Inline Math.sqrt().

Also changed name of GeneratePow and the %_ call name to follow convention based on MathSin and MathCos. Moved GeneratePow down to the other methods. 

Review URL: http://codereview.chromium.org/661179

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@4054 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
This commit is contained in:
ricow@chromium.org 2010-03-08 13:23:54 +00:00
parent d2fbf9436e
commit b60eba5fc5
5 changed files with 297 additions and 180 deletions

View File

@ -381,9 +381,10 @@ CodeGenerator::InlineRuntimeLUT CodeGenerator::kInlineRuntimeLUT[] = {
{&CodeGenerator::GenerateStringCompare, "_StringCompare"},
{&CodeGenerator::GenerateRegExpExec, "_RegExpExec"},
{&CodeGenerator::GenerateNumberToString, "_NumberToString"},
{&CodeGenerator::GeneratePow, "_Pow"},
{&CodeGenerator::GenerateMathPow, "_Math_pow"},
{&CodeGenerator::GenerateMathSin, "_Math_sin"},
{&CodeGenerator::GenerateMathCos, "_Math_cos"},
{&CodeGenerator::GenerateMathSqrt, "_Math_sqrt"},
};

View File

@ -5445,182 +5445,6 @@ void CodeGenerator::GenerateIsNonNegativeSmi(ZoneList<Expression*>* args) {
}
// Generates the Math.pow method - only handles special cases and branches to
// the runtime system if not. Uses eax to store result and as temporary reg.
void CodeGenerator::GeneratePow(ZoneList<Expression*>* args) {
ASSERT(args->length() == 2);
if (CpuFeatures::IsSupported(SSE2)) {
CpuFeatures::Scope use_sse2(SSE2);
Load(args->at(0));
Load(args->at(1));
Label go_runtime;
Label return_preg;
Result p = allocator()->Allocate(eax);
Result y = frame_->Pop();
Result x= frame_->Pop();
if (p.is_valid() && p.reg().is(eax)) {
x.ToRegister();
y.ToRegister();
frame_->Spill(x.reg());
frame_->Spill(y.reg());
ASSERT(x.is_valid());
ASSERT(y.is_valid());
// Save 1 in xmm3 - we need this several times later on
__ mov(p.reg(), Immediate(1));
__ cvtsi2sd(xmm3, Operand(p.reg()));
Label y_nonsmi;
Label x_is_double;
// If y is a heap number go to that specific case.
__ test(y.reg(), Immediate(kSmiTagMask));
__ j(not_zero, &y_nonsmi);
__ test(x.reg(), Immediate(kSmiTagMask));
__ j(not_zero, &x_is_double);
// Bot numbers are smis.
Label powi;
__ SmiUntag(x.reg());
__ cvtsi2sd(xmm0, Operand(x.reg()));
__ jmp(&powi);
// Y is smi and x is a double.
__ bind(&x_is_double);
__ cmp(FieldOperand(x.reg(), HeapObject::kMapOffset),
Factory::heap_number_map());
__ j(not_equal, &go_runtime);
__ movdbl(xmm0, FieldOperand(x.reg(), HeapNumber::kValueOffset));
__ bind(&powi);
__ SmiUntag(y.reg());
// Save y in x as we need to check if y is negative later.
__ mov(x.reg(), y.reg());
// Get absolute value of y.
Label no_neg;
__ cmp(y.reg(), 0);
__ j(greater_equal, &no_neg);
__ neg(y.reg());
__ bind(&no_neg);
// Optimized version of pow if y is an integer.
// Load xmm1 with 1.
__ movsd(xmm1, xmm3);
Label while_true;
Label no_multiply;
Label powi_done;
Label allocate_and_return;
__ bind(&while_true);
__ shr(y.reg(), 1);
__ j(not_carry, &no_multiply);
__ mulsd(xmm1, xmm0);
__ bind(&no_multiply);
__ test(y.reg(), Operand(y.reg()));
__ mulsd(xmm0, xmm0);
__ j(not_zero, &while_true);
__ bind(&powi_done);
// x has the original value of y - if y is negative return 1/result.
__ test(x.reg(), Operand(x.reg()));
__ j(positive, &allocate_and_return);
// Special case if xmm1 has reached infinity
__ mov(p.reg(), Immediate(0x7FB00000));
__ movd(xmm0, Operand(p.reg()));
__ cvtss2sd(xmm0, xmm0);
__ ucomisd(xmm0, xmm1);
__ j(equal, &go_runtime);
__ divsd(xmm3, xmm1);
__ movsd(xmm1, xmm3);
__ jmp(&allocate_and_return);
// y (or both) is a double - no matter what we should now work
