[objects] Add shared-function-info.cc

.. and move all SharedFunctionInfo implementations from objects.cc to
the dedicated shared-function-info.cc.

Drive-by: Also move remaining JSRegExp impls.

Bug: v8:8888
Change-Id: I59adc3928f379eeb8b70f26d7e51d01c889c9a47
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2292240
Commit-Queue: Jakob Gruber <jgruber@chromium.org>
Reviewed-by: Toon Verwaest <verwaest@chromium.org>
Cr-Commit-Position: refs/heads/master@{#68832}
This commit is contained in:
Jakob Gruber 2020-07-13 08:55:29 +02:00 committed by Commit Bot
parent 0bebb1ad02
commit b342a1203c
4 changed files with 990 additions and 970 deletions

View File

@ -1035,6 +1035,7 @@ action("postmortem-metadata") {
"src/objects/scope-info.h",
"src/objects/script.h",
"src/objects/script-inl.h",
"src/objects/shared-function-info.cc",
"src/objects/shared-function-info.h",
"src/objects/shared-function-info-inl.h",
"src/objects/string.cc",
@ -2898,6 +2899,7 @@ v8_source_set("v8_base_without_compiler") {
"src/objects/script-inl.h",
"src/objects/script.h",
"src/objects/shared-function-info-inl.h",
"src/objects/shared-function-info.cc",
"src/objects/shared-function-info.h",
"src/objects/slots-atomic-inl.h",
"src/objects/slots-inl.h",

View File

@ -10,6 +10,7 @@
namespace v8 {
namespace internal {
MaybeHandle<JSArray> JSRegExpResult::GetAndCacheIndices(
Isolate* isolate, Handle<JSRegExpResult> regexp_result) {
// Check for cached indices. We do a slow lookup and set of
@ -167,5 +168,325 @@ uint32_t JSRegExp::BacktrackLimit() const {
return static_cast<uint32_t>(Smi::ToInt(DataAt(kIrregexpBacktrackLimit)));
}
// static
JSRegExp::Flags JSRegExp::FlagsFromString(Isolate* isolate,
Handle<String> flags, bool* success) {
STATIC_ASSERT(*JSRegExp::FlagFromChar('g') == JSRegExp::kGlobal);
STATIC_ASSERT(*JSRegExp::FlagFromChar('i') == JSRegExp::kIgnoreCase);
STATIC_ASSERT(*JSRegExp::FlagFromChar('m') == JSRegExp::kMultiline);
STATIC_ASSERT(*JSRegExp::FlagFromChar('s') == JSRegExp::kDotAll);
STATIC_ASSERT(*JSRegExp::FlagFromChar('u') == JSRegExp::kUnicode);
STATIC_ASSERT(*JSRegExp::FlagFromChar('y') == JSRegExp::kSticky);
int length = flags->length();
if (length == 0) {
*success = true;
return JSRegExp::kNone;
}
// A longer flags string cannot be valid.
if (length > JSRegExp::kFlagCount) return JSRegExp::Flags(0);
JSRegExp::Flags value(0);
if (flags->IsSeqOneByteString()) {
DisallowHeapAllocation no_gc;
SeqOneByteString seq_flags = SeqOneByteString::cast(*flags);
for (int i = 0; i < length; i++) {
base::Optional<JSRegExp::Flag> maybe_flag =
JSRegExp::FlagFromChar(seq_flags.Get(i));
if (!maybe_flag.has_value()) return JSRegExp::Flags(0);
JSRegExp::Flag flag = *maybe_flag;
// Duplicate flag.
if (value & flag) return JSRegExp::Flags(0);
value |= flag;
}
} else {
flags = String::Flatten(isolate, flags);
DisallowHeapAllocation no_gc;
String::FlatContent flags_content = flags->GetFlatContent(no_gc);
for (int i = 0; i < length; i++) {
base::Optional<JSRegExp::Flag> maybe_flag =
JSRegExp::FlagFromChar(flags_content.Get(i));
if (!maybe_flag.has_value()) return JSRegExp::Flags(0);
JSRegExp::Flag flag = *maybe_flag;
// Duplicate flag.
if (value & flag) return JSRegExp::Flags(0);
value |= flag;
}
}
*success = true;
return value;
}
// static
MaybeHandle<JSRegExp> JSRegExp::New(Isolate* isolate, Handle<String> pattern,
Flags flags, uint32_t backtrack_limit) {
Handle<JSFunction> constructor = isolate->regexp_function();
Handle<JSRegExp> regexp =
Handle<JSRegExp>::cast(isolate->factory()->NewJSObject(constructor));
return JSRegExp::Initialize(regexp, pattern, flags, backtrack_limit);
}
// static
Handle<JSRegExp> JSRegExp::Copy(Handle<JSRegExp> regexp) {
Isolate* const isolate = regexp->GetIsolate();
return Handle<JSRegExp>::cast(isolate->factory()->CopyJSObject(regexp));
}
Object JSRegExp::Code(bool is_latin1) const {
DCHECK_EQ(TypeTag(), JSRegExp::IRREGEXP);
return DataAt(code_index(is_latin1));
}
Object JSRegExp::Bytecode(bool is_latin1) const {
DCHECK_EQ(TypeTag(), JSRegExp::IRREGEXP);
return DataAt(bytecode_index(is_latin1));
}
bool JSRegExp::ShouldProduceBytecode() {
return FLAG_regexp_interpret_all ||
(FLAG_regexp_tier_up && !MarkedForTierUp());
}
// An irregexp is considered to be marked for tier up if the tier-up ticks value
// reaches zero. An atom is not subject to tier-up implementation, so the
// tier-up ticks value is not set.
bool JSRegExp::MarkedForTierUp() {
DCHECK(data().IsFixedArray());
if (TypeTag() == JSRegExp::ATOM || !FLAG_regexp_tier_up) {
return false;
}
return Smi::ToInt(DataAt(kIrregexpTicksUntilTierUpIndex)) == 0;
}
void JSRegExp::ResetLastTierUpTick() {
DCHECK(FLAG_regexp_tier_up);
DCHECK_EQ(TypeTag(), JSRegExp::IRREGEXP);
int tier_up_ticks = Smi::ToInt(DataAt(kIrregexpTicksUntilTierUpIndex)) + 1;
FixedArray::cast(data()).set(JSRegExp::kIrregexpTicksUntilTierUpIndex,
Smi::FromInt(tier_up_ticks));
}
void JSRegExp::TierUpTick() {
DCHECK(FLAG_regexp_tier_up);
DCHECK_EQ(TypeTag(), JSRegExp::IRREGEXP);
int tier_up_ticks = Smi::ToInt(DataAt(kIrregexpTicksUntilTierUpIndex));
if (tier_up_ticks == 0) {
return;
}
FixedArray::cast(data()).set(JSRegExp::kIrregexpTicksUntilTierUpIndex,
Smi::FromInt(tier_up_ticks - 1));
}
void JSRegExp::MarkTierUpForNextExec() {
DCHECK(FLAG_regexp_tier_up);
DCHECK_EQ(TypeTag(), JSRegExp::IRREGEXP);
FixedArray::cast(data()).set(JSRegExp::kIrregexpTicksUntilTierUpIndex,
Smi::zero());
}
// static
MaybeHandle<JSRegExp> JSRegExp::Initialize(Handle<JSRegExp> regexp,
Handle<String> source,
Handle<String> flags_string) {
Isolate* isolate = regexp->GetIsolate();
bool success = false;
Flags flags = JSRegExp::FlagsFromString(isolate, flags_string, &success);
if (!success) {
THROW_NEW_ERROR(
isolate,
NewSyntaxError(MessageTemplate::kInvalidRegExpFlags, flags_string),
JSRegExp);
}
return Initialize(regexp, source, flags);
}
namespace {
bool IsLineTerminator(int c) {
// Expected to return true for '\n', '\r', 0x2028, and 0x2029.
return unibrow::IsLineTerminator(static_cast<unibrow::uchar>(c));
}
// TODO(jgruber): Consider merging CountAdditionalEscapeChars and
// WriteEscapedRegExpSource into a single function to deduplicate dispatch logic
// and move related code closer to each other.
template <typename Char>
int CountAdditionalEscapeChars(Handle<String> source, bool* needs_escapes_out) {
DisallowHeapAllocation no_gc;
int escapes = 0;
bool needs_escapes = false;
bool in_char_class = false;
Vector<const Char> src = source->GetCharVector<Char>(no_gc);
for (int i = 0; i < src.length(); i++) {
const Char c = src[i];
if (c == '\\') {
if (i + 1 < src.length() && IsLineTerminator(src[i + 1])) {
// This '\' is ignored since the next character itself will be escaped.
escapes--;
} else {
// Escape. Skip next character, which will be copied verbatim;
i++;
}
} else if (c == '/' && !in_char_class) {
// Not escaped forward-slash needs escape.
needs_escapes = true;
escapes++;
} else if (c == '[') {
in_char_class = true;
} else if (c == ']') {
in_char_class = false;
} else if (c == '\n') {
needs_escapes = true;
escapes++;
} else if (c == '\r') {
needs_escapes = true;
escapes++;
} else if (static_cast<int>(c) == 0x2028) {
needs_escapes = true;
escapes += std::strlen("\\u2028") - 1;
} else if (static_cast<int>(c) == 0x2029) {
needs_escapes = true;
escapes += std::strlen("\\u2029") - 1;
} else {
DCHECK(!IsLineTerminator(c));
}
}
DCHECK(!in_char_class);
DCHECK_GE(escapes, 0);
DCHECK_IMPLIES(escapes != 0, needs_escapes);
*needs_escapes_out = needs_escapes;
return escapes;
}
template <typename Char>
void WriteStringToCharVector(Vector<Char> v, int* d, const char* string) {
int s = 0;
while (string[s] != '\0') v[(*d)++] = string[s++];
}
template <typename Char, typename StringType>
Handle<StringType> WriteEscapedRegExpSource(Handle<String> source,
Handle<StringType> result) {
DisallowHeapAllocation no_gc;
Vector<const Char> src = source->GetCharVector<Char>(no_gc);
Vector<Char> dst(result->GetChars(no_gc), result->length());
int s = 0;
int d = 0;
bool in_char_class = false;
while (s < src.length()) {
const Char c = src[s];
if (c == '\\') {
if (s + 1 < src.length() && IsLineTerminator(src[s + 1])) {
// This '\' is ignored since the next character itself will be escaped.
