu == "mips64el" ||
if (v8_current_cpu == "mips64" || v8_current_cpu == "mips64el" ||
v8_current_cpu == "ppc" || v8_current_cpu == "ppc64" ||
v8_current_cpu == "s390" || v8_current_cpu == "s390x" ||
v8_current_cpu == "riscv64" || v8_current_cpu == "riscv32") {
@ -5637,7 +5554,7 @@ v8_component("v8_libbase") {
data_deps += [ "//build/win:runtime_libs" ]
}
if (v8_current_cpu == "mips" || v8_current_cpu == "mips64") {
if (v8_current_cpu == "mips64") {
# Add runtime libs for mips.
data += [
"tools/mips_toolchain/sysroot/usr/lib/",
@ -5645,8 +5562,7 @@ v8_component("v8_libbase") {
]
}
if (is_ubsan && (v8_current_cpu == "x86" || v8_current_cpu == "arm" ||
v8_current_cpu == "mips")) {
if (is_ubsan && (v8_current_cpu == "x86" || v8_current_cpu == "arm")) {
# Special UBSan 32-bit requirement.
sources += [ "src/base/ubsan.cc" ]
}
@ -5826,8 +5742,6 @@ v8_source_set("v8_heap_base") {
sources += [ "src/heap/base/asm/ppc/push_registers_asm.cc" ]
} else if (current_cpu == "s390x") {
sources += [ "src/heap/base/asm/s390/push_registers_asm.cc" ]
} else if (current_cpu == "mipsel") {
sources += [ "src/heap/base/asm/mips/push_registers_asm.cc" ]
} else if (current_cpu == "mips64el") {
sources += [ "src/heap/base/asm/mips64/push_registers_asm.cc" ]
} else if (current_cpu == "loong64") {

View File

@ -15,8 +15,7 @@ are:
- Strongtalk assembler, the basis of the files assembler-arm-inl.h,
assembler-arm.cc, assembler-arm.h, assembler-ia32-inl.h,
assembler-ia32.cc, assembler-ia32.h, assembler-x64-inl.h,
assembler-x64.cc, assembler-x64.h, assembler-mips-inl.h,
assembler-mips.cc, assembler-mips.h, assembler.cc and assembler.h.
assembler-x64.cc, assembler-x64.h, assembler.cc and assembler.h.
This code is copyrighted by Sun Microsystems Inc. and released
under a 3-clause BSD license.

View File

@ -64,8 +64,7 @@ if (v8_snapshot_toolchain == "") {
current_cpu == "arm") {
# Trying to compile 32-bit arm on arm64. Good luck!
v8_snapshot_toolchain = current_toolchain
} else if (host_cpu == "x64" &&
(v8_current_cpu == "mips" || v8_current_cpu == "mips64")) {
} else if (host_cpu == "x64" && v8_current_cpu == "mips64") {
# We don't support snapshot generation for big-endian targets,
# therefore snapshots will need to be built using native mksnapshot
# in combination with qemu
@ -96,8 +95,7 @@ if (v8_snapshot_toolchain == "") {
} else {
_cpus = "x64_v8_${v8_current_cpu}"
}
} else if (v8_current_cpu == "arm" || v8_current_cpu == "mipsel" ||
v8_current_cpu == "riscv32") {
} else if (v8_current_cpu == "arm" || v8_current_cpu == "riscv32") {
_cpus = "x86_v8_${v8_current_cpu}"
} else {
# This branch should not be reached; leave _cpus blank so the assert
@ -122,7 +120,6 @@ assert(v8_snapshot_toolchain != "",
# avoid building v8_libbase on the host more than once. On mips with big endian,
# the snapshot toolchain is the target toolchain and, hence, can't be used.
v8_generator_toolchain = v8_snapshot_toolchain
if (host_cpu == "x64" &&
(v8_current_cpu == "mips" || v8_current_cpu == "mips64")) {
if (host_cpu == "x64" && v8_current_cpu == "mips64") {
v8_generator_toolchain = "//build/toolchain/linux:clang_x64"
}

View File

@ -199,8 +199,7 @@ if ((is_posix || is_fuchsia) &&
}
# On MIPS gcc_target_rpath and ldso_path might be needed for all builds.
if (target_cpu == "mipsel" || target_cpu == "mips64el" ||
target_cpu == "mips" || target_cpu == "mips64") {
if (target_cpu == "mips64el" || target_cpu == "mips64") {
v8_add_configs += [ "//build/config/gcc:rpath_for_built_shared_libraries" ]
}

View File

@ -18,9 +18,9 @@ struct CalleeSavedRegisters {
void* arm_r10;
};
#elif V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM64 || \
V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_PPC || \
V8_TARGET_ARCH_PPC64 || V8_TARGET_ARCH_RISCV64 || V8_TARGET_ARCH_S390 || \
V8_TARGET_ARCH_LOONG64 || V8_TARGET_ARCH_RISCV32
V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_PPC64 || \
V8_TARGET_ARCH_RISCV64 || V8_TARGET_ARCH_S390 || V8_TARGET_ARCH_LOONG64 || \
V8_TARGET_ARCH_RISCV32
struct CalleeSavedRegisters {};
#else
#error Target architecture was not detected as supported by v8

View File

@ -653,9 +653,6 @@ V8 shared library set USING_V8_SHARED.
#elif defined(__mips64)
#define V8_HOST_ARCH_MIPS64 1
#define V8_HOST_ARCH_64_BIT 1
#elif defined(__MIPSEB__) || defined(__MIPSEL__)
#define V8_HOST_ARCH_MIPS 1
#define V8_HOST_ARCH_32_BIT 1
#elif defined(__loongarch64)
#define V8_HOST_ARCH_LOONG64 1
#define V8_HOST_ARCH_64_BIT 1
@ -692,8 +689,8 @@ V8 shared library set USING_V8_SHARED.
// architecture, that is, target the native environment as presented by the
// compiler.
#if !V8_TARGET_ARCH_X64 && !V8_TARGET_ARCH_IA32 && !V8_TARGET_ARCH_ARM && \
!V8_TARGET_ARCH_ARM64 && !V8_TARGET_ARCH_MIPS && !V8_TARGET_ARCH_MIPS64 && \
!V8_TARGET_ARCH_PPC && !V8_TARGET_ARCH_PPC64 && !V8_TARGET_ARCH_S390 && \
!V8_TARGET_ARCH_ARM64 && !V8_TARGET_ARCH_MIPS64 && !V8_TARGET_ARCH_PPC && \
!V8_TARGET_ARCH_PPC64 && !V8_TARGET_ARCH_S390 && \
!V8_TARGET_ARCH_RISCV64 && !V8_TARGET_ARCH_LOONG64 && \
!V8_TARGET_ARCH_RISCV32
#if defined(_M_X64) || defined(__x86_64__)
@ -706,8 +703,6 @@ V8 shared library set USING_V8_SHARED.
#define V8_TARGET_ARCH_ARM 1
#elif defined(__mips64)
#define V8_TARGET_ARCH_MIPS64 1
#elif defined(__MIPSEB__) || defined(__MIPSEL__)
#define V8_TARGET_ARCH_MIPS 1
#elif defined(_ARCH_PPC64)
#define V8_TARGET_ARCH_PPC64 1
#elif defined(_ARCH_PPC)
@ -785,9 +780,6 @@ V8 shared library set USING_V8_SHARED.
#if (V8_TARGET_ARCH_ARM64 && !(V8_HOST_ARCH_X64 || V8_HOST_ARCH_ARM64))
#error Target architecture arm64 is only supported on arm64 and x64 host
#endif
#if (V8_TARGET_ARCH_MIPS && !(V8_HOST_ARCH_IA32 || V8_HOST_ARCH_MIPS))
#error Target architecture mips is only supported on mips and ia32 host
#endif
#if (V8_TARGET_ARCH_MIPS64 && !(V8_HOST_ARCH_X64 || V8_HOST_ARCH_MIPS64))
#error Target architecture mips64 is only supported on mips64 and x64 host
#endif
@ -812,12 +804,6 @@ V8 shared library set USING_V8_SHARED.
#define V8_TARGET_LITTLE_ENDIAN 1
#elif V8_TARGET_ARCH_LOONG64
#define V8_TARGET_LITTLE_ENDIAN 1
#elif V8_TARGET_ARCH_MIPS
#if defined(__MIPSEB__)
#define V8_TARGET_BIG_ENDIAN 1
#else
#define V8_TARGET_LITTLE_ENDIAN 1
#endif
#elif V8_TARGET_ARCH_MIPS64
#if defined(__MIPSEB__) || defined(V8_TARGET_ARCH_MIPS64_BE)
#define V8_TARGET_BIG_ENDIAN 1

View File

@ -99,9 +99,9 @@
// Disabled on MSVC because constructors of standard containers are not noexcept
// there.
#if ((!defined(V8_CC_GNU) && !defined(V8_CC_MSVC) && \
!defined(V8_TARGET_ARCH_MIPS) && !defined(V8_TARGET_ARCH_MIPS64) && \
!defined(V8_TARGET_ARCH_PPC) && !defined(V8_TARGET_ARCH_PPC64) && \
!defined(V8_TARGET_ARCH_RISCV64) && !defined(V8_TARGET_ARCH_RISCV32)) || \
!defined(V8_TARGET_ARCH_MIPS64) && !defined(V8_TARGET_ARCH_PPC) && \
!defined(V8_TARGET_ARCH_PPC64) && !defined(V8_TARGET_ARCH_RISCV64) && \
!defined(V8_TARGET_ARCH_RISCV32)) || \
(defined(__clang__) && __cplusplus > 201300L))
#define V8_NOEXCEPT noexcept
#else

View File

@ -89,8 +89,8 @@ static V8_INLINE void __cpuid(int cpu_info[4], int info_type) {
#endif // !V8_LIBC_MSVCRT
#elif V8_HOST_ARCH_ARM || V8_HOST_ARCH_ARM64 || V8_HOST_ARCH_MIPS || \
V8_HOST_ARCH_MIPS64 || V8_HOST_ARCH_RISCV64
#elif V8_HOST_ARCH_ARM || V8_HOST_ARCH_ARM64 || V8_HOST_ARCH_MIPS64 || \
V8_HOST_ARCH_RISCV64
#if V8_OS_LINUX
@ -198,48 +198,6 @@ static uint32_t ReadELFHWCaps() {
#endif // V8_HOST_ARCH_ARM || V8_HOST_ARCH_ARM64
#if V8_HOST_ARCH_MIPS
int __detect_fp64_mode(void) {
double result = 0;
// Bit representation of (double)1 is 0x3FF0000000000000.
__asm__ volatile(
".set push\n\t"
".set noreorder\n\t"
".set oddspreg\n\t"
"lui $t0, 0x3FF0\n\t"
"ldc1 $f0, %0\n\t"
"mtc1 $t0, $f1\n\t"
"sdc1 $f0, %0\n\t"
".set pop\n\t"
: "+m"(result)
:
: "t0", "$f0", "$f1", "memory");
return !(result == 1);
}
int __detect_mips_arch_revision(void) {
// TODO(dusmil): Do the specific syscall as soon as it is implemented in mips
// kernel.
uint32_t result = 0;
__asm__ volatile(
"move $v0, $zero\n\t"
// Encoding for "addi $v0, $v0, 1" on non-r6,
// which is encoding for "bovc $v0, %v0, 1" on r6.
// Use machine code directly to avoid compilation errors with different
// toolchains and maintain compatibility.
".word 0x20420001\n\t"
"sw $v0, %0\n\t"
: "=m"(result)
:
: "v0", "memory");
// Result is 0 on r6 architectures, 1 on other architecture revisions.
// Fall-back to the least common denominator which is mips32 revision 1.
return result ? 1 : 6;
}
#endif // V8_HOST_ARCH_MIPS
// Extract the information exposed by the kernel via /proc/cpuinfo.
class CPUInfo final {
public:
@ -359,7 +317,7 @@ static bool HasListItem(const char* list, const char* item) {
#endif // V8_OS_LINUX
#endif // V8_HOST_ARCH_ARM || V8_HOST_ARCH_ARM64 ||
// V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64 || V8_HOST_ARCH_RISCV64
// V8_HOST_ARCH_MIPS64 || V8_HOST_ARCH_RISCV64
#if defined(V8_OS_STARBOARD)
@ -742,7 +700,7 @@ CPU::CPU()
#endif // V8_OS_LINUX
#elif V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
#elif V8_HOST_ARCH_MIPS64
// Simple detection of FPU at runtime for Linux.
// It is based on /proc/cpuinfo, which reveals hardware configuration
@ -756,10 +714,6 @@ CPU::CPU()
has_msa_ = HasListItem(ASEs, "msa");
delete[] cpu_model;
delete[] ASEs;
#ifdef V8_HOST_ARCH_MIPS
is_fp64_mode_ = __detect_fp64_mode();
architecture_ = __detect_mips_arch_revision();
#endif
#elif V8_HOST_ARCH_ARM64
#ifdef V8_OS_WIN

View File

@ -153,7 +153,7 @@ static bool DoubleStrtod(Vector<const char> trimmed, int exponent,
// result is not accurate.
// We know that Windows32 with MSVC, unlike with MinGW32, uses 64 bits and is
// therefore accurate.
// Note that the ARM and MIPS simulators are compiled for 32bits. They
// Note that the ARM simulators are compiled for 32bits. They
// therefore exhibit the same problem.
USE(exact_powers_of_ten);
USE(kMaxExactDoubleIntegerDecimalDigits);

View File

@ -43,11 +43,6 @@
#elif defined(V8_HOST_ARCH_ARM64) || \
(defined(V8_HOST_ARCH_ARM) && __ARM_ARCH >= 6)
#define YIELD_PROCESSOR __asm__ __volatile__("yield")
#elif defined(V8_HOST_ARCH_MIPS)
// The MIPS32 docs state that the PAUSE instruction is a no-op on older
// architectures (first added in MIPS32r2). To avoid assembler errors when
// targeting pre-r2, we must encode the instruction manually.
#define YIELD_PROCESSOR __asm__ __volatile__(".word 0x00000140")
#elif defined(V8_HOST_ARCH_MIPS64EL) && __mips_isa_rev >= 2
// Don't bother doing using .word here since r2 is the lowest supported mips64
// that Chromium supports.

View File

@ -36,8 +36,6 @@
#include "src/baseline/riscv/baseline-assembler-riscv-inl.h"
#elif V8_TARGET_ARCH_MIPS64
#include "src/baseline/mips64/baseline-assembler-mips64-inl.h"
#elif V8_TARGET_ARCH_MIPS
#include "src/baseline/mips/baseline-assembler-mips-inl.h"
#elif V8_TARGET_ARCH_LOONG64
#include "src/baseline/loong64/baseline-assembler-loong64-inl.h"
#else

View File

@ -53,8 +53,6 @@
#include "src/baseline/riscv/baseline-compiler-riscv-inl.h"
#elif V8_TARGET_ARCH_MIPS64
#include "src/baseline/mips64/baseline-compiler-mips64-inl.h"
#elif V8_TARGET_ARCH_MIPS
#include "src/baseline/mips/baseline-compiler-mips-inl.h"
#elif V8_TARGET_ARCH_LOONG64
#include "src/baseline/loong64/baseline-compiler-loong64-inl.h"
#else

