[arm] [simulator] Fix implementation of vabs and vneg

They did not preserve the bit pattern of nans before. Now they do.
Also, add some tests for these instructions.

R=ahaas@chromium.org, rodolph.perfetta@arm.com

Bug: v8:6947
Change-Id: I189720cd47e1768194567a41371fc9586b414c45
Reviewed-on: https://chromium-review.googlesource.com/722979
Commit-Queue: Clemens Hammacher <clemensh@chromium.org>
Reviewed-by: Rodolph Perfetta <rodolph.perfetta@arm.com>
Reviewed-by: Andreas Haas <ahaas@chromium.org>
Cr-Commit-Position: refs/heads/master@{#48672}
This commit is contained in:
Clemens Hammacher 2017-10-18 11:46:57 +02:00 committed by Commit Bot
parent 9f4f3c28ec
commit b41b493bb5
2 changed files with 150 additions and 42 deletions

View File

@ -3227,28 +3227,32 @@ void Simulator::DecodeTypeVFP(Instruction* instr) {
} else if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x3)) {
// vabs
if (instr->SzValue() == 0x1) {
double dm_value = get_double_from_d_register(vm).get_scalar();
double dd_value = std::fabs(dm_value);
dd_value = canonicalizeNaN(dd_value);
set_d_register_from_double(vd, dd_value);
Float64 dm = get_double_from_d_register(vm);
constexpr uint64_t kSignBit64 = uint64_t{1} << 63;
Float64 dd = Float64::FromBits(dm.get_bits() & ~kSignBit64);
dd = canonicalizeNaN(dd);
set_d_register_from_double(vd, dd);
} else {
float sm_value = get_float_from_s_register(m).get_scalar();
float sd_value = std::fabs(sm_value);
sd_value = canonicalizeNaN(sd_value);
set_s_register_from_float(d, sd_value);
Float32 sm = get_float_from_s_register(m);
constexpr uint32_t kSignBit32 = uint32_t{1} << 31;
Float32 sd = Float32::FromBits(sm.get_bits() & ~kSignBit32);
sd = canonicalizeNaN(sd);
set_s_register_from_float(d, sd);
}
} else if ((instr->Opc2Value() == 0x1) && (instr->Opc3Value() == 0x1)) {
// vneg
if (instr->SzValue() == 0x1) {
double dm_value = get_double_from_d_register(vm).get_scalar();
double dd_value = -dm_value;
dd_value = canonicalizeNaN(dd_value);
set_d_register_from_double(vd, dd_value);
Float64 dm = get_double_from_d_register(vm);
constexpr uint64_t kSignBit64 = uint64_t{1} << 63;
Float64 dd = Float64::FromBits(dm.get_bits() ^ kSignBit64);
dd = canonicalizeNaN(dd);
set_d_register_from_double(vd, dd);
} else {
float sm_value = get_float_from_s_register(m).get_scalar();
float sd_value = -sm_value;
sd_value = canonicalizeNaN(sd_value);
set_s_register_from_float(d, sd_value);
Float32 sm = get_float_from_s_register(m);
constexpr uint32_t kSignBit32 = uint32_t{1} << 31;
Float32 sd = Float32::FromBits(sm.get_bits() ^ kSignBit32);
sd = canonicalizeNaN(sd);
set_s_register_from_float(d, sd);
}
} else if ((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3)) {
DecodeVCVTBetweenDoubleAndSingle(instr);