s++;
continue;
} else {
// Escape. Copy this and next character.
dst[d++] = src[s++];
}
if (s == src.length()) break;
} else if (c == '/' && !in_char_class) {
// Not escaped forward-slash needs escape.
dst[d++] = '\\';
} else if (c == '[') {
in_char_class = true;
} else if (c == ']') {
in_char_class = false;
} else if (c == '\n') {
WriteStringToCharVector(dst, &d, "\\n");
s++;
continue;
} else if (c == '\r') {
WriteStringToCharVector(dst, &d, "\\r");
s++;
continue;
} else if (static_cast<int>(c) == 0x2028) {
WriteStringToCharVector(dst, &d, "\\u2028");
s++;
continue;
} else if (static_cast<int>(c) == 0x2029) {
WriteStringToCharVector(dst, &d, "\\u2029");
s++;
continue;
} else {
DCHECK(!IsLineTerminator(c));
}
dst[d++] = src[s++];
}
DCHECK_EQ(result->length(), d);
DCHECK(!in_char_class);
return result;
}
MaybeHandle<String> EscapeRegExpSource(Isolate* isolate,
Handle<String> source) {
DCHECK(source->IsFlat());
if (source->length() == 0) return isolate->factory()->query_colon_string();
bool one_byte = String::IsOneByteRepresentationUnderneath(*source);
bool needs_escapes = false;
int additional_escape_chars =
one_byte ? CountAdditionalEscapeChars<uint8_t>(source, &needs_escapes)
: CountAdditionalEscapeChars<uc16>(source, &needs_escapes);
if (!needs_escapes) return source;
int length = source->length() + additional_escape_chars;
if (one_byte) {
Handle<SeqOneByteString> result;
ASSIGN_RETURN_ON_EXCEPTION(isolate, result,
isolate->factory()->NewRawOneByteString(length),
String);
return WriteEscapedRegExpSource<uint8_t>(source, result);
} else {
Handle<SeqTwoByteString> result;
ASSIGN_RETURN_ON_EXCEPTION(isolate, result,
isolate->factory()->NewRawTwoByteString(length),
String);
return WriteEscapedRegExpSource<uc16>(source, result);
}
}
} // namespace
// static
MaybeHandle<JSRegExp> JSRegExp::Initialize(Handle<JSRegExp> regexp,
Handle<String> source, Flags flags,
uint32_t backtrack_limit) {
Isolate* isolate = regexp->GetIsolate();
Factory* factory = isolate->factory();
// If source is the empty string we set it to "(?:)" instead as
// suggested by ECMA-262, 5th, section 15.10.4.1.
if (source->length() == 0) source = factory->query_colon_string();
source = String::Flatten(isolate, source);
RETURN_ON_EXCEPTION(
isolate, RegExp::Compile(isolate, regexp, source, flags, backtrack_limit),
JSRegExp);
Handle<String> escaped_source;
ASSIGN_RETURN_ON_EXCEPTION(isolate, escaped_source,
EscapeRegExpSource(isolate, source), JSRegExp);
regexp->set_source(*escaped_source);
regexp->set_flags(Smi::FromInt(flags));
Map map = regexp->map();
Object constructor = map.GetConstructor();
if (constructor.IsJSFunction() &&
JSFunction::cast(constructor).initial_map() == map) {
// If we still have the original map, set in-object properties directly.
regexp->InObjectPropertyAtPut(JSRegExp::kLastIndexFieldIndex, Smi::zero(),
SKIP_WRITE_BARRIER);
} else {
// Map has changed, so use generic, but slower, method.
RETURN_ON_EXCEPTION(
isolate,
Object::SetProperty(isolate, regexp, factory->lastIndex_string(),
Handle<Smi>(Smi::zero(), isolate)),
JSRegExp);
}
return regexp;
}
} // namespace internal
} // namespace v8

View File

@ -1254,8 +1254,6 @@ bool Object::ToInt32(int32_t* value) {
return false;
}
V8_EXPORT_PRIVATE constexpr Smi SharedFunctionInfo::kNoSharedNameSentinel;
Handle<SharedFunctionInfo> FunctionTemplateInfo::GetOrCreateSharedFunctionInfo(
Isolate* isolate, Handle<FunctionTemplateInfo> info,
MaybeHandle<Name> maybe_name) {
@ -4960,654 +4958,6 @@ Script Script::Iterator::Next() {
return Script();
}
uint32_t SharedFunctionInfo::Hash() {
// Hash SharedFunctionInfo based on its start position and script id. Note: we
// don't use the function's literal id since getting that is slow for compiled
// funcitons.
int start_pos = StartPosition();
int script_id = script().IsScript() ? Script::cast(script()).id() : 0;
return static_cast<uint32_t>(base::hash_combine(start_pos, script_id));
}
void SharedFunctionInfo::Init(ReadOnlyRoots ro_roots, int unique_id) {
DisallowHeapAllocation no_allocation;
// Set the function data to the "illegal" builtin. Ideally we'd use some sort
// of "uninitialized" marker here, but it's cheaper to use a valid buitin and
// avoid having to do uninitialized checks elsewhere.
set_builtin_id(Builtins::kIllegal);
// Set the name to the no-name sentinel, this can be updated later.
set_name_or_scope_info(SharedFunctionInfo::kNoSharedNameSentinel,
SKIP_WRITE_BARRIER);
// Generally functions won't have feedback, unless they have been created
// from a FunctionLiteral. Those can just reset this field to keep the
// SharedFunctionInfo in a consistent state.
set_raw_outer_scope_info_or_feedback_metadata(ro_roots.the_hole_value(),
SKIP_WRITE_BARRIER);
set_script_or_debug_info(ro_roots.undefined_value(), SKIP_WRITE_BARRIER);
set_function_literal_id(kFunctionLiteralIdInvalid);
#if V8_SFI_HAS_UNIQUE_ID
set_unique_id(unique_id);
#endif
// Set integer fields (smi or int, depending on the architecture).
set_length(0);
set_internal_formal_parameter_count(0);
set_expected_nof_properties(0);
set_raw_function_token_offset(0);
// All flags default to false or 0, except ConstructAsBuiltinBit just because
// we're using the kIllegal builtin.
set_flags(ConstructAsBuiltinBit::encode(true));
set_flags2(0);
UpdateFunctionMapIndex();
clear_padding();
}
Code SharedFunctionInfo::GetCode() const {
// ======
// NOTE: This chain of checks MUST be kept in sync with the equivalent CSA
// GetSharedFunctionInfoCode method in code-stub-assembler.cc.
// ======
Isolate* isolate = GetIsolate();
Object data = function_data();
if (data.IsSmi()) {
// Holding a Smi means we are a builtin.
DCHECK(HasBuiltinId());
return isolate->builtins()->builtin(builtin_id());
} else if (data.IsBytecodeArray()) {
// Having a bytecode array means we are a compiled, interpreted function.
DCHECK(HasBytecodeArray());
return isolate->builtins()->builtin(Builtins::kInterpreterEntryTrampoline);
} else if (data.IsAsmWasmData()) {
// Having AsmWasmData means we are an asm.js/wasm function.
DCHECK(HasAsmWasmData());
return isolate->builtins()->builtin(Builtins::kInstantiateAsmJs);
} else if (data.IsUncompiledData()) {
// Having uncompiled data (with or without scope) means we need to compile.
DCHECK(HasUncompiledData());
return isolate->builtins()->builtin(Builtins::kCompileLazy);
} else if (data.IsFunctionTemplateInfo()) {
// Having a function template info means we are an API function.
DCHECK(IsApiFunction());
return isolate->builtins()->builtin(Builtins::kHandleApiCall);
} else if (data.IsWasmExportedFunctionData()) {
// Having a WasmExportedFunctionData means the code is in there.