View File

@ -1,573 +0,0 @@
// Copyright 2021 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_BASELINE_MIPS_BASELINE_ASSEMBLER_MIPS_INL_H_
#define V8_BASELINE_MIPS_BASELINE_ASSEMBLER_MIPS_INL_H_
#include "src/baseline/baseline-assembler.h"
#include "src/codegen/interface-descriptors.h"
#include "src/codegen/mips/assembler-mips-inl.h"
#include "src/objects/literal-objects-inl.h"
namespace v8 {
namespace internal {
namespace baseline {
class BaselineAssembler::ScratchRegisterScope {
public:
explicit ScratchRegisterScope(BaselineAssembler* assembler)
: assembler_(assembler),
prev_scope_(assembler->scratch_register_scope_),
wrapped_scope_(assembler->masm()) {
if (!assembler_->scratch_register_scope_) {
// If we haven't opened a scratch scope yet, for the first one add a
// couple of extra registers.
wrapped_scope_.Include({t4, t5, t6, t7});
}
assembler_->scratch_register_scope_ = this;
}
~ScratchRegisterScope() { assembler_->scratch_register_scope_ = prev_scope_; }
Register AcquireScratch() { return wrapped_scope_.Acquire(); }
private:
BaselineAssembler* assembler_;
ScratchRegisterScope* prev_scope_;
UseScratchRegisterScope wrapped_scope_;
};
enum class Condition : uint32_t {
kEqual = eq,
kNotEqual = ne,
kLessThan = lt,
kGreaterThan = gt,
kLessThanEqual = le,
kGreaterThanEqual = ge,
kUnsignedLessThan = Uless,
kUnsignedGreaterThan = Ugreater,
kUnsignedLessThanEqual = Uless_equal,
kUnsignedGreaterThanEqual = Ugreater_equal,
kOverflow = overflow,
kNoOverflow = no_overflow,
kZero = eq,
kNotZero = ne,
};
inline internal::Condition AsMasmCondition(Condition cond) {
// This is important for arm, where the internal::Condition where each value
// represents an encoded bit field value.
static_assert(sizeof(internal::Condition) == sizeof(Condition));
return static_cast<internal::Condition>(cond);
}
namespace detail {
#ifdef DEBUG
inline bool Clobbers(Register target, MemOperand op) {
return op.is_reg() && op.rm() == target;
}
#endif
} // namespace detail
#define __ masm_->
MemOperand BaselineAssembler::RegisterFrameOperand(
interpreter::Register interpreter_register) {
return MemOperand(fp, interpreter_register.ToOperand() * kSystemPointerSize);
}
void BaselineAssembler::RegisterFrameAddress(
interpreter::Register interpreter_register, Register rscratch) {
return __ Addu(rscratch, fp,
interpreter_register.ToOperand() * kSystemPointerSize);
}
MemOperand BaselineAssembler::FeedbackVectorOperand() {
return MemOperand(fp, BaselineFrameConstants::kFeedbackVectorFromFp);
}
void BaselineAssembler::Bind(Label* label) { __ bind(label); }
void BaselineAssembler::JumpTarget() {
// NOP.
}
void BaselineAssembler::Jump(Label* target, Label::Distance distance) {
__ Branch(target);
}
void BaselineAssembler::JumpIfRoot(Register value, RootIndex index,
Label* target, Label::Distance) {
__ JumpIfRoot(value, index, target);
}
void BaselineAssembler::JumpIfNotRoot(Register value, RootIndex index,
Label* target, Label::Distance) {
__ JumpIfNotRoot(value, index, target);
}
void BaselineAssembler::JumpIfSmi(Register value, Label* target,
Label::Distance) {
__ JumpIfSmi(value, target);
}
void BaselineAssembler::JumpIfNotSmi(Register value, Label* target,
Label::Distance) {
__ JumpIfNotSmi(value, target);
}
void BaselineAssembler::JumpIfImmediate(Condition cc, Register left, int right,
Label* target,
Label::Distance distance) {
JumpIf(cc, left, Operand(right), target, distance);
}
void BaselineAssembler::CallBuiltin(Builtin builtin) {
ASM_CODE_COMMENT_STRING(masm_,
__ CommentForOffHeapTrampoline("call", builtin));
Register temp = t9;
__ LoadEntryFromBuiltin(builtin, temp);
__ Call(temp);
}
void BaselineAssembler::TailCallBuiltin(Builtin builtin) {
ASM_CODE_COMMENT_STRING(masm_,
__ CommentForOffHeapTrampoline("tail call", builtin));
Register temp = t9;
__ LoadEntryFromBuiltin(builtin, temp);
__ Jump(temp);
}
void BaselineAssembler::TestAndBranch(Register value, int mask, Condition cc,
Label* target, Label::Distance) {
ScratchRegisterScope temps(this);
Register scratch = temps.AcquireScratch();
__ And(scratch, value, Operand(mask));
__ Branch(target, AsMasmCondition(cc), scratch, Operand(zero_reg));
}
void BaselineAssembler::JumpIf(Condition cc, Register lhs, const Operand& rhs,
Label* target, Label::Distance) {
__ Branch(target, AsMasmCondition(cc), lhs, Operand(rhs));
}
void BaselineAssembler::JumpIfObjectType(Condition cc, Register object,
InstanceType instance_type,
Register map, Label* target,
Label::Distance) {
ScratchRegisterScope temps(this);
Register type = temps.AcquireScratch();
__ GetObjectType(object, map, type);
__ Branch(target, AsMasmCondition(cc), type, Operand(instance_type));
}
void BaselineAssembler::JumpIfInstanceType(Condition cc, Register map,
InstanceType instance_type,
Label* target, Label::Distance) {
ScratchRegisterScope temps(this);
Register type = temps.AcquireScratch();
if (v8_flags.debug_code) {
__ AssertNotSmi(map);
__ GetObjectType(map, type, type);
__ Assert(eq, AbortReason::kUnexpectedValue, type, Operand(MAP_TYPE));
}
__ Lw(type, FieldMemOperand(map, Map::kInstanceTypeOffset));
__ Branch(target, AsMasmCondition(cc), type, Operand(instance_type));
}
void BaselineAssembler::JumpIfPointer(Condition cc, Register value,
MemOperand operand, Label* target,
Label::Distance) {
ScratchRegisterScope temps(this);
Register scratch = temps.AcquireScratch();
__ Lw(scratch, operand);
__ Branch(target, AsMasmCondition(cc), value, Operand(scratch));
}
void BaselineAssembler::JumpIfSmi(Condition cc, Register value, Smi smi,
Label* target, Label::Distance) {
ScratchRegisterScope temps(this);
Register scratch = temps.AcquireScratch();
__ li(scratch, Operand(smi));
__ SmiUntag(scratch);
__ Branch(target, AsMasmCondition(cc), value, Operand(scratch));
}
void BaselineAssembler::JumpIfSmi(Condition cc, Register lhs, Register rhs,
Label* target, Label::Distance) {
__ AssertSmi(lhs);
__ AssertSmi(rhs);
__ Branch(target, AsMasmCondition(cc), lhs, Operand(rhs));
}
void BaselineAssembler::JumpIfTagged(Condition cc, Register value,
MemOperand operand, Label* target,
Label::Distance) {
ScratchRegisterScope temps(this);
Register scratch = temps.AcquireScratch();
__ Lw(scratch, operand);
__ Branch(target, AsMasmCondition(cc), value, Operand(scratch));
}
void BaselineAssembler::JumpIfTagged(Condition cc, MemOperand operand,
Register value, Label* target,
Label::Distance) {
ScratchRegisterScope temps(this);
Register scratch = temps.AcquireScratch();
__ Lw(scratch, operand);
__ Branch(target, AsMasmCondition(cc), scratch, Operand(value));
}
void BaselineAssembler::JumpIfByte(Condition cc, Register value, int32_t byte,
Label* target, Label::Distance) {
__ Branch(target, AsMasmCondition(cc), value, Operand(byte));
}
void BaselineAssembler::Move(interpreter::Register output, Register source) {
Move(RegisterFrameOperand(output), source);
}
void BaselineAssembler::Move(Register output, TaggedIndex value) {
__ li(output, Operand(value.ptr()));
}
void BaselineAssembler::Move(MemOperand output, Register source) {
__ Sw(source, output);
}
void BaselineAssembler::Move(Register output, ExternalReference reference) {
__ li(output, Operand(reference));
}
void BaselineAssembler::Move(Register output, Handle<HeapObject> value) {
__ li(output, Operand(value));
}
void BaselineAssembler::Move(Register output, int32_t value) {
__ li(output, Operand(value));
}
void BaselineAssembler::MoveMaybeSmi(Register output, Register source) {
__ Move(output, source);
}
void BaselineAssembler::MoveSmi(Register output, Register source) {
__ Move(output, source);
}
namespace detail {
template <typename Arg>
inline Register ToRegister(BaselineAssembler* basm,
BaselineAssembler::ScratchRegisterScope* scope,
Arg arg) {
Register reg = scope->AcquireScratch();
basm->Move(reg, arg);
return reg;
}
inline Register ToRegister(BaselineAssembler* basm,
BaselineAssembler::ScratchRegisterScope* scope,
Register reg) {
return reg;
}
template <typename... Args>
struct PushAllHelper;
template <>
struct PushAllHelper<> {
static int Push(BaselineAssembler* basm) { return 0; }
static int PushReverse(BaselineAssembler* basm) { return 0; }
};
// TODO(ishell): try to pack sequence of pushes into one instruction by
// looking at regiser codes. For example, Push(r1, r2, r5, r0, r3, r4)
// could be generated as two pushes: Push(r1, r2, r5) and Push(r0, r3, r4).
template <typename Arg>
struct PushAllHelper<Arg> {
static int Push(BaselineAssembler* basm, Arg arg) {
BaselineAssembler::ScratchRegisterScope scope(basm);
basm->masm()->Push(ToRegister(basm, &scope, arg));
return 1;
}
static int PushReverse(BaselineAssembler* basm, Arg arg) {
return Push(basm, arg);
}
};
// TODO(ishell): try to pack sequence of pushes into one instruction by
// looking at regiser codes. For example, Push(r1, r2, r5, r0, r3, r4)
// could be generated as two pushes: Push(r1, r2, r5) and Push(r0, r3, r4).
template <typename Arg, typename... Args>
struct PushAllHelper<Arg, Args...> {
static int Push(BaselineAssembler* basm, Arg arg, Args... args) {
PushAllHelper<Arg>::Push(basm, arg);
return 1 + PushAllHelper<Args...>::Push(basm, args...);
}
static int PushReverse(BaselineAssembler* basm, Arg arg, Args... args) {
int nargs = PushAllHelper<Args...>::PushReverse(basm, args...);
PushAllHelper<Arg>::Push(basm, arg);
return nargs + 1;
}
};
template <>
struct PushAllHelper<interpreter::RegisterList> {
static int Push(BaselineAssembler* basm, interpreter::RegisterList list) {
for (int reg_index = 0; reg_index < list.register_count(); ++reg_index) {
PushAllHelper<interpreter::Register>::Push(basm, list[reg_index]);
}
return list.register_count();
}
static int PushReverse(BaselineAssembler* basm,
interpreter::RegisterList list) {
for (int reg_index = list.register_count() - 1; reg_index >= 0;
--reg_index) {
PushAllHelper<interpreter::Register>::Push(basm, list[reg_index]);
}
return list.register_count();
}
};
template <typename... T>
struct PopAllHelper;
template <>
struct PopAllHelper<> {
static void Pop(BaselineAssembler* basm) {}
};
// TODO(ishell): try to pack sequence of pops into one instruction by
// looking at regiser codes. For example, Pop(r1, r2, r5, r0, r3, r4)
// could be generated as two pops: Pop(r1, r2, r5) and Pop(r0, r3, r4).
template <>
struct PopAllHelper<Register> {
static void Pop(BaselineAssembler* basm, Register reg) {
basm->masm()->Pop(reg);
}
};
template <typename... T>
struct PopAllHelper<Register, T...> {
static void Pop(BaselineAssembler* basm, Register reg, T... tail) {
PopAllHelper<Register>::Pop(basm, reg);
PopAllHelper<T...>::Pop(basm, tail...);
}
};
} // namespace detail
template <typename... T>
int BaselineAssembler::Push(T... vals) {
return detail::PushAllHelper<T...>::Push(this, vals...);
}
template <typename... T>
void BaselineAssembler::PushReverse(T... vals) {
detail::PushAllHelper<T...>::PushReverse(this, vals...);
}
template <typename... T>
void BaselineAssembler::Pop(T... registers) {
detail::PopAllHelper<T...>::Pop(this, registers...);
}
void BaselineAssembler::LoadTaggedPointerField(Register output, Register source,
int offset) {
__ Lw(output, FieldMemOperand(source, offset));
}
void BaselineAssembler::LoadTaggedSignedField(Register output, Register source,
int offset) {
__ Lw(output, FieldMemOperand(source, offset));
}
void BaselineAssembler::LoadTaggedSignedFieldAndUntag(Register output,
Register source,
int offset) {
LoadTaggedSignedField(output, source, offset);
SmiUntag(output);
}
void BaselineAssembler::LoadTaggedAnyField(Register output, Register source,
int offset) {
__ Lw(output, FieldMemOperand(source, offset));
}
void BaselineAssembler::LoadWord16FieldZeroExtend(Register output,
Register source, int offset) {
__ lhu(output, FieldMemOperand(source, offset));
}
void BaselineAssembler::LoadWord8Field(Register output, Register source,
int offset) {
__ lb(output, FieldMemOperand(source, offset));
}
void BaselineAssembler::StoreTaggedSignedField(Register target, int offset,
Smi value) {
ASM_CODE_COMMENT(masm_);
ScratchRegisterScope temps(this);
Register scratch = temps.AcquireScratch();
__ li(scratch, Operand(value));
__ Sw(scratch, FieldMemOperand(target, offset));
}
void BaselineAssembler::StoreTaggedFieldWithWriteBarrier(Register target,
int offset,
Register value) {
ASM_CODE_COMMENT(masm_);
__ Sw(value, FieldMemOperand(target, offset));
ScratchRegisterScope temps(this);
Register scratch = temps.AcquireScratch();
__ RecordWriteField(target, offset, value, scratch, kRAHasNotBeenSaved,
SaveFPRegsMode::kIgnore);
}
void BaselineAssembler::StoreTaggedFieldNoWriteBarrier(Register target,
int offset,
Register value) {
__ Sw(value, FieldMemOperand(target, offset));
}
void BaselineAssembler::TryLoadOptimizedOsrCode(Register scratch_and_result,
Register feedback_vector,
FeedbackSlot slot,
Label* on_result,
Label::Distance) {
Label fallthrough;
LoadTaggedPointerField(scratch_and_result, feedback_vector,
FeedbackVector::OffsetOfElementAt(slot.ToInt()));
__ LoadWeakValue(scratch_and_result, scratch_and_result, &fallthrough);
// Is it marked_for_deoptimization? If yes, clear the slot.
{
ScratchRegisterScope temps(this);
Register scratch = temps.AcquireScratch();
__ TestCodeTIsMarkedForDeoptimizationAndJump(scratch_and_result, scratch,
eq, on_result);
__ li(scratch, __ ClearedValue());
StoreTaggedFieldNoWriteBarrier(
feedback_vector, FeedbackVector::OffsetOfElementAt(slot.ToInt()),
scratch);
}
__ bind(&fallthrough);
Move(scratch_and_result, 0);
}
void BaselineAssembler::AddToInterruptBudgetAndJumpIfNotExceeded(
int32_t weight, Label* skip_interrupt_label) {
ASM_CODE_COMMENT(masm_);
ScratchRegisterScope scratch_scope(this);
Register feedback_cell = scratch_scope.AcquireScratch();
LoadFunction(feedback_cell);
LoadTaggedPointerField(feedback_cell, feedback_cell,
JSFunction::kFeedbackCellOffset);
Register interrupt_budget = scratch_scope.AcquireScratch();
__ Lw(interrupt_budget,
FieldMemOperand(feedback_cell, FeedbackCell::kInterruptBudgetOffset));
__ Addu(interrupt_budget, interrupt_budget, weight);
__ Sw(interrupt_budget,
FieldMemOperand(feedback_cell, FeedbackCell::kInterruptBudgetOffset));
if (skip_interrupt_label) {
DCHECK_LT(weight, 0);
__ Branch(skip_interrupt_label, ge, interrupt_budget, Operand(zero_reg));
}
}
void BaselineAssembler::AddToInterruptBudgetAndJumpIfNotExceeded(
Register weight, Label* skip_interrupt_label) {
ASM_CODE_COMMENT(masm_);
ScratchRegisterScope scratch_scope(this);
Register feedback_cell = scratch_scope.AcquireScratch();
LoadFunction(feedback_cell);
LoadTaggedPointerField(feedback_cell, feedback_cell,
JSFunction::kFeedbackCellOffset);
Register interrupt_budget = scratch_scope.AcquireScratch();
__ Lw(interrupt_budget,
FieldMemOperand(feedback_cell, FeedbackCell::kInterruptBudgetOffset));
__ Addu(interrupt_budget, interrupt_budget, weight);
__ Sw(interrupt_budget,
FieldMemOperand(feedback_cell, FeedbackCell::kInterruptBudgetOffset));
if (skip_interrupt_label)
__ Branch(skip_interrupt_label, ge, interrupt_budget, Operand(zero_reg));
}
void BaselineAssembler::LdaContextSlot(Register context, uint32_t index,
uint32_t depth) {
for (; depth > 0; --depth) {
LoadTaggedPointerField(context, context, Context::kPreviousOffset);
}
LoadTaggedAnyField(kInterpreterAccumulatorRegister, context,
Context::OffsetOfElementAt(index));
}
void BaselineAssembler::StaContextSlot(Register context, Register value,
uint32_t index, uint32_t depth) {
for (; depth > 0; --depth) {
LoadTaggedPointerField(context, context, Context::kPreviousOffset);
}
StoreTaggedFieldWithWriteBarrier(context, Context::OffsetOfElementAt(index),
value);
}
void BaselineAssembler::AddSmi(Register lhs, Smi rhs) {
__ Addu(lhs, lhs, Operand(rhs));
}
void BaselineAssembler::Word32And(Register output, Register lhs, int rhs) {
__ And(output, lhs, Operand(rhs));
}
void BaselineAssembler::Switch(Register reg, int case_value_base,
Label** labels, int num_labels) {
ASM_CODE_COMMENT(masm_);
Label fallthrough;
if (case_value_base != 0) {
__ Subu(reg, reg, Operand(case_value_base));
}
__ Branch(&fallthrough, AsMasmCondition(Condition::kUnsignedGreaterThanEqual),
reg, Operand(num_labels));
__ GenerateSwitchTable(reg, num_labels,
[labels](size_t i) { return labels[i]; });
__ bind(&fallthrough);
}
#undef __
#define __ basm.
void BaselineAssembler::EmitReturn(MacroAssembler* masm) {
ASM_CODE_COMMENT(masm);
BaselineAssembler basm(masm);
Register weight = BaselineLeaveFrameDescriptor::WeightRegister();
Register params_size = BaselineLeaveFrameDescriptor::ParamsSizeRegister();
{
ASM_CODE_COMMENT_STRING(masm, "Update Interrupt Budget");
Label skip_interrupt_label;
__ AddToInterruptBudgetAndJumpIfNotExceeded(weight, &skip_interrupt_label);
__ masm()->SmiTag(params_size);
__ masm()->Push(params_size, kInterpreterAccumulatorRegister);
__ LoadContext(kContextRegister);
__ LoadFunction(kJSFunctionRegister);
__ masm()->Push(kJSFunctionRegister);
__ CallRuntime(Runtime::kBytecodeBudgetInterrupt_Sparkplug, 1);
__ masm()->Pop(params_size, kInterpreterAccumulatorRegister);
__ masm()->SmiUntag(params_size);
__ Bind(&skip_interrupt_label);
}
BaselineAssembler::ScratchRegisterScope temps(&basm);
Register actual_params_size = temps.AcquireScratch();
// Compute the size of the actual parameters + receiver (in bytes).
__ Move(actual_params_size,
MemOperand(fp, StandardFrameConstants::kArgCOffset));
// If actual is bigger than formal, then we should use it to free up the stack
// arguments.
Label corrected_args_count;
__ masm()->Branch(&corrected_args_count, ge, params_size,
Operand(actual_params_size));
__ masm()->Move(params_size, actual_params_size);
__ Bind(&corrected_args_count);
// Leave the frame (also dropping the register file).
__ masm()->LeaveFrame(StackFrame::BASELINE);
// Drop receiver + arguments.
__ masm()->DropArguments(params_size, TurboAssembler::kCountIsInteger,
TurboAssembler::kCountIncludesReceiver);
__ masm()->Ret();
}
#undef __
inline void EnsureAccumulatorPreservedScope::AssertEqualToAccumulator(
Register reg) {
assembler_->masm()->Assert(eq, AbortReason::kUnexpectedValue, reg,
Operand(kInterpreterAccumulatorRegister));
}
} // namespace baseline
} // namespace internal
} // namespace v8
#endif // V8_BASELINE_MIPS_BASELINE_ASSEMBLER_MIPS_INL_H_

View File

@ -1,78 +0,0 @@
// Copyright 2021 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_BASELINE_MIPS_BASELINE_COMPILER_MIPS_INL_H_
#define V8_BASELINE_MIPS_BASELINE_COMPILER_MIPS_INL_H_
#include "src/base/logging.h"
#include "src/baseline/baseline-compiler.h"
namespace v8 {
namespace internal {
namespace baseline {
#define __ basm_.
void BaselineCompiler::Prologue() {
ASM_CODE_COMMENT(&masm_);
__ masm()->EnterFrame(StackFrame::BASELINE);
DCHECK_EQ(kJSFunctionRegister, kJavaScriptCallTargetRegister);
int max_frame_size =
bytecode_->frame_size() + max_call_args_ * kSystemPointerSize;
CallBuiltin<Builtin::kBaselineOutOfLinePrologue>(
kContextRegister, kJSFunctionRegister, kJavaScriptCallArgCountRegister,
max_frame_size, kJavaScriptCallNewTargetRegister, bytecode_);
PrologueFillFrame();
}
void BaselineCompiler::PrologueFillFrame() {
ASM_CODE_COMMENT(&masm_);
// Inlined register frame fill
interpreter::Register new_target_or_generator_register =
bytecode_->incoming_new_target_or_generator_register();
__ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue);
int register_count = bytecode_->register_count();
// Magic value
const int kLoopUnrollSize = 8;
const int new_target_index = new_target_or_generator_register.index();
const bool has_new_target = new_target_index != kMaxInt;
if (has_new_target) {
DCHECK_LE(new_target_index, register_count);
__ masm()->Addu(sp, sp, Operand(-(kPointerSize * new_target_index)));
for (int i = 0; i < new_target_index; i++) {
__ masm()->Sw(kInterpreterAccumulatorRegister, MemOperand(sp, i * 4));
}
// Push new_target_or_generator.
__ Push(kJavaScriptCallNewTargetRegister);
register_count -= new_target_index + 1;
}
if (register_count < 2 * kLoopUnrollSize) {
// If the frame is small enough, just unroll the frame fill completely.
__ masm()->Addu(sp, sp, Operand(-(kPointerSize * register_count)));
for (int i = 0; i < register_count; ++i) {
__ masm()->Sw(kInterpreterAccumulatorRegister, MemOperand(sp, i * 4));
}
} else {
__ masm()->Addu(sp, sp, Operand(-(kPointerSize * register_count)));
for (int i = 0; i < register_count; ++i) {
__ masm()->Sw(kInterpreterAccumulatorRegister, MemOperand(sp, i * 4));
}
}
}
void BaselineCompiler::VerifyFrameSize() {
ASM_CODE_COMMENT(&masm_);
__ masm()->Addu(kScratchReg, sp,
Operand(InterpreterFrameConstants::kFixedFrameSizeFromFp +
bytecode_->frame_size()));
__ masm()->Assert(eq, AbortReason::kUnexpectedStackPointer, kScratchReg,
Operand(fp));
}
} // namespace baseline
} // namespace internal
} // namespace v8
#endif // V8_BASELINE_MIPS_BASELINE_COMPILER_MIPS_INL_H_

View File

@ -1270,11 +1270,11 @@ void Builtins::Generate_CEntry_Return2_SaveFPRegs_ArgvOnStack_BuiltinExit(
Generate_CEntry(masm, 2, SaveFPRegsMode::kSave, ArgvMode::kStack, true);
}
#if !defined(V8_TARGET_ARCH_ARM) && !defined(V8_TARGET_ARCH_MIPS)
#if !defined(V8_TARGET_ARCH_ARM)
void Builtins::Generate_MemCopyUint8Uint8(MacroAssembler* masm) {
masm->Call(BUILTIN_CODE(masm->isolate(), Illegal), RelocInfo::CODE_TARGET);
}
#endif // !defined(V8_TARGET_ARCH_ARM) && !defined(V8_TARGET_ARCH_MIPS)
#endif // !defined(V8_TARGET_ARCH_ARM)
#ifndef V8_TARGET_ARCH_IA32
void Builtins::Generate_MemMove(MacroAssembler* masm) {

View File

@ -251,16 +251,6 @@ TF_BUILTIN(AtomicsLoad, SharedArrayBufferBuiltinsAssembler) {
BIND(&u32);
Return(ChangeUint32ToTagged(AtomicLoad<Uint32T>(
AtomicMemoryOrder::kSeqCst, backing_store, WordShl(index_word, 2))));
#if (V8_TARGET_ARCH_MIPS && !_MIPS_ARCH_MIPS32R6)
BIND(&i64);
Goto(&u64);
BIND(&u64);
{
TNode<Number> index_number = ChangeUintPtrToTagged(index_word);
Return(CallRuntime(Runtime::kAtomicsLoad64, context, array, index_number));
}
#else
BIND(&i64);
Return(BigIntFromSigned64(AtomicLoad64<AtomicInt64>(
AtomicMemoryOrder::kSeqCst, backing_store, WordShl(index_word, 3))));
@ -268,7 +258,6 @@ TF_BUILTIN(AtomicsLoad, SharedArrayBufferBuiltinsAssembler) {
BIND(&u64);
Return(BigIntFromUnsigned64(AtomicLoad64<AtomicUint64>(
AtomicMemoryOrder::kSeqCst, backing_store, WordShl(index_word, 3))));
#endif //(V8_TARGET_ARCH_MIPS && !_MIPS_ARCH_MIPS32R6)
// This shouldn't happen, we've already validated the type.
BIND(&other);
@ -358,11 +347,6 @@ TF_BUILTIN(AtomicsStore, SharedArrayBufferBuiltinsAssembler) {
Return(value_integer);
BIND(&u64);
#if V8_TARGET_ARCH_MIPS && !_MIPS_ARCH_MIPS32R6
TNode<Number> index_number = ChangeUintPtrToTagged(index_word);
Return(CallRuntime(Runtime::kAtomicsStore64, context, array, index_number,
value));
#else
// 4. If arrayTypeName is "BigUint64Array" or "BigInt64Array",
// let v be ? ToBigInt(value).
TNode<BigInt> value_bigint = ToBigInt(context, value);
@ -379,7 +363,6 @@ TF_BUILTIN(AtomicsStore, SharedArrayBufferBuiltinsAssembler) {
AtomicStore64(AtomicMemoryOrder::kSeqCst, backing_store,
WordShl(index_word, 3), var_low.value(), high);
Return(value_bigint);
#endif
// This shouldn't happen, we've already validated the type.
BIND(&other);
@ -423,7 +406,7 @@ TF_BUILTIN(AtomicsExchange, SharedArrayBufferBuiltinsAssembler) {
TNode<UintPtrT> index_word =
ValidateAtomicAccess(array, index_or_field_name, context);
#if V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64
#if V8_TARGET_ARCH_MIPS64
TNode<Number> index_number = ChangeUintPtrToTagged(index_word);
Return(CallRuntime(Runtime::kAtomicsExchange, context, array, index_number,
value));
@ -523,7 +506,7 @@ TF_BUILTIN(AtomicsExchange, SharedArrayBufferBuiltinsAssembler) {
// This shouldn't happen, we've already validated the type.
BIND(&other);
Unreachable();
#endif // V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64
#endif // V8_TARGET_ARCH_MIPS64
BIND(&detached_or_out_of_bounds);
{
@ -558,7 +541,7 @@ TF_BUILTIN(AtomicsCompareExchange, SharedArrayBufferBuiltinsAssembler) {
// 2. Let i be ? ValidateAtomicAccess(typedArray, index).
TNode<UintPtrT> index_word = ValidateAtomicAccess(array, index, context);
#if V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64
#if V8_TARGET_ARCH_MIPS64
TNode<Number> index_number = ChangeUintPtrToTagged(index_word);
Return(CallRuntime(Runtime::kAtomicsCompareExchange, context, array,
index_number, old_value, new_value));
@ -677,7 +660,7 @@ TF_BUILTIN(AtomicsCompareExchange, SharedArrayBufferBuiltinsAssembler) {
// This shouldn't happen, we've already validated the type.
BIND(&other);
Unreachable();
#endif // V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64
#endif // V8_TARGET_ARCH_MIPS64
BIND(&detached_or_out_of_bounds);
{
@ -728,7 +711,7 @@ void SharedArrayBufferBuiltinsAssembler::AtomicBinopBuiltinCommon(
// 2. Let i be ? ValidateAtomicAccess(typedArray, index).
TNode<UintPtrT> index_word = ValidateAtomicAccess(array, index, context);
#if V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64
#if V8_TARGET_ARCH_MIPS64
TNode<Number> index_number = ChangeUintPtrToTagged(index_word);
Return(CallRuntime(runtime_function, context, array, index_number, value));
#else
@ -818,7 +801,7 @@ void SharedArrayBufferBuiltinsAssembler::AtomicBinopBuiltinCommon(
// // This shouldn't happen, we've already validated the type.
BIND(&other);
Unreachable();
#endif // V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64
#endif // V8_TARGET_ARCH_MIPS64
BIND(&detached_or_out_of_bounds);
ThrowTypeError(context, MessageTemplate::kDetachedOperation, method_name);

View File

@ -576,14 +576,14 @@ bool Builtins::CodeObjectIsExecutable(Builtin builtin) {
case Builtin::kCEntry_Return1_DontSaveFPRegs_ArgvOnStack_NoBuiltinExit:
return true;
default:
#if V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64
#if V8_TARGET_ARCH_MIPS64
// TODO(Loongson): Move non-JS linkage builtins code objects into RO_SPACE
// caused MIPS platform to crash, and we need some time to handle it. Now
// disable this change temporarily on MIPS platform.
return true;
#else
return false;
#endif // V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64
#endif // V8_TARGET_ARCH_MIPS64
}
}

File diff suppressed because it is too large Load Diff

View File

@ -17,8 +17,6 @@
#include "src/codegen/arm/assembler-arm.h"
#elif V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_PPC64
#include "src/codegen/ppc/assembler-ppc.h"
#elif V8_TARGET_ARCH_MIPS
#include "src/codegen/mips/assembler-mips.h"
#elif V8_TARGET_ARCH_MIPS64
#include "src/codegen/mips64/assembler-mips64.h"
#elif V8_TARGET_ARCH_LOONG64

View File

@ -17,8 +17,6 @@
#include "src/codegen/arm/assembler-arm-inl.h"
#elif V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_PPC64
#include "src/codegen/ppc/assembler-ppc-inl.h"
#elif V8_TARGET_ARCH_MIPS
#include "src/codegen/mips/assembler-mips-inl.h"
#elif V8_TARGET_ARCH_MIPS64
#include "src/codegen/mips64/assembler-mips64-inl.h"
#elif V8_TARGET_ARCH_LOONG64

View File

@ -271,8 +271,7 @@ class V8_EXPORT_PRIVATE AssemblerBase : public Malloced {
int pc_offset() const { return static_cast<int>(pc_ - buffer_start_); }
int pc_offset_for_safepoint() {
#if defined(V8_TARGET_ARCH_MIPS) || defined(V8_TARGET_ARCH_MIPS64) || \
defined(V8_TARGET_ARCH_LOONG64)
#if defined(V8_TARGET_ARCH_MIPS64) || defined(V8_TARGET_ARCH_LOONG64)
// MIPS and LOONG need to use their own implementation to avoid trampoline's
// influence.
UNREACHABLE();

View File

@ -11,8 +11,6 @@
#include "src/codegen/arm64/constants-arm64.h"
#elif V8_TARGET_ARCH_IA32
#include "src/codegen/ia32/constants-ia32.h"
#elif V8_TARGET_ARCH_MIPS
#include "src/codegen/mips/constants-mips.h"
#elif V8_TARGET_ARCH_MIPS64
#include "src/codegen/mips64/constants-mips64.h"
#elif V8_TARGET_ARCH_LOONG64

View File

@ -44,7 +44,7 @@ enum CpuFeature {
#elif V8_TARGET_ARCH_ARM64
JSCVT,
#elif V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64
#elif V8_TARGET_ARCH_MIPS64
FPU,
FP64FPU,
MIPSr1,

