Reland "cppgc: Port backing store compaction."

This is a reland of 90ea9b35cb

Original change's description:
> cppgc: Port backing store compaction.
>
> This CL ports the existing backing store compaction algorithm from
> blink. It does not attempt to improve on the existing algorithm.
>
> Currently only unified heap uses the compaction implementation. It is
> never triggered through standalone GCs.
>
> The compaction implementation resides within an internal "subtle" namespace.
>
> Bug: v8:10990
> Change-Id: I4aa781db1b711e7aafc34234c4fb142de84394d7
> Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2485228
> Commit-Queue: Omer Katz <omerkatz@chromium.org>
> Reviewed-by: Anton Bikineev <bikineev@chromium.org>
> Reviewed-by: Michael Lippautz <mlippautz@chromium.org>
> Cr-Commit-Position: refs/heads/master@{#70714}

Bug: v8:10990
Change-Id: I527c2042a26648d058bfe4d355527cce9a3eeadc
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2492331
Commit-Queue: Omer Katz <omerkatz@chromium.org>
Reviewed-by: Michael Lippautz <mlippautz@chromium.org>
Cr-Commit-Position: refs/heads/master@{#70736}
This commit is contained in:
Omer Katz 2020-10-23 14:55:45 +02:00 committed by Commit Bot
parent 35382590cb
commit b5979eaa5b
28 changed files with 1051 additions and 26 deletions

View File

@ -4385,6 +4385,10 @@ v8_source_set("cppgc_base") {
"include/cppgc/visitor.h",
"include/v8config.h",
"src/heap/cppgc/allocation.cc",
"src/heap/cppgc/compaction-worklists.cc",
"src/heap/cppgc/compaction-worklists.h",
"src/heap/cppgc/compactor.cc",
"src/heap/cppgc/compactor.h",
"src/heap/cppgc/concurrent-marker.cc",
"src/heap/cppgc/concurrent-marker.h",
"src/heap/cppgc/free-list.cc",

View File

@ -14,8 +14,6 @@ struct CustomSpaceIndex {
size_t value;
};
enum class CustomSpaceCompactability { kNotCompactable, kCompactable };
/**
* Top-level base class for custom spaces. Users must inherit from CustomSpace
* below.
@ -66,6 +64,28 @@ struct SpaceTrait {
using Space = void;
};
namespace internal {
template <typename CustomSpace>
struct IsAllocatedOnCompactableSpaceImpl {
static constexpr bool value = CustomSpace::kSupportsCompaction;
};
template <>
struct IsAllocatedOnCompactableSpaceImpl<void> {
// Non-custom spaces are by default not compactable.
static constexpr bool value = false;
};
template <typename T>
struct IsAllocatedOnCompactableSpace {
public:
static constexpr bool value =
IsAllocatedOnCompactableSpaceImpl<typename SpaceTrait<T>::Space>::value;
};
} // namespace internal
} // namespace cppgc
#endif // INCLUDE_CPPGC_CUSTOM_SPACE_H_

View File

@ -24,7 +24,7 @@ class MemberBase {
MemberBase() = default;
explicit MemberBase(void* value) : raw_(value) {}
void* const* GetRawSlot() const { return &raw_; }
void** GetRawSlot() const { return &raw_; }
void* GetRaw() const { return raw_; }
void SetRaw(void* value) { raw_ = value; }
@ -178,6 +178,10 @@ class BasicMember final : private MemberBase, private CheckingPolicy {
return result;
}
const T** GetSlotForTesting() const {
return reinterpret_cast<const T**>(const_cast<const void**>(GetRawSlot()));
}
private:
T* GetRawAtomic() const {
return static_cast<T*>(MemberBase::GetRawAtomic());

View File

@ -5,6 +5,7 @@
#ifndef INCLUDE_CPPGC_VISITOR_H_
#define INCLUDE_CPPGC_VISITOR_H_
#include "cppgc/custom-space.h"
#include "cppgc/ephemeron-pair.h"
#include "cppgc/garbage-collected.h"
#include "cppgc/internal/logging.h"
@ -13,6 +14,7 @@
#include "cppgc/member.h"
#include "cppgc/source-location.h"
#include "cppgc/trace-trait.h"
#include "cppgc/type-traits.h"
namespace cppgc {
@ -26,7 +28,6 @@ class BasicPersistent;
class ConservativeTracingVisitor;
class VisitorBase;
class VisitorFactory;
} // namespace internal
using WeakCallback = void (*)(const LivenessBroker&, const void*);
@ -82,6 +83,8 @@ class V8_EXPORT Visitor {
static_assert(sizeof(T), "Pointee type must be fully defined.");
static_assert(internal::IsGarbageCollectedType<T>::value,
"T must be GarbageCollected or GarbageCollectedMixin type");
static_assert(!internal::IsAllocatedOnCompactableSpace<T>::value,
"Weak references to compactable objects are not allowed");
const T* value = weak_member.GetRawAtomic();
@ -176,6 +179,22 @@ class V8_EXPORT Visitor {
data);
}
/**
* Registers a slot containing a reference to an object allocated on a
* compactable space. Such references maybe be arbitrarily moved by the GC.
*
* \param slot location of reference to object that might be moved by the GC.
*/
template <typename T>
void RegisterMovableReference(const T** slot) {
static_assert(internal::IsAllocatedOnCompactableSpace<T>::value,
"Only references to objects allocated on compactable spaces "
"should be registered as movable slots.");
static_assert(!internal::IsGarbageCollectedMixinTypeV<T>,
"Mixin types do not support compaction.");
HandleMovableReference(reinterpret_cast<const void**>(slot));
}
/**
* Registers a weak callback that is invoked during garbage collection.
*
@ -214,6 +233,7 @@ class V8_EXPORT Visitor {
virtual void VisitWeakContainer(const void* self, TraceDescriptor strong_desc,
TraceDescriptor weak_desc,
WeakCallback callback, const void* data) {}
virtual void HandleMovableReference(const void**) {}
private:
template <typename T, void (T::*method)(const LivenessBroker&)>
@ -261,6 +281,8 @@ class V8_EXPORT Visitor {
static_assert(internal::IsGarbageCollectedType<PointeeType>::value,
"Persistent's pointee type must be GarbageCollected or "
"GarbageCollectedMixin");
static_assert(!internal::IsAllocatedOnCompactableSpace<PointeeType>::value,
"Weak references to compactable objects are not allowed");
VisitWeakRoot(p.Get(), TraceTrait<PointeeType>::GetTraceDescriptor(p.Get()),
&HandleWeak<WeakPersistent>, &p, loc);
}