DCHECK(HasWasmExportedFunctionData());
return wasm_exported_function_data().wrapper_code();
} else if (data.IsInterpreterData()) {
Code code = InterpreterTrampoline();
DCHECK(code.IsCode());
DCHECK(code.is_interpreter_trampoline_builtin());
return code;
} else if (data.IsWasmJSFunctionData()) {
return wasm_js_function_data().wrapper_code();
} else if (data.IsWasmCapiFunctionData()) {
return wasm_capi_function_data().wrapper_code();
}
UNREACHABLE();
}
WasmExportedFunctionData SharedFunctionInfo::wasm_exported_function_data()
const {
DCHECK(HasWasmExportedFunctionData());
return WasmExportedFunctionData::cast(function_data());
}
WasmJSFunctionData SharedFunctionInfo::wasm_js_function_data() const {
DCHECK(HasWasmJSFunctionData());
return WasmJSFunctionData::cast(function_data());
}
WasmCapiFunctionData SharedFunctionInfo::wasm_capi_function_data() const {
DCHECK(HasWasmCapiFunctionData());
return WasmCapiFunctionData::cast(function_data());
}
SharedFunctionInfo::ScriptIterator::ScriptIterator(Isolate* isolate,
Script script)
: ScriptIterator(handle(script.shared_function_infos(), isolate)) {}
SharedFunctionInfo::ScriptIterator::ScriptIterator(
Handle<WeakFixedArray> shared_function_infos)
: shared_function_infos_(shared_function_infos), index_(0) {}
SharedFunctionInfo SharedFunctionInfo::ScriptIterator::Next() {
while (index_ < shared_function_infos_->length()) {
MaybeObject raw = shared_function_infos_->Get(index_++);
HeapObject heap_object;
if (!raw->GetHeapObject(&heap_object) || heap_object.IsUndefined()) {
continue;
}
return SharedFunctionInfo::cast(heap_object);
}
return SharedFunctionInfo();
}
void SharedFunctionInfo::ScriptIterator::Reset(Isolate* isolate,
Script script) {
shared_function_infos_ = handle(script.shared_function_infos(), isolate);
index_ = 0;
}
void SharedFunctionInfo::SetScript(ReadOnlyRoots roots,
HeapObject script_object,
int function_literal_id,
bool reset_preparsed_scope_data) {
DisallowHeapAllocation no_gc;
if (script() == script_object) return;
if (reset_preparsed_scope_data && HasUncompiledDataWithPreparseData()) {
ClearPreparseData();
}
// Add shared function info to new script's list. If a collection occurs,
// the shared function info may be temporarily in two lists.
// This is okay because the gc-time processing of these lists can tolerate
// duplicates.
if (script_object.IsScript()) {
DCHECK(!script().IsScript());
Script script = Script::cast(script_object);
WeakFixedArray list = script.shared_function_infos();
#ifdef DEBUG
DCHECK_LT(function_literal_id, list.length());
MaybeObject maybe_object = list.Get(function_literal_id);
HeapObject heap_object;
if (maybe_object->GetHeapObjectIfWeak(&heap_object)) {
DCHECK_EQ(heap_object, *this);
}
#endif
list.Set(function_literal_id, HeapObjectReference::Weak(*this));
} else {
DCHECK(script().IsScript());
// Remove shared function info from old script's list.
Script old_script = Script::cast(script());
// Due to liveedit, it might happen that the old_script doesn't know
// about the SharedFunctionInfo, so we have to guard against that.
WeakFixedArray infos = old_script.shared_function_infos();
if (function_literal_id < infos.length()) {
MaybeObject raw =
old_script.shared_function_infos().Get(function_literal_id);
HeapObject heap_object;
if (raw->GetHeapObjectIfWeak(&heap_object) && heap_object == *this) {
old_script.shared_function_infos().Set(
function_literal_id,
HeapObjectReference::Strong(roots.undefined_value()));
}
}
}
// Finally set new script.
set_script(script_object);
}
bool SharedFunctionInfo::HasBreakInfo() const {
if (!HasDebugInfo()) return false;
DebugInfo info = GetDebugInfo();
bool has_break_info = info.HasBreakInfo();
return has_break_info;
}
bool SharedFunctionInfo::BreakAtEntry() const {
if (!HasDebugInfo()) return false;
DebugInfo info = GetDebugInfo();
bool break_at_entry = info.BreakAtEntry();
return break_at_entry;
}
bool SharedFunctionInfo::HasCoverageInfo() const {
if (!HasDebugInfo()) return false;
DebugInfo info = GetDebugInfo();
bool has_coverage_info = info.HasCoverageInfo();
return has_coverage_info;
}
CoverageInfo SharedFunctionInfo::GetCoverageInfo() const {
DCHECK(HasCoverageInfo());
return CoverageInfo::cast(GetDebugInfo().coverage_info());
}
String SharedFunctionInfo::DebugName() {
DisallowHeapAllocation no_gc;
String function_name = Name();
if (function_name.length() > 0) return function_name;
return inferred_name();
}
bool SharedFunctionInfo::PassesFilter(const char* raw_filter) {
Vector<const char> filter = CStrVector(raw_filter);
std::unique_ptr<char[]> cstrname(DebugName().ToCString());
return v8::internal::PassesFilter(CStrVector(cstrname.get()), filter);
}
bool SharedFunctionInfo::HasSourceCode() const {
ReadOnlyRoots roots = GetReadOnlyRoots();
return !script().IsUndefined(roots) &&
!Script::cast(script()).source().IsUndefined(roots) &&
String::cast(Script::cast(script()).source()).length() > 0;
}
void SharedFunctionInfo::DiscardCompiledMetadata(
Isolate* isolate,
std::function<void(HeapObject object, ObjectSlot slot, HeapObject target)>
gc_notify_updated_slot) {
DisallowHeapAllocation no_gc;
if (is_compiled()) {
HeapObject outer_scope_info;
if (scope_info().HasOuterScopeInfo()) {
outer_scope_info = scope_info().OuterScopeInfo();
} else {
outer_scope_info = ReadOnlyRoots(isolate).the_hole_value();
}
// Raw setter to avoid validity checks, since we're performing the unusual
// task of decompiling.
set_raw_outer_scope_info_or_feedback_metadata(outer_scope_info);
gc_notify_updated_slot(
*this,
RawField(SharedFunctionInfo::kOuterScopeInfoOrFeedbackMetadataOffset),
outer_scope_info);
} else {
DCHECK(outer_scope_info().IsScopeInfo() || outer_scope_info().IsTheHole());
}
// TODO(rmcilroy): Possibly discard ScopeInfo here as well.
}
// static
void SharedFunctionInfo::DiscardCompiled(
Isolate* isolate, Handle<SharedFunctionInfo> shared_info) {
DCHECK(shared_info->CanDiscardCompiled());
Handle<String> inferred_name_val =
handle(shared_info->inferred_name(), isolate);
int start_position = shared_info->StartPosition();
int end_position = shared_info->EndPosition();
shared_info->DiscardCompiledMetadata(isolate);
// Replace compiled data with a new UncompiledData object.
if (shared_info->HasUncompiledDataWithPreparseData()) {
// If this is uncompiled data with a pre-parsed scope data, we can just
// clear out the scope data and keep the uncompiled data.
shared_info->ClearPreparseData();
} else {
// Create a new UncompiledData, without pre-parsed scope, and update the
// function data to point to it. Use the raw function data setter to avoid
// validity checks, since we're performing the unusual task of decompiling.
Handle<UncompiledData> data =
isolate->factory()->NewUncompiledDataWithoutPreparseData(
inferred_name_val, start_position, end_position);
shared_info->set_function_data(*data);
}
}
// static
Handle<Object> SharedFunctionInfo::GetSourceCode(
Handle<SharedFunctionInfo> shared) {
Isolate* isolate = shared->GetIsolate();
if (!shared->HasSourceCode()) return isolate->factory()->undefined_value();
Handle<String> source(String::cast(Script::cast(shared->script()).source()),
isolate);
return isolate->factory()->NewSubString(source, shared->StartPosition(),
shared->EndPosition());
}
// static
Handle<Object> SharedFunctionInfo::GetSourceCodeHarmony(
Handle<SharedFunctionInfo> shared) {
Isolate* isolate = shared->GetIsolate();
if (!shared->HasSourceCode()) return isolate->factory()->undefined_value();
Handle<String> script_source(
String::cast(Script::cast(shared->script()).source()), isolate);
int start_pos = shared->function_token_position();
DCHECK_NE(start_pos, kNoSourcePosition);
Handle<String> source = isolate->factory()->NewSubString(
script_source, start_pos, shared->EndPosition());
if (!shared->is_wrapped()) return source;
DCHECK(!shared->name_should_print_as_anonymous());
IncrementalStringBuilder builder(isolate);
builder.AppendCString("function ");
builder.AppendString(Handle<String>(shared->Name(), isolate));
builder.AppendCString("(");
Handle<FixedArray> args(Script::cast(shared->script()).wrapped_arguments(),
isolate);
int argc = args->length();
for (int i = 0; i < argc; i++) {
if (i > 0) builder.AppendCString(", ");
builder.AppendString(Handle<String>(String::cast(args->get(i)), isolate));
}
builder.AppendCString(") {\n");
builder.AppendString(source);
builder.AppendCString("\n}");
return builder.Finish().ToHandleChecked();
}
SharedFunctionInfo::Inlineability SharedFunctionInfo::GetInlineability() const {
if (!script().IsScript()) return kHasNoScript;
if (GetIsolate()->is_precise_binary_code_coverage() &&
!has_reported_binary_coverage()) {
// We may miss invocations if this function is inlined.
return kNeedsBinaryCoverage;
}
if (optimization_disabled()) return kHasOptimizationDisabled;
// Built-in functions are handled by the JSCallReducer.
if (HasBuiltinId()) return kIsBuiltin;
if (!IsUserJavaScript()) return kIsNotUserCode;
// If there is no bytecode array, it is either not compiled or it is compiled
// with WebAssembly for the asm.js pipeline. In either case we don't want to
// inline.
if (!HasBytecodeArray()) return kHasNoBytecode;
if (GetBytecodeArray().length() > FLAG_max_inlined_bytecode_size) {
return kExceedsBytecodeLimit;
}
if (HasBreakInfo()) return kMayContainBreakPoints;
return kIsInlineable;
}
int SharedFunctionInfo::SourceSize() { return EndPosition() - StartPosition(); }
// Output the source code without any allocation in the heap.
std::ostream& operator<<(std::ostream& os, const SourceCodeOf& v) {
const SharedFunctionInfo s = v.value;
// For some native functions there is no source.
if (!s.HasSourceCode()) return os << "<No Source>";
// Get the source for the script which this function came from.
// Don't use String::cast because we don't want more assertion errors while
// we are already creating a stack dump.
