Make special RPO computation iterative during scheduling.

This contains the following changes squashed together:
- Switch BasicBlock::loop_end to be a basic block instead of an RPO.
- Switch ScheduleLate to use dominator depth instead of RPO.
- Switch ScheduleEarly to use dominator depth instead of RPO.
- Push out absolute RPO ordering everywhere else in the scheduler.
- Keep linked list of blocks in RPO order while scheduling.
- Switch from RPO number to depth for dominator calculation.

R=jarin@chromium.org

Review URL: https://codereview.chromium.org/696363002

Cr-Commit-Position: refs/heads/master@{#25138}
git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@25138 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
This commit is contained in:
mstarzinger@chromium.org 2014-11-05 10:10:28 +00:00
parent 33dde8d92c
commit b0aa81f30d
8 changed files with 452 additions and 346 deletions

View File

@ -346,7 +346,7 @@ static BasicBlock::RpoNumber GetRpo(BasicBlock* block) {
static BasicBlock::RpoNumber GetLoopEndRpo(const BasicBlock* block) {
if (!block->IsLoopHeader()) return BasicBlock::RpoNumber::Invalid();
return BasicBlock::RpoNumber::FromInt(block->loop_end());
return block->loop_end()->GetRpoNumber();
}

View File

@ -16,10 +16,11 @@ BasicBlock::BasicBlock(Zone* zone, Id id)
: ao_number_(-1),
rpo_number_(-1),
deferred_(false),
dominator_depth_(-1),
dominator_(NULL),
loop_header_(NULL),
loop_end_(NULL),
loop_depth_(0),
loop_end_(-1),
control_(kNone),
control_input_(NULL),
nodes_(zone),
@ -32,8 +33,9 @@ bool BasicBlock::LoopContains(BasicBlock* block) const {
// RPO numbers must be initialized.
DCHECK(rpo_number_ >= 0);
DCHECK(block->rpo_number_ >= 0);
if (loop_end_ < 0) return false; // This is not a loop.
return block->rpo_number_ >= rpo_number_ && block->rpo_number_ < loop_end_;
if (loop_end_ == NULL) return false; // This is not a loop.
return block->rpo_number_ >= rpo_number_ &&
block->rpo_number_ < loop_end_->rpo_number_;
}
@ -60,6 +62,11 @@ void BasicBlock::set_control_input(Node* control_input) {
}
void BasicBlock::set_dominator_depth(int32_t dominator_depth) {
dominator_depth_ = dominator_depth;
}
void BasicBlock::set_dominator(BasicBlock* dominator) {
dominator_ = dominator;
}
@ -75,7 +82,7 @@ void BasicBlock::set_rpo_number(int32_t rpo_number) {
}
void BasicBlock::set_loop_end(int32_t loop_end) { loop_end_ = loop_end; }
void BasicBlock::set_loop_end(BasicBlock* loop_end) { loop_end_ = loop_end; }
void BasicBlock::set_loop_header(BasicBlock* loop_header) {

View File

@ -145,18 +145,21 @@ class BasicBlock FINAL : public ZoneObject {
bool deferred() const { return deferred_; }
void set_deferred(bool deferred) { deferred_ = deferred; }
int32_t dominator_depth() const { return dominator_depth_; }
void set_dominator_depth(int32_t dominator_depth);
BasicBlock* dominator() const { return dominator_; }
void set_dominator(BasicBlock* dominator);
BasicBlock* loop_header() const { return loop_header_; }
void set_loop_header(BasicBlock* loop_header);
BasicBlock* loop_end() const { return loop_end_; }
void set_loop_end(BasicBlock* loop_end);
int32_t loop_depth() const { return loop_depth_; }
void set_loop_depth(int32_t loop_depth);
int32_t loop_end() const { return loop_end_; }
void set_loop_end(int32_t loop_end);
RpoNumber GetAoNumber() const { return RpoNumber::FromInt(ao_number_); }
int32_t ao_number() const { return ao_number_; }
void set_ao_number(int32_t ao_number) { ao_number_ = ao_number; }
@ -166,19 +169,20 @@ class BasicBlock FINAL : public ZoneObject {
void set_rpo_number(int32_t rpo_number);
// Loop membership helpers.
inline bool IsLoopHeader() const { return loop_end_ >= 0; }
inline bool IsLoopHeader() const { return loop_end_ != NULL; }
bool LoopContains(BasicBlock* block) const;
private:
int32_t ao_number_; // assembly order number of the block.
int32_t rpo_number_; // special RPO number of the block.
bool deferred_; // true if the block contains deferred code.
int32_t dominator_depth_; // Depth within the dominator tree.
BasicBlock* dominator_; // Immediate dominator of the block.
BasicBlock* loop_header_; // Pointer to dominating loop header basic block,
// NULL if none. For loop headers, this points to
// enclosing loop header.
BasicBlock* loop_end_; // end of the loop, if this block is a loop header.
int32_t loop_depth_; // loop nesting, 0 is top-level
int32_t loop_end_; // end of the loop, if this block is a loop header.
Control control_; // Control at the end of the block.
Node* control_input_; // Input value for control.

