Out-of-line constant pool on Arm: Stage 1 - Free up r7 for use as constant pool pointer register

First stage of implementing an out-of-line constant pool on Arm.  This CL
frees up register r7 for use as a constant pool pointer in later stages.

BUG=
R=ulan@chromium.org

Review URL: https://chromiumcodereview.appspot.com/21063002

Patch from Ross McIlroy <rmcilroy@chromium.org>.

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@16898 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
This commit is contained in:
ulan@chromium.org 2013-09-23 15:01:33 +00:00
parent c47cc38b12
commit b99802f50c
14 changed files with 250 additions and 234 deletions

View File

@ -118,7 +118,8 @@ class CpuFeatures : public AllStatic {
// Core register // Core register
struct Register { struct Register {
static const int kNumRegisters = 16; static const int kNumRegisters = 16;
static const int kMaxNumAllocatableRegisters = 8; static const int kMaxNumAllocatableRegisters =
FLAG_enable_ool_constant_pool ? 7 : 8;
static const int kSizeInBytes = 4; static const int kSizeInBytes = 4;
inline static int NumAllocatableRegisters(); inline static int NumAllocatableRegisters();
@ -201,6 +202,7 @@ const Register r3 = { kRegister_r3_Code };
const Register r4 = { kRegister_r4_Code }; const Register r4 = { kRegister_r4_Code };
const Register r5 = { kRegister_r5_Code }; const Register r5 = { kRegister_r5_Code };
const Register r6 = { kRegister_r6_Code }; const Register r6 = { kRegister_r6_Code };
// Used as constant pool pointer register if FLAGS_enable_ool_constant_pool.
const Register r7 = { kRegister_r7_Code }; const Register r7 = { kRegister_r7_Code };
// Used as context register. // Used as context register.
const Register r8 = { kRegister_r8_Code }; const Register r8 = { kRegister_r8_Code };

View File

@ -445,9 +445,8 @@ static void Generate_JSConstructStubHelper(MacroAssembler* masm,
// r3: object size (in words) // r3: object size (in words)
// r4: JSObject (not tagged) // r4: JSObject (not tagged)
// r5: First in-object property of JSObject (not tagged) // r5: First in-object property of JSObject (not tagged)
__ add(r6, r4, Operand(r3, LSL, kPointerSizeLog2)); // End of object.
ASSERT_EQ(3 * kPointerSize, JSObject::kHeaderSize); ASSERT_EQ(3 * kPointerSize, JSObject::kHeaderSize);
__ LoadRoot(r7, Heap::kUndefinedValueRootIndex); __ LoadRoot(r6, Heap::kUndefinedValueRootIndex);
if (count_constructions) { if (count_constructions) {
__ ldr(r0, FieldMemOperand(r2, Map::kInstanceSizesOffset)); __ ldr(r0, FieldMemOperand(r2, Map::kInstanceSizesOffset));
__ Ubfx(r0, r0, Map::kPreAllocatedPropertyFieldsByte * kBitsPerByte, __ Ubfx(r0, r0, Map::kPreAllocatedPropertyFieldsByte * kBitsPerByte,
@ -455,14 +454,16 @@ static void Generate_JSConstructStubHelper(MacroAssembler* masm,
__ add(r0, r5, Operand(r0, LSL, kPointerSizeLog2)); __ add(r0, r5, Operand(r0, LSL, kPointerSizeLog2));
// r0: offset of first field after pre-allocated fields // r0: offset of first field after pre-allocated fields
if (FLAG_debug_code) { if (FLAG_debug_code) {
__ cmp(r0, r6); __ add(ip, r4, Operand(r3, LSL, kPointerSizeLog2)); // End of object.
__ cmp(r0, ip);
__ Assert(le, kUnexpectedNumberOfPreAllocatedPropertyFields); __ Assert(le, kUnexpectedNumberOfPreAllocatedPropertyFields);
} }
__ InitializeFieldsWithFiller(r5, r0, r7); __ InitializeFieldsWithFiller(r5, r0, r6);
// To allow for truncation. // To allow for truncation.
__ LoadRoot(r7, Heap::kOnePointerFillerMapRootIndex); __ LoadRoot(r6, Heap::kOnePointerFillerMapRootIndex);
} }
__ InitializeFieldsWithFiller(r5, r6, r7); __ add(r0, r4, Operand(r3, LSL, kPointerSizeLog2)); // End of object.
__ InitializeFieldsWithFiller(r5, r0, r6);
// Add the object tag to make the JSObject real, so that we can continue // Add the object tag to make the JSObject real, so that we can continue
// and jump into the continuation code at any time from now on. Any // and jump into the continuation code at any time from now on. Any
@ -527,16 +528,10 @@ static void Generate_JSConstructStubHelper(MacroAssembler* masm,
__ add(r6, r2, Operand(r3, LSL, kPointerSizeLog2)); // End of object. __ add(r6, r2, Operand(r3, LSL, kPointerSizeLog2)); // End of object.
ASSERT_EQ(2 * kPointerSize, FixedArray::kHeaderSize); ASSERT_EQ(2 * kPointerSize, FixedArray::kHeaderSize);
{ Label loop, entry; { Label loop, entry;
if (count_constructions) { __ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
__ LoadRoot(r7, Heap::kUndefinedValueRootIndex);
} else if (FLAG_debug_code) {
__ LoadRoot(r8, Heap::kUndefinedValueRootIndex);
__ cmp(r7, r8);
__ Assert(eq, kUndefinedValueNotLoaded);
}
__ b(&entry); __ b(&entry);
__ bind(&loop); __ bind(&loop);
__ str(r7, MemOperand(r2, kPointerSize, PostIndex)); __ str(r0, MemOperand(r2, kPointerSize, PostIndex));
__ bind(&entry); __ bind(&entry);
__ cmp(r2, r6); __ cmp(r2, r6);
__ b(lt, &loop); __ b(lt, &loop);
@ -700,7 +695,7 @@ static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
// r2: receiver // r2: receiver
// r3: argc // r3: argc
// r4: argv // r4: argv
// r5-r7, cp may be clobbered // r5-r6, r7 (if not FLAG_enable_ool_constant_pool) and cp may be clobbered
ProfileEntryHookStub::MaybeCallEntryHook(masm); ProfileEntryHookStub::MaybeCallEntryHook(masm);
// Clear the context before we push it when entering the internal frame. // Clear the context before we push it when entering the internal frame.