View File

@ -766,8 +766,6 @@ ExternalReference ExternalReference::invoke_accessor_getter_callback() {
#define re_stack_check_func RegExpMacroAssemblerARM::CheckStackGuardState
#elif V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_PPC64
#define re_stack_check_func RegExpMacroAssemblerPPC::CheckStackGuardState
#elif V8_TARGET_ARCH_MIPS
#define re_stack_check_func RegExpMacroAssemblerMIPS::CheckStackGuardState
#elif V8_TARGET_ARCH_MIPS64
#define re_stack_check_func RegExpMacroAssemblerMIPS::CheckStackGuardState
#elif V8_TARGET_ARCH_LOONG64

View File

@ -25,8 +25,6 @@
#include "src/codegen/s390/interface-descriptors-s390-inl.h"
#elif V8_TARGET_ARCH_MIPS64
#include "src/codegen/mips64/interface-descriptors-mips64-inl.h"
#elif V8_TARGET_ARCH_MIPS
#include "src/codegen/mips/interface-descriptors-mips-inl.h"
#elif V8_TARGET_ARCH_LOONG64
#include "src/codegen/loong64/interface-descriptors-loong64-inl.h"
#elif V8_TARGET_ARCH_RISCV32 || V8_TARGET_ARCH_RISCV64
@ -233,7 +231,7 @@ constexpr RegList WriteBarrierDescriptor::ComputeSavedRegisters(
saved_registers.set(SlotAddressRegister());
}
#elif V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_LOONG64 || \
V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_MIPS
V8_TARGET_ARCH_MIPS64
if (object != ObjectRegister()) saved_registers.set(ObjectRegister());
// The slot address is always clobbered.
saved_registers.set(SlotAddressRegister());
@ -335,7 +333,7 @@ constexpr auto BaselineOutOfLinePrologueDescriptor::registers() {
// TODO(v8:11421): Implement on other platforms.
#if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_ARM || \
V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_PPC64 || V8_TARGET_ARCH_S390 || \
V8_TARGET_ARCH_RISCV64 || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_MIPS || \
V8_TARGET_ARCH_RISCV64 || V8_TARGET_ARCH_MIPS64 || \
V8_TARGET_ARCH_LOONG64 || V8_TARGET_ARCH_RISCV32
return RegisterArray(
kContextRegister, kJSFunctionRegister, kJavaScriptCallArgCountRegister,
@ -357,7 +355,7 @@ constexpr auto BaselineLeaveFrameDescriptor::registers() {
#if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_ARM64 || \
V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_PPC64 || \
V8_TARGET_ARCH_S390 || V8_TARGET_ARCH_RISCV64 || V8_TARGET_ARCH_MIPS64 || \
V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_LOONG64 || V8_TARGET_ARCH_RISCV32
V8_TARGET_ARCH_LOONG64 || V8_TARGET_ARCH_RISCV32
return RegisterArray(ParamsSizeRegister(), WeightRegister());
#else
return DefaultRegisterArray();

View File

@ -118,7 +118,7 @@ const char* CallInterfaceDescriptor::DebugName() const {
}
bool CallInterfaceDescriptor::IsValidFloatParameterRegister(Register reg) {
#if defined(V8_TARGET_ARCH_MIPS) || defined(V8_TARGET_ARCH_MIPS64)
#if defined(V8_TARGET_ARCH_MIPS64)
return reg.code() % 2 == 0;
#else
return true;

View File

@ -51,9 +51,6 @@ enum class SmiCheck { kOmit, kInline };
#elif V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_PPC64
#include "src/codegen/ppc/constants-ppc.h"
#include "src/codegen/ppc/macro-assembler-ppc.h"
#elif V8_TARGET_ARCH_MIPS
#include "src/codegen/mips/constants-mips.h"
#include "src/codegen/mips/macro-assembler-mips.h"
#elif V8_TARGET_ARCH_MIPS64
#include "src/codegen/mips64/constants-mips64.h"
#include "src/codegen/mips64/macro-assembler-mips64.h"

View File

@ -1,355 +0,0 @@
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2012 the V8 project authors. All rights reserved.
#ifndef V8_CODEGEN_MIPS_ASSEMBLER_MIPS_INL_H_
#define V8_CODEGEN_MIPS_ASSEMBLER_MIPS_INL_H_
#include "src/codegen/mips/assembler-mips.h"
#include "src/codegen/assembler.h"
#include "src/debug/debug.h"
#include "src/objects/objects-inl.h"
namespace v8 {
namespace internal {
bool CpuFeatures::SupportsOptimizer() { return IsSupported(FPU); }
// -----------------------------------------------------------------------------
// Operand and MemOperand.
bool Operand::is_reg() const { return rm_.is_valid(); }
int32_t Operand::immediate() const {
DCHECK(!is_reg());
DCHECK(!IsHeapObjectRequest());
return value_.immediate;
}
// -----------------------------------------------------------------------------
// RelocInfo.
void RelocInfo::apply(intptr_t delta) {
if (IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)) {
// Absolute code pointer inside code object moves with the code object.
Assembler::RelocateInternalReference(rmode_, pc_, delta);
} else if (IsRelativeCodeTarget(rmode_)) {
Assembler::RelocateRelativeReference(rmode_, pc_, delta);
}
}
Address RelocInfo::target_address() {
DCHECK(IsCodeTargetMode(rmode_) || IsRuntimeEntry(rmode_) ||
IsWasmCall(rmode_));
return Assembler::target_address_at(pc_, constant_pool_);
}
Address RelocInfo::target_address_address() {
DCHECK(HasTargetAddressAddress());
// Read the address of the word containing the target_address in an
// instruction stream.
// The only architecture-independent user of this function is the serializer.
// The serializer uses it to find out how many raw bytes of instruction to
// output before the next target.
// For an instruction like LUI/ORI where the target bits are mixed into the
// instruction bits, the size of the target will be zero, indicating that the
// serializer should not step forward in memory after a target is resolved
// and written. In this case the target_address_address function should
// return the end of the instructions to be patched, allowing the
// deserializer to deserialize the instructions as raw bytes and put them in
// place, ready to be patched with the target. After jump optimization,
// that is the address of the instruction that follows J/JAL/JR/JALR
// instruction.
if (IsMipsArchVariant(kMips32r6)) {
// On R6 we don't move to the end of the instructions to be patched, but one
// instruction before, because if these instructions are at the end of the
// code object it can cause errors in the deserializer.
return pc_ + (Assembler::kInstructionsFor32BitConstant - 1) * kInstrSize;
} else {
return pc_ + Assembler::kInstructionsFor32BitConstant * kInstrSize;
}
}
Address RelocInfo::constant_pool_entry_address() { UNREACHABLE(); }
int RelocInfo::target_address_size() { return Assembler::kSpecialTargetSize; }
void Assembler::deserialization_set_special_target_at(
Address instruction_payload, Code code, Address target) {
set_target_address_at(instruction_payload,
!code.is_null() ? code.constant_pool() : kNullAddress,
target);
}
int Assembler::deserialization_special_target_size(
Address instruction_payload) {
return kSpecialTargetSize;
}
void Assembler::set_target_internal_reference_encoded_at(Address pc,
Address target) {
Instr instr1 = Assembler::instr_at(pc + 0 * kInstrSize);
Instr instr2 = Assembler::instr_at(pc + 1 * kInstrSize);
DCHECK(Assembler::IsLui(instr1));
DCHECK(Assembler::IsOri(instr2) || Assembler::IsJicOrJialc(instr2));
instr1 &= ~kImm16Mask;
instr2 &= ~kImm16Mask;
int32_t imm = static_cast<int32_t>(target);
DCHECK_EQ(imm & 3, 0);
if (Assembler::IsJicOrJialc(instr2)) {
// Encoded internal references are lui/jic load of 32-bit absolute address.
uint32_t lui_offset_u, jic_offset_u;
Assembler::UnpackTargetAddressUnsigned(imm, &lui_offset_u, &jic_offset_u);
Assembler::instr_at_put(pc + 0 * kInstrSize, instr1 | lui_offset_u);
Assembler::instr_at_put(pc + 1 * kInstrSize, instr2 | jic_offset_u);
} else {
// Encoded internal references are lui/ori load of 32-bit absolute address.
PatchLuiOriImmediate(pc, imm, instr1, 0 * kInstrSize, instr2,
1 * kInstrSize);
}
// Currently used only by deserializer, and all code will be flushed
// after complete deserialization, no need to flush on each reference.
}
void Assembler::deserialization_set_target_internal_reference_at(
Address pc, Address target, RelocInfo::Mode mode) {
if (RelocInfo::IsInternalReferenceEncoded(mode)) {
DCHECK(IsLui(instr_at(pc)));
set_target_internal_reference_encoded_at(pc, target);
} else {
DCHECK(RelocInfo::IsInternalReference(mode));
Memory<Address>(pc) = target;
}
}
HeapObject RelocInfo::target_object(PtrComprCageBase cage_base) {
DCHECK(IsCodeTarget(rmode_) || IsFullEmbeddedObject(rmode_) ||
IsDataEmbeddedObject(rmode_));
if (IsDataEmbeddedObject(rmode_)) {
return HeapObject::cast(Object(ReadUnalignedValue<Address>(pc_)));
}
return HeapObject::cast(
Object(Assembler::target_address_at(pc_, constant_pool_)));
}
Handle<HeapObject> RelocInfo::target_object_handle(Assembler* origin) {
if (IsCodeTarget(rmode_) || IsFullEmbeddedObject(rmode_)) {
return Handle<HeapObject>(reinterpret_cast<Address*>(
Assembler::target_address_at(pc_, constant_pool_)));
} else if (IsDataEmbeddedObject(rmode_)) {
return Handle<HeapObject>::cast(ReadUnalignedValue<Handle<Object>>(pc_));
}
DCHECK(IsRelativeCodeTarget(rmode_));
return origin->relative_code_target_object_handle_at(pc_);
}
void RelocInfo::set_target_object(Heap* heap, HeapObject target,
WriteBarrierMode write_barrier_mode,
ICacheFlushMode icache_flush_mode) {
DCHECK(IsCodeTarget(rmode_) || IsFullEmbeddedObject(rmode_) ||
IsDataEmbeddedObject(rmode_));
if (IsDataEmbeddedObject(rmode_)) {
WriteUnalignedValue(pc_, target.ptr());
// No need to flush icache since no instructions were changed.
} else {
Assembler::set_target_address_at(pc_, constant_pool_, target.ptr(),
icache_flush_mode);
}
if (write_barrier_mode == UPDATE_WRITE_BARRIER && !host().is_null() &&
!v8_flags.disable_write_barriers) {
WriteBarrierForCode(host(), this, target);
}
}
Address RelocInfo::target_external_reference() {
DCHECK(IsExternalReference(rmode_));
return Assembler::target_address_at(pc_, constant_pool_);
}
void RelocInfo::set_target_external_reference(
Address target, ICacheFlushMode icache_flush_mode) {
DCHECK(IsExternalReference(rmode_));
Assembler::set_target_address_at(pc_, constant_pool_, target,
icache_flush_mode);
}
Address RelocInfo::target_internal_reference() {
if (IsInternalReference(rmode_)) {
return Memory<Address>(pc_);
} else {
// Encoded internal references are lui/ori or lui/jic load of 32-bit
// absolute address.
DCHECK(IsInternalReferenceEncoded(rmode_));
Instr instr1 = Assembler::instr_at(pc_ + 0 * kInstrSize);
Instr instr2 = Assembler::instr_at(pc_ + 1 * kInstrSize);
DCHECK(Assembler::IsLui(instr1));
DCHECK(Assembler::IsOri(instr2) || Assembler::IsJicOrJialc(instr2));
if (Assembler::IsJicOrJialc(instr2)) {
return static_cast<Address>(
Assembler::CreateTargetAddress(instr1, instr2));
}
return static_cast<Address>(Assembler::GetLuiOriImmediate(instr1, instr2));
}
}
Address RelocInfo::target_internal_reference_address() {
DCHECK(IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_));
return pc_;
}
Builtin RelocInfo::target_builtin_at(Assembler* origin) { UNREACHABLE(); }
Address RelocInfo::target_runtime_entry(Assembler* origin) {
DCHECK(IsRuntimeEntry(rmode_));
return target_address();
}
void RelocInfo::set_target_runtime_entry(Address target,
WriteBarrierMode write_barrier_mode,
ICacheFlushMode icache_flush_mode) {
DCHECK(IsRuntimeEntry(rmode_));
if (target_address() != target)
set_target_address(target, write_barrier_mode, icache_flush_mode);
}
Address RelocInfo::target_off_heap_target() {
DCHECK(IsOffHeapTarget(rmode_));
return Assembler::target_address_at(pc_, constant_pool_);
}
void RelocInfo::WipeOut() {
DCHECK(IsFullEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_) ||
IsOffHeapTarget(rmode_));
if (IsInternalReference(rmode_)) {
Memory<Address>(pc_) = kNullAddress;
} else if (IsInternalReferenceEncoded(rmode_)) {
Assembler::set_target_internal_reference_encoded_at(pc_, kNullAddress);
} else {
Assembler::set_target_address_at(pc_, constant_pool_, kNullAddress);
}
}
Handle<Code> Assembler::relative_code_target_object_handle_at(
Address pc) const {
Instr instr1 = instr_at(pc);
Instr instr2 = instr_at(pc + kInstrSize);
DCHECK(IsLui(instr1));
DCHECK(IsOri(instr2) || IsNal(instr2));
DCHECK(IsNal(instr2) || IsNal(instr_at(pc - kInstrSize)));
if (IsNal(instr2)) {
instr2 = instr_at(pc + 2 * kInstrSize);
}
// Interpret 2 instructions generated by li (lui/ori).
int code_target_index = GetLuiOriImmediate(instr1, instr2);
return GetCodeTarget(code_target_index);
}
// -----------------------------------------------------------------------------
// Assembler.
void Assembler::CheckBuffer() {
if (buffer_space() <= kGap) {
GrowBuffer();
}
}
void Assembler::CheckForEmitInForbiddenSlot() {
if (!is_buffer_growth_blocked()) {
CheckBuffer();
}
if (IsPrevInstrCompactBranch()) {
// Nop instruction to precede a CTI in forbidden slot:
Instr nop = SPECIAL | SLL;
*reinterpret_cast<Instr*>(pc_) = nop;
pc_ += kInstrSize;
ClearCompactBranchState();
}
}
void Assembler::EmitHelper(Instr x, CompactBranchType is_compact_branch) {
if (IsPrevInstrCompactBranch()) {
if (Instruction::IsForbiddenAfterBranchInstr(x)) {
// Nop instruction to precede a CTI in forbidden slot:
Instr nop = SPECIAL | SLL;
*reinterpret_cast<Instr*>(pc_) = nop;
pc_ += kInstrSize;
}
ClearCompactBranchState();
}
*reinterpret_cast<Instr*>(pc_) = x;
pc_ += kInstrSize;
if (is_compact_branch == CompactBranchType::COMPACT_BRANCH) {
EmittedCompactBranchInstruction();
}
CheckTrampolinePoolQuick();
}
template <>
inline void Assembler::EmitHelper(uint8_t x);
template <typename T>
void Assembler::EmitHelper(T x) {
*reinterpret_cast<T*>(pc_) = x;
pc_ += sizeof(x);
CheckTrampolinePoolQuick();
}
template <>
void Assembler::EmitHelper(uint8_t x) {
*reinterpret_cast<uint8_t*>(pc_) = x;
pc_ += sizeof(x);
if (reinterpret_cast<intptr_t>(pc_) % kInstrSize == 0) {
CheckTrampolinePoolQuick();
}
}
void Assembler::emit(Instr x, CompactBranchType is_compact_branch) {
if (!is_buffer_growth_blocked()) {
CheckBuffer();
}
EmitHelper(x, is_compact_branch);
}
EnsureSpace::EnsureSpace(Assembler* assembler) { assembler->CheckBuffer(); }
} // namespace internal
} // namespace v8
#endif // V8_CODEGEN_MIPS_ASSEMBLER_MIPS_INL_H_

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,144 +0,0 @@
// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_MIPS
#include "src/codegen/mips/constants-mips.h"
namespace v8 {
namespace internal {
// -----------------------------------------------------------------------------
// Registers.
// These register names are defined in a way to match the native disassembler
// formatting. See for example the command "objdump -d <binary file>".
const char* Registers::names_[kNumSimuRegisters] = {
"zero_reg", "at", "v0", "v1", "a0", "a1", "a2", "a3", "t0",
"t1", "t2", "t3", "t4", "t5", "t6", "t7", "s0", "s1",
"s2", "s3", "s4", "s5", "s6", "s7", "t8", "t9", "k0",
"k1", "gp", "sp", "fp", "ra", "LO", "HI", "pc"};
// List of alias names which can be used when referring to MIPS registers.
const Registers::RegisterAlias Registers::aliases_[] = {
{0, "zero"},
{23, "cp"},
{30, "s8"},
{30, "s8_fp"},
{kInvalidRegister, nullptr}};
const char* Registers::Name(int reg) {
const char* result;
if ((0 <= reg) && (reg < kNumSimuRegisters)) {
result = names_[reg];
} else {
result = "noreg";
}
return result;
}
int Registers::Number(const char* name) {
// Look through the canonical names.
for (int i = 0; i < kNumSimuRegisters; i++) {
if (strcmp(names_[i], name) == 0) {
return i;
}
}
// Look through the alias names.
int i = 0;
while (aliases_[i].reg != kInvalidRegister) {
if (strcmp(aliases_[i].name, name) == 0) {
return aliases_[i].reg;
}
i++;
}
// No register with the reguested name found.
return kInvalidRegister;
}
const char* FPURegisters::names_[kNumFPURegisters] = {
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9", "f10",
"f11", "f12", "f13", "f14", "f15", "f16", "f17", "f18", "f19", "f20", "f21",
"f22", "f23", "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"};
// List of alias names which can be used when referring to MIPS registers.
const FPURegisters::RegisterAlias FPURegisters::aliases_[] = {
{kInvalidRegister, nullptr}};
const char* FPURegisters::Name(int creg) {
const char* result;
if ((0 <= creg) && (creg < kNumFPURegisters)) {
result = names_[creg];
} else {
result = "nocreg";
}
return result;
}
int FPURegisters::Number(const char* name) {
// Look through the canonical names.
for (int i = 0; i < kNumFPURegisters; i++) {
if (strcmp(names_[i], name) == 0) {
return i;
}
}
// Look through the alias names.
int i = 0;
while (aliases_[i].creg != kInvalidRegister) {
if (strcmp(aliases_[i].name, name) == 0) {
return aliases_[i].creg;
}
i++;
}
// No Cregister with the reguested name found.
return kInvalidFPURegister;
}
const char* MSARegisters::names_[kNumMSARegisters] = {
"w0", "w1", "w2", "w3", "w4", "w5", "w6", "w7", "w8", "w9", "w10",
"w11", "w12", "w13", "w14", "w15", "w16", "w17", "w18", "w19", "w20", "w21",
"w22", "w23", "w24", "w25", "w26", "w27", "w28", "w29", "w30", "w31"};
const MSARegisters::RegisterAlias MSARegisters::aliases_[] = {
{kInvalidRegister, nullptr}};
const char* MSARegisters::Name(int creg) {
const char* result;
if ((0 <= creg) && (creg < kNumMSARegisters)) {
result = names_[creg];
} else {
result = "nocreg";
}
return result;
}
int MSARegisters::Number(const char* name) {
// Look through the canonical names.
for (int i = 0; i < kNumMSARegisters; i++) {
if (strcmp(names_[i], name) == 0) {
return i;
}
}
// Look through the alias names.
int i = 0;
while (aliases_[i].creg != kInvalidRegister) {
if (strcmp(aliases_[i].name, name) == 0) {
return aliases_[i].creg;
}
i++;
}
// No Cregister with the reguested name found.
return kInvalidMSARegister;
}
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_MIPS

File diff suppressed because it is too large Load Diff

View File

@ -1,45 +0,0 @@
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// CPU specific code for arm independent of OS goes here.
#include <sys/syscall.h>
#include <unistd.h>
#ifdef __mips
#include <asm/cachectl.h>
#endif // #ifdef __mips
#if V8_TARGET_ARCH_MIPS
#include "src/codegen/cpu-features.h"
namespace v8 {
namespace internal {
void CpuFeatures::FlushICache(void* start, size_t size) {
#if !defined(USE_SIMULATOR)
// Nothing to do, flushing no instructions.
if (size == 0) {
return;
}
#if defined(ANDROID)
// Bionic cacheflush can typically run in userland, avoiding kernel call.
char* end = reinterpret_cast<char*>(start) + size;
cacheflush(reinterpret_cast<intptr_t>(start), reinterpret_cast<intptr_t>(end),
0);
#else // ANDROID
int res;
// See http://www.linux-mips.org/wiki/Cacheflush_Syscall.
res = syscall(__NR_cacheflush, start, size, ICACHE);
if (res) FATAL("Failed to flush the instruction cache");
#endif // ANDROID
#endif // !USE_SIMULATOR.
}
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_MIPS