View File

@ -52,6 +52,8 @@ Schedule* Scheduler::ComputeSchedule(ZonePool* zone_pool, Graph* graph) {
scheduler.ScheduleEarly();
scheduler.ScheduleLate();
scheduler.SealFinalSchedule();
return schedule;
}
@ -211,20 +213,11 @@ void Scheduler::DecrementUnscheduledUseCount(Node* node, int index,
}
int Scheduler::GetRPONumber(BasicBlock* block) {
DCHECK(block->rpo_number() >= 0 &&
block->rpo_number() < static_cast<int>(schedule_->rpo_order_.size()));
DCHECK(schedule_->rpo_order_[block->rpo_number()] == block);
return block->rpo_number();
}
BasicBlock* Scheduler::GetCommonDominator(BasicBlock* b1, BasicBlock* b2) {
while (b1 != b2) {
int b1_rpo = GetRPONumber(b1);
int b2_rpo = GetRPONumber(b2);
DCHECK(b1_rpo != b2_rpo);
if (b1_rpo < b2_rpo) {
int32_t b1_depth = b1->dominator_depth();
int32_t b2_depth = b2->dominator_depth();
if (b1_depth < b2_depth) {
b2 = b2->dominator();
} else {
b1 = b1->dominator();
@ -529,219 +522,68 @@ void Scheduler::BuildCFG() {
// 2. All loops are contiguous in the order (i.e. no intervening blocks that
// do not belong to the loop.)
// Note a simple RPO traversal satisfies (1) but not (2).
class SpecialRPONumberer {
class SpecialRPONumberer : public ZoneObject {
public:
SpecialRPONumberer(Zone* zone, Schedule* schedule)
: zone_(zone), schedule_(schedule) {}
: zone_(zone),
schedule_(schedule),
order_(NULL),
loops_(zone),
beyond_end_(NULL) {}
// Computes the special reverse-post-order for the main control flow graph,
// that is for the graph spanned between the schedule's start and end blocks.
void ComputeSpecialRPO() {
// RPO should not have been computed for this schedule yet.
CHECK_EQ(kBlockUnvisited1, schedule_->start()->rpo_number());
CHECK_EQ(0, static_cast<int>(schedule_->rpo_order()->size()));
DCHECK_EQ(NULL, order_); // Main order does not exist yet.
// TODO(mstarzinger): Should use Schedule::end() after tests are fixed.
ComputeAndInsertSpecialRPO(schedule_->start(), NULL);
}
// Perform an iterative RPO traversal using an explicit stack,
// recording backedges that form cycles. O(|B|).
ZoneList<std::pair<BasicBlock*, size_t> > backedges(1, zone_);
SpecialRPOStackFrame* stack = zone_->NewArray<SpecialRPOStackFrame>(
static_cast<int>(schedule_->BasicBlockCount()));
BasicBlock* entry = schedule_->start();
BlockList* order = NULL;
int stack_depth = Push(stack, 0, entry, kBlockUnvisited1);
int num_loops = 0;
// Computes the special reverse-post-order for a partial control flow graph,
// that is for the graph spanned between the given {entry} and {end} blocks,
// then updates the existing ordering with this new information.
void UpdateSpecialRPO(BasicBlock* entry, BasicBlock* end) {
DCHECK_NE(NULL, order_); // Main order to be updated is present.
ComputeAndInsertSpecialRPO(entry, end);
}
while (stack_depth > 0) {
int current = stack_depth - 1;
SpecialRPOStackFrame* frame = stack + current;
if (frame->index < frame->block->SuccessorCount()) {
// Process the next successor.
BasicBlock* succ = frame->block->SuccessorAt(frame->index++);
if (succ->rpo_number() == kBlockVisited1) continue;
if (succ->rpo_number() == kBlockOnStack) {
// The successor is on the stack, so this is a backedge (cycle).
backedges.Add(
std::pair<BasicBlock*, size_t>(frame->block, frame->index - 1),
zone_);
if (succ->loop_end() < 0) {
// Assign a new loop number to the header if it doesn't have one.
succ->set_loop_end(num_loops++);
}
} else {
// Push the successor onto the stack.
DCHECK(succ->rpo_number() == kBlockUnvisited1);
stack_depth = Push(stack, stack_depth, succ, kBlockUnvisited1);
}
} else {
// Finished with all successors; pop the stack and add the block.
order = order->Add(zone_, frame->block);
frame->block->set_rpo_number(kBlockVisited1);
stack_depth--;
}
}
// If no loops were encountered, then the order we computed was correct.
LoopInfo* loops = NULL;
if (num_loops != 0) {
// Otherwise, compute the loop information from the backedges in order
// to perform a traversal that groups loop bodies together.
loops = ComputeLoopInfo(stack, num_loops, schedule_->BasicBlockCount(),
&backedges);
// Initialize the "loop stack". Note the entry could be a loop header.
LoopInfo* loop = entry->IsLoopHeader() ? &loops[entry->loop_end()] : NULL;
order = NULL;
// Perform an iterative post-order traversal, visiting loop bodies before
// edges that lead out of loops. Visits each block once, but linking loop
// sections together is linear in the loop size, so overall is
// O(|B| + max(loop_depth) * max(|loop|))
stack_depth = Push(stack, 0, entry, kBlockUnvisited2);
while (stack_depth > 0) {
SpecialRPOStackFrame* frame = stack + (stack_depth - 1);
BasicBlock* block = frame->block;
BasicBlock* succ = NULL;
if (frame->index < block->SuccessorCount()) {
// Process the next normal successor.
succ = block->SuccessorAt(frame->index++);
} else if (block->IsLoopHeader()) {
// Process additional outgoing edges from the loop header.
if (block->rpo_number() == kBlockOnStack) {
// Finish the loop body the first time the header is left on the
// stack.
DCHECK(loop != NULL && loop->header == block);
loop->start = order->Add(zone_, block);
order = loop->end;
block->set_rpo_number(kBlockVisited2);
// Pop the loop stack and continue visiting outgoing edges within
// the context of the outer loop, if any.
loop = loop->prev;
// We leave the loop header on the stack; the rest of this iteration
// and later iterations will go through its outgoing edges list.
}
// Use the next outgoing edge if there are any.
int outgoing_index =
static_cast<int>(frame->index - block->SuccessorCount());
LoopInfo* info = &loops[block->loop_end()];
DCHECK(loop != info);
if (info->outgoing != NULL &&
outgoing_index < info->outgoing->length()) {
succ = info->outgoing->at(outgoing_index);
frame->index++;
}
}
if (succ != NULL) {
// Process the next successor.
if (succ->rpo_number() == kBlockOnStack) continue;
if (succ->rpo_number() == kBlockVisited2) continue;