View File

@ -177,6 +177,12 @@ void CppHeap::TracePrologue(TraceFlags flags) {
UnifiedHeapMarker::MarkingConfig::CollectionType::kMajor,
cppgc::Heap::StackState::kNoHeapPointers,
UnifiedHeapMarker::MarkingConfig::MarkingType::kIncrementalAndConcurrent};
if ((flags == TraceFlags::kReduceMemory) || (flags == TraceFlags::kForced)) {
// Only enable compaction when in a memory reduction garbage collection as
// it may significantly increase the final garbage collection pause.
compactor_.InitializeIfShouldCompact(marking_config.marking_type,
marking_config.stack_state);
}
marker_ =
cppgc::internal::MarkerFactory::CreateAndStartMarking<UnifiedHeapMarker>(
*isolate_.heap(), AsBase(), platform_.get(), marking_config);
@ -195,6 +201,11 @@ bool CppHeap::IsTracingDone() { return marking_done_; }
void CppHeap::EnterFinalPause(EmbedderStackState stack_state) {
marker_->EnterAtomicPause(stack_state);
if (compactor_.CancelIfShouldNotCompact(
UnifiedHeapMarker::MarkingConfig::MarkingType::kAtomic,
stack_state)) {
marker_->NotifyCompactionCancelled();
}
}
void CppHeap::TraceEpilogue(TraceSummary* trace_summary) {
@ -213,10 +224,15 @@ void CppHeap::TraceEpilogue(TraceSummary* trace_summary) {
UnifiedHeapMarkingVerifier verifier(*this);
verifier.Run(cppgc::Heap::StackState::kNoHeapPointers);
#endif
cppgc::internal::Sweeper::SweepingConfig::CompactableSpaceHandling
compactable_space_handling = compactor_.CompactSpacesIfEnabled();
{
NoGCScope no_gc(*this);
sweeper().Start(
cppgc::internal::Sweeper::Config::kIncrementalAndConcurrent);
const cppgc::internal::Sweeper::SweepingConfig sweeping_config{
cppgc::internal::Sweeper::SweepingConfig::SweepingType::
kIncrementalAndConcurrent,
compactable_space_handling};
sweeper().Start(sweeping_config);
}
}

View File

@ -48,6 +48,10 @@ void UnifiedHeapMarkingVisitorBase::RegisterWeakCallback(WeakCallback callback,
marking_state_.RegisterWeakCallback(callback, object);
}
void UnifiedHeapMarkingVisitorBase::HandleMovableReference(const void** slot) {
marking_state_.RegisterMovableReference(slot);
}
namespace {
void DeferredTraceJSMember(cppgc::Visitor* visitor, const void* ref) {
static_cast<JSVisitor*>(visitor)->Trace(

View File

@ -48,6 +48,7 @@ class V8_EXPORT_PRIVATE UnifiedHeapMarkingVisitorBase : public JSVisitor {
TraceDescriptor weak_desc, WeakCallback callback,
const void* data) final;
void RegisterWeakCallback(WeakCallback, const void*) final;
void HandleMovableReference(const void**) final;
// JS handling.
void Visit(const internal::JSMemberBase& ref) final;

View File

@ -0,0 +1,14 @@
// Copyright 2020 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/heap/cppgc/compaction-worklists.h"
namespace cppgc {
namespace internal {
void CompactionWorklists::ClearForTesting() { movable_slots_worklist_.Clear(); }
} // namespace internal
} // namespace cppgc

View File

@ -0,0 +1,35 @@
// Copyright 2020 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_HEAP_CPPGC_COMPACTION_WORKLISTS_H_
#define V8_HEAP_CPPGC_COMPACTION_WORKLISTS_H_
#include <unordered_set>
#include "src/heap/base/worklist.h"
namespace cppgc {
namespace internal {
class CompactionWorklists {
public:
using MovableReference = const void*;
using MovableReferencesWorklist =
heap::base::Worklist<MovableReference*, 256 /* local entries */>;
MovableReferencesWorklist* movable_slots_worklist() {
return &movable_slots_worklist_;
}
void ClearForTesting();
private:
MovableReferencesWorklist movable_slots_worklist_;
};
} // namespace internal
} // namespace cppgc
#endif // V8_HEAP_CPPGC_COMPACTION_WORKLISTS_H_