View File

@ -1,314 +0,0 @@
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_CODEGEN_MIPS_INTERFACE_DESCRIPTORS_MIPS_INL_H_
#define V8_CODEGEN_MIPS_INTERFACE_DESCRIPTORS_MIPS_INL_H_
#if V8_TARGET_ARCH_MIPS
#include "src/codegen/interface-descriptors.h"
#include "src/execution/frames.h"
namespace v8 {
namespace internal {
constexpr auto CallInterfaceDescriptor::DefaultRegisterArray() {
auto registers = RegisterArray(a0, a1, a2, a3, t0);
static_assert(registers.size() == kMaxBuiltinRegisterParams);
return registers;
}
#if DEBUG
template <typename DerivedDescriptor>
void StaticCallInterfaceDescriptor<DerivedDescriptor>::
VerifyArgumentRegisterCount(CallInterfaceDescriptorData* data, int argc) {
RegList allocatable_regs = data->allocatable_registers();
if (argc >= 1) DCHECK(allocatable_regs.has(a0));
if (argc >= 2) DCHECK(allocatable_regs.has(a1));
if (argc >= 3) DCHECK(allocatable_regs.has(a2));
if (argc >= 4) DCHECK(allocatable_regs.has(a3));
// Additional arguments are passed on the stack.
}
#endif // DEBUG
// static
constexpr auto WriteBarrierDescriptor::registers() {
return RegisterArray(a1, t1, t0, a0, a2, v0, a3, kContextRegister);
}
// static
constexpr Register LoadDescriptor::ReceiverRegister() { return a1; }
// static
constexpr Register LoadDescriptor::NameRegister() { return a2; }
// static
constexpr Register LoadDescriptor::SlotRegister() { return a0; }
// static
constexpr Register LoadWithVectorDescriptor::VectorRegister() { return a3; }
// static
constexpr Register KeyedLoadBaselineDescriptor::ReceiverRegister() {
return a1;
}
// static
constexpr Register KeyedLoadBaselineDescriptor::NameRegister() {
return kInterpreterAccumulatorRegister;
}
// static
constexpr Register KeyedLoadBaselineDescriptor::SlotRegister() { return a2; }
// static
constexpr Register KeyedLoadWithVectorDescriptor::VectorRegister() {
return a3;
}
// static
constexpr Register KeyedHasICBaselineDescriptor::ReceiverRegister() {
return kInterpreterAccumulatorRegister;
}
// static
constexpr Register KeyedHasICBaselineDescriptor::NameRegister() { return a1; }
// static
constexpr Register KeyedHasICBaselineDescriptor::SlotRegister() { return a2; }
// static
constexpr Register KeyedHasICWithVectorDescriptor::VectorRegister() {
return a3;
}
// static
constexpr Register
LoadWithReceiverAndVectorDescriptor::LookupStartObjectRegister() {
return t0;
}
// static
constexpr Register StoreDescriptor::ReceiverRegister() { return a1; }
// static
constexpr Register StoreDescriptor::NameRegister() { return a2; }
// static
constexpr Register StoreDescriptor::ValueRegister() { return a0; }
// static
constexpr Register StoreDescriptor::SlotRegister() { return t0; }
// static
constexpr Register StoreWithVectorDescriptor::VectorRegister() { return a3; }
// static
constexpr Register StoreTransitionDescriptor::MapRegister() { return t1; }
// static
constexpr Register ApiGetterDescriptor::HolderRegister() { return a0; }
// static
constexpr Register ApiGetterDescriptor::CallbackRegister() { return a3; }
// static
constexpr Register GrowArrayElementsDescriptor::ObjectRegister() { return a0; }
// static
constexpr Register GrowArrayElementsDescriptor::KeyRegister() { return a3; }
// static
constexpr Register BaselineLeaveFrameDescriptor::ParamsSizeRegister() {
return a2;
}
// static
constexpr Register BaselineLeaveFrameDescriptor::WeightRegister() {
// TODO(v8:11421): Implement on this platform.
return a3;
}
// static
constexpr Register TypeConversionDescriptor::ArgumentRegister() { return a0; }
// static
constexpr auto TypeofDescriptor::registers() { return RegisterArray(a0); }
// static
constexpr auto CallTrampolineDescriptor::registers() {
// a1: target
// a0: number of arguments
return RegisterArray(a1, a0);
}
// static
constexpr auto CopyDataPropertiesWithExcludedPropertiesDescriptor::registers() {
// a1 : the source
// a0 : the excluded property count
return RegisterArray(a1, a0);
}
// static
constexpr auto
CopyDataPropertiesWithExcludedPropertiesOnStackDescriptor::registers() {
// a1 : the source
// a0 : the excluded property count
// a2 : the excluded property base
return RegisterArray(a1, a0, a2);
}
// static
constexpr auto CallVarargsDescriptor::registers() {
// a0 : number of arguments (on the stack)
// a1 : the target to call
// t0 : arguments list length (untagged)
// a2 : arguments list (FixedArray)
return RegisterArray(a1, a0, t0, a2);
}
// static
constexpr auto CallForwardVarargsDescriptor::registers() {
// a1: the target to call
// a0: number of arguments
// a2: start index (to support rest parameters)
return RegisterArray(a1, a0, a2);
}
// static
constexpr auto CallFunctionTemplateDescriptor::registers() {
// a1 : function template info
// a0 : number of arguments (on the stack)
return RegisterArray(a1, a0);
}
// static
constexpr auto CallWithSpreadDescriptor::registers() {
// a0 : number of arguments (on the stack)
// a1 : the target to call
// a2 : the object to spread
return RegisterArray(a1, a0, a2);
}
// static
constexpr auto CallWithArrayLikeDescriptor::registers() {
// a1 : the target to call
// a2 : the arguments list
return RegisterArray(a1, a2);
}
// static
constexpr auto ConstructVarargsDescriptor::registers() {
// a0 : number of arguments (on the stack)
// a1 : the target to call
// a3 : the new target
// t0 : arguments list length (untagged)
// a2 : arguments list (FixedArray)
return RegisterArray(a1, a3, a0, t0, a2);
}
// static
constexpr auto ConstructForwardVarargsDescriptor::registers() {
// a1: the target to call
// a3: new target
// a0: number of arguments
// a2: start index (to support rest parameters)
return RegisterArray(a1, a3, a0, a2);
}
// static
constexpr auto ConstructWithSpreadDescriptor::registers() {
// a0 : number of arguments (on the stack)
// a1 : the target to call
// a3 : the new target
// a2 : the object to spread
return RegisterArray(a1, a3, a0, a2);
}
// static
constexpr auto ConstructWithArrayLikeDescriptor::registers() {
// a1 : the target to call
// a3 : the new target
// a2 : the arguments list
return RegisterArray(a1, a3, a2);
}
// static
constexpr auto ConstructStubDescriptor::registers() {
// a1: target
// a3: new target
// a0: number of arguments
return RegisterArray(a1, a3, a0);
}
// static
constexpr auto AbortDescriptor::registers() { return RegisterArray(a0); }
// static
constexpr auto CompareDescriptor::registers() { return RegisterArray(a1, a0); }
// static
constexpr auto Compare_BaselineDescriptor::registers() {
// a1: left operand
// a0: right operand
// a2: feedback slot
return RegisterArray(a1, a0, a2);
}
// static
constexpr auto BinaryOpDescriptor::registers() { return RegisterArray(a1, a0); }
// static
constexpr auto BinaryOp_BaselineDescriptor::registers() {
// TODO(v8:11421): Implement on this platform.
return RegisterArray(a1, a0, a2);
}
// static
constexpr auto BinarySmiOp_BaselineDescriptor::registers() {
// TODO(v8:11421): Implement on this platform.
return RegisterArray(a0, a1, a2);
}
// static
constexpr auto ApiCallbackDescriptor::registers() {
// a1 : kApiFunctionAddress
// a2 : kArgc
// a3 : kCallData
// a0 : kHolder
return RegisterArray(a1, a2, a3, a0);
}
// static
constexpr auto InterpreterDispatchDescriptor::registers() {
return RegisterArray(
kInterpreterAccumulatorRegister, kInterpreterBytecodeOffsetRegister,
kInterpreterBytecodeArrayRegister, kInterpreterDispatchTableRegister);
}
// static
constexpr auto InterpreterPushArgsThenCallDescriptor::registers() {
// a0 : argument count
// a2 : address of first argument
// a1 : the target callable to be call
return RegisterArray(a0, a2, a1);
}
// static
constexpr auto InterpreterPushArgsThenConstructDescriptor::registers() {
// a0 : argument count
// t4 : address of the first argument
// a1 : constructor to call
// a3 : new target
// a2 : allocation site feedback if available, undefined otherwise
return RegisterArray(a0, t4, a1, a3, a2);
}
// static
constexpr auto ResumeGeneratorDescriptor::registers() {
// v0 : the value to pass to the generator
// a1 : the JSGeneratorObject to resume
return RegisterArray(v0, a1);
}
// static
constexpr auto RunMicrotasksEntryDescriptor::registers() {
return RegisterArray(a0, a1);
}
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_MIPS
#endif // V8_CODEGEN_MIPS_INTERFACE_DESCRIPTORS_MIPS_INL_H_

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,299 +0,0 @@
// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_CODEGEN_MIPS_REGISTER_MIPS_H_
#define V8_CODEGEN_MIPS_REGISTER_MIPS_H_
#include "src/codegen/mips/constants-mips.h"
#include "src/codegen/register-base.h"
namespace v8 {
namespace internal {
// clang-format off
#define GENERAL_REGISTERS(V) \
V(zero_reg) V(at) V(v0) V(v1) V(a0) V(a1) V(a2) V(a3) \
V(t0) V(t1) V(t2) V(t3) V(t4) V(t5) V(t6) V(t7) \
V(s0) V(s1) V(s2) V(s3) V(s4) V(s5) V(s6) V(s7) V(t8) V(t9) \
V(k0) V(k1) V(gp) V(sp) V(fp) V(ra)
#define ALLOCATABLE_GENERAL_REGISTERS(V) \
V(a0) V(a1) V(a2) V(a3) \
V(t0) V(t1) V(t2) V(t3) V(t4) V(t5) V(t6) V(s7) \
V(v0) V(v1)
#define DOUBLE_REGISTERS(V) \
V(f0) V(f1) V(f2) V(f3) V(f4) V(f5) V(f6) V(f7) \
V(f8) V(f9) V(f10) V(f11) V(f12) V(f13) V(f14) V(f15) \
V(f16) V(f17) V(f18) V(f19) V(f20) V(f21) V(f22) V(f23) \
V(f24) V(f25) V(f26) V(f27) V(f28) V(f29) V(f30) V(f31)
// Currently, MIPS just use even float point register, except
// for C function param registers.
#define DOUBLE_USE_REGISTERS(V) \
V(f0) V(f2) V(f4) V(f6) V(f8) V(f10) V(f12) V(f13) \
V(f14) V(f15) V(f16) V(f18) V(f20) V(f22) V(f24) V(f26) \
V(f28) V(f30)
#define FLOAT_REGISTERS DOUBLE_REGISTERS
#define SIMD128_REGISTERS(V) \
V(w0) V(w1) V(w2) V(w3) V(w4) V(w5) V(w6) V(w7) \
V(w8) V(w9) V(w10) V(w11) V(w12) V(w13) V(w14) V(w15) \
V(w16) V(w17) V(w18) V(w19) V(w20) V(w21) V(w22) V(w23) \
V(w24) V(w25) V(w26) V(w27) V(w28) V(w29) V(w30) V(w31)
#define ALLOCATABLE_DOUBLE_REGISTERS(V) \
V(f0) V(f2) V(f4) V(f6) V(f8) V(f10) V(f12) V(f14) \
V(f16) V(f18) V(f20) V(f22) V(f24)
// clang-format on
// Register lists.
// Note that the bit values must match those used in actual instruction
// encoding.
const int kNumRegs = 32;
// CPU Registers.
//
// 1) We would prefer to use an enum, but enum values are assignment-
// compatible with int, which has caused code-generation bugs.
//
// 2) We would prefer to use a class instead of a struct but we don't like
// the register initialization to depend on the particular initialization
// order (which appears to be different on OS X, Linux, and Windows for the
// installed versions of C++ we tried). Using a struct permits C-style
// "initialization". Also, the Register objects cannot be const as this
// forces initialization stubs in MSVC, making us dependent on initialization
// order.
//
// 3) By not using an enum, we are possibly preventing the compiler from
// doing certain constant folds, which may significantly reduce the
// code generated for some assembly instructions (because they boil down
// to a few constants). If this is a problem, we could change the code
// such that we use an enum in optimized mode, and the struct in debug
// mode. This way we get the compile-time error checking in debug mode
// and best performance in optimized code.
// -----------------------------------------------------------------------------
// Implementation of Register and FPURegister.
enum RegisterCode {
#define REGISTER_CODE(R) kRegCode_##R,
GENERAL_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kRegAfterLast
};
class Register : public RegisterBase<Register, kRegAfterLast> {
public:
#if defined(V8_TARGET_LITTLE_ENDIAN)
static constexpr int kMantissaOffset = 0;
static constexpr int kExponentOffset = 4;
#elif defined(V8_TARGET_BIG_ENDIAN)
static constexpr int kMantissaOffset = 4;
static constexpr int kExponentOffset = 0;
#else
#error Unknown endianness
#endif
private:
friend class RegisterBase;
explicit constexpr Register(int code) : RegisterBase(code) {}
};
// s7: context register
// s3: scratch register
// s4: scratch register 2
#define DECLARE_REGISTER(R) \
constexpr Register R = Register::from_code(kRegCode_##R);
GENERAL_REGISTERS(DECLARE_REGISTER)
#undef DECLARE_REGISTER
constexpr Register no_reg = Register::no_reg();
int ToNumber(Register reg);
Register ToRegister(int num);
// Returns the number of padding slots needed for stack pointer alignment.
constexpr int ArgumentPaddingSlots(int argument_count) {
// No argument padding required.
return 0;
}
constexpr AliasingKind kFPAliasing = AliasingKind::kOverlap;
constexpr bool kSimdMaskRegisters = false;
enum DoubleRegisterCode {
#define REGISTER_CODE(R) kDoubleCode_##R,
DOUBLE_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kDoubleAfterLast
};
// Coprocessor register.
class FPURegister : public RegisterBase<FPURegister, kDoubleAfterLast> {
public:
FPURegister low() const {
// Find low reg of a Double-reg pair, which is the reg itself.
DCHECK_EQ(code() % 2, 0); // Specified Double reg must be even.
return FPURegister::from_code(code());
}
FPURegister high() const {
// Find high reg of a Doubel-reg pair, which is reg + 1.
DCHECK_EQ(code() % 2, 0); // Specified Double reg must be even.
return FPURegister::from_code(code() + 1);
}
private:
friend class RegisterBase;
explicit constexpr FPURegister(int code) : RegisterBase(code) {}
};
enum MSARegisterCode {
#define REGISTER_CODE(R) kMsaCode_##R,
SIMD128_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kMsaAfterLast
};
// MIPS SIMD (MSA) register
class MSARegister : public RegisterBase<MSARegister, kMsaAfterLast> {
friend class RegisterBase;
explicit constexpr MSARegister(int code) : RegisterBase(code) {}
};
// A few double registers are reserved: one as a scratch register and one to
// hold 0.0.
// f28: 0.0
// f30: scratch register.
// V8 now supports the O32 ABI, and the FPU Registers are organized as 32
// 32-bit registers, f0 through f31. When used as 'double' they are used
// in pairs, starting with the even numbered register. So a double operation
// on f0 really uses f0 and f1.
// (Modern mips hardware also supports 32 64-bit registers, via setting
// (priviledged) Status Register FR bit to 1. This is used by the N32 ABI,
// but it is not in common use. Someday we will want to support this in v8.)
// For O32 ABI, Floats and Doubles refer to same set of 32 32-bit registers.
using FloatRegister = FPURegister;
using DoubleRegister = FPURegister;
#define DECLARE_DOUBLE_REGISTER(R) \
constexpr DoubleRegister R = DoubleRegister::from_code(kDoubleCode_##R);
DOUBLE_REGISTERS(DECLARE_DOUBLE_REGISTER)
#undef DECLARE_DOUBLE_REGISTER
constexpr DoubleRegister no_dreg = DoubleRegister::no_reg();
// SIMD registers.
using Simd128Register = MSARegister;
#define DECLARE_SIMD128_REGISTER(R) \
constexpr Simd128Register R = Simd128Register::from_code(kMsaCode_##R);
SIMD128_REGISTERS(DECLARE_SIMD128_REGISTER)
#undef DECLARE_SIMD128_REGISTER
const Simd128Register no_msareg = Simd128Register::no_reg();
// Register aliases.
// cp is assumed to be a callee saved register.
constexpr Register kRootRegister = s6;
constexpr Register cp = s7;
constexpr Register kScratchReg = s3;
constexpr Register kScratchReg2 = s4;
constexpr DoubleRegister kScratchDoubleReg = f30;
constexpr DoubleRegister kDoubleRegZero = f28;
// Used on mips32r6 for compare operations.
constexpr DoubleRegister kDoubleCompareReg = f26;
// MSA zero and scratch regs must have the same numbers as FPU zero and scratch
constexpr Simd128Register kSimd128RegZero = w28;
constexpr Simd128Register kSimd128ScratchReg = w30;
// FPU (coprocessor 1) control registers.
// Currently only FCSR (#31) is implemented.
struct FPUControlRegister {
bool is_valid() const { return reg_code == kFCSRRegister; }
bool is(FPUControlRegister creg) const { return reg_code == creg.reg_code; }
int code() const {
DCHECK(is_valid());
return reg_code;
}
int bit() const {
DCHECK(is_valid());
return 1 << reg_code;
}
void setcode(int f) {
reg_code = f;
DCHECK(is_valid());
}
// Unfortunately we can't make this private in a struct.
int reg_code;
};
constexpr FPUControlRegister no_fpucreg = {kInvalidFPUControlRegister};
constexpr FPUControlRegister FCSR = {kFCSRRegister};
// MSA control registers
struct MSAControlRegister {
bool is_valid() const {
return (reg_code == kMSAIRRegister) || (reg_code == kMSACSRRegister);
}
bool is(MSAControlRegister creg) const { return reg_code == creg.reg_code; }
int code() const {
DCHECK(is_valid());
return reg_code;
}
int bit() const {
DCHECK(is_valid());
return 1 << reg_code;
}
void setcode(int f) {
reg_code = f;
DCHECK(is_valid());
}
// Unfortunately we can't make this private in a struct.
int reg_code;
};
constexpr MSAControlRegister no_msacreg = {kInvalidMSAControlRegister};
constexpr MSAControlRegister MSAIR = {kMSAIRRegister};
constexpr MSAControlRegister MSACSR = {kMSACSRRegister};
// Define {RegisterName} methods for the register types.
DEFINE_REGISTER_NAMES(Register, GENERAL_REGISTERS)
DEFINE_REGISTER_NAMES(FPURegister, DOUBLE_REGISTERS)
DEFINE_REGISTER_NAMES(MSARegister, SIMD128_REGISTERS)
// Give alias names to registers for calling conventions.
constexpr Register kReturnRegister0 = v0;
constexpr Register kReturnRegister1 = v1;
constexpr Register kReturnRegister2 = a0;
constexpr Register kJSFunctionRegister = a1;
constexpr Register kContextRegister = s7;
constexpr Register kAllocateSizeRegister = a0;
constexpr Register kInterpreterAccumulatorRegister = v0;
constexpr Register kInterpreterBytecodeOffsetRegister = t4;
constexpr Register kInterpreterBytecodeArrayRegister = t5;
constexpr Register kInterpreterDispatchTableRegister = t6;
constexpr Register kJavaScriptCallArgCountRegister = a0;
constexpr Register kJavaScriptCallCodeStartRegister = a2;
constexpr Register kJavaScriptCallTargetRegister = kJSFunctionRegister;
constexpr Register kJavaScriptCallNewTargetRegister = a3;
constexpr Register kJavaScriptCallExtraArg1Register = a2;
constexpr Register kOffHeapTrampolineRegister = at;
constexpr Register kRuntimeCallFunctionRegister = a1;
constexpr Register kRuntimeCallArgCountRegister = a0;
constexpr Register kRuntimeCallArgvRegister = a2;
constexpr Register kWasmInstanceRegister = a0;
constexpr Register kWasmCompileLazyFuncIndexRegister = t0;
constexpr DoubleRegister kFPReturnRegister0 = f0;
} // namespace internal
} // namespace v8
#endif // V8_CODEGEN_MIPS_REGISTER_MIPS_H_

View File

@ -1,48 +0,0 @@
// Copyright 2022 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_CODEGEN_MIPS_REGLIST_MIPS_H_
#define V8_CODEGEN_MIPS_REGLIST_MIPS_H_
#include "src/codegen/mips/constants-mips.h"
#include "src/codegen/register-arch.h"
#include "src/codegen/reglist-base.h"
namespace v8 {
namespace internal {
using RegList = RegListBase<Register>;
using DoubleRegList = RegListBase<DoubleRegister>;
ASSERT_TRIVIALLY_COPYABLE(RegList);
ASSERT_TRIVIALLY_COPYABLE(DoubleRegList);
const RegList kJSCallerSaved = {v0, v1, a0, a1, a2, a3, t0,
t1, t2, t3, t4, t5, t6, t7};
const int kNumJSCallerSaved = 14;
// Callee-saved registers preserved when switching from C to JavaScript.
const RegList kCalleeSaved = {s0, // s0
s1, // s1
s2, // s2
s3, // s3
s4, // s4
s5, // s5
s6, // s6 (roots in Javascript code)
s7, // s7 (cp in Javascript code)
fp}; // fp/s8
const int kNumCalleeSaved = 9;
const DoubleRegList kCalleeSavedFPU = {f20, f22, f24, f26, f28, f30};
const int kNumCalleeSavedFPU = 6;
const DoubleRegList kCallerSavedFPU = {f0, f2, f4, f6, f8,
f10, f12, f14, f16, f18};
} // namespace internal
} // namespace v8
#endif // V8_CODEGEN_MIPS_REGLIST_MIPS_H_

View File

@ -17,8 +17,6 @@
#include "src/codegen/arm/register-arm.h"
#elif V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_PPC64
#include "src/codegen/ppc/register-ppc.h"
#elif V8_TARGET_ARCH_MIPS
#include "src/codegen/mips/register-mips.h"
#elif V8_TARGET_ARCH_MIPS64
#include "src/codegen/mips64/register-mips64.h"
#elif V8_TARGET_ARCH_LOONG64

View File

@ -15,8 +15,6 @@
#include "src/codegen/arm/reglist-arm.h"
#elif V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_PPC64
#include "src/codegen/ppc/reglist-ppc.h"
#elif V8_TARGET_ARCH_MIPS
#include "src/codegen/mips/reglist-mips.h"
#elif V8_TARGET_ARCH_MIPS64
#include "src/codegen/mips64/reglist-mips64.h"
#elif V8_TARGET_ARCH_LOONG64

View File

@ -309,11 +309,10 @@ bool RelocInfo::OffHeapTargetIsCodedSpecially() {
#if defined(V8_TARGET_ARCH_ARM) || defined(V8_TARGET_ARCH_ARM64) || \
defined(V8_TARGET_ARCH_X64)
return false;
#elif defined(V8_TARGET_ARCH_IA32) || defined(V8_TARGET_ARCH_MIPS) || \
defined(V8_TARGET_ARCH_MIPS64) || defined(V8_TARGET_ARCH_PPC) || \
defined(V8_TARGET_ARCH_PPC64) || defined(V8_TARGET_ARCH_S390) || \
defined(V8_TARGET_ARCH_RISCV64) || defined(V8_TARGET_ARCH_LOONG64) || \
defined(V8_TARGET_ARCH_RISCV32)
#elif defined(V8_TARGET_ARCH_IA32) || defined(V8_TARGET_ARCH_MIPS64) || \
defined(V8_TARGET_ARCH_PPC) || defined(V8_TARGET_ARCH_PPC64) || \
defined(V8_TARGET_ARCH_S390) || defined(V8_TARGET_ARCH_RISCV64) || \
defined(V8_TARGET_ARCH_LOONG64) || defined(V8_TARGET_ARCH_RISCV32)
return true;
#endif
}

View File

@ -71,7 +71,7 @@ class RelocInfo {
EXTERNAL_REFERENCE, // The address of an external C++ function.
INTERNAL_REFERENCE, // An address inside the same function.
// Encoded internal reference, used only on RISCV64, RISCV32, MIPS, MIPS64
// Encoded internal reference, used only on RISCV64, RISCV32, MIPS64
// and PPC.
INTERNAL_REFERENCE_ENCODED,

View File

@ -46,9 +46,6 @@ namespace internal {
#if (V8_TARGET_ARCH_PPC64 && !V8_HOST_ARCH_PPC64)
#define USE_SIMULATOR 1
#endif
#if (V8_TARGET_ARCH_MIPS && !V8_HOST_ARCH_MIPS)
#define USE_SIMULATOR 1
#endif
#if (V8_TARGET_ARCH_MIPS64 && !V8_HOST_ARCH_MIPS64)
#define USE_SIMULATOR 1
#endif
@ -428,7 +425,7 @@ constexpr bool kPlatformRequiresCodeRange = false;
constexpr size_t kMaximalCodeRangeSize = 0 * MB;
constexpr size_t kMinimumCodeRangeSize = 0 * MB;
constexpr size_t kMinExpectedOSPageSize = 64 * KB; // OS page on PPC Linux
#elif V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_RISCV32
#elif V8_TARGET_ARCH_RISCV32
constexpr bool kPlatformRequiresCodeRange = false;
constexpr size_t kMaximalCodeRangeSize = 2048LL * MB;
constexpr size_t kMinimumCodeRangeSize = 0 * MB;
@ -1359,9 +1356,7 @@ enum AllocationSiteMode {
enum class AllocationSiteUpdateMode { kUpdate, kCheckOnly };
// The mips architecture prior to revision 5 has inverted encoding for sNaN.
#if (V8_TARGET_ARCH_MIPS && !defined(_MIPS_ARCH_MIPS32R6) && \
(!defined(USE_SIMULATOR) || !defined(_MIPS_TARGET_SIMULATOR))) || \
(V8_TARGET_ARCH_MIPS64 && !defined(_MIPS_ARCH_MIPS64R6) && \
#if (V8_TARGET_ARCH_MIPS64 && !defined(_MIPS_ARCH_MIPS64R6) && \
(!defined(USE_SIMULATOR) || !defined(_MIPS_TARGET_SIMULATOR)))
constexpr uint32_t kHoleNanUpper32 = 0xFFFF7FFF;
constexpr uint32_t kHoleNanLower32 = 0xFFFF7FFF;

View File

@ -13,8 +13,6 @@
#include "src/compiler/backend/arm64/instruction-codes-arm64.h"
#elif V8_TARGET_ARCH_IA32
#include "src/compiler/backend/ia32/instruction-codes-ia32.h"
#elif V8_TARGET_ARCH_MIPS
#include "src/compiler/backend/mips/instruction-codes-mips.h"
#elif V8_TARGET_ARCH_MIPS64
#include "src/compiler/backend/mips64/instruction-codes-mips64.h"
#elif V8_TARGET_ARCH_LOONG64