String script_source =
String::unchecked_cast(Script::cast(s.script()).source());
if (!script_source.LooksValid()) return os << "<Invalid Source>";
if (!s.is_toplevel()) {
os << "function ";
String name = s.Name();
if (name.length() > 0) {
name.PrintUC16(os);
}
}
int len = s.EndPosition() - s.StartPosition();
if (len <= v.max_length || v.max_length < 0) {
script_source.PrintUC16(os, s.StartPosition(), s.EndPosition());
return os;
} else {
script_source.PrintUC16(os, s.StartPosition(),
s.StartPosition() + v.max_length);
return os << "...\n";
}
}
void SharedFunctionInfo::DisableOptimization(BailoutReason reason) {
DCHECK_NE(reason, BailoutReason::kNoReason);
set_flags(DisabledOptimizationReasonBits::update(flags(), reason));
// Code should be the lazy compilation stub or else interpreted.
DCHECK(abstract_code().kind() == AbstractCode::INTERPRETED_FUNCTION ||
abstract_code().kind() == AbstractCode::BUILTIN);
PROFILE(GetIsolate(),
CodeDisableOptEvent(handle(abstract_code(), GetIsolate()),
handle(*this, GetIsolate())));
if (FLAG_trace_opt) {
CodeTracer::Scope scope(GetIsolate()->GetCodeTracer());
PrintF(scope.file(), "[disabled optimization for ");
ShortPrint(scope.file());
PrintF(scope.file(), ", reason: %s]\n", GetBailoutReason(reason));
}
}
// static
template <typename LocalIsolate>
void SharedFunctionInfo::InitFromFunctionLiteral(
LocalIsolate* isolate, Handle<SharedFunctionInfo> shared_info,
FunctionLiteral* lit, bool is_toplevel) {
DCHECK(!shared_info->name_or_scope_info().IsScopeInfo());
// When adding fields here, make sure DeclarationScope::AnalyzePartially is
// updated accordingly.
shared_info->set_internal_formal_parameter_count(lit->parameter_count());
shared_info->SetFunctionTokenPosition(lit->function_token_position(),
lit->start_position());
shared_info->set_syntax_kind(lit->syntax_kind());
shared_info->set_allows_lazy_compilation(lit->AllowsLazyCompilation());
shared_info->set_language_mode(lit->language_mode());
shared_info->set_function_literal_id(lit->function_literal_id());
// FunctionKind must have already been set.
DCHECK(lit->kind() == shared_info->kind());
shared_info->set_needs_home_object(lit->scope()->NeedsHomeObject());
DCHECK_IMPLIES(lit->requires_instance_members_initializer(),
IsClassConstructor(lit->kind()));
shared_info->set_requires_instance_members_initializer(
lit->requires_instance_members_initializer());
DCHECK_IMPLIES(lit->class_scope_has_private_brand(),
IsClassConstructor(lit->kind()));
shared_info->set_class_scope_has_private_brand(
lit->class_scope_has_private_brand());
DCHECK_IMPLIES(lit->has_static_private_methods_or_accessors(),
IsClassConstructor(lit->kind()));
shared_info->set_has_static_private_methods_or_accessors(
lit->has_static_private_methods_or_accessors());
shared_info->set_is_toplevel(is_toplevel);
DCHECK(shared_info->outer_scope_info().IsTheHole());
if (!is_toplevel) {
Scope* outer_scope = lit->scope()->GetOuterScopeWithContext();
if (outer_scope) {
shared_info->set_outer_scope_info(*outer_scope->scope_info());
shared_info->set_private_name_lookup_skips_outer_class(
lit->scope()->private_name_lookup_skips_outer_class());
}
}
shared_info->set_length(lit->function_length());
// For lazy parsed functions, the following flags will be inaccurate since we
// don't have the information yet. They're set later in
// SetSharedFunctionFlagsFromLiteral (compiler.cc), when the function is
// really parsed and compiled.
if (lit->ShouldEagerCompile()) {
shared_info->set_has_duplicate_parameters(lit->has_duplicate_parameters());
shared_info->UpdateAndFinalizeExpectedNofPropertiesFromEstimate(lit);
shared_info->set_is_safe_to_skip_arguments_adaptor(
lit->SafeToSkipArgumentsAdaptor());
DCHECK_NULL(lit->produced_preparse_data());
// If we're about to eager compile, we'll have the function literal
// available, so there's no need to wastefully allocate an uncompiled data.
return;
}
shared_info->set_is_safe_to_skip_arguments_adaptor(false);
shared_info->UpdateExpectedNofPropertiesFromEstimate(lit);
Handle<UncompiledData> data;
ProducedPreparseData* scope_data = lit->produced_preparse_data();
if (scope_data != nullptr) {
Handle<PreparseData> preparse_data = scope_data->Serialize(isolate);
data = isolate->factory()->NewUncompiledDataWithPreparseData(
lit->GetInferredName(isolate), lit->start_position(),
lit->end_position(), preparse_data);
} else {
data = isolate->factory()->NewUncompiledDataWithoutPreparseData(
lit->GetInferredName(isolate), lit->start_position(),
lit->end_position());
}
shared_info->set_uncompiled_data(*data);
}
template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE) void SharedFunctionInfo::
InitFromFunctionLiteral<Isolate>(Isolate* isolate,
Handle<SharedFunctionInfo> shared_info,
FunctionLiteral* lit, bool is_toplevel);
template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE) void SharedFunctionInfo::
InitFromFunctionLiteral<OffThreadIsolate>(
OffThreadIsolate* isolate, Handle<SharedFunctionInfo> shared_info,
FunctionLiteral* lit, bool is_toplevel);
uint16_t SharedFunctionInfo::get_property_estimate_from_literal(
FunctionLiteral* literal) {
int estimate = literal->expected_property_count();
// If this is a class constructor, we may have already parsed fields.
if (is_class_constructor()) {
estimate += expected_nof_properties();
}
return estimate;
}
void SharedFunctionInfo::UpdateExpectedNofPropertiesFromEstimate(
FunctionLiteral* literal) {
// Limit actual estimate to fit in a 8 bit field, we will never allocate
// more than this in any case.
STATIC_ASSERT(JSObject::kMaxInObjectProperties <= kMaxUInt8);
int estimate = get_property_estimate_from_literal(literal);
set_expected_nof_properties(std::min(estimate, kMaxUInt8));
}
void SharedFunctionInfo::UpdateAndFinalizeExpectedNofPropertiesFromEstimate(
FunctionLiteral* literal) {
DCHECK(literal->ShouldEagerCompile());
if (are_properties_final()) {
return;
}
int estimate = get_property_estimate_from_literal(literal);
// If no properties are added in the constructor, they are more likely
// to be added later.
if (estimate == 0) estimate = 2;
// Limit actual estimate to fit in a 8 bit field, we will never allocate
// more than this in any case.
STATIC_ASSERT(JSObject::kMaxInObjectProperties <= kMaxUInt8);
estimate = std::min(estimate, kMaxUInt8);
set_expected_nof_properties(estimate);
set_are_properties_final(true);
}
void SharedFunctionInfo::SetFunctionTokenPosition(int function_token_position,
int start_position) {
int offset;
if (function_token_position == kNoSourcePosition) {
offset = 0;
} else {
offset = start_position - function_token_position;
}
if (offset > kMaximumFunctionTokenOffset) {
offset = kFunctionTokenOutOfRange;
}
set_raw_function_token_offset(offset);
}
int SharedFunctionInfo::StartPosition() const {
Object maybe_scope_info = name_or_scope_info();
if (maybe_scope_info.IsScopeInfo()) {
ScopeInfo info = ScopeInfo::cast(maybe_scope_info);
if (info.HasPositionInfo()) {
return info.StartPosition();
}
}
if (HasUncompiledData()) {
// Works with or without scope.
return uncompiled_data().start_position();
}
if (IsApiFunction() || HasBuiltinId()) {
DCHECK_IMPLIES(HasBuiltinId(), builtin_id() != Builtins::kCompileLazy);
return 0;
}
if (HasWasmExportedFunctionData()) {
WasmInstanceObject instance = wasm_exported_function_data().instance();
int func_index = wasm_exported_function_data().function_index();
auto& function = instance.module()->functions[func_index];
return static_cast<int>(function.code.offset());
}
return kNoSourcePosition;
}
int SharedFunctionInfo::EndPosition() const {
Object maybe_scope_info = name_or_scope_info();
if (maybe_scope_info.IsScopeInfo()) {
ScopeInfo info = ScopeInfo::cast(maybe_scope_info);
if (info.HasPositionInfo()) {
return info.EndPosition();
}
}
if (HasUncompiledData()) {
// Works with or without scope.
return uncompiled_data().end_position();
}
if (IsApiFunction() || HasBuiltinId()) {
DCHECK_IMPLIES(HasBuiltinId(), builtin_id() != Builtins::kCompileLazy);
return 0;
}
if (HasWasmExportedFunctionData()) {
WasmInstanceObject instance = wasm_exported_function_data().instance();
int func_index = wasm_exported_function_data().function_index();
auto& function = instance.module()->functions[func_index];
return static_cast<int>(function.code.end_offset());
}
return kNoSourcePosition;
}
void SharedFunctionInfo::SetPosition(int start_position, int end_position) {
Object maybe_scope_info = name_or_scope_info();
if (maybe_scope_info.IsScopeInfo()) {
ScopeInfo info = ScopeInfo::cast(maybe_scope_info);
if (info.HasPositionInfo()) {
info.SetPositionInfo(start_position, end_position);
}
} else if (HasUncompiledData()) {
if (HasUncompiledDataWithPreparseData()) {
// Clear out preparsed scope data, since the position setter invalidates
// any scope data.