@ -740,7 +735,9 @@ static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
__ LoadRoot(r4, Heap::kUndefinedValueRootIndex); __ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
__ mov(r5, Operand(r4)); __ mov(r5, Operand(r4));
__ mov(r6, Operand(r4)); __ mov(r6, Operand(r4));
__ mov(r7, Operand(r4)); if (!FLAG_enable_ool_constant_pool) {
__ mov(r7, Operand(r4));
}
if (kR9Available == 1) { if (kR9Available == 1) {
__ mov(r9, Operand(r4)); __ mov(r9, Operand(r4));
} }

View File

@ -825,8 +825,7 @@ static void EmitSmiNonsmiComparison(MacroAssembler* masm,
// Convert lhs to a double in d7. // Convert lhs to a double in d7.
__ SmiToDouble(d7, lhs); __ SmiToDouble(d7, lhs);
// Load the double from rhs, tagged HeapNumber r0, to d6. // Load the double from rhs, tagged HeapNumber r0, to d6.
__ sub(r7, rhs, Operand(kHeapObjectTag)); __ vldr(d6, rhs, HeapNumber::kValueOffset - kHeapObjectTag);
__ vldr(d6, r7, HeapNumber::kValueOffset);
// We now have both loaded as doubles but we can skip the lhs nan check // We now have both loaded as doubles but we can skip the lhs nan check
// since it's a smi. // since it's a smi.
@ -851,8 +850,7 @@ static void EmitSmiNonsmiComparison(MacroAssembler* masm,
// Rhs is a smi, lhs is a heap number. // Rhs is a smi, lhs is a heap number.
// Load the double from lhs, tagged HeapNumber r1, to d7. // Load the double from lhs, tagged HeapNumber r1, to d7.
__ sub(r7, lhs, Operand(kHeapObjectTag)); __ vldr(d7, lhs, HeapNumber::kValueOffset - kHeapObjectTag);
__ vldr(d7, r7, HeapNumber::kValueOffset);
// Convert rhs to a double in d6 . // Convert rhs to a double in d6 .
__ SmiToDouble(d6, rhs); __ SmiToDouble(d6, rhs);
// Fall through to both_loaded_as_doubles. // Fall through to both_loaded_as_doubles.
@ -920,10 +918,8 @@ static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
// Both are heap numbers. Load them up then jump to the code we have // Both are heap numbers. Load them up then jump to the code we have
// for that. // for that.
__ sub(r7, rhs, Operand(kHeapObjectTag)); __ vldr(d6, rhs, HeapNumber::kValueOffset - kHeapObjectTag);
__ vldr(d6, r7, HeapNumber::kValueOffset); __ vldr(d7, lhs, HeapNumber::kValueOffset - kHeapObjectTag);
__ sub(r7, lhs, Operand(kHeapObjectTag));
__ vldr(d7, r7, HeapNumber::kValueOffset);
__ jmp(both_loaded_as_doubles); __ jmp(both_loaded_as_doubles);
} }
@ -1267,13 +1263,14 @@ void BinaryOpStub::GenerateTypeTransitionWithSavedArgs(
void BinaryOpStub_GenerateSmiSmiOperation(MacroAssembler* masm, void BinaryOpStub_GenerateSmiSmiOperation(MacroAssembler* masm,
Token::Value op) { Token::Value op,
Register scratch1,
Register scratch2) {
Register left = r1; Register left = r1;
Register right = r0; Register right = r0;
Register scratch1 = r7;
Register scratch2 = r9;
ASSERT(right.is(r0)); ASSERT(right.is(r0));
ASSERT(!AreAliased(left, right, scratch1, scratch2, ip));
STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTag == 0);
Label not_smi_result; Label not_smi_result;
@ -1488,11 +1485,15 @@ void BinaryOpStub_GenerateFPOperation(MacroAssembler* masm,
Label* gc_required, Label* gc_required,
Label* miss, Label* miss,
Token::Value op, Token::Value op,
OverwriteMode mode) { OverwriteMode mode,
Register scratch1,
Register scratch2,
Register scratch3,
Register scratch4) {
Register left = r1; Register left = r1;
Register right = r0; Register right = r0;
Register scratch1 = r6; Register result = scratch3;
Register scratch2 = r7; ASSERT(!AreAliased(left, right, scratch1, scratch2, scratch3, scratch4));
ASSERT(smi_operands || (not_numbers != NULL)); ASSERT(smi_operands || (not_numbers != NULL));
if (smi_operands) { if (smi_operands) {
@ -1506,7 +1507,7 @@ void BinaryOpStub_GenerateFPOperation(MacroAssembler* masm,
__ JumpIfNotSmi(right, miss); __ JumpIfNotSmi(right, miss);
} }
Register heap_number_map = r9; Register heap_number_map = scratch4;
__ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
switch (op) { switch (op) {
@ -1516,7 +1517,6 @@ void BinaryOpStub_GenerateFPOperation(MacroAssembler* masm,
case Token::DIV: case Token::DIV:
case Token::MOD: { case Token::MOD: {
// Allocate new heap number for result. // Allocate new heap number for result.
Register result = r5;
BinaryOpStub_GenerateHeapResultAllocation( BinaryOpStub_GenerateHeapResultAllocation(
masm, result, heap_number_map, scratch1, scratch2, gc_required, mode); masm, result, heap_number_map, scratch1, scratch2, gc_required, mode);
@ -1635,7 +1635,6 @@ void BinaryOpStub_GenerateFPOperation(MacroAssembler* masm,
// Allocate new heap number for result. // Allocate new heap number for result.