View File

@ -2698,8 +2698,7 @@ void InstructionSelector::VisitWord32PairShr(Node* node) { UNIMPLEMENTED(); }
void InstructionSelector::VisitWord32PairSar(Node* node) { UNIMPLEMENTED(); }
#endif // V8_TARGET_ARCH_64_BIT
#if !V8_TARGET_ARCH_IA32 && !V8_TARGET_ARCH_ARM && !V8_TARGET_ARCH_MIPS && \
!V8_TARGET_ARCH_RISCV32
#if !V8_TARGET_ARCH_IA32 && !V8_TARGET_ARCH_ARM && !V8_TARGET_ARCH_RISCV32
void InstructionSelector::VisitWord32AtomicPairLoad(Node* node) {
UNIMPLEMENTED();
}
@ -2735,7 +2734,7 @@ void InstructionSelector::VisitWord32AtomicPairExchange(Node* node) {
void InstructionSelector::VisitWord32AtomicPairCompareExchange(Node* node) {
UNIMPLEMENTED();
}
#endif // !V8_TARGET_ARCH_IA32 && !V8_TARGET_ARCH_ARM && !V8_TARGET_ARCH_MIPS
#endif // !V8_TARGET_ARCH_IA32 && !V8_TARGET_ARCH_ARM
// && !V8_TARGET_ARCH_RISCV32
#if !V8_TARGET_ARCH_X64 && !V8_TARGET_ARCH_ARM64 && !V8_TARGET_ARCH_MIPS64 && \

File diff suppressed because it is too large Load Diff

View File

@ -1,400 +0,0 @@
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_COMPILER_BACKEND_MIPS_INSTRUCTION_CODES_MIPS_H_
#define V8_COMPILER_BACKEND_MIPS_INSTRUCTION_CODES_MIPS_H_
namespace v8 {
namespace internal {
namespace compiler {
// MIPS-specific opcodes that specify which assembly sequence to emit.
// Most opcodes specify a single instruction.
#define TARGET_ARCH_OPCODE_LIST(V) \
V(MipsAdd) \
V(MipsAddOvf) \
V(MipsSub) \
V(MipsSubOvf) \
V(MipsMul) \
V(MipsMulOvf) \
V(MipsMulHigh) \
V(MipsMulHighU) \
V(MipsDiv) \
V(MipsDivU) \
V(MipsMod) \
V(MipsModU) \
V(MipsAnd) \
V(MipsOr) \
V(MipsNor) \
V(MipsXor) \
V(MipsClz) \
V(MipsCtz) \
V(MipsPopcnt) \
V(MipsLsa) \
V(MipsShl) \
V(MipsShr) \
V(MipsSar) \
V(MipsShlPair) \
V(MipsShrPair) \
V(MipsSarPair) \
V(MipsExt) \
V(MipsIns) \
V(MipsRor) \
V(MipsMov) \
V(MipsTst) \
V(MipsCmp) \
V(MipsCmpS) \
V(MipsAddS) \
V(MipsSubS) \
V(MipsMulS) \
V(MipsDivS) \
V(MipsAbsS) \
V(MipsSqrtS) \
V(MipsMaxS) \
V(MipsMinS) \
V(MipsCmpD) \
V(MipsAddD) \
V(MipsSubD) \
V(MipsMulD) \
V(MipsDivD) \
V(MipsModD) \
V(MipsAbsD) \
V(MipsSqrtD) \
V(MipsMaxD) \
V(MipsMinD) \
V(MipsNegS) \
V(MipsNegD) \
V(MipsAddPair) \
V(MipsSubPair) \
V(MipsMulPair) \
V(MipsMaddS) \
V(MipsMaddD) \
V(MipsMsubS) \
V(MipsMsubD) \
V(MipsFloat32RoundDown) \
V(MipsFloat32RoundTruncate) \
V(MipsFloat32RoundUp) \
V(MipsFloat32RoundTiesEven) \
V(MipsFloat64RoundDown) \
V(MipsFloat64RoundTruncate) \
V(MipsFloat64RoundUp) \
V(MipsFloat64RoundTiesEven) \
V(MipsCvtSD) \
V(MipsCvtDS) \
V(MipsTruncWD) \
V(MipsRoundWD) \
V(MipsFloorWD) \
V(MipsCeilWD) \
V(MipsTruncWS) \
V(MipsRoundWS) \
V(MipsFloorWS) \
V(MipsCeilWS) \
V(MipsTruncUwD) \
V(MipsTruncUwS) \
V(MipsCvtDW) \
V(MipsCvtDUw) \
V(MipsCvtSW) \
V(MipsCvtSUw) \
V(MipsLb) \
V(MipsLbu) \
V(MipsSb) \
V(MipsLh) \
V(MipsUlh) \
V(MipsLhu) \
V(MipsUlhu) \
V(MipsSh) \
V(MipsUsh) \
V(MipsLw) \
V(MipsUlw) \
V(MipsSw) \
V(MipsUsw) \
V(MipsLwc1) \
V(MipsUlwc1) \
V(MipsSwc1) \
V(MipsUswc1) \
V(MipsLdc1) \
V(MipsUldc1) \
V(MipsSdc1) \
V(MipsUsdc1) \
V(MipsFloat64ExtractLowWord32) \
V(MipsFloat64ExtractHighWord32) \
V(MipsFloat64InsertLowWord32) \
V(MipsFloat64InsertHighWord32) \
V(MipsFloat64SilenceNaN) \
V(MipsFloat32Max) \
V(MipsFloat64Max) \
V(MipsFloat32Min) \
V(MipsFloat64Min) \
V(MipsPush) \
V(MipsPeek) \
V(MipsStoreToStackSlot) \
V(MipsByteSwap32) \
V(MipsStackClaim) \
V(MipsSeb) \
V(MipsSeh) \
V(MipsSync) \
V(MipsS128Zero) \
V(MipsI32x4Splat) \
V(MipsI32x4ExtractLane) \
V(MipsI32x4ReplaceLane) \
V(MipsI32x4Add) \
V(MipsI32x4Sub) \
V(MipsF64x2Abs) \
V(MipsF64x2Neg) \
V(MipsF64x2Sqrt) \
V(MipsF64x2Add) \
V(MipsF64x2Sub) \
V(MipsF64x2Mul) \
V(MipsF64x2Div) \
V(MipsF64x2Min) \
V(MipsF64x2Max) \
V(MipsF64x2Eq) \
V(MipsF64x2Ne) \
V(MipsF64x2Lt) \
V(MipsF64x2Le) \
V(MipsF64x2Pmin) \
V(MipsF64x2Pmax) \
V(MipsF64x2Ceil) \
V(MipsF64x2Floor) \
V(MipsF64x2Trunc) \
V(MipsF64x2NearestInt) \
V(MipsF64x2ConvertLowI32x4S) \
V(MipsF64x2ConvertLowI32x4U) \
V(MipsF64x2PromoteLowF32x4) \
V(MipsI64x2Add) \
V(MipsI64x2Sub) \
V(MipsI64x2Mul) \
V(MipsI64x2Neg) \
V(MipsI64x2Shl) \
V(MipsI64x2ShrS) \
V(MipsI64x2ShrU) \
V(MipsI64x2BitMask) \
V(MipsI64x2Eq) \
V(MipsI64x2Ne) \
V(MipsI64x2GtS) \
V(MipsI64x2GeS) \
V(MipsI64x2Abs) \
V(MipsI64x2SConvertI32x4Low) \
V(MipsI64x2SConvertI32x4High) \
V(MipsI64x2UConvertI32x4Low) \
V(MipsI64x2UConvertI32x4High) \
V(MipsI64x2ExtMulLowI32x4S) \
V(MipsI64x2ExtMulHighI32x4S) \
V(MipsI64x2ExtMulLowI32x4U) \
V(MipsI64x2ExtMulHighI32x4U) \
V(MipsF32x4Splat) \
V(MipsF32x4ExtractLane) \
V(MipsF32x4ReplaceLane) \
V(MipsF32x4SConvertI32x4) \
V(MipsF32x4UConvertI32x4) \
V(MipsF32x4DemoteF64x2Zero) \
V(MipsI32x4Mul) \
V(MipsI32x4MaxS) \
V(MipsI32x4MinS) \
V(MipsI32x4Eq) \
V(MipsI32x4Ne) \
V(MipsI32x4Shl) \
V(MipsI32x4ShrS) \
V(MipsI32x4ShrU) \
V(MipsI32x4MaxU) \
V(MipsI32x4MinU) \
V(MipsF64x2Splat) \
V(MipsF64x2ExtractLane) \
V(MipsF64x2ReplaceLane) \
V(MipsF32x4Abs) \
V(MipsF32x4Neg) \
V(MipsF32x4Sqrt) \
V(MipsF32x4Add) \
V(MipsF32x4Sub) \
V(MipsF32x4Mul) \
V(MipsF32x4Div) \
V(MipsF32x4Max) \
V(MipsF32x4Min) \
V(MipsF32x4Eq) \
V(MipsF32x4Ne) \
V(MipsF32x4Lt) \
V(MipsF32x4Le) \
V(MipsF32x4Pmin) \
V(MipsF32x4Pmax) \
V(MipsF32x4Ceil) \
V(MipsF32x4Floor) \
V(MipsF32x4Trunc) \
V(MipsF32x4NearestInt) \
V(MipsI32x4SConvertF32x4) \
V(MipsI32x4UConvertF32x4) \
V(MipsI32x4Neg) \
V(MipsI32x4GtS) \
V(MipsI32x4GeS) \
V(MipsI32x4GtU) \
V(MipsI32x4GeU) \
V(MipsI32x4Abs) \
V(MipsI32x4BitMask) \
V(MipsI32x4DotI16x8S) \
V(MipsI32x4ExtMulLowI16x8S) \
V(MipsI32x4ExtMulHighI16x8S) \
V(MipsI32x4ExtMulLowI16x8U) \
V(MipsI32x4ExtMulHighI16x8U) \
V(MipsI32x4TruncSatF64x2SZero) \
V(MipsI32x4TruncSatF64x2UZero) \
V(MipsI32x4ExtAddPairwiseI16x8S) \
V(MipsI32x4ExtAddPairwiseI16x8U) \
V(MipsI16x8Splat) \
V(MipsI16x8ExtractLaneU) \
V(MipsI16x8ExtractLaneS) \
V(MipsI16x8ReplaceLane) \
V(MipsI16x8Neg) \
V(MipsI16x8Shl) \
V(MipsI16x8ShrS) \
V(MipsI16x8ShrU) \
V(MipsI16x8Add) \
V(MipsI16x8AddSatS) \
V(MipsI16x8Sub) \
V(MipsI16x8SubSatS) \
V(MipsI16x8Mul) \
V(MipsI16x8MaxS) \
V(MipsI16x8MinS) \
V(MipsI16x8Eq) \
V(MipsI16x8Ne) \
V(MipsI16x8GtS) \
V(MipsI16x8GeS) \
V(MipsI16x8AddSatU) \
V(MipsI16x8SubSatU) \
V(MipsI16x8MaxU) \
V(MipsI16x8MinU) \
V(MipsI16x8GtU) \
V(MipsI16x8GeU) \
V(MipsI16x8RoundingAverageU) \
V(MipsI16x8Abs) \
V(MipsI16x8BitMask) \
V(MipsI16x8Q15MulRSatS) \
V(MipsI16x8ExtMulLowI8x16S) \
V(MipsI16x8ExtMulHighI8x16S) \
V(MipsI16x8ExtMulLowI8x16U) \
V(MipsI16x8ExtMulHighI8x16U) \
V(MipsI16x8ExtAddPairwiseI8x16S) \
V(MipsI16x8ExtAddPairwiseI8x16U) \
V(MipsI8x16Splat) \
V(MipsI8x16ExtractLaneU) \
V(MipsI8x16ExtractLaneS) \
V(MipsI8x16ReplaceLane) \
V(MipsI8x16Neg) \
V(MipsI8x16Shl) \
V(MipsI8x16ShrS) \
V(MipsI8x16Add) \
V(MipsI8x16AddSatS) \
V(MipsI8x16Sub) \
V(MipsI8x16SubSatS) \
V(MipsI8x16MaxS) \
V(MipsI8x16MinS) \
V(MipsI8x16Eq) \
V(MipsI8x16Ne) \
V(MipsI8x16GtS) \
V(MipsI8x16GeS) \
V(MipsI8x16ShrU) \
V(MipsI8x16AddSatU) \
V(MipsI8x16SubSatU) \
V(MipsI8x16MaxU) \
V(MipsI8x16MinU) \
V(MipsI8x16GtU) \
V(MipsI8x16GeU) \
V(MipsI8x16RoundingAverageU) \
V(MipsI8x16Abs) \
V(MipsI8x16Popcnt) \
V(MipsI8x16BitMask) \
V(MipsS128And) \
V(MipsS128Or) \
V(MipsS128Xor) \
V(MipsS128Not) \
V(MipsS128Select) \
V(MipsS128AndNot) \
V(MipsI64x2AllTrue) \
V(MipsI32x4AllTrue) \
V(MipsI16x8AllTrue) \
V(MipsI8x16AllTrue) \
V(MipsV128AnyTrue) \
V(MipsS32x4InterleaveRight) \
V(MipsS32x4InterleaveLeft) \
V(MipsS32x4PackEven) \
V(MipsS32x4PackOdd) \
V(MipsS32x4InterleaveEven) \
V(MipsS32x4InterleaveOdd) \
V(MipsS32x4Shuffle) \
V(MipsS16x8InterleaveRight) \
V(MipsS16x8InterleaveLeft) \
V(MipsS16x8PackEven) \
V(MipsS16x8PackOdd) \
V(MipsS16x8InterleaveEven) \
V(MipsS16x8InterleaveOdd) \
V(MipsS16x4Reverse) \
V(MipsS16x2Reverse) \
V(MipsS8x16InterleaveRight) \
V(MipsS8x16InterleaveLeft) \
V(MipsS8x16PackEven) \
V(MipsS8x16PackOdd) \
V(MipsS8x16InterleaveEven) \
V(MipsS8x16InterleaveOdd) \
V(MipsI8x16Shuffle) \
V(MipsI8x16Swizzle) \
V(MipsS8x16Concat) \
V(MipsS8x8Reverse) \
V(MipsS8x4Reverse) \
V(MipsS8x2Reverse) \
V(MipsS128Load8Splat) \
V(MipsS128Load16Splat) \
V(MipsS128Load32Splat) \
V(MipsS128Load64Splat) \
V(MipsS128Load8x8S) \
V(MipsS128Load8x8U) \
V(MipsS128Load16x4S) \
V(MipsS128Load16x4U) \
V(MipsS128Load32x2S) \
V(MipsS128Load32x2U) \
V(MipsMsaLd) \
V(MipsMsaSt) \
V(MipsI32x4SConvertI16x8Low) \
V(MipsI32x4SConvertI16x8High) \
V(MipsI32x4UConvertI16x8Low) \
V(MipsI32x4UConvertI16x8High) \
V(MipsI16x8SConvertI8x16Low) \
V(MipsI16x8SConvertI8x16High) \
V(MipsI16x8SConvertI32x4) \
V(MipsI16x8UConvertI32x4) \
V(MipsI16x8UConvertI8x16Low) \
V(MipsI16x8UConvertI8x16High) \
V(MipsI8x16SConvertI16x8) \
V(MipsI8x16UConvertI16x8) \
V(MipsWord32AtomicPairLoad) \
V(MipsWord32AtomicPairStore) \
V(MipsWord32AtomicPairAdd) \
V(MipsWord32AtomicPairSub) \
V(MipsWord32AtomicPairAnd) \
V(MipsWord32AtomicPairOr) \
V(MipsWord32AtomicPairXor) \
V(MipsWord32AtomicPairExchange) \
V(MipsWord32AtomicPairCompareExchange)
// Addressing modes represent the "shape" of inputs to an instruction.
// Many instructions support multiple addressing modes. Addressing modes
// are encoded into the InstructionCode of the instruction and tell the
// code generator after register allocation which assembler method to call.
//
// We use the following local notation for addressing modes:
//
// R = register
// O = register or stack slot
// D = double register
// I = immediate (handle, external, int32)
// MRI = [register + immediate]
// MRR = [register + register]
// TODO(plind): Add the new r6 address modes.
#define TARGET_ADDRESSING_MODE_LIST(V) \
V(MRI) /* [%r0 + K] */ \
V(MRR) /* [%r0 + %r1] */
} // namespace compiler
} // namespace internal
} // namespace v8
#endif // V8_COMPILER_BACKEND_MIPS_INSTRUCTION_CODES_MIPS_H_

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -65,15 +65,6 @@ namespace {
#define CALLEE_SAVE_FP_REGISTERS d8, d9, d10, d11, d12, d13, d14, d15
#elif V8_TARGET_ARCH_MIPS
// ===========================================================================
// == mips ===================================================================
// ===========================================================================
#define STACK_SHADOW_WORDS 4
#define PARAM_REGISTERS a0, a1, a2, a3
#define CALLEE_SAVE_REGISTERS s0, s1, s2, s3, s4, s5, s6, s7
#define CALLEE_SAVE_FP_REGISTERS f20, f22, f24, f26, f28, f30
#elif V8_TARGET_ARCH_MIPS64
// ===========================================================================
// == mips64 =================================================================

View File

@ -1,34 +0,0 @@
// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/deoptimizer/deoptimizer.h"
namespace v8 {
namespace internal {
const int Deoptimizer::kEagerDeoptExitSize = 3 * kInstrSize;
const int Deoptimizer::kLazyDeoptExitSize = 3 * kInstrSize;
Float32 RegisterValues::GetFloatRegister(unsigned n) const {
return Float32::FromBits(
static_cast<uint32_t>(double_registers_[n].get_bits()));
}
void FrameDescription::SetCallerPc(unsigned offset, intptr_t value) {
SetFrameSlot(offset, value);
}
void FrameDescription::SetCallerFp(unsigned offset, intptr_t value) {
SetFrameSlot(offset, value);
}
void FrameDescription::SetCallerConstantPool(unsigned offset, intptr_t value) {
// No embedded constant pool support.
UNREACHABLE();
}
void FrameDescription::SetPc(intptr_t pc) { pc_ = pc; }
} // namespace internal
} // namespace v8

File diff suppressed because it is too large Load Diff

View File

@ -1,14 +0,0 @@
// Copyright 2020 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/diagnostics/unwinder.h"
namespace v8 {
struct RegisterState;
void GetCalleeSavedRegistersFromEntryFrame(void* fp,
RegisterState* register_state) {}
} // namespace v8

View File

@ -85,7 +85,6 @@ class LinuxPerfJitLogger : public CodeEventLogger {
static const uint32_t kElfMachIA32 = 3;
static const uint32_t kElfMachX64 = 62;
static const uint32_t kElfMachARM = 40;
static const uint32_t kElfMachMIPS = 8;
static const uint32_t kElfMachMIPS64 = 8;
static const uint32_t kElfMachLOONG64 = 258;
static const uint32_t kElfMachARM64 = 183;
@ -100,8 +99,6 @@ class LinuxPerfJitLogger : public CodeEventLogger {
return kElfMachX64;
#elif V8_TARGET_ARCH_ARM
return kElfMachARM;
#elif V8_TARGET_ARCH_MIPS
return kElfMachMIPS;
#elif V8_TARGET_ARCH_MIPS64
return kElfMachMIPS64;
#elif V8_TARGET_ARCH_LOONG64

View File

@ -18,8 +18,6 @@
#include "src/codegen/x64/register-x64.h"
#elif V8_HOST_ARCH_LOONG64 && V8_TARGET_ARCH_LOONG64
#include "src/codegen/loong64/register-loong64.h"
#elif V8_HOST_ARCH_MIPS && V8_TARGET_ARCH_MIPS
#include "src/codegen/mips/register-mips.h"
#elif V8_HOST_ARCH_MIPS64 && V8_TARGET_ARCH_MIPS64
#include "src/codegen/mips64/register-mips64.h"
#endif
@ -52,9 +50,6 @@ namespace internal {
#elif V8_HOST_ARCH_LOONG64 && V8_TARGET_ARCH_LOONG64
#define CLOBBER_REGISTER(R) __asm__ volatile("movgr2fr.d $" #R ",$zero" :::);
#elif V8_HOST_ARCH_MIPS && V8_TARGET_ARCH_MIPS
#define CLOBBER_USE_REGISTER(R) __asm__ volatile("mtc1 $zero,$" #R :::);
#elif V8_HOST_ARCH_MIPS64 && V8_TARGET_ARCH_MIPS64
#define CLOBBER_USE_REGISTER(R) __asm__ volatile("dmtc1 $zero,$" #R :::);

View File

@ -416,8 +416,6 @@ inline static int FrameSlotToFPOffset(int slot) {
#include "src/execution/arm/frame-constants-arm.h"
#elif V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_PPC64
#include "src/execution/ppc/frame-constants-ppc.h"
#elif V8_TARGET_ARCH_MIPS
#include "src/execution/mips/frame-constants-mips.h"
#elif V8_TARGET_ARCH_MIPS64
#include "src/execution/mips64/frame-constants-mips64.h"
#elif V8_TARGET_ARCH_LOONG64

View File

@ -1,32 +0,0 @@
// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_MIPS
#include "src/execution/mips/frame-constants-mips.h"
#include "src/codegen/mips/assembler-mips-inl.h"
#include "src/execution/frame-constants.h"
#include "src/execution/frames.h"
namespace v8 {
namespace internal {
Register JavaScriptFrame::fp_register() { return v8::internal::fp; }
Register JavaScriptFrame::context_register() { return cp; }
Register JavaScriptFrame::constant_pool_pointer_register() { UNREACHABLE(); }
int UnoptimizedFrameConstants::RegisterStackSlotCount(int register_count) {
return register_count;
}
int BuiltinContinuationFrameConstants::PaddingSlotCount(int register_count) {
USE(register_count);
return 0;
}
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_MIPS

View File

@ -1,84 +0,0 @@
// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_EXECUTION_MIPS_FRAME_CONSTANTS_MIPS_H_
#define V8_EXECUTION_MIPS_FRAME_CONSTANTS_MIPS_H_
#include "src/base/bits.h"
#include "src/base/macros.h"
#include "src/codegen/register.h"
#include "src/execution/frame-constants.h"
namespace v8 {
namespace internal {
class EntryFrameConstants : public AllStatic {
public:
// This is the offset to where JSEntry pushes the current value of
// Isolate::c_entry_fp onto the stack.
static constexpr int kCallerFPOffset = -3 * kSystemPointerSize;
// Stack offsets for arguments passed to JSEntry.
static constexpr int kArgcOffset = +0 * kSystemPointerSize;
static constexpr int kArgvOffset = +1 * kSystemPointerSize;
};
class WasmCompileLazyFrameConstants : public TypedFrameConstants {
public:
static constexpr int kNumberOfSavedGpParamRegs = 3;
static constexpr int kNumberOfSavedFpParamRegs = 7;
static constexpr int kNumberOfSavedAllParamRegs = 10;
// FP-relative.
// See Generate_WasmCompileLazy in builtins-mips.cc.
static constexpr int kWasmInstanceOffset =
TYPED_FRAME_PUSHED_VALUE_OFFSET(kNumberOfSavedAllParamRegs);
static constexpr int kFixedFrameSizeFromFp =
TypedFrameConstants::kFixedFrameSizeFromFp +
kNumberOfSavedGpParamRegs * kPointerSize +
kNumberOfSavedFpParamRegs * kDoubleSize;
};
// Frame constructed by the {WasmDebugBreak} builtin.
// After pushing the frame type marker, the builtin pushes all Liftoff cache
// registers (see liftoff-assembler-defs.h).
class WasmDebugBreakFrameConstants : public TypedFrameConstants {
public:
// {v0, v1, a0, a1, a2, a3, t0, t1, t2, t3, t4, t5, t6, s7}
static constexpr RegList kPushedGpRegs = {v0, v1, a0, a1, a2, a3, t0,
t1, t2, t3, t4, t5, t6, s7};
// {f0, f2, f4, f6, f8, f10, f12, f14, f16, f18, f20, f22, f24}
static constexpr DoubleRegList kPushedFpRegs = {
f0, f2, f4, f6, f8, f10, f12, f14, f16, f18, f20, f22, f24};
static constexpr int kNumPushedGpRegisters = kPushedGpRegs.Count();
static constexpr int kNumPushedFpRegisters = kPushedFpRegs.Count();
static constexpr int kLastPushedGpRegisterOffset =
-kFixedFrameSizeFromFp - kNumPushedGpRegisters * kSystemPointerSize;
static constexpr int kLastPushedFpRegisterOffset =
kLastPushedGpRegisterOffset - kNumPushedFpRegisters * kDoubleSize;
// Offsets are fp-relative.
static int GetPushedGpRegisterOffset(int reg_code) {
DCHECK_NE(0, kPushedGpRegs.bits() & (1 << reg_code));
uint32_t lower_regs =
kPushedGpRegs.bits() & ((uint32_t{1} << reg_code) - 1);
return kLastPushedGpRegisterOffset +
base::bits::CountPopulation(lower_regs) * kSystemPointerSize;
}
static int GetPushedFpRegisterOffset(int reg_code) {
DCHECK_NE(0, kPushedFpRegs.bits() & (1 << reg_code));
uint32_t lower_regs =
kPushedFpRegs.bits() & ((uint32_t{1} << reg_code) - 1);
return kLastPushedFpRegisterOffset +
base::bits::CountPopulation(lower_regs) * kDoubleSize;
}
};
} // namespace internal
} // namespace v8
#endif // V8_EXECUTION_MIPS_FRAME_CONSTANTS_MIPS_H_