DCHECK(succ->rpo_number() == kBlockUnvisited2);
if (loop != NULL && !loop->members->Contains(succ->id().ToInt())) {
// The successor is not in the current loop or any nested loop.
// Add it to the outgoing edges of this loop and visit it later.
loop->AddOutgoing(zone_, succ);
} else {
// Push the successor onto the stack.
stack_depth = Push(stack, stack_depth, succ, kBlockUnvisited2);
if (succ->IsLoopHeader()) {
// Push the inner loop onto the loop stack.
DCHECK(succ->loop_end() >= 0 && succ->loop_end() < num_loops);
LoopInfo* next = &loops[succ->loop_end()];
next->end = order;
next->prev = loop;
loop = next;
}
}
} else {
// Finished with all successors of the current block.
if (block->IsLoopHeader()) {
// If we are going to pop a loop header, then add its entire body.
LoopInfo* info = &loops[block->loop_end()];
for (BlockList* l = info->start; true; l = l->next) {
if (l->next == info->end) {
l->next = order;
info->end = order;
break;
}
}
order = info->start;
} else {
// Pop a single node off the stack and add it to the order.
order = order->Add(zone_, block);
block->set_rpo_number(kBlockVisited2);
}
stack_depth--;
}
}
}
// Construct the final order from the list.
BasicBlockVector* final_order = schedule_->rpo_order();
order->Serialize(final_order);
// Compute the correct loop headers and set the correct loop ends.
LoopInfo* current_loop = NULL;
BasicBlock* current_header = NULL;
int loop_depth = 0;
for (BasicBlockVectorIter i = final_order->begin(); i != final_order->end();
++i) {
BasicBlock* current = *i;
// Finish the previous loop(s) if we just exited them.
while (current_header != NULL &&
current->rpo_number() >= current_header->loop_end()) {
DCHECK(current_header->IsLoopHeader());
DCHECK(current_loop != NULL);
current_loop = current_loop->prev;
current_header = current_loop == NULL ? NULL : current_loop->header;
--loop_depth;
}
current->set_loop_header(current_header);
// Push a new loop onto the stack if this loop is a loop header.
if (current->IsLoopHeader()) {
loop_depth++;
current_loop = &loops[current->loop_end()];
BlockList* end = current_loop->end;
current->set_loop_end(end == NULL
? static_cast<int>(final_order->size())
: end->block->rpo_number());
current_header = current_loop->header;
Trace("B%d is a loop header, increment loop depth to %d\n",
current->id().ToInt(), loop_depth);
}
current->set_loop_depth(loop_depth);
if (current->loop_header() == NULL) {
Trace("B%d is not in a loop (depth == %d)\n", current->id().ToInt(),
current->loop_depth());
} else {
Trace("B%d has loop header B%d, (depth == %d)\n", current->id().ToInt(),
current->loop_header()->id().ToInt(), current->loop_depth());
}
}
// Compute the assembly order (non-deferred code first, deferred code
// afterwards).
// Serialize the previously computed order as an assembly order (non-deferred
// code first, deferred code afterwards) into the final schedule.
void SerializeAOIntoSchedule() {
int32_t number = 0;
for (auto block : *final_order) {
if (block->deferred()) continue;
block->set_ao_number(number++);
for (BlockList* l = order_; l != NULL; l = l->next) {
if (l->block->deferred()) continue;
l->block->set_ao_number(number++);
}
for (auto block : *final_order) {
if (!block->deferred()) continue;
block->set_ao_number(number++);
for (BlockList* l = order_; l != NULL; l = l->next) {
if (!l->block->deferred()) continue;
l->block->set_ao_number(number++);
}
}
// Serialize the previously computed order as a special reverse-post-order
// numbering for basic blocks into the final schedule.
void SerializeRPOIntoSchedule() {
int32_t number = 0;
for (BlockList* l = order_; l != NULL; l = l->next) {
l->block->set_rpo_number(number++);
schedule_->rpo_order()->push_back(l->block);
}
BeyondEndSentinel()->set_rpo_number(number);
}
// Print and verify the special reverse-post-order.
void PrintAndVerifySpecialRPO() {
#if DEBUG
if (FLAG_trace_turbo_scheduler) PrintRPO(num_loops, loops, final_order);
VerifySpecialRPO(num_loops, loops, final_order);
if (FLAG_trace_turbo_scheduler) PrintRPO();
VerifySpecialRPO();
#endif
}
private:
// TODO(mstarzinger): Only for Scheduler::GenerateImmediateDominatorTree.
friend class Scheduler;
// Numbering for BasicBlockData.rpo_number_ for this block traversal:
static const int kBlockOnStack = -2;
static const int kBlockVisited1 = -3;
@ -765,11 +607,11 @@ class SpecialRPONumberer {
return list;
}
void Serialize(BasicBlockVector* final_order) {
BlockList* FindForBlock(BasicBlock* b) {
for (BlockList* l = this; l != NULL; l = l->next) {
l->block->set_rpo_number(static_cast<int>(final_order->size()));
final_order->push_back(l->block);
if (l->block == b) return l;
}
return NULL;
}
};
@ -800,31 +642,247 @@ class SpecialRPONumberer {
return depth;
}
// We are hijacking the {ao_number} to enumerate loops temporarily. Note that
// these numbers are only valid within this class.
static int GetLoopNumber(BasicBlock* block) { return block->ao_number(); }
static void SetLoopNumber(BasicBlock* block, int loop_number) {
return block->set_ao_number(loop_number);
}
static bool HasLoopNumber(BasicBlock* block) {
return block->ao_number() >= 0;
}
// TODO(mstarzinger): We only need this special sentinel because some tests
// use the schedule's end block in actual control flow (e.g. with end having
// successors). Once this has been cleaned up we can use the end block here.
BasicBlock* BeyondEndSentinel() {
if (beyond_end_ == NULL) {
BasicBlock::Id id = BasicBlock::Id::FromInt(-1);
beyond_end_ = new (schedule_->zone()) BasicBlock(schedule_->zone(), id);
}
return beyond_end_;
}
// Compute special RPO for the control flow graph between {entry} and {end},
// mutating any existing order so that the result is still valid.
void ComputeAndInsertSpecialRPO(BasicBlock* entry, BasicBlock* end) {
// RPO should not have been serialized for this schedule yet.
CHECK_EQ(kBlockUnvisited1, schedule_->start()->ao_number());