__ bind(&result_not_a_smi); __ bind(&result_not_a_smi);
Register result = r5;
if (smi_operands) { if (smi_operands) {
__ AllocateHeapNumber( __ AllocateHeapNumber(
result, scratch1, scratch2, heap_number_map, gc_required); result, scratch1, scratch2, heap_number_map, gc_required);
@ -1646,11 +1645,11 @@ void BinaryOpStub_GenerateFPOperation(MacroAssembler* masm,
} }
// r2: Answer as signed int32. // r2: Answer as signed int32.
// r5: Heap number to write answer into. // result: Heap number to write answer into.
// Nothing can go wrong now, so move the heap number to r0, which is the // Nothing can go wrong now, so move the heap number to r0, which is the
// result. // result.
__ mov(r0, Operand(r5)); __ mov(r0, Operand(result));
// Convert the int32 in r2 to the heap number in r0. r3 is corrupted. As // Convert the int32 in r2 to the heap number in r0. r3 is corrupted. As
// mentioned above SHR needs to always produce a positive result. // mentioned above SHR needs to always produce a positive result.
@ -1681,26 +1680,31 @@ void BinaryOpStub_GenerateSmiCode(
Label* gc_required, Label* gc_required,
Token::Value op, Token::Value op,
BinaryOpStub::SmiCodeGenerateHeapNumberResults allow_heapnumber_results, BinaryOpStub::SmiCodeGenerateHeapNumberResults allow_heapnumber_results,
OverwriteMode mode) { OverwriteMode mode,
Register scratch1,
Register scratch2,
Register scratch3,
Register scratch4) {
Label not_smis; Label not_smis;
Register left = r1; Register left = r1;
Register right = r0; Register right = r0;
Register scratch1 = r7; ASSERT(!AreAliased(left, right, scratch1, scratch2, scratch3, scratch4));
// Perform combined smi check on both operands. // Perform combined smi check on both operands.
__ orr(scratch1, left, Operand(right)); __ orr(scratch1, left, Operand(right));
__ JumpIfNotSmi(scratch1, &not_smis); __ JumpIfNotSmi(scratch1, &not_smis);
// If the smi-smi operation results in a smi return is generated. // If the smi-smi operation results in a smi return is generated.
BinaryOpStub_GenerateSmiSmiOperation(masm, op); BinaryOpStub_GenerateSmiSmiOperation(masm, op, scratch1, scratch2);
// If heap number results are possible generate the result in an allocated // If heap number results are possible generate the result in an allocated
// heap number. // heap number.
if (allow_heapnumber_results == BinaryOpStub::ALLOW_HEAPNUMBER_RESULTS) { if (allow_heapnumber_results == BinaryOpStub::ALLOW_HEAPNUMBER_RESULTS) {
BinaryOpStub_GenerateFPOperation( BinaryOpStub_GenerateFPOperation(
masm, BinaryOpIC::UNINITIALIZED, BinaryOpIC::UNINITIALIZED, true, masm, BinaryOpIC::UNINITIALIZED, BinaryOpIC::UNINITIALIZED, true,
use_runtime, gc_required, &not_smis, op, mode); use_runtime, gc_required, &not_smis, op, mode, scratch2, scratch3,
scratch1, scratch4);
} }
__ bind(&not_smis); __ bind(&not_smis);
} }
@ -1719,14 +1723,13 @@ void BinaryOpStub::GenerateSmiStub(MacroAssembler* masm) {
if (result_type_ == BinaryOpIC::UNINITIALIZED || if (result_type_ == BinaryOpIC::UNINITIALIZED ||
result_type_ == BinaryOpIC::SMI) { result_type_ == BinaryOpIC::SMI) {
// Only allow smi results. // Only allow smi results.
BinaryOpStub_GenerateSmiCode( BinaryOpStub_GenerateSmiCode(masm, &call_runtime, NULL, op_,
masm, &call_runtime, NULL, op_, NO_HEAPNUMBER_RESULTS, mode_); NO_HEAPNUMBER_RESULTS, mode_, r5, r6, r4, r9);
} else { } else {
// Allow heap number result and don't make a transition if a heap number // Allow heap number result and don't make a transition if a heap number
// cannot be allocated. // cannot be allocated.
BinaryOpStub_GenerateSmiCode( BinaryOpStub_GenerateSmiCode(masm, &call_runtime, &call_runtime, op_,
masm, &call_runtime, &call_runtime, op_, ALLOW_HEAPNUMBER_RESULTS, ALLOW_HEAPNUMBER_RESULTS, mode_, r5, r6, r4, r9);
mode_);
} }
// Code falls through if the result is not returned as either a smi or heap // Code falls through if the result is not returned as either a smi or heap
@ -1780,8 +1783,9 @@ void BinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) {
Register left = r1; Register left = r1;
Register right = r0; Register right = r0;
Register scratch1 = r7; Register scratch1 = r4;
Register scratch2 = r9; Register scratch2 = r9;
Register scratch3 = r5;
LowDwVfpRegister double_scratch = d0; LowDwVfpRegister double_scratch = d0;
Register heap_number_result = no_reg; Register heap_number_result = no_reg;
@ -1798,7 +1802,7 @@ void BinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) {
Label skip; Label skip;
__ orr(scratch1, left, right); __ orr(scratch1, left, right);
__ JumpIfNotSmi(scratch1, &skip); __ JumpIfNotSmi(scratch1, &skip);
BinaryOpStub_GenerateSmiSmiOperation(masm, op_); BinaryOpStub_GenerateSmiSmiOperation(masm, op_, scratch2, scratch3);
// Fall through if the result is not a smi. // Fall through if the result is not a smi.
__ bind(&skip); __ bind(&skip);
@ -1892,12 +1896,6 @@ void BinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) {
__ b(ne, &transition); __ b(ne, &transition);
} }
// We preserved r0 and r1 to be able to call runtime.
// Save the left value on the stack.