ClearPreparseData();
}
uncompiled_data().set_start_position(start_position);
uncompiled_data().set_end_position(end_position);
} else {
UNREACHABLE();
}
}
bool SharedFunctionInfo::AreSourcePositionsAvailable() const {
if (FLAG_enable_lazy_source_positions) {
return !HasBytecodeArray() || GetBytecodeArray().HasSourcePositionTable();
}
return true;
}
// static
void SharedFunctionInfo::EnsureSourcePositionsAvailable(
Isolate* isolate, Handle<SharedFunctionInfo> shared_info) {
if (FLAG_enable_lazy_source_positions && shared_info->HasBytecodeArray() &&
!shared_info->GetBytecodeArray().HasSourcePositionTable()) {
Compiler::CollectSourcePositions(isolate, shared_info);
}
}
// static
void JSArray::Initialize(Handle<JSArray> array, int capacity, int length) {
DCHECK_GE(capacity, 0);
@ -6218,326 +5568,6 @@ Handle<Object> JSPromise::TriggerPromiseReactions(Isolate* isolate,
return isolate->factory()->undefined_value();
}
// static
JSRegExp::Flags JSRegExp::FlagsFromString(Isolate* isolate,
Handle<String> flags, bool* success) {
STATIC_ASSERT(*JSRegExp::FlagFromChar('g') == JSRegExp::kGlobal);
STATIC_ASSERT(*JSRegExp::FlagFromChar('i') == JSRegExp::kIgnoreCase);
STATIC_ASSERT(*JSRegExp::FlagFromChar('m') == JSRegExp::kMultiline);
STATIC_ASSERT(*JSRegExp::FlagFromChar('s') == JSRegExp::kDotAll);
STATIC_ASSERT(*JSRegExp::FlagFromChar('u') == JSRegExp::kUnicode);
STATIC_ASSERT(*JSRegExp::FlagFromChar('y') == JSRegExp::kSticky);
int length = flags->length();
if (length == 0) {
*success = true;
return JSRegExp::kNone;
}
// A longer flags string cannot be valid.
if (length > JSRegExp::kFlagCount) return JSRegExp::Flags(0);
JSRegExp::Flags value(0);
if (flags->IsSeqOneByteString()) {
DisallowHeapAllocation no_gc;
SeqOneByteString seq_flags = SeqOneByteString::cast(*flags);
for (int i = 0; i < length; i++) {
base::Optional<JSRegExp::Flag> maybe_flag =
JSRegExp::FlagFromChar(seq_flags.Get(i));
if (!maybe_flag.has_value()) return JSRegExp::Flags(0);
JSRegExp::Flag flag = *maybe_flag;
// Duplicate flag.
if (value & flag) return JSRegExp::Flags(0);
value |= flag;
}
} else {
flags = String::Flatten(isolate, flags);
DisallowHeapAllocation no_gc;
String::FlatContent flags_content = flags->GetFlatContent(no_gc);
for (int i = 0; i < length; i++) {
base::Optional<JSRegExp::Flag> maybe_flag =
JSRegExp::FlagFromChar(flags_content.Get(i));
if (!maybe_flag.has_value()) return JSRegExp::Flags(0);
JSRegExp::Flag flag = *maybe_flag;
// Duplicate flag.
if (value & flag) return JSRegExp::Flags(0);
value |= flag;
}
}
*success = true;
return value;
}
// static
MaybeHandle<JSRegExp> JSRegExp::New(Isolate* isolate, Handle<String> pattern,
Flags flags, uint32_t backtrack_limit) {
Handle<JSFunction> constructor = isolate->regexp_function();
Handle<JSRegExp> regexp =
Handle<JSRegExp>::cast(isolate->factory()->NewJSObject(constructor));
return JSRegExp::Initialize(regexp, pattern, flags, backtrack_limit);
}
// static
Handle<JSRegExp> JSRegExp::Copy(Handle<JSRegExp> regexp) {
Isolate* const isolate = regexp->GetIsolate();
return Handle<JSRegExp>::cast(isolate->factory()->CopyJSObject(regexp));
}
Object JSRegExp::Code(bool is_latin1) const {
DCHECK_EQ(TypeTag(), JSRegExp::IRREGEXP);
return DataAt(code_index(is_latin1));
}
Object JSRegExp::Bytecode(bool is_latin1) const {
DCHECK_EQ(TypeTag(), JSRegExp::IRREGEXP);
return DataAt(bytecode_index(is_latin1));
}
bool JSRegExp::ShouldProduceBytecode() {
return FLAG_regexp_interpret_all ||
(FLAG_regexp_tier_up && !MarkedForTierUp());
}
// An irregexp is considered to be marked for tier up if the tier-up ticks value
// reaches zero. An atom is not subject to tier-up implementation, so the
// tier-up ticks value is not set.
bool JSRegExp::MarkedForTierUp() {
DCHECK(data().IsFixedArray());
if (TypeTag() == JSRegExp::ATOM || !FLAG_regexp_tier_up) {
return false;
}
return Smi::ToInt(DataAt(kIrregexpTicksUntilTierUpIndex)) == 0;
}
void JSRegExp::ResetLastTierUpTick() {
DCHECK(FLAG_regexp_tier_up);
DCHECK_EQ(TypeTag(), JSRegExp::IRREGEXP);
int tier_up_ticks = Smi::ToInt(DataAt(kIrregexpTicksUntilTierUpIndex)) + 1;
FixedArray::cast(data()).set(JSRegExp::kIrregexpTicksUntilTierUpIndex,
Smi::FromInt(tier_up_ticks));
}
void JSRegExp::TierUpTick() {
DCHECK(FLAG_regexp_tier_up);
DCHECK_EQ(TypeTag(), JSRegExp::IRREGEXP);
int tier_up_ticks = Smi::ToInt(DataAt(kIrregexpTicksUntilTierUpIndex));
if (tier_up_ticks == 0) {
return;
}
FixedArray::cast(data()).set(JSRegExp::kIrregexpTicksUntilTierUpIndex,
Smi::FromInt(tier_up_ticks - 1));
}
void JSRegExp::MarkTierUpForNextExec() {
DCHECK(FLAG_regexp_tier_up);
DCHECK_EQ(TypeTag(), JSRegExp::IRREGEXP);
FixedArray::cast(data()).set(JSRegExp::kIrregexpTicksUntilTierUpIndex,
Smi::zero());
}
namespace {
bool IsLineTerminator(int c) {
// Expected to return true for '\n', '\r', 0x2028, and 0x2029.
return unibrow::IsLineTerminator(static_cast<unibrow::uchar>(c));
}
// TODO(jgruber): Consider merging CountAdditionalEscapeChars and
// WriteEscapedRegExpSource into a single function to deduplicate dispatch logic
// and move related code closer to each other.
template <typename Char>
int CountAdditionalEscapeChars(Handle<String> source, bool* needs_escapes_out) {
DisallowHeapAllocation no_gc;
int escapes = 0;
bool needs_escapes = false;
bool in_char_class = false;
Vector<const Char> src = source->GetCharVector<Char>(no_gc);
for (int i = 0; i < src.length(); i++) {
const Char c = src[i];
if (c == '\\') {
if (i + 1 < src.length() && IsLineTerminator(src[i + 1])) {
// This '\' is ignored since the next character itself will be escaped.
escapes--;
} else {
// Escape. Skip next character, which will be copied verbatim;
i++;
}
} else if (c == '/' && !in_char_class) {
// Not escaped forward-slash needs escape.
needs_escapes = true;
escapes++;
} else if (c == '[') {
in_char_class = true;
} else if (c == ']') {
in_char_class = false;
} else if (c == '\n') {
needs_escapes = true;
escapes++;
} else if (c == '\r') {
needs_escapes = true;
escapes++;
} else if (static_cast<int>(c) == 0x2028) {
needs_escapes = true;
escapes += std::strlen("\\u2028") - 1;
} else if (static_cast<int>(c) == 0x2029) {
needs_escapes = true;
escapes += std::strlen("\\u2029") - 1;
} else {
DCHECK(!IsLineTerminator(c));
}
}
DCHECK(!in_char_class);
DCHECK_GE(escapes, 0);
DCHECK_IMPLIES(escapes != 0, needs_escapes);
*needs_escapes_out = needs_escapes;
return escapes;
}
template <typename Char>
void WriteStringToCharVector(Vector<Char> v, int* d, const char* string) {
int s = 0;
while (string[s] != '\0') v[(*d)++] = string[s++];
}
template <typename Char, typename StringType>
Handle<StringType> WriteEscapedRegExpSource(Handle<String> source,
Handle<StringType> result) {
DisallowHeapAllocation no_gc;
Vector<const Char> src = source->GetCharVector<Char>(no_gc);
Vector<Char> dst(result->GetChars(no_gc), result->length());
int s = 0;
int d = 0;
bool in_char_class = false;
while (s < src.length()) {
const Char c = src[s];
if (c == '\\') {
if (s + 1 < src.length() && IsLineTerminator(src[s + 1])) {
// This '\' is ignored since the next character itself will be escaped.
s++;
continue;
} else {
// Escape. Copy this and next character.
dst[d++] = src[s++];
}
if (s == src.length()) break;
} else if (c == '/' && !in_char_class) {
// Not escaped forward-slash needs escape.