CHECK_EQ(kBlockUnvisited1, schedule_->start()->rpo_number());
CHECK_EQ(0, static_cast<int>(schedule_->rpo_order()->size()));
// Find correct insertion point within existing order.
BlockList* insert_before = order_->FindForBlock(entry);
BlockList* insert_after = insert_before ? insert_before->next : NULL;
// Perform an iterative RPO traversal using an explicit stack,
// recording backedges that form cycles. O(|B|).
ZoneList<std::pair<BasicBlock*, size_t> > backedges(1, zone_);
SpecialRPOStackFrame* stack = zone_->NewArray<SpecialRPOStackFrame>(
static_cast<int>(schedule_->BasicBlockCount()));
int stack_depth = Push(stack, 0, entry, kBlockUnvisited1);
int num_loops = 0;
while (stack_depth > 0) {
int current = stack_depth - 1;
SpecialRPOStackFrame* frame = stack + current;
if (frame->block != end &&
frame->index < frame->block->SuccessorCount()) {
// Process the next successor.
BasicBlock* succ = frame->block->SuccessorAt(frame->index++);
if (succ->rpo_number() == kBlockVisited1) continue;
if (succ->rpo_number() == kBlockOnStack) {
// The successor is on the stack, so this is a backedge (cycle).
backedges.Add(
std::pair<BasicBlock*, size_t>(frame->block, frame->index - 1),
zone_);
if (!HasLoopNumber(succ)) {
// Assign a new loop number to the header if it doesn't have one.
SetLoopNumber(succ, num_loops++);
}
} else {
// Push the successor onto the stack.
DCHECK(succ->rpo_number() == kBlockUnvisited1);
stack_depth = Push(stack, stack_depth, succ, kBlockUnvisited1);
}
} else {
// Finished with all successors; pop the stack and add the block.
insert_after = insert_after->Add(zone_, frame->block);
frame->block->set_rpo_number(kBlockVisited1);
stack_depth--;
}
}
// Insert the result into any existing order.
if (insert_before == NULL) {
order_ = insert_after;
} else {
// There already is a list element for the entry block in the list, hence
// we skip the first element of the sub-list to compensate duplication.
DCHECK_EQ(insert_before->block, insert_after->block);
insert_before->next = insert_after->next;
}
// If no loops were encountered, then the order we computed was correct.
if (num_loops != 0) {
// Otherwise, compute the loop information from the backedges in order
// to perform a traversal that groups loop bodies together.
ComputeLoopInfo(stack, num_loops, &backedges);
// Initialize the "loop stack". Note the entry could be a loop header.
LoopInfo* loop =
HasLoopNumber(entry) ? &loops_[GetLoopNumber(entry)] : NULL;
order_ = NULL;
// Perform an iterative post-order traversal, visiting loop bodies before
// edges that lead out of loops. Visits each block once, but linking loop
// sections together is linear in the loop size, so overall is
// O(|B| + max(loop_depth) * max(|loop|))
stack_depth = Push(stack, 0, entry, kBlockUnvisited2);
while (stack_depth > 0) {
SpecialRPOStackFrame* frame = stack + (stack_depth - 1);
BasicBlock* block = frame->block;
BasicBlock* succ = NULL;
if (frame->index < block->SuccessorCount()) {
// Process the next normal successor.
succ = block->SuccessorAt(frame->index++);
} else if (HasLoopNumber(block)) {
// Process additional outgoing edges from the loop header.
if (block->rpo_number() == kBlockOnStack) {
// Finish the loop body the first time the header is left on the
// stack.
DCHECK(loop != NULL && loop->header == block);
loop->start = order_->Add(zone_, block);
order_ = loop->end;
block->set_rpo_number(kBlockVisited2);
// Pop the loop stack and continue visiting outgoing edges within
// the context of the outer loop, if any.
loop = loop->prev;
// We leave the loop header on the stack; the rest of this iteration
// and later iterations will go through its outgoing edges list.
}
// Use the next outgoing edge if there are any.
int outgoing_index =
static_cast<int>(frame->index - block->SuccessorCount());
LoopInfo* info = &loops_[GetLoopNumber(block)];
DCHECK(loop != info);
if (info->outgoing != NULL &&
outgoing_index < info->outgoing->length()) {
succ = info->outgoing->at(outgoing_index);
frame->index++;
}
}
if (succ != NULL) {
// Process the next successor.
if (succ->rpo_number() == kBlockOnStack) continue;
if (succ->rpo_number() == kBlockVisited2) continue;
DCHECK(succ->rpo_number() == kBlockUnvisited2);
if (loop != NULL && !loop->members->Contains(succ->id().ToInt())) {
// The successor is not in the current loop or any nested loop.
// Add it to the outgoing edges of this loop and visit it later.
loop->AddOutgoing(zone_, succ);
} else {
// Push the successor onto the stack.
stack_depth = Push(stack, stack_depth, succ, kBlockUnvisited2);
if (HasLoopNumber(succ)) {
// Push the inner loop onto the loop stack.
DCHECK(GetLoopNumber(succ) < num_loops);
LoopInfo* next = &loops_[GetLoopNumber(succ)];
next->end = order_;
next->prev = loop;
loop = next;
}
}
} else {
// Finished with all successors of the current block.
if (HasLoopNumber(block)) {
// If we are going to pop a loop header, then add its entire body.
LoopInfo* info = &loops_[GetLoopNumber(block)];
for (BlockList* l = info->start; true; l = l->next) {
if (l->next == info->end) {
l->next = order_;
info->end = order_;
break;
}
}
order_ = info->start;
} else {
// Pop a single node off the stack and add it to the order.
order_ = order_->Add(zone_, block);
block->set_rpo_number(kBlockVisited2);
}
stack_depth--;
}
}
}
// Compute the correct loop headers and set the correct loop ends.
LoopInfo* current_loop = NULL;
BasicBlock* current_header = NULL;
int loop_depth = 0;
for (BlockList* l = order_; l != NULL; l = l->next) {
BasicBlock* current = l->block;
// Finish the previous loop(s) if we just exited them.
while (current_header != NULL && current == current_header->loop_end()) {
DCHECK(current_header->IsLoopHeader());
DCHECK(current_loop != NULL);
current_loop = current_loop->prev;
current_header = current_loop == NULL ? NULL : current_loop->header;
--loop_depth;
}