__ Push(r5, r4);
Label pop_and_call_runtime;
// Allocate a heap number to store the result. // Allocate a heap number to store the result.
heap_number_result = r5; heap_number_result = r5;
BinaryOpStub_GenerateHeapResultAllocation(masm, BinaryOpStub_GenerateHeapResultAllocation(masm,
@ -1905,20 +1903,15 @@ void BinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) {
heap_number_map, heap_number_map,
scratch1, scratch1,
scratch2, scratch2,
&pop_and_call_runtime, &call_runtime,
mode_); mode_);
// Load the left value from the value saved on the stack.
__ Pop(r1, r0);
// Call the C function to handle the double operation. // Call the C function to handle the double operation.
CallCCodeForDoubleOperation(masm, op_, heap_number_result, scratch1); CallCCodeForDoubleOperation(masm, op_, heap_number_result, scratch1);
if (FLAG_debug_code) { if (FLAG_debug_code) {
__ stop("Unreachable code."); __ stop("Unreachable code.");
} }
__ bind(&pop_and_call_runtime);
__ Drop(2);
__ b(&call_runtime); __ b(&call_runtime);
} }
@ -2069,7 +2062,7 @@ void BinaryOpStub::GenerateNumberStub(MacroAssembler* masm) {
Label call_runtime, transition; Label call_runtime, transition;
BinaryOpStub_GenerateFPOperation( BinaryOpStub_GenerateFPOperation(
masm, left_type_, right_type_, false, masm, left_type_, right_type_, false,
&transition, &call_runtime, &transition, op_, mode_); &transition, &call_runtime, &transition, op_, mode_, r6, r4, r5, r9);
__ bind(&transition); __ bind(&transition);
GenerateTypeTransition(masm); GenerateTypeTransition(masm);
@ -2088,11 +2081,13 @@ void BinaryOpStub::GenerateGeneric(MacroAssembler* masm) {
Label call_runtime, call_string_add_or_runtime, transition; Label call_runtime, call_string_add_or_runtime, transition;
BinaryOpStub_GenerateSmiCode( BinaryOpStub_GenerateSmiCode(
masm, &call_runtime, &call_runtime, op_, ALLOW_HEAPNUMBER_RESULTS, mode_); masm, &call_runtime, &call_runtime, op_, ALLOW_HEAPNUMBER_RESULTS, mode_,
r5, r6, r4, r9);
BinaryOpStub_GenerateFPOperation( BinaryOpStub_GenerateFPOperation(
masm, left_type_, right_type_, false, masm, left_type_, right_type_, false,
&call_string_add_or_runtime, &call_runtime, &transition, op_, mode_); &call_string_add_or_runtime, &call_runtime, &transition, op_, mode_, r6,
r4, r5, r9);
__ bind(&transition); __ bind(&transition);
GenerateTypeTransition(masm); GenerateTypeTransition(masm);
@ -2194,7 +2189,7 @@ void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
Label calculate; Label calculate;
Label invalid_cache; Label invalid_cache;
const Register scratch0 = r9; const Register scratch0 = r9;
const Register scratch1 = r7; Register scratch1 = no_reg; // will be r4
const Register cache_entry = r0; const Register cache_entry = r0;
const bool tagged = (argument_type_ == TAGGED); const bool tagged = (argument_type_ == TAGGED);
@ -2274,6 +2269,9 @@ void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
__ cmp(r2, r4); __ cmp(r2, r4);
__ cmp(r3, r5, eq); __ cmp(r3, r5, eq);
__ b(ne, &calculate); __ b(ne, &calculate);
scratch1 = r4; // Start of scratch1 range.
// Cache hit. Load result, cleanup and return. // Cache hit. Load result, cleanup and return.
Counters* counters = masm->isolate()->counters(); Counters* counters = masm->isolate()->counters();
__ IncrementCounter( __ IncrementCounter(
@ -2416,7 +2414,7 @@ void MathPowStub::Generate(MacroAssembler* masm) {
const DwVfpRegister double_scratch = d0; const DwVfpRegister double_scratch = d0;
const SwVfpRegister single_scratch = s0; const SwVfpRegister single_scratch = s0;
const Register scratch = r9; const Register scratch = r9;
const Register scratch2 = r7; const Register scratch2 = r4;
Label call_runtime, done, int_exponent; Label call_runtime, done, int_exponent;
if (exponent_type_ == ON_STACK) { if (exponent_type_ == ON_STACK) {
@ -2926,14 +2924,14 @@ void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
// r3: argc // r3: argc
// r4: argv // r4: argv
Isolate* isolate = masm->isolate(); Isolate* isolate = masm->isolate();
__ mov(r8, Operand(-1)); // Push a bad frame pointer to fail if it is used.
int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY; int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
__ mov(r7, Operand(Smi::FromInt(marker))); __ mov(r8, Operand(Smi::FromInt(marker)));
__ mov(r6, Operand(Smi::FromInt(marker))); __ mov(r6, Operand(Smi::FromInt(marker)));
__ mov(r5, __ mov(r5,
Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate))); Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate)));
__ ldr(r5, MemOperand(r5)); __ ldr(r5, MemOperand(r5));
__ Push(r8, r7, r6, r5); __ mov(ip, Operand(-1)); // Push a bad frame pointer to fail if it is used.
__ Push(ip, r8, r6, r5);
// Set up frame pointer for the frame to be pushed. // Set up frame pointer for the frame to be pushed.
__ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset)); __ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
@ -2979,7 +2977,7 @@ void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
// Invoke: Link this frame into the handler chain. There's only one // Invoke: Link this frame into the handler chain. There's only one
// handler block in this code object, so its index is 0. // handler block in this code object, so its index is 0.
__ bind(&invoke); __ bind(&invoke);
// Must preserve r0-r4, r5-r7 are available. // Must preserve r0-r4, r5-r6 are available.
