* Fix regexp benchmark regression where we were doing work to

make standard regexps like \s and . case independent.
* Make use of the fact that the subject string is ASCII only
when making character classes case independent.
* Avoid spending time making large ideogram or punctuation
ranges case independent when there is no case mapping anyway.
Review URL: http://codereview.chromium.org/378024

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@3243 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
This commit is contained in:
erik.corry@gmail.com 2009-11-09 10:01:23 +00:00
parent 493c9f072c
commit b068a9f755
4 changed files with 178 additions and 56 deletions

View File

@ -2432,16 +2432,19 @@ void Trace::AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler) {
}
void TextNode::MakeCaseIndependent() {
void TextNode::MakeCaseIndependent(bool is_ascii) {
int element_count = elms_->length();
for (int i = 0; i < element_count; i++) {
TextElement elm = elms_->at(i);
if (elm.type == TextElement::CHAR_CLASS) {
RegExpCharacterClass* cc = elm.data.u_char_class;
// None of the standard character classses is different in the case
// independent case and it slows us down if we don't know that.
if (cc->is_standard()) continue;
ZoneList<CharacterRange>* ranges = cc->ranges();
int range_count = ranges->length();
for (int j = 0; j < range_count; j++) {
ranges->at(j).AddCaseEquivalents(ranges);
ranges->at(j).AddCaseEquivalents(ranges, is_ascii);
}
}
}
@ -3912,19 +3915,31 @@ void CharacterRange::Split(ZoneList<CharacterRange>* base,
}
void CharacterRange::AddCaseEquivalents(ZoneList<CharacterRange>* ranges) {
static void AddUncanonicals(ZoneList<CharacterRange>* ranges,
int bottom,
int top);
void CharacterRange::AddCaseEquivalents(ZoneList<CharacterRange>* ranges,
bool is_ascii) {
uc16 bottom = from();
uc16 top = to();
if (is_ascii) {
if (bottom > String::kMaxAsciiCharCode) return;
if (top > String::kMaxAsciiCharCode) top = String::kMaxAsciiCharCode;
}
unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
if (IsSingleton()) {
if (top == bottom) {
// If this is a singleton we just expand the one character.
int length = uncanonicalize.get(from(), '\0', chars);
int length = uncanonicalize.get(bottom, '\0', chars);
for (int i = 0; i < length; i++) {
uc32 chr = chars[i];
if (chr != from()) {
if (chr != bottom) {
ranges->Add(CharacterRange::Singleton(chars[i]));
}
}
} else if (from() <= kRangeCanonicalizeMax &&
to() <= kRangeCanonicalizeMax) {
} else if (bottom <= kRangeCanonicalizeMax &&
top <= kRangeCanonicalizeMax) {
// If this is a range we expand the characters block by block,
// expanding contiguous subranges (blocks) one at a time.
// The approach is as follows. For a given start character we
@ -3943,14 +3958,14 @@ void CharacterRange::AddCaseEquivalents(ZoneList<CharacterRange>* ranges) {
// completely contained in a block we do this for all the blocks
// covered by the range.
unibrow::uchar range[unibrow::Ecma262UnCanonicalize::kMaxWidth];
// First, look up the block that contains the 'from' character.
int length = canonrange.get(from(), '\0', range);
// First, look up the block that contains the 'bottom' character.
int length = canonrange.get(bottom, '\0', range);
if (length == 0) {
range[0] = from();
range[0] = bottom;
} else {
ASSERT_EQ(1, length);
}
int pos = from();
int pos = bottom;
// The start of the current block. Note that except for the first
// iteration 'start' is always equal to 'pos'.
int start;
@ -3964,7 +3979,7 @@ void CharacterRange::AddCaseEquivalents(ZoneList<CharacterRange>* ranges) {
// Then we add the ranges one at a time, incrementing the current
// position to be after the last block each time. The position
// always points to the start of a block.
while (pos < to()) {
while (pos < top) {
length = canonrange.get(start, '\0', range);
if (length == 0) {
range[0] = start;
@ -3975,57 +3990,122 @@ void CharacterRange::AddCaseEquivalents(ZoneList<CharacterRange>* ranges) {
// The start point of a block contains the distance to the end
// of the range.
int block_end = start + (range[0] & kPayloadMask) - 1;
int end = (block_end > to()) ? to() : block_end;
int end = (block_end > top) ? top : block_end;
length = uncanonicalize.get(start, '\0', range);
for (int i = 0; i < length; i++) {
uc32 c = range[i];
uc16 range_from = c + (pos - start);
uc16 range_to = c + (end - start);
if (!(from() <= range_from && range_to <= to())) {
if (!(bottom <= range_from && range_to <= top)) {
ranges->Add(CharacterRange(range_from, range_to));
}
}
start = pos = block_end + 1;
}
} else if (from() > 0 || to() < String::kMaxUC16CharCode) {
} else {