current->set_loop_header(current_header);
// Push a new loop onto the stack if this loop is a loop header.
if (HasLoopNumber(current)) {
loop_depth++;
current_loop = &loops_[GetLoopNumber(current)];
BlockList* end = current_loop->end;
current->set_loop_end(end == NULL ? BeyondEndSentinel() : end->block);
current_header = current_loop->header;
Trace("B%d is a loop header, increment loop depth to %d\n",
current->id().ToInt(), loop_depth);
}
current->set_loop_depth(loop_depth);
if (current->loop_header() == NULL) {
Trace("B%d is not in a loop (depth == %d)\n", current->id().ToInt(),
current->loop_depth());
} else {
Trace("B%d has loop header B%d, (depth == %d)\n", current->id().ToInt(),
current->loop_header()->id().ToInt(), current->loop_depth());
}
}
}
// Computes loop membership from the backedges of the control flow graph.
LoopInfo* ComputeLoopInfo(
SpecialRPOStackFrame* queue, int num_loops, size_t num_blocks,
ZoneList<std::pair<BasicBlock*, size_t> >* backedges) {
LoopInfo* loops = zone_->NewArray<LoopInfo>(num_loops);
memset(loops, 0, num_loops * sizeof(LoopInfo));
void ComputeLoopInfo(SpecialRPOStackFrame* queue, size_t num_loops,
ZoneList<std::pair<BasicBlock*, size_t> >* backedges) {
loops_.resize(num_loops, LoopInfo());
// Compute loop membership starting from backedges.
// O(max(loop_depth) * max(|loop|)
for (int i = 0; i < backedges->length(); i++) {
BasicBlock* member = backedges->at(i).first;
BasicBlock* header = member->SuccessorAt(backedges->at(i).second);
int loop_num = header->loop_end();
if (loops[loop_num].header == NULL) {
loops[loop_num].header = header;
loops[loop_num].members =
new (zone_) BitVector(static_cast<int>(num_blocks), zone_);
size_t loop_num = GetLoopNumber(header);
if (loops_[loop_num].header == NULL) {
loops_[loop_num].header = header;
loops_[loop_num].members = new (zone_)
BitVector(static_cast<int>(schedule_->BasicBlockCount()), zone_);
}
int queue_length = 0;
if (member != header) {
// As long as the header doesn't have a backedge to itself,
// Push the member onto the queue and process its predecessors.
if (!loops[loop_num].members->Contains(member->id().ToInt())) {
loops[loop_num].members->Add(member->id().ToInt());
if (!loops_[loop_num].members->Contains(member->id().ToInt())) {
loops_[loop_num].members->Add(member->id().ToInt());
}
queue[queue_length++].block = member;
}
@ -836,47 +894,46 @@ class SpecialRPONumberer {
for (size_t i = 0; i < block->PredecessorCount(); i++) {
BasicBlock* pred = block->PredecessorAt(i);
if (pred != header) {
if (!loops[loop_num].members->Contains(pred->id().ToInt())) {
loops[loop_num].members->Add(pred->id().ToInt());
if (!loops_[loop_num].members->Contains(pred->id().ToInt())) {
loops_[loop_num].members->Add(pred->id().ToInt());
queue[queue_length++].block = pred;
}
}
}
}
}
return loops;
}
#if DEBUG
void PrintRPO(int num_loops, LoopInfo* loops, BasicBlockVector* order) {
void PrintRPO() {
OFStream os(stdout);
os << "-- RPO with " << num_loops << " loops ";
if (num_loops > 0) {
os << "(";
for (int i = 0; i < num_loops; i++) {
os << "RPO with " << loops_.size() << " loops";
if (loops_.size() > 0) {
os << " (";
for (size_t i = 0; i < loops_.size(); i++) {
if (i > 0) os << " ";
os << "B" << loops[i].header->id();
os << "B" << loops_[i].header->id();
}
os << ") ";
os << ")";
}
os << "-- \n";
os << ":\n";
for (size_t i = 0; i < order->size(); i++) {
BasicBlock* block = (*order)[i];
for (BlockList* l = order_; l != NULL; l = l->next) {
BasicBlock* block = l->block;
BasicBlock::Id bid = block->id();
// TODO(jarin,svenpanne): Add formatting here once we have support for
// that in streams (we want an equivalent of PrintF("%5d:", i) here).
os << i << ":";
for (int j = 0; j < num_loops; j++) {
bool membership = loops[j].members->Contains(bid.ToInt());
bool range = loops[j].header->LoopContains(block);
// that in streams (we want an equivalent of PrintF("%5d:", x) here).
os << " " << block->rpo_number() << ":";
for (size_t j = 0; j < loops_.size(); j++) {
bool membership = loops_[j].members->Contains(bid.ToInt());
bool range = loops_[j].header->LoopContains(block);
os << (membership ? " |" : " ");
os << (range ? "x" : " ");
}
os << " B" << bid << ": ";
if (block->loop_end() >= 0) {
os << " range: [" << block->rpo_number() << ", " << block->loop_end()
<< ")";
if (block->loop_end() != NULL) {
os << " range: [" << block->rpo_number() << ", "
<< block->loop_end()->rpo_number() << ")";
}
if (block->loop_header() != NULL) {
os << " header: B" << block->loop_header()->id();
@ -888,21 +945,22 @@ class SpecialRPONumberer {
}
}
void VerifySpecialRPO(int num_loops, LoopInfo* loops,
BasicBlockVector* order) {
void VerifySpecialRPO() {
BasicBlockVector* order = schedule_->rpo_order();
DCHECK(order->size() > 0);
DCHECK((*order)[0]->id().ToInt() == 0); // entry should be first.
for (int i = 0; i < num_loops; i++) {
LoopInfo* loop = &loops[i];
for (size_t i = 0; i < loops_.size(); i++) {
LoopInfo* loop = &loops_[i];
BasicBlock* header = loop->header;
BasicBlock* end = header->loop_end();
DCHECK(header != NULL);
DCHECK(header->rpo_number() >= 0);
DCHECK(header->rpo_number() < static_cast<int>(order->size()));
DCHECK(header->loop_end() >= 0);
DCHECK(header->loop_end() <= static_cast<int>(order->size()));
DCHECK(header->loop_end() > header->rpo_number());
DCHECK(end != NULL);
DCHECK(end->rpo_number() <= static_cast<int>(order->size()));
DCHECK(end->rpo_number() > header->rpo_number());
DCHECK(header->loop_header() != header);
// Verify the start ... end list relationship.
@ -922,15 +980,16 @@ class SpecialRPONumberer {
DCHECK(links < static_cast<int>(2 * order->size())); // cycle?
}
DCHECK(links > 0);
DCHECK(links == (header->loop_end() - header->rpo_number()));
DCHECK(links == end->rpo_number() - header->rpo_number());
DCHECK(end_found);
// Check the contiguousness of loops.
int count = 0;
// TODO(mstarzinger): Loop membership bit-vector becomes stale.