dst[d++] = '\\';
} else if (c == '[') {
in_char_class = true;
} else if (c == ']') {
in_char_class = false;
} else if (c == '\n') {
WriteStringToCharVector(dst, &d, "\\n");
s++;
continue;
} else if (c == '\r') {
WriteStringToCharVector(dst, &d, "\\r");
s++;
continue;
} else if (static_cast<int>(c) == 0x2028) {
WriteStringToCharVector(dst, &d, "\\u2028");
s++;
continue;
} else if (static_cast<int>(c) == 0x2029) {
WriteStringToCharVector(dst, &d, "\\u2029");
s++;
continue;
} else {
DCHECK(!IsLineTerminator(c));
}
dst[d++] = src[s++];
}
DCHECK_EQ(result->length(), d);
DCHECK(!in_char_class);
return result;
}
MaybeHandle<String> EscapeRegExpSource(Isolate* isolate,
Handle<String> source) {
DCHECK(source->IsFlat());
if (source->length() == 0) return isolate->factory()->query_colon_string();
bool one_byte = String::IsOneByteRepresentationUnderneath(*source);
bool needs_escapes = false;
int additional_escape_chars =
one_byte ? CountAdditionalEscapeChars<uint8_t>(source, &needs_escapes)
: CountAdditionalEscapeChars<uc16>(source, &needs_escapes);
if (!needs_escapes) return source;
int length = source->length() + additional_escape_chars;
if (one_byte) {
Handle<SeqOneByteString> result;
ASSIGN_RETURN_ON_EXCEPTION(isolate, result,
isolate->factory()->NewRawOneByteString(length),
String);
return WriteEscapedRegExpSource<uint8_t>(source, result);
} else {
Handle<SeqTwoByteString> result;
ASSIGN_RETURN_ON_EXCEPTION(isolate, result,
isolate->factory()->NewRawTwoByteString(length),
String);
return WriteEscapedRegExpSource<uc16>(source, result);
}
}
} // namespace
// static
MaybeHandle<JSRegExp> JSRegExp::Initialize(Handle<JSRegExp> regexp,
Handle<String> source,
Handle<String> flags_string) {
Isolate* isolate = regexp->GetIsolate();
bool success = false;
Flags flags = JSRegExp::FlagsFromString(isolate, flags_string, &success);
if (!success) {
THROW_NEW_ERROR(
isolate,
NewSyntaxError(MessageTemplate::kInvalidRegExpFlags, flags_string),
JSRegExp);
}
return Initialize(regexp, source, flags);
}
// static
MaybeHandle<JSRegExp> JSRegExp::Initialize(Handle<JSRegExp> regexp,
Handle<String> source, Flags flags,
uint32_t backtrack_limit) {
Isolate* isolate = regexp->GetIsolate();
Factory* factory = isolate->factory();
// If source is the empty string we set it to "(?:)" instead as
// suggested by ECMA-262, 5th, section 15.10.4.1.
if (source->length() == 0) source = factory->query_colon_string();
source = String::Flatten(isolate, source);
RETURN_ON_EXCEPTION(
isolate, RegExp::Compile(isolate, regexp, source, flags, backtrack_limit),
JSRegExp);
Handle<String> escaped_source;
ASSIGN_RETURN_ON_EXCEPTION(isolate, escaped_source,
EscapeRegExpSource(isolate, source), JSRegExp);
regexp->set_source(*escaped_source);
regexp->set_flags(Smi::FromInt(flags));
Map map = regexp->map();
Object constructor = map.GetConstructor();
if (constructor.IsJSFunction() &&
JSFunction::cast(constructor).initial_map() == map) {
// If we still have the original map, set in-object properties directly.
regexp->InObjectPropertyAtPut(JSRegExp::kLastIndexFieldIndex, Smi::zero(),
SKIP_WRITE_BARRIER);
} else {
// Map has changed, so use generic, but slower, method.
RETURN_ON_EXCEPTION(
isolate,
Object::SetProperty(isolate, regexp, factory->lastIndex_string(),
Handle<Smi>(Smi::zero(), isolate)),
JSRegExp);
}
return regexp;
}
// RegExpKey carries the source and flags of a regular expression as key.
class RegExpKey : public HashTableKey {
public:

View File

@ -0,0 +1,667 @@
// Copyright 2020 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/objects/shared-function-info.h"
#include "src/ast/ast.h"
#include "src/ast/scopes.h"
#include "src/codegen/compiler.h"
#include "src/objects/shared-function-info-inl.h"
#include "src/strings/string-builder-inl.h"
namespace v8 {
namespace internal {
V8_EXPORT_PRIVATE constexpr Smi SharedFunctionInfo::kNoSharedNameSentinel;
uint32_t SharedFunctionInfo::Hash() {
// Hash SharedFunctionInfo based on its start position and script id. Note: we
// don't use the function's literal id since getting that is slow for compiled
// funcitons.
int start_pos = StartPosition();
int script_id = script().IsScript() ? Script::cast(script()).id() : 0;
return static_cast<uint32_t>(base::hash_combine(start_pos, script_id));
}
void SharedFunctionInfo::Init(ReadOnlyRoots ro_roots, int unique_id) {
DisallowHeapAllocation no_allocation;
// Set the function data to the "illegal" builtin. Ideally we'd use some sort
// of "uninitialized" marker here, but it's cheaper to use a valid buitin and
// avoid having to do uninitialized checks elsewhere.
set_builtin_id(Builtins::kIllegal);
// Set the name to the no-name sentinel, this can be updated later.
set_name_or_scope_info(SharedFunctionInfo::kNoSharedNameSentinel,
SKIP_WRITE_BARRIER);
// Generally functions won't have feedback, unless they have been created
// from a FunctionLiteral. Those can just reset this field to keep the
// SharedFunctionInfo in a consistent state.
set_raw_outer_scope_info_or_feedback_metadata(ro_roots.the_hole_value(),
SKIP_WRITE_BARRIER);
set_script_or_debug_info(ro_roots.undefined_value(), SKIP_WRITE_BARRIER);
set_function_literal_id(kFunctionLiteralIdInvalid);
#if V8_SFI_HAS_UNIQUE_ID
set_unique_id(unique_id);
#endif
// Set integer fields (smi or int, depending on the architecture).
set_length(0);
set_internal_formal_parameter_count(0);
set_expected_nof_properties(0);
set_raw_function_token_offset(0);
// All flags default to false or 0, except ConstructAsBuiltinBit just because
// we're using the kIllegal builtin.
set_flags(ConstructAsBuiltinBit::encode(true));
set_flags2(0);
UpdateFunctionMapIndex();
clear_padding();
}
Code SharedFunctionInfo::GetCode() const {
// ======
// NOTE: This chain of checks MUST be kept in sync with the equivalent CSA
// GetSharedFunctionInfoCode method in code-stub-assembler.cc.
// ======
Isolate* isolate = GetIsolate();
Object data = function_data();
if (data.IsSmi()) {
// Holding a Smi means we are a builtin.
DCHECK(HasBuiltinId());
return isolate->builtins()->builtin(builtin_id());
} else if (data.IsBytecodeArray()) {
// Having a bytecode array means we are a compiled, interpreted function.
DCHECK(HasBytecodeArray());
return isolate->builtins()->builtin(Builtins::kInterpreterEntryTrampoline);
} else if (data.IsAsmWasmData()) {
// Having AsmWasmData means we are an asm.js/wasm function.
DCHECK(HasAsmWasmData());
return isolate->builtins()->builtin(Builtins::kInstantiateAsmJs);
} else if (data.IsUncompiledData()) {
// Having uncompiled data (with or without scope) means we need to compile.
DCHECK(HasUncompiledData());
return isolate->builtins()->builtin(Builtins::kCompileLazy);
} else if (data.IsFunctionTemplateInfo()) {
// Having a function template info means we are an API function.
DCHECK(IsApiFunction());
return isolate->builtins()->builtin(Builtins::kHandleApiCall);
} else if (data.IsWasmExportedFunctionData()) {
// Having a WasmExportedFunctionData means the code is in there.
DCHECK(HasWasmExportedFunctionData());
return wasm_exported_function_data().wrapper_code();
} else if (data.IsInterpreterData()) {
Code code = InterpreterTrampoline();
DCHECK(code.IsCode());
DCHECK(code.is_interpreter_trampoline_builtin());
return code;
} else if (data.IsWasmJSFunctionData()) {
return wasm_js_function_data().wrapper_code();
} else if (data.IsWasmCapiFunctionData()) {
return wasm_capi_function_data().wrapper_code();
}
UNREACHABLE();
}
WasmExportedFunctionData SharedFunctionInfo::wasm_exported_function_data()
const {
DCHECK(HasWasmExportedFunctionData());
return WasmExportedFunctionData::cast(function_data());
}
WasmJSFunctionData SharedFunctionInfo::wasm_js_function_data() const {
DCHECK(HasWasmJSFunctionData());
return WasmJSFunctionData::cast(function_data());
}
WasmCapiFunctionData SharedFunctionInfo::wasm_capi_function_data() const {
DCHECK(HasWasmCapiFunctionData());
return WasmCapiFunctionData::cast(function_data());
}
SharedFunctionInfo::ScriptIterator::ScriptIterator(Isolate* isolate,
Script script)
: ScriptIterator(handle(script.shared_function_infos(), isolate)) {}
SharedFunctionInfo::ScriptIterator::ScriptIterator(
Handle<WeakFixedArray> shared_function_infos)
: shared_function_infos_(shared_function_infos), index_(0) {}
SharedFunctionInfo SharedFunctionInfo::ScriptIterator::Next() {
while (index_ < shared_function_infos_->length()) {
MaybeObject raw = shared_function_infos_->Get(index_++);
HeapObject heap_object;
if (!raw->GetHeapObject(&heap_object) || heap_object.IsUndefined()) {
continue;
}
return SharedFunctionInfo::cast(heap_object);
}
return SharedFunctionInfo();
}
void SharedFunctionInfo::ScriptIterator::Reset(Isolate* isolate,
Script script) {
shared_function_infos_ = handle(script.shared_function_infos(), isolate);
index_ = 0;
}
void SharedFunctionInfo::SetScript(ReadOnlyRoots roots,
HeapObject script_object,
int function_literal_id,
bool reset_preparsed_scope_data) {
DisallowHeapAllocation no_gc;
if (script() == script_object) return;
if (reset_preparsed_scope_data && HasUncompiledDataWithPreparseData()) {
ClearPreparseData();
}
// Add shared function info to new script's list. If a collection occurs,
// the shared function info may be temporarily in two lists.