// on doubles.
__ bind(&y_nonsmi);
__ cmp(FieldOperand(y.reg(), HeapObject::kMapOffset),
Factory::heap_number_map());
__ j(not_equal, &go_runtime);
// Y must be a double.
__ movdbl(xmm1, FieldOperand(y.reg(), HeapNumber::kValueOffset));
// Test if y is nan.
__ ucomisd(xmm1, xmm1);
__ j(parity_even, &go_runtime);
Label x_not_smi;
Label handle_special_cases;
__ test(x.reg(), Immediate(kSmiTagMask));
__ j(not_zero, &x_not_smi);
__ SmiUntag(x.reg());
__ cvtsi2sd(xmm0, Operand(x.reg()));
__ jmp(&handle_special_cases);
__ bind(&x_not_smi);
__ cmp(FieldOperand(x.reg(), HeapObject::kMapOffset),
Factory::heap_number_map());
__ j(not_equal, &go_runtime);
__ mov(p.reg(), FieldOperand(x.reg(), HeapNumber::kExponentOffset));
__ and_(p.reg(), HeapNumber::kExponentMask);
__ cmp(Operand(p.reg()), Immediate(HeapNumber::kExponentMask));
// x is NaN or +/-Infinity
__ j(greater_equal, &go_runtime);
__ movdbl(xmm0, FieldOperand(x.reg(), HeapNumber::kValueOffset));
// x is in xmm0 and y is in xmm1.
__ bind(&handle_special_cases);
Label not_minus_half;
// Test for -0.5.
// Load xmm2 with -0.5.
__ mov(p.reg(), Immediate(0xBF000000));
__ movd(xmm2, Operand(p.reg()));
__ cvtss2sd(xmm2, xmm2);
// xmm2 now has -0.5.
__ ucomisd(xmm2, xmm1);
__ j(not_equal, &not_minus_half);
// Calculates reciprocal of square root.
// Note that 1/sqrt(x) = sqrt(1/x))
__ divsd(xmm3, xmm0);
__ movsd(xmm1, xmm3);
__ sqrtsd(xmm1, xmm1);
__ jmp(&allocate_and_return);
// Test for 0.5.
__ bind(&not_minus_half);
// Load xmm2 with 0.5.
// Since xmm3 is 1 and xmm2 is -0.5 this is simply xmm2 = xmm3
__ addsd(xmm2, xmm3);
// xmm2 now has 0.5.
__ ucomisd(xmm2, xmm1);
__ j(not_equal, &go_runtime);
// Calculates square root.
__ movsd(xmm1, xmm0);
__ sqrtsd(xmm1, xmm1);
__ bind(&allocate_and_return);
__ AllocateHeapNumber(p.reg(), y.reg(), x.reg(), &go_runtime);
__ movdbl(FieldOperand(p.reg(), HeapNumber::kValueOffset), xmm1);
__ jmp(&return_preg);
}
__ bind(&go_runtime);
x.Unuse();
y.Unuse();
p.Unuse();
Load(args->at(0));
Load(args->at(1));
frame_->CallRuntime(Runtime::kMath_pow_cfunction, 2);
// Since we store the result in p.reg() which is eax - return this value.
// If we called runtime the result is also in eax.
__ bind(&return_preg);
frame_->Push(eax);
} else { // Simply call runtime.
Load(args->at(0));
Load(args->at(1));
Result res = frame_->CallRuntime(Runtime::kMath_pow, 2);
frame_->Push(&res);
}
}
// This generates code that performs a charCodeAt() call or returns
// undefined in order to trigger the slow case, Runtime_StringCharCodeAt.
// It can handle flat, 8 and 16 bit characters and cons strings where the
@ -6209,6 +6033,194 @@ void CodeGenerator::GenerateNumberToString(ZoneList<Expression*>* args) {
}
// Generates the Math.pow method - only handles special cases and branches to
// the runtime system if not.Please note - this function assumes that
// the callsite has executed ToNumber on both arguments and that the
// arguments are not the same identifier.
void CodeGenerator::GenerateMathPow(ZoneList<Expression*>* args) {
ASSERT(args->length() == 2);
Load(args->at(0));
Load(args->at(1));
if (!CpuFeatures::IsSupported(SSE2)) {
Result res = frame_->CallRuntime(Runtime::kMath_pow, 2);
frame_->Push(&res);
} else {
CpuFeatures::Scope use_sse2(SSE2);
Label allocate_return;
// Load the two operands while leaving the values on the frame.
frame()->Dup();
Result exponent = frame()->Pop();
exponent.ToRegister();
frame()->Spill(exponent.reg());
frame()->PushElementAt(1);
Result base = frame()->Pop();