File diff suppressed because it is too large Load Diff

View File

@ -1,719 +0,0 @@
// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Declares a Simulator for MIPS instructions if we are not generating a native
// MIPS binary. This Simulator allows us to run and debug MIPS code generation
// on regular desktop machines.
// V8 calls into generated code via the GeneratedCode wrapper,
// which will start execution in the Simulator or forwards to the real entry
// on a MIPS HW platform.
#ifndef V8_EXECUTION_MIPS_SIMULATOR_MIPS_H_
#define V8_EXECUTION_MIPS_SIMULATOR_MIPS_H_
// globals.h defines USE_SIMULATOR.
#include "src/common/globals.h"
template <typename T>
int Compare(const T& a, const T& b) {
if (a == b)
return 0;
else if (a < b)
return -1;
else
return 1;
}
// Returns the negative absolute value of its argument.
template <typename T,
typename = typename std::enable_if<std::is_signed<T>::value>::type>
T Nabs(T a) {
return a < 0 ? a : -a;
}
#if defined(USE_SIMULATOR)
// Running with a simulator.
#include "src/base/hashmap.h"
#include "src/base/strings.h"
#include "src/codegen/assembler.h"
#include "src/codegen/mips/constants-mips.h"
#include "src/execution/simulator-base.h"
#include "src/utils/allocation.h"
namespace v8 {
namespace internal {
// -----------------------------------------------------------------------------
// Utility functions
class CachePage {
public:
static const int LINE_VALID = 0;
static const int LINE_INVALID = 1;
static const int kPageShift = 12;
static const int kPageSize = 1 << kPageShift;
static const int kPageMask = kPageSize - 1;
static const int kLineShift = 2; // The cache line is only 4 bytes right now.
static const int kLineLength = 1 << kLineShift;
static const int kLineMask = kLineLength - 1;
CachePage() { memset(&validity_map_, LINE_INVALID, sizeof(validity_map_)); }
char* ValidityByte(int offset) {
return &validity_map_[offset >> kLineShift];
}
char* CachedData(int offset) { return &data_[offset]; }
private:
char data_[kPageSize]; // The cached data.
static const int kValidityMapSize = kPageSize >> kLineShift;
char validity_map_[kValidityMapSize]; // One byte per line.
};
class SimInstructionBase : public InstructionBase {
public:
Type InstructionType() const { return type_; }
inline Instruction* instr() const { return instr_; }
inline int32_t operand() const { return operand_; }
protected:
SimInstructionBase() : operand_(-1), instr_(nullptr), type_(kUnsupported) {}
explicit SimInstructionBase(Instruction* instr) {}
int32_t operand_;
Instruction* instr_;
Type type_;
private:
DISALLOW_ASSIGN(SimInstructionBase);
};
class SimInstruction : public InstructionGetters<SimInstructionBase> {
public:
SimInstruction() {}
explicit SimInstruction(Instruction* instr) { *this = instr; }
SimInstruction& operator=(Instruction* instr) {
operand_ = *reinterpret_cast<const int32_t*>(instr);
instr_ = instr;
type_ = InstructionBase::InstructionType();
DCHECK(reinterpret_cast<void*>(&operand_) == this);
return *this;
}
};
class Simulator : public SimulatorBase {
public:
friend class MipsDebugger;
// Registers are declared in order. See SMRL chapter 2.
enum Register {
no_reg = -1,
zero_reg = 0,
at,
v0,
v1,
a0,
a1,
a2,
a3,
t0,
t1,
t2,
t3,
t4,
t5,
t6,
t7,
s0,
s1,
s2,
s3,
s4,
s5,
s6,
s7,
t8,
t9,
k0,
k1,
gp,
sp,
s8,
ra,
// LO, HI, and pc.
LO,
HI,
pc, // pc must be the last register.
kNumSimuRegisters,
// aliases
fp = s8
};
// Coprocessor registers.
// Generated code will always use doubles. So we will only use even registers.
enum FPURegister {
f0,
f1,
f2,
f3,
f4,
f5,
f6,
f7,
f8,
f9,
f10,
f11,
f12,
f13,
f14,
f15, // f12 and f14 are arguments FPURegisters.
f16,
f17,
f18,
f19,
f20,
f21,
f22,
f23,
f24,
f25,
f26,
f27,
f28,
f29,
f30,
f31,
kNumFPURegisters
};
// MSA registers
enum MSARegister {
w0,
w1,
w2,
w3,
w4,
w5,
w6,
w7,
w8,
w9,
w10,
w11,
w12,
w13,
w14,
w15,
w16,
w17,
w18,
w19,
w20,
w21,
w22,
w23,
w24,
w25,
w26,
w27,
w28,
w29,
w30,
w31,
kNumMSARegisters
};
explicit Simulator(Isolate* isolate);
~Simulator();
// The currently executing Simulator instance. Potentially there can be one
// for each native thread.
V8_EXPORT_PRIVATE static Simulator* current(v8::internal::Isolate* isolate);
// Accessors for register state. Reading the pc value adheres to the MIPS
// architecture specification and is off by a 8 from the currently executing
// instruction.
void set_register(int reg, int32_t value);
void set_dw_register(int dreg, const int* dbl);
int32_t get_register(int reg) const;
double get_double_from_register_pair(int reg);
// Same for FPURegisters.
void set_fpu_register(int fpureg, int64_t value);
void set_fpu_register_word(int fpureg, int32_t value);
void set_fpu_register_hi_word(int fpureg, int32_t value);
void set_fpu_register_float(int fpureg, float value);
void set_fpu_register_double(int fpureg, double value);
void set_fpu_register_invalid_result64(float original, float rounded);
void set_fpu_register_invalid_result(float original, float rounded);
void set_fpu_register_word_invalid_result(float original, float rounded);
void set_fpu_register_invalid_result64(double original, double rounded);
void set_fpu_register_invalid_result(double original, double rounded);
void set_fpu_register_word_invalid_result(double original, double rounded);
int64_t get_fpu_register(int fpureg) const;
int32_t get_fpu_register_word(int fpureg) const;
int32_t get_fpu_register_signed_word(int fpureg) const;
int32_t get_fpu_register_hi_word(int fpureg) const;
float get_fpu_register_float(int fpureg) const;
double get_fpu_register_double(int fpureg) const;
template <typename T>
void get_msa_register(int wreg, T* value);
template <typename T>
void set_msa_register(int wreg, const T* value);
void set_fcsr_bit(uint32_t cc, bool value);
bool test_fcsr_bit(uint32_t cc);
void clear_fcsr_cause();
void set_fcsr_rounding_mode(FPURoundingMode mode);
void set_msacsr_rounding_mode(FPURoundingMode mode);
unsigned int get_fcsr_rounding_mode();
unsigned int get_msacsr_rounding_mode();
bool set_fcsr_round_error(double original, double rounded);
bool set_fcsr_round_error(float original, float rounded);
bool set_fcsr_round64_error(double original, double rounded);
bool set_fcsr_round64_error(float original, float rounded);
void round_according_to_fcsr(double toRound, double* rounded,
int32_t* rounded_int, double fs);
void round_according_to_fcsr(float toRound, float* rounded,
int32_t* rounded_int, float fs);
template <typename Tfp, typename Tint>
void round_according_to_msacsr(Tfp toRound, Tfp* rounded, Tint* rounded_int);
void round64_according_to_fcsr(double toRound, double* rounded,
int64_t* rounded_int, double fs);
void round64_according_to_fcsr(float toRound, float* rounded,
int64_t* rounded_int, float fs);
// Special case of set_register and get_register to access the raw PC value.
void set_pc(int32_t value);
int32_t get_pc() const;
Address get_sp() const { return static_cast<Address>(get_register(sp)); }
// Accessor to the internal simulator stack area.
uintptr_t StackLimit(uintptr_t c_limit) const;
// Executes MIPS instructions until the PC reaches end_sim_pc.
void Execute();
template <typename Return, typename... Args>
Return Call(Address entry, Args... args) {
return VariadicCall<Return>(this, &Simulator::CallImpl, entry, args...);
}
// Alternative: call a 2-argument double function.
double CallFP(Address entry, double d0, double d1);
// Push an address onto the JS stack.
uintptr_t PushAddress(uintptr_t address);
// Pop an address from the JS stack.
uintptr_t PopAddress();
// Debugger input.
void set_last_debugger_input(char* input);
char* last_debugger_input() { return last_debugger_input_; }
// Redirection support.
static void SetRedirectInstruction(Instruction* instruction);
// ICache checking.
static bool ICacheMatch(void* one, void* two);
static void FlushICache(base::CustomMatcherHashMap* i_cache, void* start,
size_t size);
// Returns true if pc register contains one of the 'special_values' defined
// below (bad_ra, end_sim_pc).
bool has_bad_pc() const;
private:
enum special_values {
// Known bad pc value to ensure that the simulator does not execute
// without being properly setup.
bad_ra = -1,
// A pc value used to signal the simulator to stop execution. Generally
// the ra is set to this value on transition from native C code to
// simulated execution, so that the simulator can "return" to the native
// C code.
end_sim_pc = -2,
// Unpredictable value.
Unpredictable = 0xbadbeaf
};
V8_EXPORT_PRIVATE intptr_t CallImpl(Address entry, int argument_count,
const intptr_t* arguments);
// Unsupported instructions use Format to print an error and stop execution.
void Format(Instruction* instr, const char* format);
// Helpers for data value tracing.
enum TraceType { BYTE, HALF, WORD, DWORD, FLOAT, DOUBLE, FLOAT_DOUBLE };
// MSA Data Format
enum MSADataFormat { MSA_VECT = 0, MSA_BYTE, MSA_HALF, MSA_WORD, MSA_DWORD };
union msa_reg_t {
int8_t b[kMSALanesByte];
uint8_t ub[kMSALanesByte];
int16_t h[kMSALanesHalf];
uint16_t uh[kMSALanesHalf];
int32_t w[kMSALanesWord];
uint32_t uw[kMSALanesWord];
int64_t d[kMSALanesDword];
uint64_t ud[kMSALanesDword];
};
// Read and write memory.
inline uint32_t ReadBU(int32_t addr);
inline int32_t ReadB(int32_t addr);
inline void WriteB(int32_t addr, uint8_t value);
inline void WriteB(int32_t addr, int8_t value);
inline uint16_t ReadHU(int32_t addr, Instruction* instr);
inline int16_t ReadH(int32_t addr, Instruction* instr);
// Note: Overloaded on the sign of the value.
inline void WriteH(int32_t addr, uint16_t value, Instruction* instr);
inline void WriteH(int32_t addr, int16_t value, Instruction* instr);
inline int ReadW(int32_t addr, Instruction* instr, TraceType t = WORD);
inline void WriteW(int32_t addr, int value, Instruction* instr);
void WriteConditionalW(int32_t addr, int32_t value, Instruction* instr,
int32_t rt_reg);
inline double ReadD(int32_t addr, Instruction* instr);
inline void WriteD(int32_t addr, double value, Instruction* instr);
template <typename T>
T ReadMem(int32_t addr, Instruction* instr);
template <typename T>
void WriteMem(int32_t addr, T value, Instruction* instr);
void TraceRegWr(int32_t value, TraceType t = WORD);
void TraceRegWr(int64_t value, TraceType t = DWORD);
template <typename T>
void TraceMSARegWr(T* value, TraceType t);
template <typename T>
void TraceMSARegWr(T* value);
void TraceMemWr(int32_t addr, int32_t value, TraceType t = WORD);
void TraceMemRd(int32_t addr, int32_t value, TraceType t = WORD);
void TraceMemWr(int32_t addr, int64_t value, TraceType t = DWORD);
void TraceMemRd(int32_t addr, int64_t value, TraceType t = DWORD);
template <typename T>
void TraceMemRd(int32_t addr, T value);
template <typename T>
void TraceMemWr(int32_t addr, T value);
base::EmbeddedVector<char, 128> trace_buf_;
// Operations depending on endianness.
// Get Double Higher / Lower word.
inline int32_t GetDoubleHIW(double* addr);
inline int32_t GetDoubleLOW(double* addr);
// Set Double Higher / Lower word.
inline int32_t SetDoubleHIW(double* addr);
inline int32_t SetDoubleLOW(double* addr);
SimInstruction instr_;
// Executing is handled based on the instruction type.
void DecodeTypeRegister();
// Functions called from DecodeTypeRegister.
void DecodeTypeRegisterCOP1();
void DecodeTypeRegisterCOP1X();
void DecodeTypeRegisterSPECIAL();
void DecodeTypeRegisterSPECIAL2();
void DecodeTypeRegisterSPECIAL3();
// Called from DecodeTypeRegisterCOP1.
void DecodeTypeRegisterSRsType();
void DecodeTypeRegisterDRsType();
void DecodeTypeRegisterWRsType();
void DecodeTypeRegisterLRsType();
int DecodeMsaDataFormat();
void DecodeTypeMsaI8();
void DecodeTypeMsaI5();
void DecodeTypeMsaI10();
void DecodeTypeMsaELM();
void DecodeTypeMsaBIT();
void DecodeTypeMsaMI10();
void DecodeTypeMsa3R();
void DecodeTypeMsa3RF();
void DecodeTypeMsaVec();
void DecodeTypeMsa2R();
void DecodeTypeMsa2RF();
template <typename T>
T MsaI5InstrHelper(uint32_t opcode, T ws, int32_t i5);
template <typename T>
T MsaBitInstrHelper(uint32_t opcode, T wd, T ws, int32_t m);
template <typename T>
T Msa3RInstrHelper(uint32_t opcode, T wd, T ws, T wt);
inline int32_t rs_reg() const { return instr_.RsValue(); }
inline int32_t rs() const { return get_register(rs_reg()); }
inline uint32_t rs_u() const {
return static_cast<uint32_t>(get_register(rs_reg()));
}
inline int32_t rt_reg() const { return instr_.RtValue(); }
inline int32_t rt() const { return get_register(rt_reg()); }
inline uint32_t rt_u() const {
return static_cast<uint32_t>(get_register(rt_reg()));
}
inline int32_t rd_reg() const { return instr_.RdValue(); }
inline int32_t fr_reg() const { return instr_.FrValue(); }
inline int32_t fs_reg() const { return instr_.FsValue(); }
inline int32_t ft_reg() const { return instr_.FtValue(); }
inline int32_t fd_reg() const { return instr_.FdValue(); }
inline int32_t sa() const { return instr_.SaValue(); }
inline int32_t lsa_sa() const { return instr_.LsaSaValue(); }
inline int32_t ws_reg() const { return instr_.WsValue(); }
inline int32_t wt_reg() const { return instr_.WtValue(); }
inline int32_t wd_reg() const { return instr_.WdValue(); }
inline void SetResult(int32_t rd_reg, int32_t alu_out) {
set_register(rd_reg, alu_out);
TraceRegWr(alu_out);
}
inline void SetFPUWordResult(int32_t fd_reg, int32_t alu_out) {
set_fpu_register_word(fd_reg, alu_out);
TraceRegWr(get_fpu_register_word(fd_reg));
}
inline void SetFPUResult(int32_t fd_reg, int64_t alu_out) {
set_fpu_register(fd_reg, alu_out);
TraceRegWr(get_fpu_register(fd_reg));
}
inline void SetFPUFloatResult(int32_t fd_reg, float alu_out) {
set_fpu_register_float(fd_reg, alu_out);
TraceRegWr(get_fpu_register_word(fd_reg), FLOAT);
}
inline void SetFPUDoubleResult(int32_t fd_reg, double alu_out) {
set_fpu_register_double(fd_reg, alu_out);
TraceRegWr(get_fpu_register(fd_reg), DOUBLE);
}
void DecodeTypeImmediate();
void DecodeTypeJump();
// Used for breakpoints and traps.
void SoftwareInterrupt();
// Compact branch guard.
void CheckForbiddenSlot(int32_t current_pc) {
Instruction* instr_after_compact_branch =
reinterpret_cast<Instruction*>(current_pc + kInstrSize);
if (instr_after_compact_branch->IsForbiddenAfterBranch()) {
FATAL(
"Error: Unexpected instruction 0x%08x immediately after a "
"compact branch instruction.",
*reinterpret_cast<uint32_t*>(instr_after_compact_branch));
}
}
// Stop helper functions.
bool IsWatchpoint(uint32_t code);
void PrintWatchpoint(uint32_t code);
void HandleStop(uint32_t code, Instruction* instr);
bool IsStopInstruction(Instruction* instr);
bool IsEnabledStop(uint32_t code);
void EnableStop(uint32_t code);
void DisableStop(uint32_t code);
void IncreaseStopCounter(uint32_t code);
void PrintStopInfo(uint32_t code);
// Executes one instruction.
void InstructionDecode(Instruction* instr);
// Execute one instruction placed in a branch delay slot.
void BranchDelayInstructionDecode(Instruction* instr) {
if (instr->InstructionBits() == nopInstr) {
// Short-cut generic nop instructions. They are always valid and they
// never change the simulator state.
return;
}
if (instr->IsForbiddenInBranchDelay()) {
FATAL("Eror:Unexpected %i opcode in a branch delay slot.",
instr->OpcodeValue());
}
InstructionDecode(instr);
base::SNPrintF(trace_buf_, " ");
}
// ICache.
static void CheckICache(base::CustomMatcherHashMap* i_cache,
Instruction* instr);
static void FlushOnePage(base::CustomMatcherHashMap* i_cache, intptr_t start,
int size);
static CachePage* GetCachePage(base::CustomMatcherHashMap* i_cache,
void* page);
enum Exception {
none,
kIntegerOverflow,
kIntegerUnderflow,
kDivideByZero,
kNumExceptions
};
// Exceptions.
void SignalException(Exception e);
// Handle arguments and return value for runtime FP functions.
void GetFpArgs(double* x, double* y, int32_t* z);
void SetFpResult(const double& result);
void CallInternal(Address entry);
// Architecture state.
// Registers.
int32_t registers_[kNumSimuRegisters];
// Coprocessor Registers.
// Note: FP32 mode uses only the lower 32-bit part of each element,
// the upper 32-bit is unpredictable.
// Note: FPUregisters_[] array is increased to 64 * 8B = 32 * 16B in
// order to support MSA registers
int64_t FPUregisters_[kNumFPURegisters * 2];
// FPU control register.
uint32_t FCSR_;
// MSA control register.
uint32_t MSACSR_;
// Simulator support.
size_t stack_size_;
char* stack_;
bool pc_modified_;
uint64_t icount_;
int break_count_;
// Debugger input.
char* last_debugger_input_;
v8::internal::Isolate* isolate_;
// Registered breakpoints.
Instruction* break_pc_;
Instr break_instr_;
// Stop is disabled if bit 31 is set.
static const uint32_t kStopDisabledBit = 1 << 31;
// A stop is enabled, meaning the simulator will stop when meeting the
// instruction, if bit 31 of watched_stops_[code].count is unset.
// The value watched_stops_[code].count & ~(1 << 31) indicates how many times
// the breakpoint was hit or gone through.
struct StopCountAndDesc {
uint32_t count;
char* desc;
};
StopCountAndDesc watched_stops_[kMaxStopCode + 1];
// Synchronization primitives.
enum class MonitorAccess {
Open,
RMW,
};
enum class TransactionSize {
None = 0,
Word = 4,
};
// The least-significant bits of the address are ignored. The number of bits
// is implementation-defined, between 3 and minimum page size.
static const uintptr_t kExclusiveTaggedAddrMask = ~((1 << 3) - 1);
class LocalMonitor {
public:
LocalMonitor();
// These functions manage the state machine for the local monitor, but do
// not actually perform loads and stores. NotifyStoreConditional only
// returns true if the store conditional is allowed; the global monitor will
// still have to be checked to see whether the memory should be updated.
void NotifyLoad();
void NotifyLoadLinked(uintptr_t addr, TransactionSize size);
void NotifyStore();
bool NotifyStoreConditional(uintptr_t addr, TransactionSize size);
private:
void Clear();
MonitorAccess access_state_;
uintptr_t tagged_addr_;
TransactionSize size_;
};
class GlobalMonitor {
public:
class LinkedAddress {
public:
LinkedAddress();
private:
friend class GlobalMonitor;
// These functions manage the state machine for the global monitor, but do
// not actually perform loads and stores.
void Clear_Locked();
void NotifyLoadLinked_Locked(uintptr_t addr);
void NotifyStore_Locked();
bool NotifyStoreConditional_Locked(uintptr_t addr,
bool is_requesting_thread);
MonitorAccess access_state_;
uintptr_t tagged_addr_;
LinkedAddress* next_;
LinkedAddress* prev_;
// A scd can fail due to background cache evictions. Rather than
// simulating this, we'll just occasionally introduce cases where an
// store conditional fails. This will happen once after every
// kMaxFailureCounter exclusive stores.
static const int kMaxFailureCounter = 5;
int failure_counter_;
};
// Exposed so it can be accessed by Simulator::{Read,Write}Ex*.
base::Mutex mutex;
void NotifyLoadLinked_Locked(uintptr_t addr, LinkedAddress* linked_address);
void NotifyStore_Locked(LinkedAddress* linked_address);
bool NotifyStoreConditional_Locked(uintptr_t addr,
LinkedAddress* linked_address);
// Called when the simulator is destroyed.
void RemoveLinkedAddress(LinkedAddress* linked_address);
static GlobalMonitor* Get();
private:
// Private constructor. Call {GlobalMonitor::Get()} to get the singleton.
GlobalMonitor() = default;
friend class base::LeakyObject<GlobalMonitor>;
bool IsProcessorInLinkedList_Locked(LinkedAddress* linked_address) const;
void PrependProcessor_Locked(LinkedAddress* linked_address);
LinkedAddress* head_ = nullptr;
};
LocalMonitor local_monitor_;
GlobalMonitor::LinkedAddress global_monitor_thread_;
};
} // namespace internal
} // namespace v8
#endif // defined(USE_SIMULATOR)
#endif // V8_EXECUTION_MIPS_SIMULATOR_MIPS_H_

View File

@ -146,7 +146,6 @@ class SimulatorBase {
// The following are trapping instructions used for various architectures:
// - V8_TARGET_ARCH_ARM: svc (Supervisor Call)
// - V8_TARGET_ARCH_ARM64: svc (Supervisor Call)
// - V8_TARGET_ARCH_MIPS: swi (software-interrupt)
// - V8_TARGET_ARCH_MIPS64: swi (software-interrupt)
// - V8_TARGET_ARCH_PPC: svc (Supervisor Call)
// - V8_TARGET_ARCH_PPC64: svc (Supervisor Call)

View File

@ -20,8 +20,6 @@
#include "src/execution/arm/simulator-arm.h"
#elif V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_PPC64
#include "src/execution/ppc/simulator-ppc.h"
#elif V8_TARGET_ARCH_MIPS
#include "src/execution/mips/simulator-mips.h"
#elif V8_TARGET_ARCH_MIPS64
#include "src/execution/mips64/simulator-mips64.h"
#elif V8_TARGET_ARCH_LOONG64

View File

@ -1777,7 +1777,7 @@ DEFINE_IMPLICATION(allow_natives_for_differential_fuzzing, allow_natives_syntax)
DEFINE_IMPLICATION(allow_natives_for_differential_fuzzing, fuzzing)
DEFINE_BOOL(parse_only, false, "only parse the sources")
// simulator-arm.cc, simulator-arm64.cc and simulator-mips.cc
// simulator-arm.cc and simulator-arm64.cc.
#ifdef USE_SIMULATOR
DEFINE_BOOL(trace_sim, false, "Trace simulator execution")
DEFINE_BOOL(debug_sim, false, "Enable debugging the simulator")
@ -1795,7 +1795,7 @@ DEFINE_INT(sim_stack_alignment, 8,
"Stack alingment in bytes in simulator (4 or 8, 8 is default)")
#endif
DEFINE_INT(sim_stack_size, 2 * MB / KB,
"Stack size of the ARM64, MIPS, MIPS64 and PPC64 simulator "
"Stack size of the ARM64, MIPS64 and PPC64 simulator "
"in kBytes (default is 2 MB)")
DEFINE_BOOL(trace_sim_messages, false,
"Trace simulator debug messages. Implied by --trace-sim.")