505
src/heap/cppgc/compactor.cc Normal file
View File

@ -0,0 +1,505 @@
// Copyright 2020 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/heap/cppgc/compactor.h"
#include <map>
#include <numeric>
#include <unordered_map>
#include <unordered_set>
#include "include/cppgc/macros.h"
#include "src/heap/cppgc/compaction-worklists.h"
#include "src/heap/cppgc/globals.h"
#include "src/heap/cppgc/heap-base.h"
#include "src/heap/cppgc/heap-page.h"
#include "src/heap/cppgc/heap-space.h"
#include "src/heap/cppgc/raw-heap.h"
namespace cppgc {
namespace internal {
namespace {
// Freelist size threshold that must be exceeded before compaction
// should be considered.
static constexpr size_t kFreeListSizeThreshold = 512 * kKB;
// The real worker behind heap compaction, recording references to movable
// objects ("slots".) When the objects end up being compacted and moved,
// relocate() will adjust the slots to point to the new location of the
// object along with handling references for interior pointers.
//
// The MovableReferences object is created and maintained for the lifetime
// of one heap compaction-enhanced GC.
class MovableReferences final {
using MovableReference = CompactionWorklists::MovableReference;
public:
explicit MovableReferences(HeapBase& heap) : heap_(heap) {}
// Adds a slot for compaction. Filters slots in dead objects.
void AddOrFilter(MovableReference*);
// Relocates a backing store |from| -> |to|.
void Relocate(Address from, Address to);
// Relocates interior slots in a backing store that is moved |from| -> |to|.
void RelocateInteriorReferences(Address from, Address to, size_t size);
// Updates the collection of callbacks from the item pushed the worklist by
// marking visitors.
void UpdateCallbacks();
private:
HeapBase& heap_;
// Map from movable reference (value) to its slot. Upon moving an object its
// slot pointing to it requires updating. Movable reference should currently
// have only a single movable reference to them registered.
std::unordered_map<MovableReference, MovableReference*> movable_references_;
// Map of interior slots to their final location. Needs to be an ordered map
// as it is used to walk through slots starting at a given memory address.
// Requires log(n) lookup to make the early bailout reasonably fast.
//
// - The initial value for a given key is nullptr.
// - Upon moving an object this value is adjusted accordingly.
std::map<MovableReference*, Address> interior_movable_references_;
#if DEBUG
// The following two collections are used to allow refer back from a slot to
// an already moved object.
std::unordered_set<const void*> moved_objects_;
std::unordered_map<MovableReference*, MovableReference>
interior_slot_to_object_;
#endif // DEBUG
};
void MovableReferences::AddOrFilter(MovableReference* slot) {
const BasePage* slot_page = BasePage::FromInnerAddress(&heap_, slot);
CHECK_NOT_NULL(slot_page);
const void* value = *slot;
if (!value) return;
// All slots and values are part of Oilpan's heap.
// - Slots may be contained within dead objects if e.g. the write barrier
// registered the slot while backing itself has not been marked live in
// time. Slots in dead objects are filtered below.
// - Values may only be contained in or point to live objects.
const HeapObjectHeader& slot_header =
slot_page->ObjectHeaderFromInnerAddress(slot);
// Filter the slot since the object that contains the slot is dead.
if (!slot_header.IsMarked()) return;
const BasePage* value_page = BasePage::FromInnerAddress(&heap_, value);
CHECK_NOT_NULL(value_page);
// The following cases are not compacted and do not require recording:
// - Compactable object on large pages.
// - Compactable object on non-compactable spaces.
if (value_page->is_large() || !value_page->space()->is_compactable()) return;
// Slots must reside in and values must point to live objects at this
// point. |value| usually points to a separate object but can also point
// to the an interior pointer in the same object storage which is why the
// dynamic header lookup is required.
const HeapObjectHeader& value_header =
value_page->ObjectHeaderFromInnerAddress(value);
CHECK(value_header.IsMarked());
// Slots may have been recorded already but must point to the same value.
auto reference_it = movable_references_.find(value);
if (V8_UNLIKELY(reference_it != movable_references_.end())) {
CHECK_EQ(slot, reference_it->second);
return;
}
// Add regular movable reference.
movable_references_.emplace(value, slot);
// Check whether the slot itself resides on a page that is compacted.
if (V8_LIKELY(!slot_page->space()->is_compactable())) return;
CHECK_EQ(interior_movable_references_.end(),
interior_movable_references_.find(slot));
interior_movable_references_.emplace(slot, nullptr);
#if DEBUG
interior_slot_to_object_.emplace(slot, slot_header.Payload());
#endif // DEBUG
}
void MovableReferences::Relocate(Address from, Address to) {
#if DEBUG
moved_objects_.insert(from);
#endif // DEBUG
// Interior slots always need to be processed for moved objects.
// Consider an object A with slot A.x pointing to value B where A is
// allocated on a movable page itself. When B is finally moved, it needs to
// find the corresponding slot A.x. Object A may be moved already and the
// memory may have been freed, which would result in a crash.
if (!interior_movable_references_.empty()) {
const HeapObjectHeader& header = HeapObjectHeader::FromPayload(to);
const size_t size = header.GetSize() - sizeof(HeapObjectHeader);
RelocateInteriorReferences(from, to, size);
}
auto it = movable_references_.find(from);
// This means that there is no corresponding slot for a live object.
// This may happen because a mutator may change the slot to point to a
// different object because e.g. incremental marking marked an object
// as live that was later on replaced.
if (it == movable_references_.end()) {
return;
}
// If the object is referenced by a slot that is contained on a compacted
// area itself, check whether it can be updated already.
MovableReference* slot = it->second;
auto interior_it = interior_movable_references_.find(slot);
if (interior_it != interior_movable_references_.end()) {
MovableReference* slot_location =
reinterpret_cast<MovableReference*>(interior_it->second);
if (!slot_location) {
interior_it->second = to;
#if DEBUG
// Check that the containing object has not been moved yet.
auto reverse_it = interior_slot_to_object_.find(slot);
DCHECK_NE(interior_slot_to_object_.end(), reverse_it);
DCHECK_EQ(moved_objects_.end(), moved_objects_.find(reverse_it->second));
#endif // DEBUG
} else {
slot = slot_location;
}
}
// Compaction is atomic so slot should not be updated during compaction.
DCHECK_EQ(from, *slot);
// Update the slots new value.
*slot = to;
}
void MovableReferences::RelocateInteriorReferences(Address from, Address to,
size_t size) {
// |from| is a valid address for a slot.
auto interior_it = interior_movable_references_.lower_bound(
reinterpret_cast<MovableReference*>(from));
if (interior_it == interior_movable_references_.end()) return;
DCHECK_GE(reinterpret_cast<Address>(interior_it->first), from);
size_t offset = reinterpret_cast<Address>(interior_it->first) - from;
while (offset < size) {
if (!interior_it->second) {
// Update the interior reference value, so that when the object the slot
// is pointing to is moved, it can re-use this value.
Address refernece = to + offset;
interior_it->second = refernece;
// If the |slot|'s content is pointing into the region [from, from +
// size) we are dealing with an interior pointer that does not point to
// a valid HeapObjectHeader. Such references need to be fixed up
// immediately.
Address& reference_contents = *reinterpret_cast<Address*>(refernece);
if (reference_contents > from && reference_contents < (from + size)) {
reference_contents = reference_contents - from + to;
}
}
interior_it++;
if (interior_it == interior_movable_references_.end()) return;
offset = reinterpret_cast<Address>(interior_it->first) - from;
}
}
class CompactionState final {
CPPGC_STACK_ALLOCATED();
using Pages = std::vector<NormalPage*>;
public:
CompactionState(NormalPageSpace* space, MovableReferences& movable_references)
: space_(space), movable_references_(movable_references) {}
void AddPage(NormalPage* page) {
DCHECK_EQ(space_, page->space());
// If not the first page, add |page| onto the available pages chain.
if (!current_page_)
current_page_ = page;
else
available_pages_.push_back(page);
}
void RelocateObject(const NormalPage* page, const Address header,
size_t size) {
// Allocate and copy over the live object.
Address compact_frontier =
current_page_->PayloadStart() + used_bytes_in_current_page_;
if (compact_frontier + size > current_page_->PayloadEnd()) {