base.ToRegister();
frame()->Spill(base.reg());
Result answer = allocator()->Allocate();
ASSERT(answer.is_valid());
// We can safely assume that the base and exponent is not in the same
// register since we only call this from one callsite (math.js).
ASSERT(!exponent.reg().is(base.reg()));
JumpTarget call_runtime;
// Save 1 in xmm3 - we need this several times later on.
__ mov(answer.reg(), Immediate(1));
__ cvtsi2sd(xmm3, Operand(answer.reg()));
Label exponent_nonsmi;
Label base_nonsmi;
// If the exponent is a heap number go to that specific case.
__ test(exponent.reg(), Immediate(kSmiTagMask));
__ j(not_zero, &exponent_nonsmi);
__ test(base.reg(), Immediate(kSmiTagMask));
__ j(not_zero, &base_nonsmi);
// Optimized version when y is an integer.
Label powi;
__ SmiUntag(base.reg());
__ cvtsi2sd(xmm0, Operand(base.reg()));
__ jmp(&powi);
// exponent is smi and base is a heapnumber.
__ bind(&base_nonsmi);
__ cmp(FieldOperand(base.reg(), HeapObject::kMapOffset),
Factory::heap_number_map());
call_runtime.Branch(not_equal);
__ movdbl(xmm0, FieldOperand(base.reg(), HeapNumber::kValueOffset));
// Optimized version of pow if y is an integer.
__ bind(&powi);
__ SmiUntag(exponent.reg());
// Save exponent in base as we need to check if exponent is negative later.
// We know that base and exponent are in different registers.
__ mov(base.reg(), exponent.reg());
// Get absolute value of exponent.
Label no_neg;
__ cmp(exponent.reg(), 0);
__ j(greater_equal, &no_neg);
__ neg(exponent.reg());
__ bind(&no_neg);
// Load xmm1 with 1.
__ movsd(xmm1, xmm3);
Label while_true;
Label no_multiply;
// Label allocate_and_return;
__ bind(&while_true);
__ shr(exponent.reg(), 1);
__ j(not_carry, &no_multiply);
__ mulsd(xmm1, xmm0);
__ bind(&no_multiply);
__ test(exponent.reg(), Operand(exponent.reg()));
__ mulsd(xmm0, xmm0);
__ j(not_zero, &while_true);
// x has the original value of y - if y is negative return 1/result.
__ test(base.reg(), Operand(base.reg()));
__ j(positive, &allocate_return);
// Special case if xmm1 has reached infinity.
__ mov(answer.reg(), Immediate(0x7FB00000));
__ movd(xmm0, Operand(answer.reg()));
__ cvtss2sd(xmm0, xmm0);
__ ucomisd(xmm0, xmm1);
call_runtime.Branch(equal);
__ divsd(xmm3, xmm1);
__ movsd(xmm1, xmm3);
__ jmp(&allocate_return);
// exponent (or both) is a heapnumber - no matter what we should now work
// on doubles.
__ bind(&exponent_nonsmi);
__ cmp(FieldOperand(exponent.reg(), HeapObject::kMapOffset),
Factory::heap_number_map());
call_runtime.Branch(not_equal);
__ movdbl(xmm1, FieldOperand(exponent.reg(), HeapNumber::kValueOffset));
// Test if exponent is nan.
__ ucomisd(xmm1, xmm1);
call_runtime.Branch(parity_even);
Label base_not_smi;
Label handle_special_cases;
__ test(base.reg(), Immediate(kSmiTagMask));
__ j(not_zero, &base_not_smi);
__ SmiUntag(base.reg());
__ cvtsi2sd(xmm0, Operand(base.reg()));
__ jmp(&handle_special_cases);
__ bind(&base_not_smi);
__ cmp(FieldOperand(base.reg(), HeapObject::kMapOffset),
Factory::heap_number_map());
call_runtime.Branch(not_equal);
__ mov(answer.reg(), FieldOperand(base.reg(), HeapNumber::kExponentOffset));
__ and_(answer.reg(), HeapNumber::kExponentMask);
__ cmp(Operand(answer.reg()), Immediate(HeapNumber::kExponentMask));
// base is NaN or +/-Infinity
call_runtime.Branch(greater_equal);
__ movdbl(xmm0, FieldOperand(base.reg(), HeapNumber::kValueOffset));
// base is in xmm0 and exponent is in xmm1.
__ bind(&handle_special_cases);
Label not_minus_half;
// Test for -0.5.
// Load xmm2 with -0.5.