__ PushTryHandler(StackHandler::JS_ENTRY, 0); __ PushTryHandler(StackHandler::JS_ENTRY, 0);
// If an exception not caught by another handler occurs, this handler // If an exception not caught by another handler occurs, this handler
// returns control to the code after the bl(&invoke) above, which // returns control to the code after the bl(&invoke) above, which
@ -3586,31 +3584,36 @@ void ArgumentsAccessStub::GenerateNewNonStrictFast(MacroAssembler* masm) {
__ ldr(r9, MemOperand(sp, 0 * kPointerSize)); __ ldr(r9, MemOperand(sp, 0 * kPointerSize));
__ add(r9, r9, Operand(Smi::FromInt(Context::MIN_CONTEXT_SLOTS))); __ add(r9, r9, Operand(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
__ sub(r9, r9, Operand(r1)); __ sub(r9, r9, Operand(r1));
__ LoadRoot(r7, Heap::kTheHoleValueRootIndex); __ LoadRoot(r5, Heap::kTheHoleValueRootIndex);
__ add(r3, r4, Operand(r6, LSL, 1)); __ add(r3, r4, Operand(r6, LSL, 1));
__ add(r3, r3, Operand(kParameterMapHeaderSize)); __ add(r3, r3, Operand(kParameterMapHeaderSize));
// r6 = loop variable (tagged) // r6 = loop variable (tagged)
// r1 = mapping index (tagged) // r1 = mapping index (tagged)
// r3 = address of backing store (tagged) // r3 = address of backing store (tagged)
// r4 = address of parameter map (tagged) // r4 = address of parameter map (tagged), which is also the address of new
// r5 = temporary scratch (a.o., for address calculation) // object + Heap::kArgumentsObjectSize (tagged)
// r7 = the hole value // r0 = temporary scratch (a.o., for address calculation)
// r5 = the hole value
__ jmp(&parameters_test); __ jmp(&parameters_test);
__ bind(&parameters_loop); __ bind(&parameters_loop);
__ sub(r6, r6, Operand(Smi::FromInt(1))); __ sub(r6, r6, Operand(Smi::FromInt(1)));
__ mov(r5, Operand(r6, LSL, 1)); __ mov(r0, Operand(r6, LSL, 1));
__ add(r5, r5, Operand(kParameterMapHeaderSize - kHeapObjectTag)); __ add(r0, r0, Operand(kParameterMapHeaderSize - kHeapObjectTag));
__ str(r9, MemOperand(r4, r5)); __ str(r9, MemOperand(r4, r0));
__ sub(r5, r5, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize)); __ sub(r0, r0, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize));
__ str(r7, MemOperand(r3, r5)); __ str(r5, MemOperand(r3, r0));
__ add(r9, r9, Operand(Smi::FromInt(1))); __ add(r9, r9, Operand(Smi::FromInt(1)));
__ bind(&parameters_test); __ bind(&parameters_test);
__ cmp(r6, Operand(Smi::FromInt(0))); __ cmp(r6, Operand(Smi::FromInt(0)));
__ b(ne, &parameters_loop); __ b(ne, &parameters_loop);
// Restore r0 = new object (tagged)
__ sub(r0, r4, Operand(Heap::kArgumentsObjectSize));
__ bind(&skip_parameter_map); __ bind(&skip_parameter_map);
// r0 = address of new object (tagged)
// r2 = argument count (tagged) // r2 = argument count (tagged)
// r3 = address of backing store (tagged) // r3 = address of backing store (tagged)
// r5 = scratch // r5 = scratch
@ -3641,6 +3644,7 @@ void ArgumentsAccessStub::GenerateNewNonStrictFast(MacroAssembler* masm) {
__ Ret(); __ Ret();
// Do the runtime call to allocate the arguments object. // Do the runtime call to allocate the arguments object.
// r0 = address of new object (tagged)
// r2 = argument count (tagged) // r2 = argument count (tagged)
__ bind(&runtime); __ bind(&runtime);
__ str(r2, MemOperand(sp, 0 * kPointerSize)); // Patch argument count. __ str(r2, MemOperand(sp, 0 * kPointerSize)); // Patch argument count.
@ -3769,7 +3773,7 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
// therefore the content of these registers are safe to use after the call. // therefore the content of these registers are safe to use after the call.
Register subject = r4; Register subject = r4;
Register regexp_data = r5; Register regexp_data = r5;
Register last_match_info_elements = r6; Register last_match_info_elements = no_reg; // will be r6;
// Ensure that a RegExp stack is allocated. // Ensure that a RegExp stack is allocated.
Isolate* isolate = masm->isolate(); Isolate* isolate = masm->isolate();
@ -3902,19 +3906,19 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
STATIC_ASSERT(kTwoByteStringTag == 0); STATIC_ASSERT(kTwoByteStringTag == 0);
__ and_(r0, r0, Operand(kStringEncodingMask)); __ and_(r0, r0, Operand(kStringEncodingMask));
__ mov(r3, Operand(r0, ASR, 2), SetCC); __ mov(r3, Operand(r0, ASR, 2), SetCC);
__ ldr(r7, FieldMemOperand(regexp_data, JSRegExp::kDataAsciiCodeOffset), ne); __ ldr(r6, FieldMemOperand(regexp_data, JSRegExp::kDataAsciiCodeOffset), ne);
__ ldr(r7, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset), eq); __ ldr(r6, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset), eq);
// (E) Carry on. String handling is done. // (E) Carry on. String handling is done.
// r7: irregexp code // r6: irregexp code
// Check that the irregexp code has been generated for the actual string // Check that the irregexp code has been generated for the actual string
// encoding. If it has, the field contains a code object otherwise it contains // encoding. If it has, the field contains a code object otherwise it contains
// a smi (code flushing support). // a smi (code flushing support).
__ JumpIfSmi(r7, &runtime); __ JumpIfSmi(r6, &runtime);
// r1: previous index // r1: previous index
// r3: encoding of subject string (1 if ASCII, 0 if two_byte); // r3: encoding of subject string (1 if ASCII, 0 if two_byte);
// r7: code // r6: code
// subject: Subject string // subject: Subject string
// regexp_data: RegExp data (FixedArray) // regexp_data: RegExp data (FixedArray)
// All checks done. Now push arguments for native regexp code. // All checks done. Now push arguments for native regexp code.
@ -3981,12 +3985,14 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
__ mov(r0, subject); __ mov(r0, subject);
// Locate the code entry and call it. // Locate the code entry and call it.