// Can't fit on current page. Add remaining onto the freelist and advance
// to next available page.
ReturnCurrentPageToSpace();
current_page_ = available_pages_.back();
available_pages_.pop_back();
used_bytes_in_current_page_ = 0;
compact_frontier = current_page_->PayloadStart();
}
if (V8_LIKELY(compact_frontier != header)) {
// Use a non-overlapping copy, if possible.
if (current_page_ == page)
memmove(compact_frontier, header, size);
else
memcpy(compact_frontier, header, size);
movable_references_.Relocate(header + sizeof(HeapObjectHeader),
compact_frontier + sizeof(HeapObjectHeader));
}
current_page_->object_start_bitmap().SetBit(compact_frontier);
used_bytes_in_current_page_ += size;
DCHECK_LE(used_bytes_in_current_page_, current_page_->PayloadSize());
}
void FinishCompactingSpace() {
// If the current page hasn't been allocated into, add it to the available
// list, for subsequent release below.
if (used_bytes_in_current_page_ == 0) {
available_pages_.push_back(current_page_);
} else {
ReturnCurrentPageToSpace();
}
// Return remaining available pages to the free page pool, decommitting
// them from the pagefile.
for (NormalPage* page : available_pages_) {
SET_MEMORY_INACCESSIBLE(page->PayloadStart(), page->PayloadSize());
NormalPage::Destroy(page);
}
}
void FinishCompactingPage(NormalPage* page) {
#if DEBUG || defined(LEAK_SANITIZER) || defined(ADDRESS_SANITIZER) || \
defined(MEMORY_SANITIZER)
// Zap the unused portion, until it is either compacted into or freed.
if (current_page_ != page) {
ZapMemory(page->PayloadStart(), page->PayloadSize());
} else {
ZapMemory(page->PayloadStart() + used_bytes_in_current_page_,
page->PayloadSize() - used_bytes_in_current_page_);
}
#endif
}
private:
void ReturnCurrentPageToSpace() {
DCHECK_EQ(space_, current_page_->space());
space_->AddPage(current_page_);
if (used_bytes_in_current_page_ != current_page_->PayloadSize()) {
// Put the remainder of the page onto the free list.
size_t freed_size =
current_page_->PayloadSize() - used_bytes_in_current_page_;
Address payload = current_page_->PayloadStart();
Address free_start = payload + used_bytes_in_current_page_;
SET_MEMORY_INACCESSIBLE(free_start, freed_size);
space_->free_list().Add({free_start, freed_size});
current_page_->object_start_bitmap().SetBit(free_start);
}
}
NormalPageSpace* space_;
MovableReferences& movable_references_;
// Page into which compacted object will be written to.
NormalPage* current_page_ = nullptr;
// Offset into |current_page_| to the next free address.
size_t used_bytes_in_current_page_ = 0;
// Additional pages in the current space that can be used as compaction
// targets. Pages that remain available at the compaction can be released.
Pages available_pages_;
};
void CompactPage(NormalPage* page, CompactionState& compaction_state) {
compaction_state.AddPage(page);
page->object_start_bitmap().Clear();
for (Address header_address = page->PayloadStart();
header_address < page->PayloadEnd();) {
HeapObjectHeader* header =
reinterpret_cast<HeapObjectHeader*>(header_address);
size_t size = header->GetSize();
DCHECK_GT(size, 0u);
DCHECK_LT(size, kPageSize);
if (header->IsFree()) {
// Unpoison the freelist entry so that we can compact into it as wanted.
ASAN_UNPOISON_MEMORY_REGION(header_address, size);
header_address += size;
continue;
}
if (!header->IsMarked()) {
// Compaction is currently launched only from AtomicPhaseEpilogue, so it's
// guaranteed to be on the mutator thread - no need to postpone
// finalization.
header->Finalize();
// As compaction is under way, leave the freed memory accessible
// while compacting the rest of the page. We just zap the payload
// to catch out other finalizers trying to access it.
#if DEBUG || defined(LEAK_SANITIZER) || defined(ADDRESS_SANITIZER) || \
defined(MEMORY_SANITIZER)
ZapMemory(header, size);
#endif
header_address += size;
continue;
}
// Object is marked.
#if !defined(CPPGC_YOUNG_GENERATION)
header->Unmark();
#endif
compaction_state.RelocateObject(page, header_address, size);
header_address += size;
}
compaction_state.FinishCompactingPage(page);
}
void CompactSpace(NormalPageSpace* space,
MovableReferences& movable_references) {
using Pages = NormalPageSpace::Pages;
DCHECK(space->is_compactable());
space->free_list().Clear();
// Compaction generally follows Jonker's algorithm for fast garbage
// compaction. Compaction is performed in-place, sliding objects down over
// unused holes for a smaller heap page footprint and improved locality. A
// "compaction pointer" is consequently kept, pointing to the next available
// address to move objects down to. It will belong to one of the already
// compacted pages for this space, but as compaction proceeds, it will not
// belong to the same page as the one being currently compacted.
//
// The compaction pointer is represented by the
// |(current_page_, used_bytes_in_current_page_)| pair, with
// |used_bytes_in_current_page_| being the offset into |current_page_|, making
// up the next available location. When the compaction of an arena page causes
// the compaction pointer to exhaust the current page it is compacting into,
// page compaction will advance the current page of the compaction
// pointer, as well as the allocation point.
//
// By construction, the page compaction can be performed without having
// to allocate any new pages. So to arrange for the page compaction's
// supply of freed, available pages, we chain them together after each
// has been "compacted from". The page compaction will then reuse those
// as needed, and once finished, the chained, available pages can be
// released back to the OS.
//
// To ease the passing of the compaction state when iterating over an
// arena's pages, package it up into a |CompactionState|.
Pages pages = space->RemoveAllPages();
if (pages.empty()) return;
CompactionState compaction_state(space, movable_references);
for (BasePage* page : pages) {
// Large objects do not belong to this arena.
CompactPage(NormalPage::From(page), compaction_state);
}
compaction_state.FinishCompactingSpace();
// Sweeping will verify object start bitmap of compacted space.
}
size_t UpdateHeapResidency(const std::vector<NormalPageSpace*>& spaces) {
return std::accumulate(spaces.cbegin(), spaces.cend(), 0u,
[](size_t acc, const NormalPageSpace* space) {
DCHECK(space->is_compactable());
if (!space->size()) return acc;
return acc + space->free_list().Size();
});
}
} // namespace
Compactor::Compactor(RawHeap& heap) : heap_(heap) {
for (auto& space : heap_) {
if (!space->is_compactable()) continue;
DCHECK_EQ(&heap, space->raw_heap());
compactable_spaces_.push_back(static_cast<NormalPageSpace*>(space.get()));
}
}
bool Compactor::ShouldCompact(
GarbageCollector::Config::MarkingType marking_type,
GarbageCollector::Config::StackState stack_state) {
if (compactable_spaces_.empty() ||
(marking_type == GarbageCollector::Config::MarkingType::kAtomic &&
stack_state ==
GarbageCollector::Config::StackState::kMayContainHeapPointers)) {
// The following check ensures that tests that want to test compaction are
// not interrupted by garbage collections that cannot use compaction.
DCHECK(!enable_for_next_gc_for_testing_);
return false;
}
if (enable_for_next_gc_for_testing_) {
return true;
}
size_t free_list_size = UpdateHeapResidency(compactable_spaces_);
return free_list_size > kFreeListSizeThreshold;
}
void Compactor::InitializeIfShouldCompact(
GarbageCollector::Config::MarkingType marking_type,
GarbageCollector::Config::StackState stack_state) {
DCHECK(!is_enabled_);
if (!ShouldCompact(marking_type, stack_state)) return;
compaction_worklists_ = std::make_unique<CompactionWorklists>();
is_enabled_ = true;
enable_for_next_gc_for_testing_ = false;
}
bool Compactor::CancelIfShouldNotCompact(
GarbageCollector::Config::MarkingType marking_type,
GarbageCollector::Config::StackState stack_state) {
if (!is_enabled_ || ShouldCompact(marking_type, stack_state)) return false;
DCHECK_NOT_NULL(compaction_worklists_);
compaction_worklists_->movable_slots_worklist()->Clear();
compaction_worklists_.reset();
is_enabled_ = false;
return true;
}
Compactor::CompactableSpaceHandling Compactor::CompactSpacesIfEnabled() {
if (!is_enabled_) return CompactableSpaceHandling::kSweep;
MovableReferences movable_references(*heap_.heap());
CompactionWorklists::MovableReferencesWorklist::Local local(
compaction_worklists_->movable_slots_worklist());
CompactionWorklists::MovableReference* slot;
while (local.Pop(&slot)) {
movable_references.AddOrFilter(slot);
}
compaction_worklists_.reset();
for (NormalPageSpace* space : compactable_spaces_) {
CompactSpace(space, movable_references);
}
is_enabled_ = false;
return CompactableSpaceHandling::kIgnore;
}
} // namespace internal
} // namespace cppgc