/*int count = 0;
for (int j = 0; j < static_cast<int>(order->size()); j++) {
BasicBlock* block = order->at(j);
DCHECK(block->rpo_number() == j);
if (j < header->rpo_number() || j >= header->loop_end()) {
if (j < header->rpo_number() || j >= end->rpo_number()) {
DCHECK(!loop->members->Contains(block->id().ToInt()));
} else {
if (block == header) {
@ -941,13 +1000,16 @@ class SpecialRPONumberer {
count++;
}
}
DCHECK(links == count);
DCHECK(links == count);*/
}
}
#endif // DEBUG
Zone* zone_;
Schedule* schedule_;
BlockList* order_;
ZoneVector<LoopInfo> loops_;
BasicBlock* beyond_end_;
};
@ -958,6 +1020,9 @@ BasicBlockVector* Scheduler::ComputeSpecialRPO(ZonePool* zone_pool,
SpecialRPONumberer numberer(zone, schedule);
numberer.ComputeSpecialRPO();
numberer.SerializeAOIntoSchedule();
numberer.SerializeRPOIntoSchedule();
numberer.PrintAndVerifySpecialRPO();
return schedule->rpo_order();
}
@ -965,40 +1030,39 @@ BasicBlockVector* Scheduler::ComputeSpecialRPO(ZonePool* zone_pool,
void Scheduler::ComputeSpecialRPONumbering() {
Trace("--- COMPUTING SPECIAL RPO ----------------------------------\n");
SpecialRPONumberer numberer(zone_, schedule_);
numberer.ComputeSpecialRPO();
// Compute the special reverse-post-order for basic blocks.
special_rpo_ = new (zone_) SpecialRPONumberer(zone_, schedule_);
special_rpo_->ComputeSpecialRPO();
}
void Scheduler::GenerateImmediateDominatorTree() {
Trace("--- IMMEDIATE BLOCK DOMINATORS -----------------------------\n");
// Build the dominator graph.
// TODO(danno): consider using Lengauer & Tarjan's if this becomes too slow.
for (size_t i = 0; i < schedule_->rpo_order_.size(); i++) {
BasicBlock* current_rpo = schedule_->rpo_order_[i];
if (current_rpo != schedule_->start()) {
BasicBlock::Predecessors::iterator current_pred =
current_rpo->predecessors_begin();
BasicBlock::Predecessors::iterator end = current_rpo->predecessors_end();
DCHECK(current_pred != end);
BasicBlock* dominator = *current_pred;
++current_pred;
// For multiple predecessors, walk up the RPO ordering until a common
// dominator is found.
int current_rpo_pos = GetRPONumber(current_rpo);
while (current_pred != end) {
// Don't examine backwards edges
BasicBlock* pred = *current_pred;
if (GetRPONumber(pred) < current_rpo_pos) {
dominator = GetCommonDominator(dominator, *current_pred);
}
++current_pred;
}
current_rpo->set_dominator(dominator);
Trace("Block %d's idom is %d\n", current_rpo->id().ToInt(),
dominator->id().ToInt());
// TODO(danno): Consider using Lengauer & Tarjan's if this becomes too slow.
// Build the block dominator tree.
schedule_->start()->set_dominator_depth(0);
typedef SpecialRPONumberer::BlockList BlockList;
for (BlockList* l = special_rpo_->order_; l != NULL; l = l->next) {
BasicBlock* current = l->block;
if (current == schedule_->start()) continue;
BasicBlock::Predecessors::iterator pred = current->predecessors_begin();
BasicBlock::Predecessors::iterator end = current->predecessors_end();
DCHECK(pred != end); // All blocks except start have predecessors.
BasicBlock* dominator = *pred;
// For multiple predecessors, walk up the dominator tree until a common
// dominator is found. Visitation order guarantees that all predecessors
// except for backwards edges have been visited.
for (++pred; pred != end; ++pred) {
// Don't examine backwards edges.
if ((*pred)->dominator_depth() < 0) continue;
dominator = GetCommonDominator(dominator, *pred);
}
current->set_dominator(dominator);
current->set_dominator_depth(dominator->dominator_depth() + 1);
Trace("Block B%d's idom is B%d, depth = %d\n", current->id().ToInt(),
dominator->id().ToInt(), current->dominator_depth());
}
}
@ -1087,8 +1151,10 @@ class ScheduleEarlyNodeVisitor {
if (scheduler_->GetPlacement(node) == Scheduler::kFixed) {
DCHECK_EQ(schedule_->start(), data->minimum_block_);
data->minimum_block_ = schedule_->block(node);
Trace("Fixing #%d:%s minimum_rpo = %d\n", node->id(),
node->op()->mnemonic(), data->minimum_block_->rpo_number());
Trace("Fixing #%d:%s minimum_block = B%d, dominator_depth = %d\n",
node->id(), node->op()->mnemonic(),
data->minimum_block_->id().ToInt(),
data->minimum_block_->dominator_depth());
}
// No need to propagate unconstrained schedule early positions.
@ -1098,14 +1164,14 @@ class ScheduleEarlyNodeVisitor {
DCHECK(data->minimum_block_ != NULL);
Node::Uses uses = node->uses();
for (Node::Uses::iterator i = uses.begin(); i != uses.end(); ++i) {
PropagateMinimumRPOToNode(data->minimum_block_, *i);
PropagateMinimumPositionToNode(data->minimum_block_, *i);
}
}
// Propagates {block} as another minimum RPO placement into the given {node}.
// This has the net effect of computing the maximum of the minimum RPOs for
// all inputs to {node} when the queue has been fully processed.
void PropagateMinimumRPOToNode(BasicBlock* block, Node* node) {
// Propagates {block} as another minimum position into the given {node}. This
// has the net effect of computing the minimum dominator block of {node} that
// still post-dominates all inputs to {node} when the queue is processed.
void PropagateMinimumPositionToNode(BasicBlock* block, Node* node) {
Scheduler::SchedulerData* data = scheduler_->GetData(node);
// No need to propagate to fixed node, it's guaranteed to be a root.
@ -1114,18 +1180,30 @@ class ScheduleEarlyNodeVisitor {
// Coupled nodes influence schedule early position of their control.
if (scheduler_->GetPlacement(node) == Scheduler::kCoupled) {
Node* control = NodeProperties::GetControlInput(node);
PropagateMinimumRPOToNode(block, control);
PropagateMinimumPositionToNode(block, control);
}
// Propagate new position if it is larger than the current.
if (block->rpo_number() > data->minimum_block_->rpo_number()) {
// Propagate new position if it is deeper down the dominator tree than the
// current. Note that all inputs need to have minimum block position inside
// the dominator chain of {node}'s minimum block position.