__ mov(answer.reg(), Immediate(0xBF000000));
__ movd(xmm2, Operand(answer.reg()));
__ cvtss2sd(xmm2, xmm2);
// xmm2 now has -0.5.
__ ucomisd(xmm2, xmm1);
__ j(not_equal, &not_minus_half);
// Calculates reciprocal of square root.
// Note that 1/sqrt(x) = sqrt(1/x))
__ divsd(xmm3, xmm0);
__ movsd(xmm1, xmm3);
__ sqrtsd(xmm1, xmm1);
__ jmp(&allocate_return);
// Test for 0.5.
__ bind(&not_minus_half);
// Load xmm2 with 0.5.
// Since xmm3 is 1 and xmm2 is -0.5 this is simply xmm2 + xmm3.
__ addsd(xmm2, xmm3);
// xmm2 now has 0.5.
__ comisd(xmm2, xmm1);
call_runtime.Branch(not_equal);
// Calculates square root.
__ movsd(xmm1, xmm0);
__ sqrtsd(xmm1, xmm1);
JumpTarget done;
Label failure, success;
__ bind(&allocate_return);
// Make a copy of the frame to enable us to handle allocation
// failure after the JumpTarget jump.
VirtualFrame* clone = new VirtualFrame(frame());
__ AllocateHeapNumber(answer.reg(), exponent.reg(),
base.reg(), &failure);
__ movdbl(FieldOperand(answer.reg(), HeapNumber::kValueOffset), xmm1);
// Remove the two original values from the frame - we only need those
// in the case where we branch to runtime.
frame()->Drop(2);
exponent.Unuse();
base.Unuse();
done.Jump(&answer);
// Use the copy of the original frame as our current frame.
RegisterFile empty_regs;
SetFrame(clone, &empty_regs);
// If we experience an allocation failure we branch to runtime.
__ bind(&failure);
call_runtime.Bind();
answer = frame()->CallRuntime(Runtime::kMath_pow_cfunction, 2);
done.Bind(&answer);
frame()->Push(&answer);
}
}
void CodeGenerator::GenerateMathSin(ZoneList<Expression*>* args) {
ASSERT_EQ(args->length(), 1);
Load(args->at(0));
@ -6227,6 +6239,63 @@ void CodeGenerator::GenerateMathCos(ZoneList<Expression*>* args) {
}
// Generates the Math.sqrt method. Please note - this function assumes that
// the callsite has executed ToNumber on the argument.
void CodeGenerator::GenerateMathSqrt(ZoneList<Expression*>* args) {
ASSERT_EQ(args->length(), 1);
Load(args->at(0));
if (!CpuFeatures::IsSupported(SSE2)) {
Result result = frame()->CallRuntime(Runtime::kMath_sqrt, 1);
frame()->Push(&result);
} else {
CpuFeatures::Scope use_sse2(SSE2);
// Leave original value on the frame if we need to call runtime.
frame()->Dup();
Result result = frame()->Pop();
result.ToRegister();
frame()->Spill(result.reg());
Label runtime;
Label non_smi;
Label load_done;
JumpTarget end;
__ test(result.reg(), Immediate(kSmiTagMask));
__ j(not_zero, &non_smi);
__ SmiUntag(result.reg());
__ cvtsi2sd(xmm0, Operand(result.reg()));
__ jmp(&load_done);
__ bind(&non_smi);
__ cmp(FieldOperand(result.reg(), HeapObject::kMapOffset),
Factory::heap_number_map());
__ j(not_equal, &runtime);
__ movdbl(xmm0, FieldOperand(result.reg(), HeapNumber::kValueOffset));
__ bind(&load_done);
__ sqrtsd(xmm0, xmm0);
// A copy of the virtual frame to allow us to go to runtime after the
// JumpTarget jump.
Result scratch = allocator()->Allocate();
VirtualFrame* clone = new VirtualFrame(frame());
__ AllocateHeapNumber(result.reg(), scratch.reg(), no_reg, &runtime);
__ movdbl(FieldOperand(result.reg(), HeapNumber::kValueOffset), xmm0);
frame()->Drop(1);
scratch.Unuse();
end.Jump(&result);
// We only branch to runtime if we have an allocation error.
// Use the copy of the original frame as our current frame.
RegisterFile empty_regs;
SetFrame(clone, &empty_regs);
__ bind(&runtime);
result = frame()->CallRuntime(Runtime::kMath_sqrt, 1);
end.Bind(&result);
frame()->Push(&result);
}
}
void CodeGenerator::VisitCallRuntime(CallRuntime* node) {
if (CheckForInlineRuntimeCall(node)) {
return;