// Unibrow ranges don't work for high characters due to the "2^11 bug".
// Therefore we do something dumber for these ranges. We don't bother
// if the range is 0-max (as encountered at the start of an unanchored
// regexp).
ZoneList<unibrow::uchar> *characters = new ZoneList<unibrow::uchar>(100);
int bottom = from();
int top = to();
for (int i = bottom; i <= top; i++) {
int length = uncanonicalize.get(i, '\0', chars);
for (int j = 0; j < length; j++) {
uc32 chr = chars[j];
if (chr != i && chr < bottom || chr > top) {
characters->Add(chr);
// Therefore we do something dumber for these ranges.
AddUncanonicals(ranges, bottom, top);
}
}
static void AddUncanonicals(ZoneList<CharacterRange>* ranges,
int bottom,
int top) {
unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
// Zones with no case mappings. There is a DEBUG-mode loop to assert that
// this table is correct.
// 0x0600 - 0x0fff
// 0x1100 - 0x1cff
// 0x2000 - 0x20ff
// 0x2200 - 0x23ff
// 0x2500 - 0x2bff
// 0x2e00 - 0xa5ff
// 0xa800 - 0xfaff
// 0xfc00 - 0xfeff
const int boundary_count = 18;
// The ASCII boundary and the kRangeCanonicalizeMax boundary are also in this
// array. This is to split up big ranges and not because they actually denote
// a case-mapping-free-zone.
ASSERT(CharacterRange::kRangeCanonicalizeMax < 0x600);
const int kFirstRealCaselessZoneIndex = 2;
int boundaries[] = {0x80, CharacterRange::kRangeCanonicalizeMax,
0x600, 0x1000, 0x1100, 0x1d00, 0x2000, 0x2100, 0x2200, 0x2400, 0x2500,
0x2c00, 0x2e00, 0xa600, 0xa800, 0xfb00, 0xfc00, 0xff00};
// Special ASCII rule from spec can save us some work here.
if (bottom == 0x80 && top == 0xffff) return;
// We have optimized support for this range.
if (top <= CharacterRange::kRangeCanonicalizeMax) {
CharacterRange range(bottom, top);
range.AddCaseEquivalents(ranges, false);
return;
}
// Split up very large ranges. This helps remove ranges where there are no
// case mappings.
for (int i = 0; i < boundary_count; i++) {
if (bottom < boundaries[i] && top >= boundaries[i]) {
AddUncanonicals(ranges, bottom, boundaries[i] - 1);
AddUncanonicals(ranges, boundaries[i], top);
return;
}
}
// If we are completely in a zone with no case mappings then we are done.
// We start at 2 so as not to except the ASCII range from mappings.
for (int i = kFirstRealCaselessZoneIndex; i < boundary_count; i += 2) {
if (bottom >= boundaries[i] && top < boundaries[i + 1]) {
#ifdef DEBUG
for (int j = bottom; j <= top; j++) {
unsigned current_char = j;
int length = uncanonicalize.get(current_char, '\0', chars);
for (int k = 0; k < length; k++) {
ASSERT(chars[k] == current_char);
}
}
#endif
return;
}
}
// Step through the range finding equivalent characters.
ZoneList<unibrow::uchar> *characters = new ZoneList<unibrow::uchar>(100);
for (int i = bottom; i <= top; i++) {
int length = uncanonicalize.get(i, '\0', chars);
for (int j = 0; j < length; j++) {
uc32 chr = chars[j];
if (chr != i && chr < bottom || chr > top) {
characters->Add(chr);
}
}
if (characters->length() > 0) {
int new_from = characters->at(0);
int new_to = new_from;
for (int i = 1; i < characters->length(); i++) {
int chr = characters->at(i);
if (chr == new_to + 1) {
new_to++;
} else {
if (new_to == new_from) {
ranges->Add(CharacterRange::Singleton(new_from));
} else {
ranges->Add(CharacterRange(new_from, new_to));
}
new_from = new_to = chr;
}
}
if (new_to == new_from) {
ranges->Add(CharacterRange::Singleton(new_from));
}
// Step through the equivalent characters finding simple ranges and
// adding ranges to the character class.
if (characters->length() > 0) {
int new_from = characters->at(0);
int new_to = new_from;
for (int i = 1; i < characters->length(); i++) {
int chr = characters->at(i);
if (chr == new_to + 1) {
new_to++;
} else {
ranges->Add(CharacterRange(new_from, new_to));
if (new_to == new_from) {
ranges->Add(CharacterRange::Singleton(new_from));
} else {
ranges->Add(CharacterRange(new_from, new_to));
}
new_from = new_to = chr;
}
}
if (new_to == new_from) {
ranges->Add(CharacterRange::Singleton(new_from));
} else {
ranges->Add(CharacterRange(new_from, new_to));
}
}
}
@ -4271,7 +4351,7 @@ void TextNode::CalculateOffsets() {
void Analysis::VisitText(TextNode* that) {
if (ignore_case_) {
that->MakeCaseIndependent();
that->MakeCaseIndependent(is_ascii_);
}
EnsureAnalyzed(that->on_success());
if (!has_failed()) {
@ -4489,7 +4569,7 @@ RegExpEngine::CompilationResult RegExpEngine::Compile(RegExpCompileData* data,
}
}
data->node = node;
Analysis analysis(ignore_case);
Analysis analysis(ignore_case, is_ascii);
analysis.EnsureAnalyzed(node);
if (analysis.has_failed()) {
const char* error_message = analysis.error_message();