DCHECK(InsideSameDominatorChain(block, data->minimum_block_));
if (block->dominator_depth() > data->minimum_block_->dominator_depth()) {
data->minimum_block_ = block;
queue_.push(node);
Trace("Propagating #%d:%s minimum_rpo = %d\n", node->id(),
node->op()->mnemonic(), data->minimum_block_->rpo_number());
Trace("Propagating #%d:%s minimum_block = B%d, dominator_depth = %d\n",
node->id(), node->op()->mnemonic(),
data->minimum_block_->id().ToInt(),
data->minimum_block_->dominator_depth());
}
}
#if DEBUG
bool InsideSameDominatorChain(BasicBlock* b1, BasicBlock* b2) {
BasicBlock* dominator = scheduler_->GetCommonDominator(b1, b2);
return dominator == b1 || dominator == b2;
}
#endif
Scheduler* scheduler_;
Schedule* schedule_;
ZoneQueue<Node*> queue_;
@ -1136,14 +1214,13 @@ void Scheduler::ScheduleEarly() {
Trace("--- SCHEDULE EARLY -----------------------------------------\n");
if (FLAG_trace_turbo_scheduler) {
Trace("roots: ");
for (NodeVectorIter i = schedule_root_nodes_.begin();
i != schedule_root_nodes_.end(); ++i) {
Trace("#%d:%s ", (*i)->id(), (*i)->op()->mnemonic());
for (Node* node : schedule_root_nodes_) {
Trace("#%d:%s ", node->id(), node->op()->mnemonic());
}
Trace("\n");
}
// Compute the minimum RPO for each node thereby determining the earliest
// Compute the minimum block for each node thereby determining the earliest
// position each node could be placed within a valid schedule.
ScheduleEarlyNodeVisitor schedule_early_visitor(zone_, this);
schedule_early_visitor.Run(&schedule_root_nodes_);
@ -1204,17 +1281,20 @@ class ScheduleLateNodeVisitor {
BasicBlock* block = GetCommonDominatorOfUses(node);
DCHECK_NOT_NULL(block);
int min_rpo = scheduler_->GetData(node)->minimum_block_->rpo_number();
Trace("Schedule late of #%d:%s is B%d at loop depth %d, minimum_rpo = %d\n",
// The schedule early block dominates the schedule late block.
BasicBlock* min_block = scheduler_->GetData(node)->minimum_block_;
DCHECK_EQ(min_block, scheduler_->GetCommonDominator(block, min_block));
Trace("Schedule late of #%d:%s is B%d at loop depth %d, minimum = B%d\n",
node->id(), node->op()->mnemonic(), block->id().ToInt(),
block->loop_depth(), min_rpo);
block->loop_depth(), min_block->id().ToInt());
// Hoist nodes out of loops if possible. Nodes can be hoisted iteratively
// into enclosing loop pre-headers until they would preceed their
// ScheduleEarly position.
// into enclosing loop pre-headers until they would preceed their schedule
// early position.
BasicBlock* hoist_block = GetPreHeader(block);
while (hoist_block != NULL && hoist_block->rpo_number() >= min_rpo) {
Trace(" hoisting #%d:%s to block %d\n", node->id(),
while (hoist_block != NULL &&
hoist_block->dominator_depth() >= min_block->dominator_depth()) {
Trace(" hoisting #%d:%s to block B%d\n", node->id(),
node->op()->mnemonic(), hoist_block->id().ToInt());
DCHECK_LT(hoist_block->loop_depth(), block->loop_depth());
block = hoist_block;
@ -1302,9 +1382,8 @@ void Scheduler::ScheduleLate() {
Trace("--- SCHEDULE LATE ------------------------------------------\n");
if (FLAG_trace_turbo_scheduler) {
Trace("roots: ");
for (NodeVectorIter i = schedule_root_nodes_.begin();
i != schedule_root_nodes_.end(); ++i) {
Trace("#%d:%s ", (*i)->id(), (*i)->op()->mnemonic());
for (Node* node : schedule_root_nodes_) {
Trace("#%d:%s ", node->id(), node->op()->mnemonic());
}
Trace("\n");
}
@ -1312,15 +1391,29 @@ void Scheduler::ScheduleLate() {
// Schedule: Places nodes in dominator block of all their uses.
ScheduleLateNodeVisitor schedule_late_visitor(zone_, this);
schedule_late_visitor.Run(&schedule_root_nodes_);
}
// -----------------------------------------------------------------------------
// Phase 6: Seal the final schedule.
void Scheduler::SealFinalSchedule() {
Trace("--- SEAL FINAL SCHEDULE ------------------------------------\n");
// Serialize the assembly order and reverse-post-order numbering.
special_rpo_->SerializeAOIntoSchedule();
special_rpo_->SerializeRPOIntoSchedule();
special_rpo_->PrintAndVerifySpecialRPO();
// Add collected nodes for basic blocks to their blocks in the right order.
int block_num = 0;
for (NodeVectorVectorIter i = scheduled_nodes_.begin();
i != scheduled_nodes_.end(); ++i) {
for (NodeVectorRIter j = i->rbegin(); j != i->rend(); ++j) {
schedule_->AddNode(schedule_->all_blocks_.at(block_num), *j);
for (NodeVector& nodes : scheduled_nodes_) {
BasicBlock::Id id = BasicBlock::Id::FromInt(block_num++);
BasicBlock* block = schedule_->GetBlockById(id);
for (NodeVectorRIter i = nodes.rbegin(); i != nodes.rend(); ++i) {
schedule_->AddNode(block, *i);
}
block_num++;
}
}
@ -1341,27 +1434,22 @@ void Scheduler::FuseFloatingControl(BasicBlock* block, Node* node) {
// Iterate on phase 2: Compute special RPO and dominator tree.
// TODO(mstarzinger): Currently "iterate on" means "re-run". Fix that.
BasicBlockVector* rpo = schedule_->rpo_order();
for (BasicBlockVectorIter i = rpo->begin(); i != rpo->end(); ++i) {
BasicBlock* block = *i;
for (BasicBlock* block : schedule_->all_blocks_) {
block->set_rpo_number(-1);
block->set_loop_header(NULL);
block->set_loop_depth(0);
block->set_loop_end(-1);
block->set_dominator_depth(-1);
block->set_dominator(NULL);
}
schedule_->rpo_order()->clear();
SpecialRPONumberer numberer(zone_, schedule_);
numberer.ComputeSpecialRPO();
special_rpo_->UpdateSpecialRPO(block, schedule_->block(node));
GenerateImmediateDominatorTree();
scheduled_nodes_.resize(schedule_->BasicBlockCount(), NodeVector(zone_));
// Move previously planned nodes.
// TODO(mstarzinger): Improve that by supporting bulk moves.
scheduled_nodes_.resize(schedule_->BasicBlockCount(), NodeVector(zone_));
MovePlannedNodes(block, schedule_->block(node));
if (FLAG_trace_turbo_scheduler) {
OFStream os(stdout);
os << "Schedule after control flow fusion:" << *schedule_;
os << "Schedule after control flow fusion:\n" << *schedule_;
}
}