View File

@ -27,6 +27,7 @@
#include "src/v8.h"
#include "test/cctest/cctest.h"
#include "test/cctest/compiler/value-helper.h"
#include "src/arm/simulator-arm.h"
#include "src/assembler-inl.h"
@ -49,6 +50,8 @@ typedef Object* (*F3)(void* p0, int p1, int p2, int p3, int p4);
#define __ assm.
namespace {
struct MemoryAccess {
enum class Kind {
None,
@ -85,7 +88,7 @@ struct TestData {
int dummy;
};
static void AssembleMemoryAccess(Assembler* assembler, MemoryAccess access,
void AssembleMemoryAccess(Assembler* assembler, MemoryAccess access,
Register dest_reg, Register value_reg,
Register addr_reg) {
Assembler& assm = *assembler;
@ -167,38 +170,47 @@ static void AssembleMemoryAccess(Assembler* assembler, MemoryAccess access,
}
}
static void AssembleLoadExcl(Assembler* assembler, MemoryAccess access,
void AssembleLoadExcl(Assembler* assembler, MemoryAccess access,
Register value_reg, Register addr_reg) {
DCHECK(access.kind == MemoryAccess::Kind::LoadExcl);
AssembleMemoryAccess(assembler, access, no_reg, value_reg, addr_reg);
}
static void AssembleStoreExcl(Assembler* assembler, MemoryAccess access,
void AssembleStoreExcl(Assembler* assembler, MemoryAccess access,
Register dest_reg, Register value_reg,
Register addr_reg) {
DCHECK(access.kind == MemoryAccess::Kind::StoreExcl);
AssembleMemoryAccess(assembler, access, dest_reg, value_reg, addr_reg);
}
static void TestInvalidateExclusiveAccess(
TestData initial_data, MemoryAccess access1, MemoryAccess access2,
MemoryAccess access3, int expected_res, TestData expected_data) {
F3 AssembleCode(std::function<void(Assembler&)> assemble) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
Assembler assm(isolate, nullptr, 0);
AssembleLoadExcl(&assm, access1, r1, r1);
AssembleMemoryAccess(&assm, access2, r3, r2, r1);
AssembleStoreExcl(&assm, access3, r0, r3, r1);
assemble(assm);
__ mov(pc, Operand(lr));
__ bx(lr);
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
return f;
}
void TestInvalidateExclusiveAccess(TestData initial_data, MemoryAccess access1,
MemoryAccess access2, MemoryAccess access3,
int expected_res, TestData expected_data) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
F3 f = AssembleCode([&](Assembler& assm) {
AssembleLoadExcl(&assm, access1, r1, r1);
AssembleMemoryAccess(&assm, access2, r3, r2, r1);
AssembleStoreExcl(&assm, access3, r0, r3, r1);
});
TestData t = initial_data;
int res =
@ -219,6 +231,26 @@ static void TestInvalidateExclusiveAccess(
}
}
std::vector<Float32> Float32Inputs() {
std::vector<Float32> inputs;
FOR_FLOAT32_INPUTS(f) {
inputs.push_back(Float32::FromBits(bit_cast<uint32_t>(*f)));
}
FOR_UINT32_INPUTS(bits) { inputs.push_back(Float32::FromBits(*bits)); }
return inputs;
}
std::vector<Float64> Float64Inputs() {
std::vector<Float64> inputs;
FOR_FLOAT64_INPUTS(f) {
inputs.push_back(Float64::FromBits(bit_cast<uint64_t>(*f)));
}
FOR_UINT64_INPUTS(bits) { inputs.push_back(Float64::FromBits(*bits)); }
return inputs;
}
} // namespace
TEST(simulator_invalidate_exclusive_access) {
using Kind = MemoryAccess::Kind;
using Size = MemoryAccess::Size;
@ -258,15 +290,9 @@ TEST(simulator_invalidate_exclusive_access) {
static int ExecuteMemoryAccess(Isolate* isolate, TestData* test_data,
MemoryAccess access) {
HandleScope scope(isolate);
Assembler assm(isolate, nullptr, 0);
F3 f = AssembleCode([&](Assembler& assm) {
AssembleMemoryAccess(&assm, access, r0, r2, r1);
__ bx(lr);
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, Code::STUB, Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
});
return reinterpret_cast<int>(
CALL_GENERATED_CODE(isolate, f, test_data, 0, 0, 0, 0));
@ -387,6 +413,84 @@ TEST(simulator_invalidate_exclusive_access_threaded) {
thread.Join();
}
TEST(simulator_vabs_32) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
F3 f = AssembleCode([](Assembler& assm) {
__ vmov(s0, r0);
__ vabs(s0, s0);
__ vmov(r0, s0);
});
for (Float32 f32 : Float32Inputs()) {
Float32 res = Float32::FromBits(reinterpret_cast<uint32_t>(
CALL_GENERATED_CODE(isolate, f, f32.get_bits(), 0, 0, 0, 0)));
Float32 exp = Float32::FromBits(f32.get_bits() & ~(1 << 31));
CHECK_EQ(exp.get_bits(), res.get_bits());
}
}
TEST(simulator_vabs_64) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
F3 f = AssembleCode([](Assembler& assm) {
__ vmov(d0, r0, r1);
__ vabs(d0, d0);
__ vmov(r1, r0, d0);
});
for (Float64 f64 : Float64Inputs()) {
uint32_t p0 = static_cast<uint32_t>(f64.get_bits());
uint32_t p1 = static_cast<uint32_t>(f64.get_bits() >> 32);
uint32_t res = reinterpret_cast<uint32_t>(
CALL_GENERATED_CODE(isolate, f, p0, p1, 0, 0, 0));
Float64 exp = Float64::FromBits(f64.get_bits() & ~(1ull << 63));
// We just get back the top word, so only compare that one.
CHECK_EQ(exp.get_bits() >> 32, res);
}
}
TEST(simulator_vneg_32) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
F3 f = AssembleCode([](Assembler& assm) {
__ vmov(s0, r0);
__ vneg(s0, s0);
__ vmov(r0, s0);
});
for (Float32 f32 : Float32Inputs()) {
Float32 res = Float32::FromBits(reinterpret_cast<uint32_t>(
CALL_GENERATED_CODE(isolate, f, f32.get_bits(), 0, 0, 0, 0)));
Float32 exp = Float32::FromBits(f32.get_bits() ^ (1 << 31));
CHECK_EQ(exp.get_bits(), res.get_bits());
}
}
TEST(simulator_vneg_64) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
F3 f = AssembleCode([](Assembler& assm) {
__ vmov(d0, r0, r1);
__ vneg(d0, d0);
__ vmov(r1, r0, d0);
});
for (Float64 f64 : Float64Inputs()) {
uint32_t p0 = static_cast<uint32_t>(f64.get_bits());
uint32_t p1 = static_cast<uint32_t>(f64.get_bits() >> 32);
uint32_t res = reinterpret_cast<uint32_t>(
CALL_GENERATED_CODE(isolate, f, p0, p1, 0, 0, 0));
Float64 exp = Float64::FromBits(f64.get_bits() ^ (1ull << 63));
// We just get back the top word, so only compare that one.
CHECK_EQ(exp.get_bits() >> 32, res);
}
}
#undef __
#endif // USE_SIMULATOR