__ add(r7, r7, Operand(Code::kHeaderSize - kHeapObjectTag)); __ add(r6, r6, Operand(Code::kHeaderSize - kHeapObjectTag));
DirectCEntryStub stub; DirectCEntryStub stub;
stub.GenerateCall(masm, r7); stub.GenerateCall(masm, r6);
__ LeaveExitFrame(false, no_reg, true); __ LeaveExitFrame(false, no_reg, true);
last_match_info_elements = r6;
// r0: result // r0: result
// subject: subject string (callee saved) // subject: subject string (callee saved)
// regexp_data: RegExp data (callee saved) // regexp_data: RegExp data (callee saved)
@ -4075,7 +4081,7 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
__ RecordWriteField(last_match_info_elements, __ RecordWriteField(last_match_info_elements,
RegExpImpl::kLastSubjectOffset, RegExpImpl::kLastSubjectOffset,
subject, subject,
r7, r3,
kLRHasNotBeenSaved, kLRHasNotBeenSaved,
kDontSaveFPRegs); kDontSaveFPRegs);
__ mov(subject, r2); __ mov(subject, r2);
@ -4085,7 +4091,7 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
__ RecordWriteField(last_match_info_elements, __ RecordWriteField(last_match_info_elements,
RegExpImpl::kLastInputOffset, RegExpImpl::kLastInputOffset,
subject, subject,
r7, r3,
kLRHasNotBeenSaved, kLRHasNotBeenSaved,
kDontSaveFPRegs); kDontSaveFPRegs);
@ -4652,7 +4658,6 @@ void StringHelper::GenerateCopyCharactersLong(MacroAssembler* masm,
Register scratch2, Register scratch2,
Register scratch3, Register scratch3,
Register scratch4, Register scratch4,
Register scratch5,
int flags) { int flags) {
bool ascii = (flags & COPY_ASCII) != 0; bool ascii = (flags & COPY_ASCII) != 0;
bool dest_always_aligned = (flags & DEST_ALWAYS_ALIGNED) != 0; bool dest_always_aligned = (flags & DEST_ALWAYS_ALIGNED) != 0;
@ -4727,30 +4732,29 @@ void StringHelper::GenerateCopyCharactersLong(MacroAssembler* masm,
__ bind(&loop); __ bind(&loop);
__ ldr(scratch3, MemOperand(src, 4, PostIndex)); __ ldr(scratch3, MemOperand(src, 4, PostIndex));
__ sub(scratch5, limit, Operand(dest));
__ orr(scratch1, scratch1, Operand(scratch3, LSL, left_shift)); __ orr(scratch1, scratch1, Operand(scratch3, LSL, left_shift));
__ str(scratch1, MemOperand(dest, 4, PostIndex)); __ str(scratch1, MemOperand(dest, 4, PostIndex));
__ mov(scratch1, Operand(scratch3, LSR, right_shift)); __ mov(scratch1, Operand(scratch3, LSR, right_shift));
// Loop if four or more bytes left to copy. // Loop if four or more bytes left to copy.
// Compare to eight, because we did the subtract before increasing dst. __ sub(scratch3, limit, Operand(dest));
__ sub(scratch5, scratch5, Operand(8), SetCC); __ sub(scratch3, scratch3, Operand(4), SetCC);
__ b(ge, &loop); __ b(ge, &loop);
} }
// There is now between zero and three bytes left to copy (negative that // There is now between zero and three bytes left to copy (negative that
// number is in scratch5), and between one and three bytes already read into // number is in scratch3), and between one and three bytes already read into
// scratch1 (eight times that number in scratch4). We may have read past // scratch1 (eight times that number in scratch4). We may have read past
// the end of the string, but because objects are aligned, we have not read // the end of the string, but because objects are aligned, we have not read
// past the end of the object. // past the end of the object.
// Find the minimum of remaining characters to move and preloaded characters // Find the minimum of remaining characters to move and preloaded characters
// and write those as bytes. // and write those as bytes.
__ add(scratch5, scratch5, Operand(4), SetCC); __ add(scratch3, scratch3, Operand(4), SetCC);
__ b(eq, &done); __ b(eq, &done);
__ cmp(scratch4, Operand(scratch5, LSL, 3), ne); __ cmp(scratch4, Operand(scratch3, LSL, 3), ne);
// Move minimum of bytes read and bytes left to copy to scratch4. // Move minimum of bytes read and bytes left to copy to scratch4.
__ mov(scratch5, Operand(scratch4, LSR, 3), LeaveCC, lt); __ mov(scratch3, Operand(scratch4, LSR, 3), LeaveCC, lt);
// Between one and three (value in scratch5) characters already read into // Between one and three (value in scratch3) characters already read into
// scratch ready to write. // scratch ready to write.
__ cmp(scratch5, Operand(2)); __ cmp(scratch3, Operand(2));
__ strb(scratch1, MemOperand(dest, 1, PostIndex)); __ strb(scratch1, MemOperand(dest, 1, PostIndex));
__ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, ge); __ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, ge);
__ strb(scratch1, MemOperand(dest, 1, PostIndex), ge); __ strb(scratch1, MemOperand(dest, 1, PostIndex), ge);
@ -5090,10 +5094,10 @@ void SubStringStub::Generate(MacroAssembler* masm) {
STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0); STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
__ tst(r1, Operand(kStringEncodingMask)); __ tst(r1, Operand(kStringEncodingMask));
__ b(eq, &two_byte_slice); __ b(eq, &two_byte_slice);
__ AllocateAsciiSlicedString(r0, r2, r6, r7, &runtime); __ AllocateAsciiSlicedString(r0, r2, r6, r4, &runtime);
__ jmp(&set_slice_header); __ jmp(&set_slice_header);
__ bind(&two_byte_slice); __ bind(&two_byte_slice);
__ AllocateTwoByteSlicedString(r0, r2, r6, r7, &runtime); __ AllocateTwoByteSlicedString(r0, r2, r6, r4, &runtime);
__ bind(&set_slice_header); __ bind(&set_slice_header);
__ mov(r3, Operand(r3, LSL, 1)); __ mov(r3, Operand(r3, LSL, 1));
__ str(r5, FieldMemOperand(r0, SlicedString::kParentOffset)); __ str(r5, FieldMemOperand(r0, SlicedString::kParentOffset));
@ -5134,7 +5138,7 @@ void SubStringStub::Generate(MacroAssembler* masm) {
__ b(eq, &two_byte_sequential); __ b(eq, &two_byte_sequential);
// Allocate and copy the resulting ASCII string. // Allocate and copy the resulting ASCII string.