View File

@ -0,0 +1,56 @@
// Copyright 2020 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_HEAP_CPPGC_COMPACTOR_H_
#define V8_HEAP_CPPGC_COMPACTOR_H_
#include "src/heap/cppgc/compaction-worklists.h"
#include "src/heap/cppgc/garbage-collector.h"
#include "src/heap/cppgc/raw-heap.h"
namespace cppgc {
namespace internal {
class V8_EXPORT_PRIVATE Compactor final {
using CompactableSpaceHandling =
Sweeper::SweepingConfig::CompactableSpaceHandling;
public:
explicit Compactor(RawHeap&);
~Compactor() { DCHECK(!is_enabled_); }
void InitializeIfShouldCompact(GarbageCollector::Config::MarkingType,
GarbageCollector::Config::StackState);
// Returns true is compaction was cancelled.
bool CancelIfShouldNotCompact(GarbageCollector::Config::MarkingType,
GarbageCollector::Config::StackState);
CompactableSpaceHandling CompactSpacesIfEnabled();
CompactionWorklists* compaction_worklists() {
return compaction_worklists_.get();
}
void EnableForNextGCForTesting() { enable_for_next_gc_for_testing_ = true; }
bool IsEnabledForTesting() const { return is_enabled_; }
private:
bool ShouldCompact(GarbageCollector::Config::MarkingType,
GarbageCollector::Config::StackState);
RawHeap& heap_;
// Compactor does not own the compactable spaces. The heap owns all spaces.
std::vector<NormalPageSpace*> compactable_spaces_;
std::unique_ptr<CompactionWorklists> compaction_worklists_;
bool is_enabled_ = false;
bool enable_for_next_gc_for_testing_ = false;
};
} // namespace internal
} // namespace cppgc
#endif // V8_HEAP_CPPGC_COMPACTOR_H_

View File

@ -74,7 +74,8 @@ void ConcurrentMarkingTask::Run(JobDelegate* job_delegate) {
if (!HasWorkForConcurrentMarking(concurrent_marker_.marking_worklists()))
return;
ConcurrentMarkingState concurrent_marking_state(
concurrent_marker_.heap(), concurrent_marker_.marking_worklists());
concurrent_marker_.heap(), concurrent_marker_.marking_worklists(),
concurrent_marker_.heap().compactor().compaction_worklists());
std::unique_ptr<Visitor> concurrent_marking_visitor =
concurrent_marker_.CreateConcurrentMarkingVisitor(
concurrent_marking_state);
@ -186,6 +187,10 @@ void ConcurrentMarkerBase::JoinForTesting() {
concurrent_marking_handle_->Join();
}
bool ConcurrentMarkerBase::IsActive() const {
return concurrent_marking_handle_ && concurrent_marking_handle_->IsRunning();
}
ConcurrentMarkerBase::~ConcurrentMarkerBase() {
CHECK_IMPLIES(concurrent_marking_handle_,
!concurrent_marking_handle_->IsValid());

View File

@ -30,6 +30,8 @@ class V8_EXPORT_PRIVATE ConcurrentMarkerBase {
bool NotifyIncrementalMutatorStepCompleted();
bool IsActive() const;
HeapBase& heap() const { return heap_; }
MarkingWorklists& marking_worklists() const { return marking_worklists_; }
IncrementalMarkingSchedule& incremental_marking_schedule() const {

View File

@ -19,7 +19,7 @@ class GarbageCollector {
using CollectionType = Marker::MarkingConfig::CollectionType;
using StackState = cppgc::Heap::StackState;
using MarkingType = Marker::MarkingConfig::MarkingType;
using SweepingType = Sweeper::Config;
using SweepingType = Sweeper::SweepingConfig::SweepingType;
static constexpr Config ConservativeAtomicConfig() {
return {CollectionType::kMajor, StackState::kMayContainHeapPointers,

View File

@ -70,6 +70,7 @@ HeapBase::HeapBase(
stack_(std::make_unique<heap::base::Stack>(
v8::base::Stack::GetStackStart())),
prefinalizer_handler_(std::make_unique<PreFinalizerHandler>()),
compactor_(raw_heap_),
object_allocator_(&raw_heap_, page_backend_.get(),
stats_collector_.get()),
sweeper_(&raw_heap_, platform_.get(), stats_collector_.get()),

View File

@ -12,6 +12,7 @@
#include "include/cppgc/internal/persistent-node.h"
#include "include/cppgc/macros.h"
#include "src/base/macros.h"
#include "src/heap/cppgc/compactor.h"
#include "src/heap/cppgc/marker.h"
#include "src/heap/cppgc/object-allocator.h"
#include "src/heap/cppgc/raw-heap.h"
@ -97,6 +98,8 @@ class V8_EXPORT_PRIVATE HeapBase {
MarkerBase* marker() const { return marker_.get(); }
Compactor& compactor() { return compactor_; }
ObjectAllocator& object_allocator() { return object_allocator_; }
Sweeper& sweeper() { return sweeper_; }
@ -154,6 +157,7 @@ class V8_EXPORT_PRIVATE HeapBase {
std::unique_ptr<PreFinalizerHandler> prefinalizer_handler_;
std::unique_ptr<MarkerBase> marker_;
Compactor compactor_;
ObjectAllocator object_allocator_;
Sweeper sweeper_;

View File

@ -168,7 +168,10 @@ void Heap::FinalizeGarbageCollection(Config::StackState stack_state) {
#endif
{
NoGCScope no_gc(*this);
sweeper_.Start(config_.sweeping_type);
const Sweeper::SweepingConfig sweeping_config{
config_.sweeping_type,
Sweeper::SweepingConfig::CompactableSpaceHandling::kSweep};
sweeper_.Start(sweeping_config);
}
gc_in_progress_ = false;
}

View File

@ -158,7 +158,8 @@ MarkerBase::MarkerBase(Key, HeapBase& heap, cppgc::Platform* platform,
config_(config),
platform_(platform),
foreground_task_runner_(platform_->GetForegroundTaskRunner()),
mutator_marking_state_(heap, marking_worklists_) {}
mutator_marking_state_(heap, marking_worklists_,
heap.compactor().compaction_worklists()) {}
MarkerBase::~MarkerBase() {
// The fixed point iteration may have found not-fully-constructed objects.
@ -435,6 +436,8 @@ void MarkerBase::MarkNotFullyConstructedObjects() {
void MarkerBase::ClearAllWorklistsForTesting() {
marking_worklists_.ClearForTesting();
auto* compaction_worklists = heap_.compactor().compaction_worklists();
if (compaction_worklists) compaction_worklists->ClearForTesting();
}
void MarkerBase::DisableIncrementalMarkingForTesting() {
@ -445,6 +448,13 @@ void MarkerBase::WaitForConcurrentMarkingForTesting() {
concurrent_marker_->JoinForTesting();
}
void MarkerBase::NotifyCompactionCancelled() {
// Compaction cannot be cancelled while concurrent marking is active.
DCHECK_EQ(MarkingConfig::MarkingType::kAtomic, config_.marking_type);
DCHECK_IMPLIES(concurrent_marker_, !concurrent_marker_->IsActive());
mutator_marking_state_.NotifyCompactionCancelled();
}
Marker::Marker(Key key, HeapBase& heap, cppgc::Platform* platform,
MarkingConfig config)
: MarkerBase(key, heap, platform, config),