View File

@ -1,48 +0,0 @@
// Copyright 2020 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Push all callee-saved registers to get them on the stack for conservative
// stack scanning.
//
// See asm/x64/push_registers_clang.cc for why the function is not generated
// using clang.
//
// Do not depend on V8_TARGET_OS_* defines as some embedders may override the
// GN toolchain (e.g. ChromeOS) and not provide them.
asm(".set noreorder \n"
".global PushAllRegistersAndIterateStack \n"
".type PushAllRegistersAndIterateStack, %function \n"
".hidden PushAllRegistersAndIterateStack \n"
"PushAllRegistersAndIterateStack: \n"
// Push all callee-saved registers and save return address.
" addiu $sp, $sp, -48 \n"
" sw $ra, 44($sp) \n"
" sw $s8, 40($sp) \n"
" sw $sp, 36($sp) \n"
" sw $gp, 32($sp) \n"
" sw $s7, 28($sp) \n"
" sw $s6, 24($sp) \n"
" sw $s5, 20($sp) \n"
" sw $s4, 16($sp) \n"
" sw $s3, 12($sp) \n"
" sw $s2, 8($sp) \n"
" sw $s1, 4($sp) \n"
" sw $s0, 0($sp) \n"
// Maintain frame pointer.
" move $s8, $sp \n"
// Pass 1st parameter (a0) unchanged (Stack*).
// Pass 2nd parameter (a1) unchanged (StackVisitor*).
// Save 3rd parameter (a2; IterateStackCallback).
" move $a3, $a2 \n"
// Call the callback.
" jalr $a3 \n"
// Delay slot: Pass 3rd parameter as sp (stack pointer).
" move $a2, $sp \n"
// Load return address.
" lw $ra, 44($sp) \n"
// Restore frame pointer.
" lw $s8, 40($sp) \n"
" jr $ra \n"
// Delay slot: Discard all callee-saved registers.
" addiu $sp, $sp, 48 \n");

View File

@ -1457,8 +1457,7 @@ void InterpreterAssembler::TraceBytecodeDispatch(TNode<WordT> target_bytecode) {
// static
bool InterpreterAssembler::TargetSupportsUnalignedAccess() {
#if V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_RISCV64 || \
V8_TARGET_ARCH_RISCV32
#if V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_RISCV64 || V8_TARGET_ARCH_RISCV32
return false;
#elif V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_S390 || \
V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_PPC || \

View File

@ -422,10 +422,6 @@ void SignalHandler::FillRegisterState(void* context, RegisterState* state) {
state->fp = reinterpret_cast<void*>(mcontext.regs[29]);
// LR is an alias for x30.
state->lr = reinterpret_cast<void*>(mcontext.regs[30]);
#elif V8_HOST_ARCH_MIPS
state->pc = reinterpret_cast<void*>(mcontext.pc);
state->sp = reinterpret_cast<void*>(mcontext.gregs[29]);
state->fp = reinterpret_cast<void*>(mcontext.gregs[30]);
#elif V8_HOST_ARCH_MIPS64
state->pc = reinterpret_cast<void*>(mcontext.pc);
state->sp = reinterpret_cast<void*>(mcontext.gregs[29]);

View File

@ -692,8 +692,6 @@ void LowLevelLogger::LogCodeInfo() {
const char arch[] = "ppc";
#elif V8_TARGET_ARCH_PPC64
const char arch[] = "ppc64";
#elif V8_TARGET_ARCH_MIPS
const char arch[] = "mips";
#elif V8_TARGET_ARCH_LOONG64
const char arch[] = "loong64";
#elif V8_TARGET_ARCH_ARM64

View File

@ -382,10 +382,9 @@ bool Code::IsIsolateIndependent(Isolate* isolate) {
defined(V8_TARGET_ARCH_MIPS64)
return RelocIterator(*this, kModeMask).done();
#elif defined(V8_TARGET_ARCH_X64) || defined(V8_TARGET_ARCH_ARM64) || \
defined(V8_TARGET_ARCH_ARM) || defined(V8_TARGET_ARCH_MIPS) || \
defined(V8_TARGET_ARCH_S390) || defined(V8_TARGET_ARCH_IA32) || \
defined(V8_TARGET_ARCH_RISCV64) || defined(V8_TARGET_ARCH_LOONG64) || \
defined(V8_TARGET_ARCH_RISCV32)
defined(V8_TARGET_ARCH_ARM) || defined(V8_TARGET_ARCH_S390) || \
defined(V8_TARGET_ARCH_IA32) || defined(V8_TARGET_ARCH_RISCV64) || \
defined(V8_TARGET_ARCH_LOONG64) || defined(V8_TARGET_ARCH_RISCV32)
for (RelocIterator it(*this, kModeMask); !it.done(); it.next()) {
// On these platforms we emit relative builtin-to-builtin
// jumps for isolate independent builtins in the snapshot. They are later

View File

@ -106,7 +106,7 @@ bool SimulatorHelper::FillRegisters(Isolate* isolate,
state->sp = reinterpret_cast<void*>(simulator->sp());
state->fp = reinterpret_cast<void*>(simulator->fp());
state->lr = reinterpret_cast<void*>(simulator->lr());
#elif V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_LOONG64
#elif V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_LOONG64
if (!simulator->has_bad_pc()) {
state->pc = reinterpret_cast<void*>(simulator->get_pc());
}

File diff suppressed because it is too large Load Diff

View File

@ -1,231 +0,0 @@
// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_REGEXP_MIPS_REGEXP_MACRO_ASSEMBLER_MIPS_H_
#define V8_REGEXP_MIPS_REGEXP_MACRO_ASSEMBLER_MIPS_H_
#include "src/codegen/macro-assembler.h"
#include "src/regexp/regexp-macro-assembler.h"
namespace v8 {
namespace internal {
class V8_EXPORT_PRIVATE RegExpMacroAssemblerMIPS
: public NativeRegExpMacroAssembler {
public:
RegExpMacroAssemblerMIPS(Isolate* isolate, Zone* zone, Mode mode,
int registers_to_save);
~RegExpMacroAssemblerMIPS() override;
int stack_limit_slack() override;
void AdvanceCurrentPosition(int by) override;
void AdvanceRegister(int reg, int by) override;
void Backtrack() override;
void Bind(Label* label) override;
void CheckAtStart(int cp_offset, Label* on_at_start) override;
void CheckCharacter(uint32_t c, Label* on_equal) override;
void CheckCharacterAfterAnd(uint32_t c, uint32_t mask,
Label* on_equal) override;
void CheckCharacterGT(base::uc16 limit, Label* on_greater) override;
void CheckCharacterLT(base::uc16 limit, Label* on_less) override;
// A "greedy loop" is a loop that is both greedy and with a simple
// body. It has a particularly simple implementation.
void CheckGreedyLoop(Label* on_tos_equals_current_position) override;
void CheckNotAtStart(int cp_offset, Label* on_not_at_start) override;
void CheckNotBackReference(int start_reg, bool read_backward,
Label* on_no_match) override;
void CheckNotBackReferenceIgnoreCase(int start_reg, bool read_backward,
bool unicode,
Label* on_no_match) override;
void CheckNotCharacter(uint32_t c, Label* on_not_equal) override;
void CheckNotCharacterAfterAnd(uint32_t c, uint32_t mask,
Label* on_not_equal) override;
void CheckNotCharacterAfterMinusAnd(base::uc16 c, base::uc16 minus,
base::uc16 mask,
Label* on_not_equal) override;
void CheckCharacterInRange(base::uc16 from, base::uc16 to,
Label* on_in_range) override;
void CheckCharacterNotInRange(base::uc16 from, base::uc16 to,
Label* on_not_in_range) override;
bool CheckCharacterInRangeArray(const ZoneList<CharacterRange>* ranges,
Label* on_in_range) override;
bool CheckCharacterNotInRangeArray(const ZoneList<CharacterRange>* ranges,
Label* on_not_in_range) override;
void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set) override;
// Checks whether the given offset from the current position is before
// the end of the string.
void CheckPosition(int cp_offset, Label* on_outside_input) override;
bool CheckSpecialCharacterClass(StandardCharacterSet type,
Label* on_no_match) override;
void Fail() override;
Handle<HeapObject> GetCode(Handle<String> source) override;
void GoTo(Label* label) override;
void IfRegisterGE(int reg, int comparand, Label* if_ge) override;
void IfRegisterLT(int reg, int comparand, Label* if_lt) override;
void IfRegisterEqPos(int reg, Label* if_eq) override;
IrregexpImplementation Implementation() override;
void LoadCurrentCharacterUnchecked(int cp_offset,
int character_count) override;
void PopCurrentPosition() override;
void PopRegister(int register_index) override;
void PushBacktrack(Label* label) override;
void PushCurrentPosition() override;
void PushRegister(int register_index,
StackCheckFlag check_stack_limit) override;
void ReadCurrentPositionFromRegister(int reg) override;
void ReadStackPointerFromRegister(int reg) override;
void SetCurrentPositionFromEnd(int by) override;
void SetRegister(int register_index, int to) override;
bool Succeed() override;
void WriteCurrentPositionToRegister(int reg, int cp_offset) override;
void ClearRegisters(int reg_from, int reg_to) override;
void WriteStackPointerToRegister(int reg) override;
bool CanReadUnaligned() const override;
// Called from RegExp if the stack-guard is triggered.
// If the code object is relocated, the return address is fixed before
// returning.
// {raw_code} is an Address because this is called via ExternalReference.
static int CheckStackGuardState(Address* return_address, Address raw_code,
Address re_frame);
private:
// Offsets from frame_pointer() of function parameters and stored registers.
static const int kFramePointer = 0;
// Above the frame pointer - Stored registers and stack passed parameters.
static const int kStoredRegisters = kFramePointer;
// Return address (stored from link register, read into pc on return).
static const int kReturnAddress = kStoredRegisters + 9 * kPointerSize;
// Stack frame header.
static const int kStackFrameHeader = kReturnAddress;
// Stack parameters placed by caller.
static const int kRegisterOutput = kStackFrameHeader + 20;
static const int kNumOutputRegisters = kRegisterOutput + kPointerSize;
static const int kDirectCall = kNumOutputRegisters + kPointerSize;
static const int kIsolate = kDirectCall + kPointerSize;
// Below the frame pointer.
// Register parameters stored by setup code.
static const int kInputEnd = kFramePointer - kPointerSize;
static const int kInputStart = kInputEnd - kPointerSize;
static const int kStartIndex = kInputStart - kPointerSize;
static const int kInputString = kStartIndex - kPointerSize;
// When adding local variables remember to push space for them in
// the frame in GetCode.
static const int kSuccessfulCaptures = kInputString - kPointerSize;
static const int kStringStartMinusOne = kSuccessfulCaptures - kPointerSize;
static const int kBacktrackCount = kStringStartMinusOne - kSystemPointerSize;
// Stores the initial value of the regexp stack pointer in a
// position-independent representation (in case the regexp stack grows and
// thus moves).
static const int kRegExpStackBasePointer =
kBacktrackCount - kSystemPointerSize;
// First register address. Following registers are below it on the stack.
static const int kRegisterZero = kRegExpStackBasePointer - kSystemPointerSize;
// Initial size of code buffer.
static const int kRegExpCodeSize = 1024;
void PushCallerSavedRegisters();
void PopCallerSavedRegisters();
// Check whether preemption has been requested.
void CheckPreemption();
// Check whether we are exceeding the stack limit on the backtrack stack.
void CheckStackLimit();
// Generate a call to CheckStackGuardState.
void CallCheckStackGuardState(Register scratch);
void CallIsCharacterInRangeArray(const ZoneList<CharacterRange>* ranges);
// The ebp-relative location of a regexp register.
MemOperand register_location(int register_index);
// Register holding the current input position as negative offset from
// the end of the string.
static constexpr Register current_input_offset() { return s2; }
// The register containing the current character after LoadCurrentCharacter.
static constexpr Register current_character() { return s5; }
// Register holding address of the end of the input string.
static constexpr Register end_of_input_address() { return s6; }
// Register holding the frame address. Local variables, parameters and
// regexp registers are addressed relative to this.
static constexpr Register frame_pointer() { return fp; }
// The register containing the backtrack stack top. Provides a meaningful
// name to the register.
static constexpr Register backtrack_stackpointer() { return s7; }
// Register holding pointer to the current code object.
static constexpr Register code_pointer() { return s1; }
// Byte size of chars in the string to match (decided by the Mode argument).
inline int char_size() const { return static_cast<int>(mode_); }
// Equivalent to a conditional branch to the label, unless the label
// is nullptr, in which case it is a conditional Backtrack.
void BranchOrBacktrack(Label* to,
Condition condition,
Register rs,
const Operand& rt);
// Call and return internally in the generated code in a way that
// is GC-safe (i.e., doesn't leave absolute code addresses on the stack)
inline void SafeCall(Label* to,
Condition cond,
Register rs,
const Operand& rt);
inline void SafeReturn();
inline void SafeCallTarget(Label* name);
// Pushes the value of a register on the backtrack stack. Decrements the
// stack pointer by a word size and stores the register's value there.
inline void Push(Register source);
// Pops a value from the backtrack stack. Reads the word at the stack pointer
// and increments it by a word size.
inline void Pop(Register target);
void LoadRegExpStackPointerFromMemory(Register dst);
void StoreRegExpStackPointerToMemory(Register src, Register scratch);
void PushRegExpBasePointer(Register stack_pointer, Register scratch);
void PopRegExpBasePointer(Register stack_pointer_out, Register scratch);
Isolate* isolate() const { return masm_->isolate(); }
const std::unique_ptr<MacroAssembler> masm_;
const NoRootArrayScope no_root_array_scope_;
// Which mode to generate code for (Latin1 or UC16).
const Mode mode_;
// One greater than maximal register index actually used.
int num_registers_;
// Number of registers to output at the end (the saved registers
// are always 0..num_saved_registers_-1).
const int num_saved_registers_;
// Labels used internally.
Label entry_label_;
Label start_label_;
Label success_label_;
Label backtrack_label_;
Label exit_label_;
Label check_preempt_label_;
Label stack_overflow_label_;
Label internal_failure_label_;
Label fallback_label_;
};
} // namespace internal
} // namespace v8
#endif // V8_REGEXP_MIPS_REGEXP_MACRO_ASSEMBLER_MIPS_H_

View File

@ -17,8 +17,6 @@
#include "src/regexp/arm/regexp-macro-assembler-arm.h"
#elif V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_PPC64
#include "src/regexp/ppc/regexp-macro-assembler-ppc.h"
#elif V8_TARGET_ARCH_MIPS
#include "src/regexp/mips/regexp-macro-assembler-mips.h"
#elif V8_TARGET_ARCH_MIPS64
#include "src/regexp/mips64/regexp-macro-assembler-mips64.h"
#elif V8_TARGET_ARCH_LOONG64

View File

@ -940,9 +940,6 @@ bool RegExpImpl::Compile(Isolate* isolate, Zone* zone, RegExpCompileData* data,
#elif V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_PPC64
macro_assembler.reset(new RegExpMacroAssemblerPPC(isolate, zone, mode,
output_register_count));
#elif V8_TARGET_ARCH_MIPS
macro_assembler.reset(new RegExpMacroAssemblerMIPS(isolate, zone, mode,
output_register_count));
#elif V8_TARGET_ARCH_MIPS64
macro_assembler.reset(new RegExpMacroAssemblerMIPS(isolate, zone, mode,
output_register_count));

View File

@ -20,9 +20,8 @@ namespace v8 {
namespace internal {
// Other platforms have CSA support, see builtins-sharedarraybuffer-gen.h.
#if V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_PPC64 || \
V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_S390 || V8_TARGET_ARCH_S390X || \
V8_TARGET_ARCH_LOONG64
#if V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_PPC64 || V8_TARGET_ARCH_PPC || \
V8_TARGET_ARCH_S390 || V8_TARGET_ARCH_S390X || V8_TARGET_ARCH_LOONG64
namespace {
@ -611,7 +610,7 @@ RUNTIME_FUNCTION(Runtime_AtomicsOr) { UNREACHABLE(); }
RUNTIME_FUNCTION(Runtime_AtomicsXor) { UNREACHABLE(); }
#endif // V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_PPC64
#endif // V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_PPC64
// || V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_S390 || V8_TARGET_ARCH_S390X
// || V8_TARGET_ARCH_RISCV64 || V8_TARGET_ARCH_LOONG64 ||
// V8_TARGET_ARCH_RISCV32

View File

@ -29,10 +29,10 @@ class Object;
// Used for platforms with embedded constant pools to trigger deserialization
// of objects found in code.
#if defined(V8_TARGET_ARCH_MIPS) || defined(V8_TARGET_ARCH_MIPS64) || \
defined(V8_TARGET_ARCH_PPC) || defined(V8_TARGET_ARCH_S390) || \
defined(V8_TARGET_ARCH_PPC64) || defined(V8_TARGET_ARCH_RISCV32) || \
defined(V8_TARGET_ARCH_RISCV64) || V8_EMBEDDED_CONSTANT_POOL
#if defined(V8_TARGET_ARCH_MIPS64) || defined(V8_TARGET_ARCH_PPC) || \
defined(V8_TARGET_ARCH_S390) || defined(V8_TARGET_ARCH_PPC64) || \
defined(V8_TARGET_ARCH_RISCV32) || defined(V8_TARGET_ARCH_RISCV64) || \
V8_EMBEDDED_CONSTANT_POOL
#define V8_CODE_EMBEDS_OBJECT_POINTER 1
#else
#define V8_CODE_EMBEDS_OBJECT_POINTER 0

View File

@ -224,10 +224,9 @@ void FinalizeEmbeddedCodeTargets(Isolate* isolate, EmbeddedData* blob) {
RelocIterator off_heap_it(blob, code, kRelocMask);
#if defined(V8_TARGET_ARCH_X64) || defined(V8_TARGET_ARCH_ARM64) || \
defined(V8_TARGET_ARCH_ARM) || defined(V8_TARGET_ARCH_MIPS) || \
defined(V8_TARGET_ARCH_IA32) || defined(V8_TARGET_ARCH_S390) || \
defined(V8_TARGET_ARCH_RISCV64) || defined(V8_TARGET_ARCH_LOONG64) || \
defined(V8_TARGET_ARCH_RISCV32)
defined(V8_TARGET_ARCH_ARM) || defined(V8_TARGET_ARCH_IA32) || \
defined(V8_TARGET_ARCH_S390) || defined(V8_TARGET_ARCH_RISCV64) || \
defined(V8_TARGET_ARCH_LOONG64) || defined(V8_TARGET_ARCH_RISCV32)
// On these platforms we emit relative builtin-to-builtin
// jumps for isolate independent builtins in the snapshot. This fixes up the
// relative jumps to the right offsets in the snapshot.

View File

@ -163,8 +163,7 @@ int PlatformEmbeddedFileWriterGeneric::IndentedDataDirective(
DataDirective PlatformEmbeddedFileWriterGeneric::ByteChunkDataDirective()
const {
#if defined(V8_TARGET_ARCH_MIPS) || defined(V8_TARGET_ARCH_MIPS64) || \
defined(V8_TARGET_ARCH_LOONG64)
#if defined(V8_TARGET_ARCH_MIPS64) || defined(V8_TARGET_ARCH_LOONG64)
// MIPS and LOONG64 uses a fixed 4 byte instruction set, using .long
// to prevent any unnecessary padding.
return kLong;

View File

@ -20,7 +20,7 @@ namespace internal {
using Address = uintptr_t;
// ----------------------------------------------------------------------------
// Generated memcpy/memmove for ia32, arm, and mips.
// Generated memcpy/memmove for ia32 and arm.
void init_memcopy_functions();
@ -59,24 +59,6 @@ V8_EXPORT_PRIVATE V8_INLINE void MemMove(void* dest, const void* src,
// For values < 12, the assembler function is slower than the inlined C code.
const int kMinComplexConvertMemCopy = 12;
#elif defined(V8_HOST_ARCH_MIPS)
using MemCopyUint8Function = void (*)(uint8_t* dest, const uint8_t* src,
size_t size);
V8_EXPORT_PRIVATE extern MemCopyUint8Function memcopy_uint8_function;
V8_INLINE void MemCopyUint8Wrapper(uint8_t* dest, const uint8_t* src,
size_t chars) {
memcpy(dest, src, chars);
}
// For values < 16, the assembler function is slower than the inlined C code.
const size_t kMinComplexMemCopy = 16;
V8_INLINE void MemCopy(void* dest, const void* src, size_t size) {
(*memcopy_uint8_function)(reinterpret_cast<uint8_t*>(dest),
reinterpret_cast<const uint8_t*>(src), size);
}
V8_EXPORT_PRIVATE V8_INLINE void MemMove(void* dest, const void* src,
size_t size) {
memmove(dest, src, size);
}
#else
// Copy memory area to disjoint memory area.
inline void MemCopy(void* dest, const void* src, size_t size) {

View File

@ -1869,8 +1869,6 @@ bool CheckCompatibleStackSlotTypes(ValueKind a, ValueKind b);
#include "src/wasm/baseline/arm/liftoff-assembler-arm.h"
#elif V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_PPC64
#include "src/wasm/baseline/ppc/liftoff-assembler-ppc.h"
#elif V8_TARGET_ARCH_MIPS
#include "src/wasm/baseline/mips/liftoff-assembler-mips.h"
#elif V8_TARGET_ARCH_MIPS64
#include "src/wasm/baseline/mips64/liftoff-assembler-mips64.h"
#elif V8_TARGET_ARCH_LOONG64

View File

@ -320,8 +320,8 @@ void CheckBailoutAllowed(LiftoffBailoutReason reason, const char* detail,
}
// Some externally maintained architectures don't fully implement Liftoff yet.
#if V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_S390X || \
V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_PPC64 || V8_TARGET_ARCH_LOONG64
#if V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_S390X || V8_TARGET_ARCH_PPC || \
V8_TARGET_ARCH_PPC64 || V8_TARGET_ARCH_LOONG64
return;
#endif

File diff suppressed because it is too large Load Diff

View File

@ -246,7 +246,7 @@ void JumpTableAssembler::NopBytes(int bytes) {
}
}
#elif V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64
#elif V8_TARGET_ARCH_MIPS64
void JumpTableAssembler::EmitLazyCompileJumpSlot(uint32_t func_index,
Address lazy_compile_target) {
int start = pc_offset();

View File

@ -61,15 +61,6 @@ constexpr Register kGpReturnRegisters[] = {x0, x1};
constexpr DoubleRegister kFpParamRegisters[] = {d0, d1, d2, d3, d4, d5, d6, d7};
constexpr DoubleRegister kFpReturnRegisters[] = {d0, d1};
#elif V8_TARGET_ARCH_MIPS
// ===========================================================================
// == mips ===================================================================
// ===========================================================================
constexpr Register kGpParamRegisters[] = {a0, a2, a3};
constexpr Register kGpReturnRegisters[] = {v0, v1};
constexpr DoubleRegister kFpParamRegisters[] = {f2, f4, f6, f8, f10, f12, f14};
constexpr DoubleRegister kFpReturnRegisters[] = {f2, f4};
#elif V8_TARGET_ARCH_MIPS64
// ===========================================================================
// == mips64 =================================================================

View File

@ -380,9 +380,9 @@ void NativeModuleSerializer::WriteCode(const WasmCode* code, Writer* writer) {
writer->WriteVector(code->reloc_info());
writer->WriteVector(code->source_positions());
writer->WriteVector(code->protected_instructions_data());
#if V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_ARM || \
V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_PPC64 || V8_TARGET_ARCH_S390X || \
V8_TARGET_ARCH_RISCV32 || V8_TARGET_ARCH_RISCV64
#if V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_PPC || \
V8_TARGET_ARCH_PPC64 || V8_TARGET_ARCH_S390X || V8_TARGET_ARCH_RISCV32 || \
V8_TARGET_ARCH_RISCV64
// On platforms that don't support misaligned word stores, copy to an aligned
// buffer if necessary so we can relocate the serialized code.
std::unique_ptr<byte[]> aligned_buffer;