__ AllocateAsciiString(r0, r2, r4, r6, r7, &runtime); __ AllocateAsciiString(r0, r2, r4, r6, r1, &runtime);
// Locate first character of substring to copy. // Locate first character of substring to copy.
__ add(r5, r5, r3); __ add(r5, r5, r3);
@ -5146,13 +5150,13 @@ void SubStringStub::Generate(MacroAssembler* masm) {
// r2: result string length // r2: result string length
// r5: first character of substring to copy // r5: first character of substring to copy
STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0); STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
StringHelper::GenerateCopyCharactersLong(masm, r1, r5, r2, r3, r4, r6, r7, r9, StringHelper::GenerateCopyCharactersLong(masm, r1, r5, r2, r3, r4, r6, r9,
COPY_ASCII | DEST_ALWAYS_ALIGNED); COPY_ASCII | DEST_ALWAYS_ALIGNED);
__ jmp(&return_r0); __ jmp(&return_r0);
// Allocate and copy the resulting two-byte string. // Allocate and copy the resulting two-byte string.
__ bind(&two_byte_sequential); __ bind(&two_byte_sequential);
__ AllocateTwoByteString(r0, r2, r4, r6, r7, &runtime); __ AllocateTwoByteString(r0, r2, r4, r6, r1, &runtime);
// Locate first character of substring to copy. // Locate first character of substring to copy.
STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
@ -5166,7 +5170,7 @@ void SubStringStub::Generate(MacroAssembler* masm) {
// r5: first character of substring to copy. // r5: first character of substring to copy.
STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
StringHelper::GenerateCopyCharactersLong( StringHelper::GenerateCopyCharactersLong(
masm, r1, r5, r2, r3, r4, r6, r7, r9, DEST_ALWAYS_ALIGNED); masm, r1, r5, r2, r3, r4, r6, r9, DEST_ALWAYS_ALIGNED);
__ bind(&return_r0); __ bind(&return_r0);
Counters* counters = masm->isolate()->counters(); Counters* counters = masm->isolate()->counters();
@ -5432,7 +5436,7 @@ void StringAddStub::Generate(MacroAssembler* masm) {
__ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset)); __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
__ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset)); __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
} }
__ JumpIfBothInstanceTypesAreNotSequentialAscii(r4, r5, r6, r7, __ JumpIfBothInstanceTypesAreNotSequentialAscii(r4, r5, r6, r3,
&call_runtime); &call_runtime);
// Get the two characters forming the sub string. // Get the two characters forming the sub string.
@ -5443,7 +5447,7 @@ void StringAddStub::Generate(MacroAssembler* masm) {
// just allocate a new one. // just allocate a new one.
Label make_two_character_string; Label make_two_character_string;
StringHelper::GenerateTwoCharacterStringTableProbe( StringHelper::GenerateTwoCharacterStringTableProbe(
masm, r2, r3, r6, r7, r4, r5, r9, &make_two_character_string); masm, r2, r3, r6, r0, r4, r5, r9, &make_two_character_string);
__ IncrementCounter(counters->string_add_native(), 1, r2, r3); __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
__ add(sp, sp, Operand(2 * kPointerSize)); __ add(sp, sp, Operand(2 * kPointerSize));
__ Ret(); __ Ret();
@ -5488,7 +5492,7 @@ void StringAddStub::Generate(MacroAssembler* masm) {
// Allocate an ASCII cons string. // Allocate an ASCII cons string.
__ bind(&ascii_data); __ bind(&ascii_data);
__ AllocateAsciiConsString(r7, r6, r4, r5, &call_runtime); __ AllocateAsciiConsString(r3, r6, r4, r5, &call_runtime);
__ bind(&allocated); __ bind(&allocated);
// Fill the fields of the cons string. // Fill the fields of the cons string.
Label skip_write_barrier, after_writing; Label skip_write_barrier, after_writing;
@ -5499,15 +5503,15 @@ void StringAddStub::Generate(MacroAssembler* masm) {
__ cmp(r4, Operand::Zero()); __ cmp(r4, Operand::Zero());
__ b(eq, &skip_write_barrier); __ b(eq, &skip_write_barrier);
__ str(r0, FieldMemOperand(r7, ConsString::kFirstOffset)); __ str(r0, FieldMemOperand(r3, ConsString::kFirstOffset));
__ RecordWriteField(r7, __ RecordWriteField(r3,
ConsString::kFirstOffset, ConsString::kFirstOffset,
r0, r0,
r4, r4,
kLRHasNotBeenSaved, kLRHasNotBeenSaved,
kDontSaveFPRegs); kDontSaveFPRegs);
__ str(r1, FieldMemOperand(r7, ConsString::kSecondOffset)); __ str(r1, FieldMemOperand(r3, ConsString::kSecondOffset));
__ RecordWriteField(r7, __ RecordWriteField(r3,
ConsString::kSecondOffset, ConsString::kSecondOffset,
r1, r1,
r4, r4,
@ -5516,12 +5520,12 @@ void StringAddStub::Generate(MacroAssembler* masm) {
__ jmp(&after_writing); __ jmp(&after_writing);
__ bind(&skip_write_barrier); __ bind(&skip_write_barrier);
__ str(r0, FieldMemOperand(r7, ConsString::kFirstOffset)); __ str(r0, FieldMemOperand(r3, ConsString::kFirstOffset));
__ str(r1, FieldMemOperand(r7, ConsString::kSecondOffset)); __ str(r1, FieldMemOperand(r3, ConsString::kSecondOffset));
__ bind(&after_writing); __ bind(&after_writing);
__ mov(r0, Operand(r7)); __ mov(r0, Operand(r3));
__ IncrementCounter(counters->string_add_native(), 1, r2, r3); __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
__ add(sp, sp, Operand(2 * kPointerSize)); __ add(sp, sp, Operand(2 * kPointerSize));
__ Ret(); __ Ret();
@ -5541,7 +5545,7 @@ void StringAddStub::Generate(MacroAssembler* masm) {
__ b(eq, &ascii_data); __ b(eq, &ascii_data);
// Allocate a two byte cons string. // Allocate a two byte cons string.