View File

@ -200,7 +200,7 @@ class CharacterRange {
bool is_valid() { return from_ <= to_; }
bool IsEverything(uc16 max) { return from_ == 0 && to_ >= max; }
bool IsSingleton() { return (from_ == to_); }
void AddCaseEquivalents(ZoneList<CharacterRange>* ranges);
void AddCaseEquivalents(ZoneList<CharacterRange>* ranges, bool is_ascii);
static void Split(ZoneList<CharacterRange>* base,
Vector<const uc16> overlay,
ZoneList<CharacterRange>** included,
@ -703,7 +703,7 @@ class TextNode: public SeqRegExpNode {
int characters_filled_in,
bool not_at_start);
ZoneList<TextElement>* elements() { return elms_; }
void MakeCaseIndependent();
void MakeCaseIndependent(bool is_ascii);
virtual int GreedyLoopTextLength();
virtual TextNode* Clone() {
TextNode* result = new TextNode(*this);
@ -1212,8 +1212,10 @@ FOR_EACH_NODE_TYPE(DECLARE_VISIT)
// +-------+ +------------+
class Analysis: public NodeVisitor {
public:
explicit Analysis(bool ignore_case)
: ignore_case_(ignore_case), error_message_(NULL) { }
Analysis(bool ignore_case, bool is_ascii)
: ignore_case_(ignore_case),
is_ascii_(is_ascii),
error_message_(NULL) { }
void EnsureAnalyzed(RegExpNode* node);
#define DECLARE_VISIT(Type) \
@ -1232,6 +1234,7 @@ FOR_EACH_NODE_TYPE(DECLARE_VISIT)
}
private:
bool ignore_case_;
bool is_ascii_;
const char* error_message_;
DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis);