View File

@ -16,6 +16,8 @@ namespace v8 {
namespace internal {
namespace compiler {
class SpecialRPONumberer;
// Computes a schedule from a graph, placing nodes into basic blocks and
// ordering the basic blocks in the special RPO order.
class Scheduler {
@ -60,6 +62,7 @@ class Scheduler {
NodeVector schedule_root_nodes_; // Fixed root nodes seed the worklist.
ZoneQueue<Node*> schedule_queue_; // Worklist of schedulable nodes.
ZoneVector<SchedulerData> node_data_; // Per-node data for all nodes.
SpecialRPONumberer* special_rpo_; // Special RPO numbering of blocks.
Scheduler(Zone* zone, Graph* graph, Schedule* schedule);
@ -73,7 +76,6 @@ class Scheduler {
void IncrementUnscheduledUseCount(Node* node, int index, Node* from);
void DecrementUnscheduledUseCount(Node* node, int index, Node* from);
inline int GetRPONumber(BasicBlock* block);
BasicBlock* GetCommonDominator(BasicBlock* b1, BasicBlock* b2);
// Phase 1: Build control-flow graph.
@ -97,6 +99,9 @@ class Scheduler {
friend class ScheduleLateNodeVisitor;
void ScheduleLate();
// Phase 6: Seal the final schedule.
void SealFinalSchedule();
void FuseFloatingControl(BasicBlock* block, Node* node);
void MovePlannedNodes(BasicBlock* from, BasicBlock* to);
};

View File

@ -139,7 +139,7 @@ TEST(InstructionBasic) {
BasicBlock* block = *i;
CHECK_EQ(block->rpo_number(), R.BlockAt(block)->rpo_number().ToInt());
CHECK_EQ(block->id().ToInt(), R.BlockAt(block)->id().ToInt());
CHECK_EQ(-1, block->loop_end());
CHECK_EQ(NULL, block->loop_end());
}
}

View File

@ -30,7 +30,7 @@ static void CheckRPONumbers(BasicBlockVector* order, size_t expected,
for (int i = 0; i < static_cast<int>(order->size()); i++) {
CHECK(order->at(i)->rpo_number() == i);
if (!loops_allowed) {
CHECK_LT(order->at(i)->loop_end(), 0);
CHECK_EQ(NULL, order->at(i)->loop_end());
CHECK_EQ(NULL, order->at(i)->loop_header());
}
}
@ -40,19 +40,21 @@ static void CheckRPONumbers(BasicBlockVector* order, size_t expected,
static void CheckLoop(BasicBlockVector* order, BasicBlock** blocks,
int body_size) {
BasicBlock* header = blocks[0];
CHECK_GT(header->loop_end(), 0);
CHECK_EQ(body_size, (header->loop_end() - header->rpo_number()));
BasicBlock* end = header->loop_end();
CHECK_NE(NULL, end);
CHECK_GT(end->rpo_number(), 0);
CHECK_EQ(body_size, end->rpo_number() - header->rpo_number());
for (int i = 0; i < body_size; i++) {
int num = blocks[i]->rpo_number();
CHECK(num >= header->rpo_number() && num < header->loop_end());
CHECK_GE(blocks[i]->rpo_number(), header->rpo_number());
CHECK_LT(blocks[i]->rpo_number(), end->rpo_number());
CHECK(header->LoopContains(blocks[i]));
CHECK(header->IsLoopHeader() || blocks[i]->loop_header() == header);
}
if (header->rpo_number() > 0) {
CHECK_NE(order->at(header->rpo_number() - 1)->loop_header(), header);
}
if (header->loop_end() < static_cast<int>(order->size())) {
CHECK_NE(order->at(header->loop_end())->loop_header(), header);
if (end->rpo_number() < static_cast<int>(order->size())) {
CHECK_NE(order->at(end->rpo_number())->loop_header(), header);
}
}

View File

@ -97,7 +97,7 @@ class RegisterAllocatorTest : public TestWithZone {
if (loop_header.IsValid()) {
basic_block->set_loop_depth(1);
basic_block->set_loop_header(basic_blocks_[loop_header.ToSize()]);
basic_block->set_loop_end(loop_end.ToInt());
basic_block->set_loop_end(basic_blocks_[loop_end.ToSize()]);
}
InstructionBlock* instruction_block =
new (zone()) InstructionBlock(zone(), basic_block);