View File

@ -124,6 +124,8 @@ class V8_EXPORT_PRIVATE MarkerBase {
void WaitForConcurrentMarkingForTesting();
void NotifyCompactionCancelled();
protected:
static constexpr v8::base::TimeDelta kMaximumIncrementalStepDuration =
v8::base::TimeDelta::FromMilliseconds(2);

View File

@ -6,6 +6,7 @@
#define V8_HEAP_CPPGC_MARKING_STATE_H_
#include "include/cppgc/trace-trait.h"
#include "src/heap/cppgc/compaction-worklists.h"
#include "src/heap/cppgc/globals.h"
#include "src/heap/cppgc/heap-object-header.h"
#include "src/heap/cppgc/heap-page.h"
@ -18,7 +19,8 @@ namespace internal {
// C++ marking implementation.
class MarkingStateBase {
public:
inline MarkingStateBase(HeapBase& heap, MarkingWorklists&);
inline MarkingStateBase(HeapBase& heap, MarkingWorklists&,
CompactionWorklists*);
MarkingStateBase(const MarkingStateBase&) = delete;
MarkingStateBase& operator=(const MarkingStateBase&) = delete;
@ -32,6 +34,11 @@ class MarkingStateBase {
WeakCallback, const void*);
inline void RegisterWeakCallback(WeakCallback, const void*);
void RegisterMovableReference(const void** slot) {
if (!movable_slots_worklist_) return;
movable_slots_worklist_->Push(slot);
}
// Weak containers are special in that they may require re-tracing if
// reachable through stack, even if the container was already traced before.
// ProcessWeakContainer records which weak containers were already marked so
@ -53,6 +60,7 @@ class MarkingStateBase {
concurrent_marking_bailout_worklist_.Publish();
discovered_ephemeron_pairs_worklist_.Publish();
ephemeron_pairs_for_processing_worklist_.Publish();
if (IsCompactionEnabled()) movable_slots_worklist_->Publish();
}
MarkingWorklists::MarkingWorklist::Local& marking_worklist() {
@ -88,6 +96,17 @@ class MarkingStateBase {
return weak_containers_worklist_;
}
CompactionWorklists::MovableReferencesWorklist::Local*
movable_slots_worklist() {
return movable_slots_worklist_.get();
}
void NotifyCompactionCancelled() {
DCHECK(IsCompactionEnabled());
movable_slots_worklist_->Clear();
movable_slots_worklist_.reset();
}
protected:
inline void MarkAndPush(HeapObjectHeader&, TraceDescriptor);
@ -95,6 +114,10 @@ class MarkingStateBase {
inline void RegisterWeakContainer(HeapObjectHeader&);
inline bool IsCompactionEnabled() const {
return movable_slots_worklist_.get();
}
#ifdef DEBUG
HeapBase& heap_;
#endif // DEBUG
@ -113,12 +136,17 @@ class MarkingStateBase {
MarkingWorklists::EphemeronPairsWorklist::Local
ephemeron_pairs_for_processing_worklist_;
MarkingWorklists::WeakContainersWorklist& weak_containers_worklist_;
// Existence of the worklist (|movable_slot_worklist_| != nullptr) denotes
// that compaction is currently enabled and slots must be recorded.
std::unique_ptr<CompactionWorklists::MovableReferencesWorklist::Local>
movable_slots_worklist_;
size_t marked_bytes_ = 0;
};
MarkingStateBase::MarkingStateBase(HeapBase& heap,
MarkingWorklists& marking_worklists)
MarkingWorklists& marking_worklists,
CompactionWorklists* compaction_worklists)
:
#ifdef DEBUG
heap_(heap),
@ -137,6 +165,11 @@ MarkingStateBase::MarkingStateBase(HeapBase& heap,
ephemeron_pairs_for_processing_worklist_(
marking_worklists.ephemeron_pairs_for_processing_worklist()),
weak_containers_worklist_(*marking_worklists.weak_containers_worklist()) {
if (compaction_worklists) {
movable_slots_worklist_ =
std::make_unique<CompactionWorklists::MovableReferencesWorklist::Local>(
compaction_worklists->movable_slots_worklist());
}
}
void MarkingStateBase::MarkAndPush(const void* object, TraceDescriptor desc) {
@ -260,8 +293,9 @@ void MarkingStateBase::AccountMarkedBytes(size_t marked_bytes) {
class MutatorMarkingState : public MarkingStateBase {
public:
MutatorMarkingState(HeapBase& heap, MarkingWorklists& marking_worklists)
: MarkingStateBase(heap, marking_worklists) {}
MutatorMarkingState(HeapBase& heap, MarkingWorklists& marking_worklists,
CompactionWorklists* compaction_worklists)
: MarkingStateBase(heap, marking_worklists, compaction_worklists) {}
inline bool MarkNoPush(HeapObjectHeader& header) {
return MutatorMarkingState::MarkingStateBase::MarkNoPush(header);
@ -327,8 +361,9 @@ bool MutatorMarkingState::IsMarkedWeakContainer(HeapObjectHeader& header) {
class ConcurrentMarkingState : public MarkingStateBase {
public:
ConcurrentMarkingState(HeapBase& heap, MarkingWorklists& marking_worklists)
: MarkingStateBase(heap, marking_worklists) {}
ConcurrentMarkingState(HeapBase& heap, MarkingWorklists& marking_worklists,
CompactionWorklists* compaction_worklists)
: MarkingStateBase(heap, marking_worklists, compaction_worklists) {}
~ConcurrentMarkingState() { DCHECK_EQ(last_marked_bytes_, marked_bytes_); }

View File

@ -43,6 +43,10 @@ void MarkingVisitorBase::RegisterWeakCallback(WeakCallback callback,
marking_state_.RegisterWeakCallback(callback, object);
}
void MarkingVisitorBase::HandleMovableReference(const void** slot) {
marking_state_.RegisterMovableReference(slot);
}
ConservativeMarkingVisitor::ConservativeMarkingVisitor(
HeapBase& heap, MutatorMarkingState& marking_state, cppgc::Visitor& visitor)
: ConservativeTracingVisitor(heap, *heap.page_backend(), visitor),

View File

@ -33,6 +33,7 @@ class V8_EXPORT_PRIVATE MarkingVisitorBase : public VisitorBase {
TraceDescriptor weak_desc, WeakCallback callback,
const void* data) final;
void RegisterWeakCallback(WeakCallback, const void*) final;
void HandleMovableReference(const void**) final;
MarkingStateBase& marking_state_;
};