View File

@ -232,18 +232,6 @@ v8_source_set("cctest_sources") {
"test-assembler-ia32.cc",
"test-log-stack-tracer.cc",
]
} else if (v8_current_cpu == "mips") {
sources += [ ### gcmole(arch:mips) ###
"test-assembler-mips.cc",
"test-disasm-mips.cc",
"test-macro-assembler-mips.cc",
]
} else if (v8_current_cpu == "mipsel") {
sources += [ ### gcmole(arch:mipsel) ###
"test-assembler-mips.cc",
"test-disasm-mips.cc",
"test-macro-assembler-mips.cc",
]
} else if (v8_current_cpu == "mips64") {
sources += [ ### gcmole(arch:mips64) ###
"test-assembler-mips64.cc",
@ -375,8 +363,7 @@ v8_source_set("cctest_sources") {
if (v8_current_cpu == "ppc" || v8_current_cpu == "ppc64" ||
v8_current_cpu == "arm" || v8_current_cpu == "arm64" ||
v8_current_cpu == "s390" || v8_current_cpu == "s390x" ||
v8_current_cpu == "mips" || v8_current_cpu == "mips64" ||
v8_current_cpu == "mipsel" || v8_current_cpu == "mipsel64" ||
v8_current_cpu == "mips64" || v8_current_cpu == "mips64el" ||
v8_current_cpu == "riscv64" || v8_current_cpu == "loong64" ||
v8_current_cpu == "riscv32") {
# Disable fmadd/fmsub so that expected results match generated code in

View File

@ -773,7 +773,7 @@ class SimulatorHelper {
state->sp = reinterpret_cast<void*>(simulator_->sp());
state->fp = reinterpret_cast<void*>(simulator_->fp());
state->lr = reinterpret_cast<void*>(simulator_->lr());
#elif V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64
#elif V8_TARGET_ARCH_MIPS64
state->pc = reinterpret_cast<void*>(simulator_->get_pc());
state->sp = reinterpret_cast<void*>(
simulator_->get_register(v8::internal::Simulator::sp));

View File

@ -318,28 +318,6 @@
'test-serialize/StartupSerializerTwiceRunScript': [SKIP],
}], # 'arch == arm'
##############################################################################
['arch == mipsel or arch == mips', {
# TODO(mips-team): Improve code-size on large RegExp's.
'test-heap/TestSizeOfRegExpCode': [SKIP],
# BUG(1075): Unresolved crashes on MIPS also.
'test-serialize/StartupSerializerOnce': [SKIP],
'test-serialize/StartupSerializerTwice': [SKIP],
'test-serialize/StartupSerializerOnceRunScript': [SKIP],
'test-serialize/StartupSerializerTwiceRunScript': [SKIP],
}], # 'arch == mipsel or arch == mips'
##############################################################################
['arch == mips', {
# Too slow with TF.
'test-api/ExternalArrays': [PASS, NO_VARIANTS],
# TODO(mips-team): Currently fails on mips board.
'test-api/Threading5': [SKIP],
'test-api/Threading6': [SKIP],
}], # 'arch == mips'
##############################################################################
['arch == mips64', {
# TODO(mips-team): Currently fails on mips64 board.
@ -365,21 +343,21 @@
}], # 'arch == mips64el or arch == mips64'
##############################################################################
['(arch == mipsel or arch == mips64el or arch == mips or arch == mips64) and not simd_mips', {
['(arch == mips64el or arch == mips64) and not simd_mips', {
# Skip tests that fail on MIPS architectures which don't support SIMD,
# because lowering mechanism doesn't work properly
'test-run-wasm-simd/RunWasm_ReductionTest4_compiled': [SKIP],
'test-run-wasm-simd/RunWasm_ReductionTest8_compiled': [SKIP],
'test-run-wasm-simd/RunWasm_ReductionTest16_compiled': [SKIP],
'test-run-wasm-simd-liftoff/*': [SKIP],
}], # '(arch == mipsel or arch == mips64el or arch == mips or arch == mips64) and not simd_mips'
}], # '(arch == mips64el or arch == mips64) and not simd_mips'
['(arch == mipsel or arch == mips64el or arch == mips or arch == mips64) and not simd_mips', {
['(arch == mips64el or arch == mips64) and not simd_mips', {
'test-gc/RunWasmLiftoff_RefTrivialCasts': [SKIP],
'test-gc/RunWasmTurbofan_RefTrivialCasts': [SKIP],
'test-run-wasm/RunWasmLiftoff_Select_s128_parameters': [SKIP],
'test-run-wasm/RunWasmTurbofan_Select_s128_parameters': [SKIP],
}], # '(arch == mipsel or arch == mips64el or arch == mips or arch == mips64) and not simd_mips'
}], # '(arch == mips64el or arch == mips64) and not simd_mips'
##############################################################################
['mips_arch_variant == r6', {

View File

@ -4428,8 +4428,7 @@ TEST(RunTruncateFloat32ToInt32) {
if (i < upper_bound && i >= lower_bound) {
CHECK_EQ(static_cast<int32_t>(i), m.Call(i));
} else if (i < lower_bound) {
#if (V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64) && !_MIPS_ARCH_MIPS32R6 && \
!_MIPS_ARCH_MIPS64R6
#if V8_TARGET_ARCH_MIPS64 && !_MIPS_ARCH_MIPS64R6
CHECK_EQ(std::numeric_limits<int32_t>::max(), m.Call(i));
#else
CHECK_EQ(std::numeric_limits<int32_t>::min(), m.Call(i));

View File

@ -17038,8 +17038,7 @@ THREADED_TEST(QuietSignalingNaNs) {
} else {
uint64_t stored_bits = DoubleToBits(stored_number);
// Check if quiet nan (bits 51..62 all set).
#if (defined(V8_TARGET_ARCH_MIPS) || defined(V8_TARGET_ARCH_MIPS64)) && \
!defined(_MIPS_ARCH_MIPS64R6) && !defined(_MIPS_ARCH_MIPS32R6) && \
#if (defined(V8_TARGET_ARCH_MIPS64)) && !defined(_MIPS_ARCH_MIPS64R6) && \
!defined(USE_SIMULATOR)
// Most significant fraction bit for quiet nan is set to 0
// on MIPS architecture. Allowed by IEEE-754.
@ -17060,8 +17059,7 @@ THREADED_TEST(QuietSignalingNaNs) {
} else {
uint64_t stored_bits = DoubleToBits(stored_date);
// Check if quiet nan (bits 51..62 all set).
#if (defined(V8_TARGET_ARCH_MIPS) || defined(V8_TARGET_ARCH_MIPS64)) && \
!defined(_MIPS_ARCH_MIPS64R6) && !defined(_MIPS_ARCH_MIPS32R6) && \
#if (defined(V8_TARGET_ARCH_MIPS64)) && !defined(_MIPS_ARCH_MIPS64R6) && \
!defined(USE_SIMULATOR)
// Most significant fraction bit for quiet nan is set to 0
// on MIPS architecture. Allowed by IEEE-754.

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -524,7 +524,7 @@ class SeparateIsolatesLocksNonexclusiveThread : public JoinableThread {
// Run parallel threads that lock and access different isolates in parallel
TEST(SeparateIsolatesLocksNonexclusive) {
i::FLAG_always_turbofan = false;
#if V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_S390
#if V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_S390
const int kNThreads = 50;
#else
const int kNThreads = 100;
@ -609,7 +609,7 @@ class LockerUnlockerThread : public JoinableThread {
// Use unlocker inside of a Locker, multiple threads.
TEST(LockerUnlocker) {
i::FLAG_always_turbofan = false;
#if V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_S390
#if V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_S390
const int kNThreads = 50;
#else
const int kNThreads = 100;
@ -667,7 +667,7 @@ class LockTwiceAndUnlockThread : public JoinableThread {
// Use Unlocker inside two Lockers.
TEST(LockTwiceAndUnlock) {
i::FLAG_always_turbofan = false;
#if V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_S390
#if V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_S390
const int kNThreads = 50;
#else
const int kNThreads = 100;

File diff suppressed because it is too large Load Diff

View File

@ -133,7 +133,7 @@
##############################################################################
# Tests requiring Sparkplug.
['arch not in (x64, arm64, ia32, arm, mips64el, mipsel, loong64)', {
['arch not in (x64, arm64, ia32, arm, mips64el, loong64)', {
'regress/regress-crbug-1199681': [SKIP],
'debug/regress/regress-crbug-1357554': [SKIP]
}],

View File

@ -69,10 +69,10 @@
}],
################################################################################
['arch == mips64el or arch == mipsel or arch == riscv64 or arch == loong64', {
['arch == mips64el or arch == riscv64 or arch == loong64', {
# Tests that require Simd enabled.
'wasm-trace-memory': [SKIP],
}], # arch == mips64el or arch == mipsel or arch == riscv64 or arch == loong64
}], # arch == mips64el or arch == riscv64 or arch == loong64
##############################################################################
['no_simd_hardware == True', {

View File

@ -157,11 +157,11 @@
'wasm/compare-exchange64-stress': [PASS, SLOW, NO_VARIANTS],
# Very slow on ARM, MIPS, RISCV and LOONG, contains no architecture dependent code.
'unicode-case-overoptimization0': [PASS, NO_VARIANTS, ['arch in (arm, arm64, mipsel, mips64el, mips64, mips, riscv64, riscv32, loong64)', SKIP]],
'unicode-case-overoptimization1': [PASS, NO_VARIANTS, ['arch in (arm, arm64, mipsel, mips64el, mips64, mips, riscv64, riscv32, loong64)', SKIP]],
'regress/regress-3976': [PASS, NO_VARIANTS, ['arch in (arm, arm64, mipsel, mips64el, mips64, mips, riscv64, riscv32, loong64)', SKIP]],
'regress/regress-crbug-482998': [PASS, NO_VARIANTS, ['arch in (arm, arm64, mipsel, mips64el, mips, riscv64, riscv32, loong64)', SKIP]],
'regress/regress-740784': [PASS, NO_VARIANTS, ['arch in (arm, arm64, mipsel, mips64el, mips, riscv64,riscv32, loong64)', SKIP]],
'unicode-case-overoptimization0': [PASS, NO_VARIANTS, ['arch in (arm, arm64, mips64el, mips64, riscv64, riscv32, loong64)', SKIP]],
'unicode-case-overoptimization1': [PASS, NO_VARIANTS, ['arch in (arm, arm64, mips64el, mips64, riscv64, riscv32, loong64)', SKIP]],
'regress/regress-3976': [PASS, NO_VARIANTS, ['arch in (arm, arm64, mips64el, mips64, riscv64, riscv32, loong64)', SKIP]],
'regress/regress-crbug-482998': [PASS, NO_VARIANTS, ['arch in (arm, arm64, mips64el, riscv64, riscv32, loong64)', SKIP]],
'regress/regress-740784': [PASS, NO_VARIANTS, ['arch in (arm, arm64, mips64el, riscv64,riscv32, loong64)', SKIP]],
# TODO(bmeurer): Flaky timeouts (sometimes <1s, sometimes >3m).
'unicodelctest': [PASS, NO_VARIANTS],
@ -256,7 +256,7 @@
##############################################################################
# TODO(ahaas): Port multiple return values to MIPS, S390 and PPC
['arch in (mips, mips64, mipsel, mips64el, s390, s390x, ppc, ppc64)', {
['arch in (mips64, mips64el, s390, s390x, ppc, ppc64)', {
'wasm/multi-value': [SKIP],
}],
@ -480,13 +480,13 @@
##############################################################################
# 32-bit platforms
['arch in (ia32, arm, mips, mipsel, riscv32)', {
['arch in (ia32, arm, riscv32)', {
# Needs >2GB of available contiguous memory.
'wasm/grow-huge-memory': [SKIP],
'wasm/huge-memory': [SKIP],
'wasm/huge-typedarray': [SKIP],
'wasm/bigint-opt': [SKIP],
}], # 'arch in (ia32, arm, mips, mipsel, riscv32)'
}], # 'arch in (ia32, arm, riscv32)'
##############################################################################
['arch == arm64', {
@ -735,60 +735,22 @@
}], # 'arch == arm
##############################################################################
['arch in (mipsel, mips, mips64el, mips64) and not simulator_run', {
['arch in (mips64el, mips64) and not simulator_run', {
# These tests fail occasionally on the buildbots because they consume
# a large amount of memory if executed in parallel. Therefore we
# run only a single instance of these tests
'regress/regress-crbug-514081': [PASS, NO_VARIANTS],
'regress/regress-599414-array-concat-fast-path': [PASS, NO_VARIANTS],
'array-functions-prototype-misc': [PASS, NO_VARIANTS],
}], # 'arch in (mipsel, mips, mips64el, mips64)'
}], # 'arch in (mips64el, mips64)'
##############################################################################
['arch in (mipsel, mips, mips64el, mips64, ppc, ppc64)', {
['arch in (mips64el, mips64, ppc, ppc64)', {
# These tests fail because qNaN and sNaN values are encoded differently on
# MIPS and ARM/x86 architectures
'wasm/float-constant-folding': [SKIP],
}],
##############################################################################
['arch == mipsel or arch == mips', {
# Slow tests which times out in debug mode.
'try': [PASS, ['mode == debug', SKIP]],
'array-constructor': [PASS, ['mode == debug', SKIP]],
# Slow in release mode on MIPS.
'compiler/regress-stacktrace-methods': [PASS, SLOW],
'array-splice': [PASS, SLOW],
# Long running test.
'string-indexof-2': [PASS, SLOW],
# Long running tests. Skipping because having them timeout takes too long on
# the buildbot.
'compiler/alloc-number': [SKIP],
'regress/regress-490': [SKIP],
'regress/regress-create-exception': [SKIP],
'regress/regress-3247124': [SKIP],
# Requires bigger stack size in the Genesis and if stack size is increased,
# the test requires too much time to run. However, the problem test covers
# should be platform-independent.
'regress/regress-1132': [SKIP],
# Currently always deopt on minus zero
'math-floor-of-div-minus-zero': [SKIP],
# Requires too much memory on MIPS.
'regress/regress-779407': [SKIP],
'harmony/bigint/regressions': [SKIP],
# Pre-r6 MIPS32 doesn't have instructions needed to properly handle 64-bit
# atomic instructions.
'wasm/atomics64-stress': [PASS, ['mips_arch_variant != r6', SKIP]],
}], # 'arch == mipsel or arch == mips'
##############################################################################
['arch == mips64el or arch == mips64', {
@ -1325,7 +1287,7 @@
##############################################################################
# Skip Liftoff tests on platforms that do not fully implement Liftoff.
['arch not in (x64, ia32, arm64, arm, s390x, ppc64, mipsel, mips64el, loong64)', {
['arch not in (x64, ia32, arm64, arm, s390x, ppc64, mips64el, loong64)', {
'wasm/liftoff': [SKIP],
'wasm/liftoff-debug': [SKIP],
'wasm/tier-up-testing-flag': [SKIP],
@ -1334,7 +1296,7 @@
'wasm/test-partial-serialization': [SKIP],
'regress/wasm/regress-1248024': [SKIP],
'regress/wasm/regress-1251465': [SKIP],
}], # arch not in (x64, ia32, arm64, arm, s390x, ppc64, mipsel, mips64el, loong64)
}], # arch not in (x64, ia32, arm64, arm, s390x, ppc64, mips64el, loong64)
##############################################################################
['system != linux or sandbox == True', {
@ -1448,13 +1410,13 @@
'regress/wasm/regress-9017': [SKIP],
}], # variant == slow_path
['((arch == mipsel or arch == mips64el or arch == mips or arch == mips64) and not simd_mips) or (arch in [ppc64])', {
['((arch == mips64el or arch == mips64) and not simd_mips) or (arch in [ppc64])', {
# Requires scalar lowering for 64x2 SIMD instructions, which are not
# implemented yet.
# Also skip tests on archs that don't support SIMD and lowering doesn't yet work correctly.
# Condition copied from cctest.status.
'regress/wasm/regress-10831': [SKIP],
}], # ((arch == mipsel or arch == mips64el or arch == mips or arch == mips64) and not simd_mips) or (arch in [ppc64])
}], # ((arch == mips64el or arch == mips64) and not simd_mips) or (arch in [ppc64])
##############################################################################
['variant == stress_sampling', {
@ -1542,7 +1504,7 @@
##############################################################################
# TODO(v8:11421): Port baseline compiler to other architectures.
['arch not in (x64, arm64, ia32, arm, mips64el, mipsel, riscv64, riscv32, loong64, s390x) or (arch == s390x and pointer_compression)', {
['arch not in (x64, arm64, ia32, arm, mips64el, riscv64, riscv32, loong64, s390x) or (arch == s390x and pointer_compression)', {
'baseline/*': [SKIP],
'regress/regress-1242306': [SKIP],
}],

View File

@ -249,7 +249,7 @@
'ecma/Date/15.9.2.2-5': [PASS, FAIL],
'ecma/Date/15.9.2.2-6': [PASS, FAIL],
# 1026139: These date tests fail on arm and mips.
# 1026139: These date tests fail on arm.
# These date tests also fail in a time zone without daylight saving time.
'ecma/Date/15.9.5.29-1': [PASS, FAIL],
'ecma/Date/15.9.5.28-1': [PASS, FAIL],
@ -270,8 +270,8 @@
'ecma/Date/15.9.5.18': [PASS, ['no_i18n == False', FAIL]],
'ecma/Date/15.9.5.22-1': [PASS, ['no_i18n == False', FAIL]],
# 1050186: Arm/MIPS vm is broken; probably unrelated to dates
'ecma/Date/15.9.5.22-2': [PASS, ['no_i18n == False or arch == arm or arch == mipsel or arch == mips', FAIL]],
# 1050186: Arm vm is broken; probably unrelated to dates
'ecma/Date/15.9.5.22-2': [PASS, ['no_i18n == False or arch == arm', FAIL]],
# Flaky test that fails due to what appears to be a bug in the test.
# Occurs depending on current time
@ -959,7 +959,7 @@
}], # 'arch == arm64'
['arch == mipsel or arch == mips64el or arch == mips64', {
['arch == mips64el or arch == mips64', {
# BUG(3251229): Times out when running new crankshaft test script.
'ecma_3/RegExp/regress-311414': [SKIP],
@ -976,36 +976,12 @@
# BUG(1040): This test might time out.
'js1_5/GC/regress-203278-2': [PASS, SLOW, NO_VARIANTS],
}], # 'arch == mipsel or arch == mips64el or arch == mips64'
['arch == mipsel and simulator_run', {
# Crashes due to C stack overflow.
'js1_5/extensions/regress-355497': [SKIP],
}], # 'arch == mipsel and simulator_run'
}], # 'arch == mips64el or arch == mips64'
['arch == mips64el and simulator_run', {
'js1_5/extensions/regress-355497': [FAIL_OK, '--sim-stack-size=512'],
}], # 'arch == mips64el and simulator_run'
['arch == mips', {
# BUG(3251229): Times out when running new crankshaft test script.
'ecma_3/RegExp/regress-311414': [SKIP],
'ecma/Date/15.9.5.8': [SKIP],
'ecma/Date/15.9.5.10-2': [SKIP],
'ecma/Date/15.9.5.11-2': [SKIP],
'ecma/Date/15.9.5.12-2': [SKIP],
'js1_5/Array/regress-99120-02': [SKIP],
'js1_5/extensions/regress-371636': [SKIP],
'js1_5/Regress/regress-203278-1': [SKIP],
'js1_5/Regress/regress-404755': [SKIP],
'js1_5/Regress/regress-451322': [SKIP],
# BUG(1040): This test might time out.
'js1_5/GC/regress-203278-2': [PASS, SLOW, NO_VARIANTS],
}], # 'arch == mips'
['arch == arm and simulator_run', {
#BUG(3837): Crashes due to C stack overflow.

View File

@ -835,7 +835,7 @@
'staging/Temporal/ZonedDateTime/old/withTimezone': [FAIL],
}], # no_i18n == True
['arch == arm or arch == mipsel or arch == mips or arch == arm64 or arch == mips64 or arch == mips64el', {
['arch == arm or arch == arm64 or arch == mips64 or arch == mips64el', {
# Causes stack overflow on simulators due to eager compilation of
# parenthesized function literals. Needs investigation.
@ -848,7 +848,7 @@
'built-ins/decodeURIComponent/S15.1.3.2_A2.5_T1': [SKIP],
'built-ins/encodeURI/S15.1.3.3_A2.3_T1': [SKIP],
'built-ins/encodeURIComponent/S15.1.3.4_A2.3_T1': [SKIP],
}], # 'arch == arm or arch == mipsel or arch == mips or arch == arm64'
}], # 'arch == arm or arch == arm64'
['byteorder == big', {
# Test failures on big endian platforms due to the way the tests
@ -897,7 +897,7 @@
'*': [SKIP],
}], # variant == no_wasm_traps
['variant != default or arch == arm or arch == arm64 or arch == mipsel or arch == mips or arch == mips64 or arch == mips64el', {
['variant != default or arch == arm or arch == arm64 or arch == mips64 or arch == mips64el', {
# These tests take a long time to run
'built-ins/RegExp/property-escapes/generated/*': [SKIP],
}], # variant != default or arch == arm or arch == arm64

View File

@ -607,11 +607,6 @@ v8_source_set("unittests_sources") {
"assembler/turbo-assembler-ia32-unittest.cc",
"compiler/ia32/instruction-selector-ia32-unittest.cc",
]
} else if (v8_current_cpu == "mips" || v8_current_cpu == "mipsel") {
sources += [
"assembler/turbo-assembler-mips-unittest.cc",
"compiler/mips/instruction-selector-mips-unittest.cc",
]
} else if (v8_current_cpu == "mips64" || v8_current_cpu == "mips64el") {
sources += [
"assembler/disasm-mips64-unittest.cc",

View File

@ -1,66 +0,0 @@
// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/codegen/macro-assembler.h"
#include "src/codegen/mips/assembler-mips-inl.h"
#include "src/execution/simulator.h"
#include "test/common/assembler-tester.h"
#include "test/unittests/test-utils.h"
#include "testing/gtest-support.h"
namespace v8 {
namespace internal {
#define __ tasm.
// Test the x64 assembler by compiling some simple functions into
// a buffer and executing them. These tests do not initialize the
// V8 library, create a context, or use any V8 objects.
class TurboAssemblerTest : public TestWithIsolate {};
TEST_F(TurboAssemblerTest, TestHardAbort) {
auto buffer = AllocateAssemblerBuffer();
TurboAssembler tasm(isolate(), AssemblerOptions{}, CodeObjectRequired::kNo,
buffer->CreateView());
__ set_root_array_available(false);
__ set_abort_hard(true);
__ Abort(AbortReason::kNoReason);
CodeDesc desc;
tasm.GetCode(isolate(), &desc);
buffer->MakeExecutable();
// We need an isolate here to execute in the simulator.
auto f = GeneratedCode<void>::FromBuffer(isolate(), buffer->start());
ASSERT_DEATH_IF_SUPPORTED({ f.Call(); }, "abort: no reason");
}
TEST_F(TurboAssemblerTest, TestCheck) {
auto buffer = AllocateAssemblerBuffer();
TurboAssembler tasm(isolate(), AssemblerOptions{}, CodeObjectRequired::kNo,
buffer->CreateView());
__ set_root_array_available(false);
__ set_abort_hard(true);
// Fail if the first parameter (in {a0}) is 17.
__ Check(Condition::ne, AbortReason::kNoReason, a0, Operand(17));
__ Ret();
CodeDesc desc;
tasm.GetCode(isolate(), &desc);
buffer->MakeExecutable();
// We need an isolate here to execute in the simulator.
auto f = GeneratedCode<void, int>::FromBuffer(isolate(), buffer->start());
f.Call(0);
f.Call(18);
ASSERT_DEATH_IF_SUPPORTED({ f.Call(17); }, "abort: no reason");
}
#undef __
} // namespace internal
} // namespace v8

Some files were not shown because too many files have changed in this diff Show More