// This is okay because the gc-time processing of these lists can tolerate
// duplicates.
if (script_object.IsScript()) {
DCHECK(!script().IsScript());
Script script = Script::cast(script_object);
WeakFixedArray list = script.shared_function_infos();
#ifdef DEBUG
DCHECK_LT(function_literal_id, list.length());
MaybeObject maybe_object = list.Get(function_literal_id);
HeapObject heap_object;
if (maybe_object->GetHeapObjectIfWeak(&heap_object)) {
DCHECK_EQ(heap_object, *this);
}
#endif
list.Set(function_literal_id, HeapObjectReference::Weak(*this));
} else {
DCHECK(script().IsScript());
// Remove shared function info from old script's list.
Script old_script = Script::cast(script());
// Due to liveedit, it might happen that the old_script doesn't know
// about the SharedFunctionInfo, so we have to guard against that.
WeakFixedArray infos = old_script.shared_function_infos();
if (function_literal_id < infos.length()) {
MaybeObject raw =
old_script.shared_function_infos().Get(function_literal_id);
HeapObject heap_object;
if (raw->GetHeapObjectIfWeak(&heap_object) && heap_object == *this) {
old_script.shared_function_infos().Set(
function_literal_id,
HeapObjectReference::Strong(roots.undefined_value()));
}
}
}
// Finally set new script.
set_script(script_object);
}
bool SharedFunctionInfo::HasBreakInfo() const {
if (!HasDebugInfo()) return false;
DebugInfo info = GetDebugInfo();
bool has_break_info = info.HasBreakInfo();
return has_break_info;
}
bool SharedFunctionInfo::BreakAtEntry() const {
if (!HasDebugInfo()) return false;
DebugInfo info = GetDebugInfo();
bool break_at_entry = info.BreakAtEntry();
return break_at_entry;
}
bool SharedFunctionInfo::HasCoverageInfo() const {
if (!HasDebugInfo()) return false;
DebugInfo info = GetDebugInfo();
bool has_coverage_info = info.HasCoverageInfo();
return has_coverage_info;
}
CoverageInfo SharedFunctionInfo::GetCoverageInfo() const {
DCHECK(HasCoverageInfo());
return CoverageInfo::cast(GetDebugInfo().coverage_info());
}
String SharedFunctionInfo::DebugName() {
DisallowHeapAllocation no_gc;
String function_name = Name();
if (function_name.length() > 0) return function_name;
return inferred_name();
}
bool SharedFunctionInfo::PassesFilter(const char* raw_filter) {
Vector<const char> filter = CStrVector(raw_filter);
std::unique_ptr<char[]> cstrname(DebugName().ToCString());
return v8::internal::PassesFilter(CStrVector(cstrname.get()), filter);
}
bool SharedFunctionInfo::HasSourceCode() const {
ReadOnlyRoots roots = GetReadOnlyRoots();
return !script().IsUndefined(roots) &&
!Script::cast(script()).source().IsUndefined(roots) &&
String::cast(Script::cast(script()).source()).length() > 0;
}
void SharedFunctionInfo::DiscardCompiledMetadata(
Isolate* isolate,
std::function<void(HeapObject object, ObjectSlot slot, HeapObject target)>
gc_notify_updated_slot) {
DisallowHeapAllocation no_gc;
if (is_compiled()) {
HeapObject outer_scope_info;
if (scope_info().HasOuterScopeInfo()) {
outer_scope_info = scope_info().OuterScopeInfo();
} else {
outer_scope_info = ReadOnlyRoots(isolate).the_hole_value();
}
// Raw setter to avoid validity checks, since we're performing the unusual
// task of decompiling.
set_raw_outer_scope_info_or_feedback_metadata(outer_scope_info);
gc_notify_updated_slot(
*this,
RawField(SharedFunctionInfo::kOuterScopeInfoOrFeedbackMetadataOffset),
outer_scope_info);
} else {
DCHECK(outer_scope_info().IsScopeInfo() || outer_scope_info().IsTheHole());
}
// TODO(rmcilroy): Possibly discard ScopeInfo here as well.
}
// static
void SharedFunctionInfo::DiscardCompiled(
Isolate* isolate, Handle<SharedFunctionInfo> shared_info) {
DCHECK(shared_info->CanDiscardCompiled());
Handle<String> inferred_name_val =
handle(shared_info->inferred_name(), isolate);
int start_position = shared_info->StartPosition();
int end_position = shared_info->EndPosition();
shared_info->DiscardCompiledMetadata(isolate);
// Replace compiled data with a new UncompiledData object.
if (shared_info->HasUncompiledDataWithPreparseData()) {
// If this is uncompiled data with a pre-parsed scope data, we can just
// clear out the scope data and keep the uncompiled data.
shared_info->ClearPreparseData();
} else {
// Create a new UncompiledData, without pre-parsed scope, and update the
// function data to point to it. Use the raw function data setter to avoid
// validity checks, since we're performing the unusual task of decompiling.
Handle<UncompiledData> data =
isolate->factory()->NewUncompiledDataWithoutPreparseData(
inferred_name_val, start_position, end_position);
shared_info->set_function_data(*data);
}
}
// static
Handle<Object> SharedFunctionInfo::GetSourceCode(
Handle<SharedFunctionInfo> shared) {
Isolate* isolate = shared->GetIsolate();
if (!shared->HasSourceCode()) return isolate->factory()->undefined_value();
Handle<String> source(String::cast(Script::cast(shared->script()).source()),
isolate);
return isolate->factory()->NewSubString(source, shared->StartPosition(),
shared->EndPosition());
}
// static
Handle<Object> SharedFunctionInfo::GetSourceCodeHarmony(
Handle<SharedFunctionInfo> shared) {
Isolate* isolate = shared->GetIsolate();
if (!shared->HasSourceCode()) return isolate->factory()->undefined_value();
Handle<String> script_source(
String::cast(Script::cast(shared->script()).source()), isolate);
int start_pos = shared->function_token_position();
DCHECK_NE(start_pos, kNoSourcePosition);
Handle<String> source = isolate->factory()->NewSubString(
script_source, start_pos, shared->EndPosition());
if (!shared->is_wrapped()) return source;
DCHECK(!shared->name_should_print_as_anonymous());
IncrementalStringBuilder builder(isolate);
builder.AppendCString("function ");
builder.AppendString(Handle<String>(shared->Name(), isolate));
builder.AppendCString("(");
Handle<FixedArray> args(Script::cast(shared->script()).wrapped_arguments(),
isolate);
int argc = args->length();
for (int i = 0; i < argc; i++) {
if (i > 0) builder.AppendCString(", ");
builder.AppendString(Handle<String>(String::cast(args->get(i)), isolate));
}
builder.AppendCString(") {\n");
builder.AppendString(source);
builder.AppendCString("\n}");
return builder.Finish().ToHandleChecked();
}
SharedFunctionInfo::Inlineability SharedFunctionInfo::GetInlineability() const {
if (!script().IsScript()) return kHasNoScript;
if (GetIsolate()->is_precise_binary_code_coverage() &&
!has_reported_binary_coverage()) {
// We may miss invocations if this function is inlined.
return kNeedsBinaryCoverage;
}
if (optimization_disabled()) return kHasOptimizationDisabled;
// Built-in functions are handled by the JSCallReducer.
if (HasBuiltinId()) return kIsBuiltin;
if (!IsUserJavaScript()) return kIsNotUserCode;
// If there is no bytecode array, it is either not compiled or it is compiled
// with WebAssembly for the asm.js pipeline. In either case we don't want to
// inline.
if (!HasBytecodeArray()) return kHasNoBytecode;
if (GetBytecodeArray().length() > FLAG_max_inlined_bytecode_size) {
return kExceedsBytecodeLimit;
}
if (HasBreakInfo()) return kMayContainBreakPoints;
return kIsInlineable;
}
int SharedFunctionInfo::SourceSize() { return EndPosition() - StartPosition(); }
// Output the source code without any allocation in the heap.
std::ostream& operator<<(std::ostream& os, const SourceCodeOf& v) {
const SharedFunctionInfo s = v.value;
// For some native functions there is no source.
if (!s.HasSourceCode()) return os << "<No Source>";
// Get the source for the script which this function came from.
// Don't use String::cast because we don't want more assertion errors while
// we are already creating a stack dump.
String script_source =
String::unchecked_cast(Script::cast(s.script()).source());
if (!script_source.LooksValid()) return os << "<Invalid Source>";
if (!s.is_toplevel()) {
os << "function ";
String name = s.Name();
if (name.length() > 0) {
name.PrintUC16(os);
}
}
int len = s.EndPosition() - s.StartPosition();
if (len <= v.max_length || v.max_length < 0) {
script_source.PrintUC16(os, s.StartPosition(), s.EndPosition());
return os;
} else {
script_source.PrintUC16(os, s.StartPosition(),
s.StartPosition() + v.max_length);
return os << "...\n";
}
}
void SharedFunctionInfo::DisableOptimization(BailoutReason reason) {
DCHECK_NE(reason, BailoutReason::kNoReason);
set_flags(DisabledOptimizationReasonBits::update(flags(), reason));
// Code should be the lazy compilation stub or else interpreted.