View File

@ -446,10 +446,19 @@ class ConcurrentSweepTask final : public cppgc::JobTask,
// - moves all Heap pages to local Sweeper's state (SpaceStates).
class PrepareForSweepVisitor final
: public HeapVisitor<PrepareForSweepVisitor> {
using CompactableSpaceHandling =
Sweeper::SweepingConfig::CompactableSpaceHandling;
public:
explicit PrepareForSweepVisitor(SpaceStates* states) : states_(states) {}
PrepareForSweepVisitor(SpaceStates* states,
CompactableSpaceHandling compactable_space_handling)
: states_(states),
compactable_space_handling_(compactable_space_handling) {}
bool VisitNormalPageSpace(NormalPageSpace* space) {
if ((compactable_space_handling_ == CompactableSpaceHandling::kIgnore) &&
space->is_compactable())
return true;
DCHECK(!space->linear_allocation_buffer().size());
space->free_list().Clear();
ExtractPages(space);
@ -469,6 +478,7 @@ class PrepareForSweepVisitor final
}
SpaceStates* states_;
CompactableSpaceHandling compactable_space_handling_;
};
} // namespace
@ -485,17 +495,20 @@ class Sweeper::SweeperImpl final {
~SweeperImpl() { CancelSweepers(); }
void Start(Config config) {
void Start(SweepingConfig config) {
is_in_progress_ = true;
#if DEBUG
// Verify bitmap for all spaces regardless of |compactable_space_handling|.
ObjectStartBitmapVerifier().Verify(heap_);
#endif
PrepareForSweepVisitor(&space_states_).Traverse(heap_);
PrepareForSweepVisitor(&space_states_, config.compactable_space_handling)
.Traverse(heap_);
if (config == Config::kAtomic) {
if (config.sweeping_type == SweepingConfig::SweepingType::kAtomic) {
Finish();
} else {
DCHECK_EQ(Config::kIncrementalAndConcurrent, config);
DCHECK_EQ(SweepingConfig::SweepingType::kIncrementalAndConcurrent,
config.sweeping_type);
ScheduleIncrementalSweeping();
ScheduleConcurrentSweeping();
}
@ -620,7 +633,7 @@ Sweeper::Sweeper(RawHeap* heap, cppgc::Platform* platform,
Sweeper::~Sweeper() = default;
void Sweeper::Start(Config config) { impl_->Start(config); }
void Sweeper::Start(SweepingConfig config) { impl_->Start(config); }
void Sweeper::FinishIfRunning() { impl_->FinishIfRunning(); }
void Sweeper::WaitForConcurrentSweepingForTesting() {
impl_->WaitForConcurrentSweepingForTesting();

View File

@ -21,7 +21,14 @@ class ConcurrentSweeperTest;
class V8_EXPORT_PRIVATE Sweeper final {
public:
enum class Config { kAtomic, kIncrementalAndConcurrent };
struct SweepingConfig {
enum class SweepingType : uint8_t { kAtomic, kIncrementalAndConcurrent };
enum class CompactableSpaceHandling { kSweep, kIgnore };
SweepingType sweeping_type = SweepingType::kIncrementalAndConcurrent;
CompactableSpaceHandling compactable_space_handling =
CompactableSpaceHandling::kSweep;
};
Sweeper(RawHeap*, cppgc::Platform*, StatsCollector*);
~Sweeper();
@ -30,7 +37,7 @@ class V8_EXPORT_PRIVATE Sweeper final {
Sweeper& operator=(const Sweeper&) = delete;
// Sweeper::Start assumes the heap holds no linear allocation buffers.
void Start(Config);
void Start(SweepingConfig);
void FinishIfRunning();
private:

View File

@ -80,6 +80,7 @@ v8_source_set("cppgc_unittests_sources") {
testonly = true
sources = [
"heap/cppgc/compactor-unittest.cc",
"heap/cppgc/concurrent-marking-unittest.cc",
"heap/cppgc/concurrent-sweeper-unittest.cc",
"heap/cppgc/cross-thread-persistent-unittest.cc",