View File

@ -1466,7 +1466,7 @@ static void TestRangeCaseIndependence(CharacterRange input,
ZoneScope zone_scope(DELETE_ON_EXIT);
int count = expected.length();
ZoneList<CharacterRange>* list = new ZoneList<CharacterRange>(count);
input.AddCaseEquivalents(list);
input.AddCaseEquivalents(list, false);
CHECK_EQ(count, list->length());
for (int i = 0; i < list->length(); i++) {
CHECK_EQ(expected[i].from(), list->at(i).from());

View File

@ -60,6 +60,7 @@ function Range(from, to, flags) {
return new RegExp("[" + from + "-" + to + "]", flags);
}
// Test Cyrillic and Greek separately.
for (var lang = 0; lang < 2; lang++) {
var chars = (lang == 0) ? cyrillic : greek;
@ -99,6 +100,7 @@ for (var lang = 0; lang < 2; lang++) {
}
}
// Test range that covers both greek and cyrillic characters.
for (key in greek) {
assertTrue(Range(greek.FIRST, cyrillic.last).test(greek[key]), 17 + key);
if (cyrillic[key]) {
@ -106,7 +108,6 @@ for (key in greek) {
}
}
for (var i = 0; i < 2; i++) {
var ignore_case = (i == 0);
var flag = ignore_case ? "i" : "";
@ -118,6 +119,8 @@ for (var i = 0; i < 2; i++) {
assertTrue(Range(greek.first, cyrillic.LAST, flag).test(cyrillic.MIDDLE), 23);
assertTrue(Range(greek.first, cyrillic.LAST, flag).test(cyrillic.LAST), 24);
// A range that covers the lower case greek letters and the upper case cyrillic
// letters.
assertEquals(ignore_case, Range(greek.first, cyrillic.LAST, flag).test(greek.FIRST), 25);
assertEquals(ignore_case, Range(greek.first, cyrillic.LAST, flag).test(greek.MIDDLE), 26);
assertEquals(ignore_case, Range(greek.first, cyrillic.LAST, flag).test(greek.LAST), 27);
@ -128,6 +131,10 @@ for (var i = 0; i < 2; i++) {
}
// Sigma is special because there are two lower case versions of the same upper
// case character. JS requires that case independece means that you should
// convert everything to upper case, so the two sigma variants are equal to each
// other in a case independt comparison.
for (var i = 0; i < 2; i++) {
var simple = (i != 0);
var name = simple ? "" : "[]";
@ -166,4 +173,36 @@ for (var i = 0; i < 2; i++) {
assertTrue(new RegExp(regex, "i").test(SIGMA), 56 + name);
}
print("ok");
// Test all non-ASCII characters individually to ensure that our optimizations
// didn't break anything.
for (var i = 0x80; i <= 0xfffe; i++) {
var c = String.fromCharCode(i);
var c2 = String.fromCharCode(i + 1);
var re = new RegExp("[" + c + "-" + c2 + "]", "i");
assertTrue(re.test(c), 57);
}
for (var add_non_ascii_character_to_subject = 0;
add_non_ascii_character_to_subject < 2;
add_non_ascii_character_to_subject++) {
var suffix = add_non_ascii_character_to_subject ? "\ufffe" : "";
// A range that covers both ASCII and non-ASCII.
for (var i = 0; i < 2; i++) {
var full = (i != 0);
var mixed = full ? "[a-\uffff]" : "[a-" + cyrillic.LAST + "]";
var f = full ? "f" : "c";
for (var j = 0; j < 2; j++) {
var ignore_case = (j == 0);
var flag = ignore_case ? "i" : "";
var re = new RegExp(mixed, flag);
assertEquals(ignore_case || (full && add_non_ascii_character_to_subject),
re.test("A" + suffix),
58 + flag + f);
assertTrue(re.test("a" + suffix), 59 + flag + f);
assertTrue(re.test("~" + suffix), 60 + flag + f);
assertTrue(re.test(cyrillic.MIDDLE), 61 + flag + f);
assertEquals(ignore_case || full, re.test(cyrillic.middle), 62 + flag + f);
}
}
}