DCHECK(abstract_code().kind() == AbstractCode::INTERPRETED_FUNCTION ||
abstract_code().kind() == AbstractCode::BUILTIN);
PROFILE(GetIsolate(),
CodeDisableOptEvent(handle(abstract_code(), GetIsolate()),
handle(*this, GetIsolate())));
if (FLAG_trace_opt) {
CodeTracer::Scope scope(GetIsolate()->GetCodeTracer());
PrintF(scope.file(), "[disabled optimization for ");
ShortPrint(scope.file());
PrintF(scope.file(), ", reason: %s]\n", GetBailoutReason(reason));
}
}
// static
template <typename LocalIsolate>
void SharedFunctionInfo::InitFromFunctionLiteral(
LocalIsolate* isolate, Handle<SharedFunctionInfo> shared_info,
FunctionLiteral* lit, bool is_toplevel) {
DCHECK(!shared_info->name_or_scope_info().IsScopeInfo());
// When adding fields here, make sure DeclarationScope::AnalyzePartially is
// updated accordingly.
shared_info->set_internal_formal_parameter_count(lit->parameter_count());
shared_info->SetFunctionTokenPosition(lit->function_token_position(),
lit->start_position());
shared_info->set_syntax_kind(lit->syntax_kind());
shared_info->set_allows_lazy_compilation(lit->AllowsLazyCompilation());
shared_info->set_language_mode(lit->language_mode());
shared_info->set_function_literal_id(lit->function_literal_id());
// FunctionKind must have already been set.
DCHECK(lit->kind() == shared_info->kind());
shared_info->set_needs_home_object(lit->scope()->NeedsHomeObject());
DCHECK_IMPLIES(lit->requires_instance_members_initializer(),
IsClassConstructor(lit->kind()));
shared_info->set_requires_instance_members_initializer(
lit->requires_instance_members_initializer());
DCHECK_IMPLIES(lit->class_scope_has_private_brand(),
IsClassConstructor(lit->kind()));
shared_info->set_class_scope_has_private_brand(
lit->class_scope_has_private_brand());
DCHECK_IMPLIES(lit->has_static_private_methods_or_accessors(),
IsClassConstructor(lit->kind()));
shared_info->set_has_static_private_methods_or_accessors(
lit->has_static_private_methods_or_accessors());
shared_info->set_is_toplevel(is_toplevel);
DCHECK(shared_info->outer_scope_info().IsTheHole());
if (!is_toplevel) {
Scope* outer_scope = lit->scope()->GetOuterScopeWithContext();
if (outer_scope) {
shared_info->set_outer_scope_info(*outer_scope->scope_info());
shared_info->set_private_name_lookup_skips_outer_class(
lit->scope()->private_name_lookup_skips_outer_class());
}
}
shared_info->set_length(lit->function_length());
// For lazy parsed functions, the following flags will be inaccurate since we
// don't have the information yet. They're set later in
// SetSharedFunctionFlagsFromLiteral (compiler.cc), when the function is
// really parsed and compiled.
if (lit->ShouldEagerCompile()) {
shared_info->set_has_duplicate_parameters(lit->has_duplicate_parameters());
shared_info->UpdateAndFinalizeExpectedNofPropertiesFromEstimate(lit);
shared_info->set_is_safe_to_skip_arguments_adaptor(
lit->SafeToSkipArgumentsAdaptor());
DCHECK_NULL(lit->produced_preparse_data());
// If we're about to eager compile, we'll have the function literal
// available, so there's no need to wastefully allocate an uncompiled data.
return;
}
shared_info->set_is_safe_to_skip_arguments_adaptor(false);
shared_info->UpdateExpectedNofPropertiesFromEstimate(lit);
Handle<UncompiledData> data;
ProducedPreparseData* scope_data = lit->produced_preparse_data();
if (scope_data != nullptr) {
Handle<PreparseData> preparse_data = scope_data->Serialize(isolate);
data = isolate->factory()->NewUncompiledDataWithPreparseData(
lit->GetInferredName(isolate), lit->start_position(),
lit->end_position(), preparse_data);
} else {
data = isolate->factory()->NewUncompiledDataWithoutPreparseData(
lit->GetInferredName(isolate), lit->start_position(),
lit->end_position());
}
shared_info->set_uncompiled_data(*data);
}
template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE) void SharedFunctionInfo::
InitFromFunctionLiteral<Isolate>(Isolate* isolate,
Handle<SharedFunctionInfo> shared_info,
FunctionLiteral* lit, bool is_toplevel);
template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE) void SharedFunctionInfo::
InitFromFunctionLiteral<OffThreadIsolate>(
OffThreadIsolate* isolate, Handle<SharedFunctionInfo> shared_info,
FunctionLiteral* lit, bool is_toplevel);
uint16_t SharedFunctionInfo::get_property_estimate_from_literal(
FunctionLiteral* literal) {
int estimate = literal->expected_property_count();
// If this is a class constructor, we may have already parsed fields.
if (is_class_constructor()) {
estimate += expected_nof_properties();
}
return estimate;
}
void SharedFunctionInfo::UpdateExpectedNofPropertiesFromEstimate(
FunctionLiteral* literal) {
// Limit actual estimate to fit in a 8 bit field, we will never allocate
// more than this in any case.
STATIC_ASSERT(JSObject::kMaxInObjectProperties <= kMaxUInt8);
int estimate = get_property_estimate_from_literal(literal);
set_expected_nof_properties(std::min(estimate, kMaxUInt8));
}
void SharedFunctionInfo::UpdateAndFinalizeExpectedNofPropertiesFromEstimate(
FunctionLiteral* literal) {
DCHECK(literal->ShouldEagerCompile());
if (are_properties_final()) {
return;
}
int estimate = get_property_estimate_from_literal(literal);
// If no properties are added in the constructor, they are more likely
// to be added later.
if (estimate == 0) estimate = 2;
// Limit actual estimate to fit in a 8 bit field, we will never allocate
// more than this in any case.
STATIC_ASSERT(JSObject::kMaxInObjectProperties <= kMaxUInt8);
estimate = std::min(estimate, kMaxUInt8);
set_expected_nof_properties(estimate);
set_are_properties_final(true);
}
void SharedFunctionInfo::SetFunctionTokenPosition(int function_token_position,
int start_position) {
int offset;
if (function_token_position == kNoSourcePosition) {
offset = 0;
} else {
offset = start_position - function_token_position;
}
if (offset > kMaximumFunctionTokenOffset) {
offset = kFunctionTokenOutOfRange;
}
set_raw_function_token_offset(offset);
}
int SharedFunctionInfo::StartPosition() const {
Object maybe_scope_info = name_or_scope_info();
if (maybe_scope_info.IsScopeInfo()) {
ScopeInfo info = ScopeInfo::cast(maybe_scope_info);
if (info.HasPositionInfo()) {
return info.StartPosition();
}
}
if (HasUncompiledData()) {
// Works with or without scope.
return uncompiled_data().start_position();
}
if (IsApiFunction() || HasBuiltinId()) {
DCHECK_IMPLIES(HasBuiltinId(), builtin_id() != Builtins::kCompileLazy);
return 0;
}
if (HasWasmExportedFunctionData()) {
WasmInstanceObject instance = wasm_exported_function_data().instance();
int func_index = wasm_exported_function_data().function_index();
auto& function = instance.module()->functions[func_index];
return static_cast<int>(function.code.offset());
}
return kNoSourcePosition;
}
int SharedFunctionInfo::EndPosition() const {
Object maybe_scope_info = name_or_scope_info();
if (maybe_scope_info.IsScopeInfo()) {
ScopeInfo info = ScopeInfo::cast(maybe_scope_info);
if (info.HasPositionInfo()) {
return info.EndPosition();
}
}
if (HasUncompiledData()) {
// Works with or without scope.
return uncompiled_data().end_position();
}
if (IsApiFunction() || HasBuiltinId()) {
DCHECK_IMPLIES(HasBuiltinId(), builtin_id() != Builtins::kCompileLazy);
return 0;
}
if (HasWasmExportedFunctionData()) {
WasmInstanceObject instance = wasm_exported_function_data().instance();
int func_index = wasm_exported_function_data().function_index();
auto& function = instance.module()->functions[func_index];
return static_cast<int>(function.code.end_offset());
}
return kNoSourcePosition;
}
void SharedFunctionInfo::SetPosition(int start_position, int end_position) {
Object maybe_scope_info = name_or_scope_info();
if (maybe_scope_info.IsScopeInfo()) {
ScopeInfo info = ScopeInfo::cast(maybe_scope_info);
if (info.HasPositionInfo()) {
info.SetPositionInfo(start_position, end_position);
}
} else if (HasUncompiledData()) {
if (HasUncompiledDataWithPreparseData()) {
// Clear out preparsed scope data, since the position setter invalidates
// any scope data.
ClearPreparseData();
}
uncompiled_data().set_start_position(start_position);
uncompiled_data().set_end_position(end_position);
} else {
UNREACHABLE();
}
}
bool SharedFunctionInfo::AreSourcePositionsAvailable() const {
if (FLAG_enable_lazy_source_positions) {
return !HasBytecodeArray() || GetBytecodeArray().HasSourcePositionTable();
}
return true;
}
// static
void SharedFunctionInfo::EnsureSourcePositionsAvailable(
Isolate* isolate, Handle<SharedFunctionInfo> shared_info) {
if (FLAG_enable_lazy_source_positions && shared_info->HasBytecodeArray() &&
!shared_info->GetBytecodeArray().HasSourcePositionTable()) {
Compiler::CollectSourcePositions(isolate, shared_info);
}
}
} // namespace internal
} // namespace v8