View File

@ -0,0 +1,250 @@
// Copyright 2020 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/heap/cppgc/compactor.h"
#include "include/cppgc/allocation.h"
#include "include/cppgc/custom-space.h"
#include "include/cppgc/persistent.h"
#include "src/heap/cppgc/heap-object-header.h"
#include "src/heap/cppgc/heap-page.h"
#include "src/heap/cppgc/marker.h"
#include "src/heap/cppgc/stats-collector.h"
#include "test/unittests/heap/cppgc/tests.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace cppgc {
class CompactableCustomSpace : public CustomSpace<CompactableCustomSpace> {
public:
static constexpr size_t kSpaceIndex = 0;
static constexpr bool kSupportsCompaction = true;
};
namespace internal {
namespace {
struct CompactableGCed : public GarbageCollected<CompactableGCed> {
public:
~CompactableGCed() { ++g_destructor_callcount; }
void Trace(Visitor* visitor) const {
visitor->Trace(other);
visitor->RegisterMovableReference(other.GetSlotForTesting());
}
static size_t g_destructor_callcount;
Member<CompactableGCed> other;
size_t id = 0;
};
// static
size_t CompactableGCed::g_destructor_callcount = 0;
template <int kNumObjects>
struct CompactableHolder
: public GarbageCollected<CompactableHolder<kNumObjects>> {
public:
explicit CompactableHolder(cppgc::AllocationHandle& allocation_handle) {
for (int i = 0; i < kNumObjects; ++i)
objects[i] = MakeGarbageCollected<CompactableGCed>(allocation_handle);
}
void Trace(Visitor* visitor) const {
for (int i = 0; i < kNumObjects; ++i) {
visitor->Trace(objects[i]);
visitor->RegisterMovableReference(objects[i].GetSlotForTesting());
}
}
Member<CompactableGCed> objects[kNumObjects];
};
class CompactorTest : public testing::TestWithPlatform {
public:
CompactorTest() {
Heap::HeapOptions options;
options.custom_spaces.emplace_back(
std::make_unique<CompactableCustomSpace>());
heap_ = Heap::Create(platform_, std::move(options));
}
void StartCompaction() {
compactor().EnableForNextGCForTesting();
compactor().InitializeIfShouldCompact(
GarbageCollector::Config::MarkingType::kIncremental,
GarbageCollector::Config::StackState::kNoHeapPointers);
EXPECT_TRUE(compactor().IsEnabledForTesting());
}
void CancelCompaction() {
bool cancelled = compactor().CancelIfShouldNotCompact(
GarbageCollector::Config::MarkingType::kAtomic,
GarbageCollector::Config::StackState::kMayContainHeapPointers);
EXPECT_TRUE(cancelled);
}
void FinishCompaction() { compactor().CompactSpacesIfEnabled(); }
void StartGC() {
CompactableGCed::g_destructor_callcount = 0u;
StartCompaction();
heap()->StartIncrementalGarbageCollection(
GarbageCollector::Config::PreciseIncrementalConfig());
}
void EndGC() {
heap()->marker()->FinishMarking(
GarbageCollector::Config::StackState::kNoHeapPointers);
FinishCompaction();
// Sweeping also verifies the object start bitmap.
const Sweeper::SweepingConfig sweeping_config{
Sweeper::SweepingConfig::SweepingType::kAtomic,
Sweeper::SweepingConfig::CompactableSpaceHandling::kIgnore};
heap()->sweeper().Start(sweeping_config);
}
Heap* heap() { return Heap::From(heap_.get()); }
cppgc::AllocationHandle& GetAllocationHandle() {
return heap_->GetAllocationHandle();
}
Compactor& compactor() { return heap()->compactor(); }
private:
std::unique_ptr<cppgc::Heap> heap_;
};
} // namespace
} // namespace internal
template <>
struct SpaceTrait<internal::CompactableGCed> {
using Space = CompactableCustomSpace;
};
namespace internal {
TEST_F(CompactorTest, NothingToCompact) {
StartCompaction();
FinishCompaction();
}
TEST_F(CompactorTest, CancelledNothingToCompact) {
StartCompaction();
CancelCompaction();
}
TEST_F(CompactorTest, NonEmptySpaceAllLive) {
static constexpr int kNumObjects = 10;
Persistent<CompactableHolder<kNumObjects>> holder =
MakeGarbageCollected<CompactableHolder<kNumObjects>>(
GetAllocationHandle(), GetAllocationHandle());
CompactableGCed* references[kNumObjects] = {nullptr};
for (int i = 0; i < kNumObjects; ++i) {
references[i] = holder->objects[i];
}
StartGC();
EndGC();
EXPECT_EQ(0u, CompactableGCed::g_destructor_callcount);
for (int i = 0; i < kNumObjects; ++i) {
EXPECT_EQ(holder->objects[i], references[i]);
}
}
TEST_F(CompactorTest, NonEmptySpaceAllDead) {
static constexpr int kNumObjects = 10;
Persistent<CompactableHolder<kNumObjects>> holder =
MakeGarbageCollected<CompactableHolder<kNumObjects>>(
GetAllocationHandle(), GetAllocationHandle());
CompactableGCed::g_destructor_callcount = 0u;
StartGC();
for (int i = 0; i < kNumObjects; ++i) {
holder->objects[i] = nullptr;
}
EndGC();
EXPECT_EQ(10u, CompactableGCed::g_destructor_callcount);
}
TEST_F(CompactorTest, NonEmptySpaceHalfLive) {
static constexpr int kNumObjects = 10;
Persistent<CompactableHolder<kNumObjects>> holder =
MakeGarbageCollected<CompactableHolder<kNumObjects>>(
GetAllocationHandle(), GetAllocationHandle());
CompactableGCed* references[kNumObjects] = {nullptr};
for (int i = 0; i < kNumObjects; ++i) {
references[i] = holder->objects[i];
}
StartGC();
for (int i = 0; i < kNumObjects; i += 2) {
holder->objects[i] = nullptr;
}
EndGC();
// Half of object were destroyed.
EXPECT_EQ(5u, CompactableGCed::g_destructor_callcount);
// Remaining objects are compacted.
for (int i = 1; i < kNumObjects; i += 2) {
EXPECT_EQ(holder->objects[i], references[i / 2]);
}
}
TEST_F(CompactorTest, CompactAcrossPages) {
Persistent<CompactableHolder<1>> holder =
MakeGarbageCollected<CompactableHolder<1>>(GetAllocationHandle(),
GetAllocationHandle());
CompactableGCed* reference = holder->objects[0];
static constexpr size_t kObjectsPerPage =
kPageSize / (sizeof(CompactableGCed) + sizeof(HeapObjectHeader));
for (size_t i = 0; i < kObjectsPerPage; ++i) {
holder->objects[0] =
MakeGarbageCollected<CompactableGCed>(GetAllocationHandle());
}
// Last allocated object should be on a new page.
EXPECT_NE(reference, holder->objects[0]);
EXPECT_NE(BasePage::FromInnerAddress(heap(), reference),
BasePage::FromInnerAddress(heap(), holder->objects[0].Get()));
StartGC();
EndGC();
// Half of object were destroyed.
EXPECT_EQ(kObjectsPerPage, CompactableGCed::g_destructor_callcount);
EXPECT_EQ(reference, holder->objects[0]);
}
TEST_F(CompactorTest, InteriorSlotToPreviousObject) {
static constexpr int kNumObjects = 3;
Persistent<CompactableHolder<kNumObjects>> holder =
MakeGarbageCollected<CompactableHolder<kNumObjects>>(
GetAllocationHandle(), GetAllocationHandle());
CompactableGCed* references[kNumObjects] = {nullptr};
for (int i = 0; i < kNumObjects; ++i) {
references[i] = holder->objects[i];
}
holder->objects[2]->other = holder->objects[1];
holder->objects[1] = nullptr;
holder->objects[0] = nullptr;
StartGC();
EndGC();
EXPECT_EQ(1u, CompactableGCed::g_destructor_callcount);
EXPECT_EQ(references[1], holder->objects[2]);
EXPECT_EQ(references[0], holder->objects[2]->other);
}
TEST_F(CompactorTest, InteriorSlotToNextObject) {
static constexpr int kNumObjects = 3;
Persistent<CompactableHolder<kNumObjects>> holder =
MakeGarbageCollected<CompactableHolder<kNumObjects>>(
GetAllocationHandle(), GetAllocationHandle());
CompactableGCed* references[kNumObjects] = {nullptr};
for (int i = 0; i < kNumObjects; ++i) {
references[i] = holder->objects[i];
}
holder->objects[1]->other = holder->objects[2];
holder->objects[2] = nullptr;
holder->objects[0] = nullptr;
StartGC();
EndGC();
EXPECT_EQ(1u, CompactableGCed::g_destructor_callcount);
EXPECT_EQ(references[0], holder->objects[1]);
EXPECT_EQ(references[1], holder->objects[1]->other);
}
} // namespace internal
} // namespace cppgc

View File

@ -75,7 +75,10 @@ class ConcurrentSweeperTest : public testing::TestWithHeap {
heap->stats_collector()->NotifyMarkingStarted();
heap->stats_collector()->NotifyMarkingCompleted(0);
Sweeper& sweeper = heap->sweeper();
sweeper.Start(Sweeper::Config::kIncrementalAndConcurrent);
const Sweeper::SweepingConfig sweeping_config{
Sweeper::SweepingConfig::SweepingType::kIncrementalAndConcurrent,
Sweeper::SweepingConfig::CompactableSpaceHandling::kSweep};
sweeper.Start(sweeping_config);
}
void WaitForConcurrentSweeping() {

View File

@ -48,7 +48,10 @@ class SweeperTest : public testing::TestWithHeap {
// methods are called in the right order.
heap->stats_collector()->NotifyMarkingStarted();
heap->stats_collector()->NotifyMarkingCompleted(0);
sweeper.Start(Sweeper::Config::kAtomic);
const Sweeper::SweepingConfig sweeping_config{
Sweeper::SweepingConfig::SweepingType::kAtomic,
Sweeper::SweepingConfig::CompactableSpaceHandling::kSweep};
sweeper.Start(sweeping_config);
sweeper.FinishIfRunning();
}