View File

@ -594,12 +594,15 @@ class CodeGenerator: public AstVisitor {
void GenerateNumberToString(ZoneList<Expression*>* args);
// Fast support for Math.pow().
void GeneratePow(ZoneList<Expression*>* args);
void GenerateMathPow(ZoneList<Expression*>* args);
// Fast call to transcendental functions.
void GenerateMathSin(ZoneList<Expression*>* args);
void GenerateMathCos(ZoneList<Expression*>* args);
// Fast case for sqrt
void GenerateMathSqrt(ZoneList<Expression*>* args);
// Simple condition analysis.
enum ConditionAnalysis {
ALWAYS_TRUE,

View File

@ -159,7 +159,7 @@ function MathMin(arg1, arg2) { // length == 2
function MathPow(x, y) {
if (!IS_NUMBER(x)) x = ToNumber(x);
if (!IS_NUMBER(y)) y = ToNumber(y);
return %_Pow(x, y);
return %_Math_pow(x, y);
}
// ECMA 262 - 15.8.2.14
@ -182,7 +182,7 @@ function MathSin(x) {
// ECMA 262 - 15.8.2.17
function MathSqrt(x) {
if (!IS_NUMBER(x)) x = ToNumber(x);
return %Math_sqrt(x);
return %_Math_sqrt(x);
}
// ECMA 262 - 15.8.2.18

44
test/mjsunit/math-sqrt.js Normal file
View File

@ -0,0 +1,44 @@
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Tests the special cases specified by ES 15.8.2.17
// Simple sanity check
assertEquals(2, Math.sqrt(4));
assertEquals(0.1, Math.sqrt(0.01));
// Spec tests
assertEquals(NaN, Math.sqrt(NaN));
assertEquals(NaN, Math.sqrt(-1));
assertEquals(+0, Math.sqrt(+0));
assertEquals(-0, Math.sqrt(-0));
assertEquals(Infinity, Math.sqrt(Infinity));
// -Infinity is smaller than 0 so it should return NaN
assertEquals(NaN, Math.sqrt(-Infinity));