__ AllocateTwoByteConsString(r7, r6, r4, r5, &call_runtime); __ AllocateTwoByteConsString(r3, r6, r4, r5, &call_runtime);
__ jmp(&allocated); __ jmp(&allocated);
// We cannot encounter sliced strings or cons strings here since: // We cannot encounter sliced strings or cons strings here since:
@ -5565,14 +5569,15 @@ void StringAddStub::Generate(MacroAssembler* masm) {
} }
// Check whether both strings have same encoding // Check whether both strings have same encoding
__ eor(r7, r4, Operand(r5)); __ eor(ip, r4, Operand(r5));
__ tst(r7, Operand(kStringEncodingMask)); ASSERT(__ ImmediateFitsAddrMode1Instruction(kStringEncodingMask));
__ tst(ip, Operand(kStringEncodingMask));
__ b(ne, &call_runtime); __ b(ne, &call_runtime);
STATIC_ASSERT(kSeqStringTag == 0); STATIC_ASSERT(kSeqStringTag == 0);
__ tst(r4, Operand(kStringRepresentationMask)); __ tst(r4, Operand(kStringRepresentationMask));
STATIC_ASSERT(SeqOneByteString::kHeaderSize == SeqTwoByteString::kHeaderSize); STATIC_ASSERT(SeqOneByteString::kHeaderSize == SeqTwoByteString::kHeaderSize);
__ add(r7, __ add(r6,
r0, r0,
Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag), Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag),
LeaveCC, LeaveCC,
@ -5582,7 +5587,7 @@ void StringAddStub::Generate(MacroAssembler* masm) {
STATIC_ASSERT(kShortExternalStringTag != 0); STATIC_ASSERT(kShortExternalStringTag != 0);
__ tst(r4, Operand(kShortExternalStringMask)); __ tst(r4, Operand(kShortExternalStringMask));
__ b(ne, &call_runtime); __ b(ne, &call_runtime);
__ ldr(r7, FieldMemOperand(r0, ExternalString::kResourceDataOffset)); __ ldr(r6, FieldMemOperand(r0, ExternalString::kResourceDataOffset));
__ bind(&first_prepared); __ bind(&first_prepared);
STATIC_ASSERT(kSeqStringTag == 0); STATIC_ASSERT(kSeqStringTag == 0);
@ -5602,43 +5607,46 @@ void StringAddStub::Generate(MacroAssembler* masm) {
__ bind(&second_prepared); __ bind(&second_prepared);
Label non_ascii_string_add_flat_result; Label non_ascii_string_add_flat_result;
// r7: first character of first string // r6: first character of first string
// r1: first character of second string // r1: first character of second string
// r2: length of first string. // r2: length of first string.
// r3: length of second string. // r3: length of second string.
// r6: sum of lengths.
// Both strings have the same encoding. // Both strings have the same encoding.
STATIC_ASSERT(kTwoByteStringTag == 0); STATIC_ASSERT(kTwoByteStringTag == 0);
__ tst(r5, Operand(kStringEncodingMask)); __ tst(r5, Operand(kStringEncodingMask));
__ b(eq, &non_ascii_string_add_flat_result); __ b(eq, &non_ascii_string_add_flat_result);
__ AllocateAsciiString(r0, r6, r4, r5, r9, &call_runtime); __ add(r2, r2, Operand(r3));
__ add(r6, r0, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); __ AllocateAsciiString(r0, r2, r4, r5, r9, &call_runtime);
__ sub(r2, r2, Operand(r3));
__ add(r5, r0, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
// r0: result string. // r0: result string.
// r7: first character of first string. // r6: first character of first string.
// r1: first character of second string. // r1: first character of second string.
// r2: length of first string. // r2: length of first string.
// r3: length of second string. // r3: length of second string.
// r6: first character of result. // r5: first character of result.
StringHelper::GenerateCopyCharacters(masm, r6, r7, r2, r4, true); StringHelper::GenerateCopyCharacters(masm, r5, r6, r2, r4, true);
// r6: next character of result. // r5: next character of result.
StringHelper::GenerateCopyCharacters(masm, r6, r1, r3, r4, true); StringHelper::GenerateCopyCharacters(masm, r5, r1, r3, r4, true);
__ IncrementCounter(counters->string_add_native(), 1, r2, r3); __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
__ add(sp, sp, Operand(2 * kPointerSize)); __ add(sp, sp, Operand(2 * kPointerSize));
__ Ret(); __ Ret();
__ bind(&non_ascii_string_add_flat_result); __ bind(&non_ascii_string_add_flat_result);
__ AllocateTwoByteString(r0, r6, r4, r5, r9, &call_runtime); __ add(r2, r2, Operand(r3));
__ add(r6, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); __ AllocateTwoByteString(r0, r2, r4, r5, r9, &call_runtime);
__ sub(r2, r2, Operand(r3));
__ add(r5, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
// r0: result string. // r0: result string.
// r7: first character of first string. // r6: first character of first string.
// r1: first character of second string. // r1: first character of second string.
// r2: length of first string. // r2: length of first string.
// r3: length of second string. // r3: length of second string.
// r6: first character of result. // r5: first character of result.
StringHelper::GenerateCopyCharacters(masm, r6, r7, r2, r4, false); StringHelper::GenerateCopyCharacters(masm, r5, r6, r2, r4, false);
// r6: next character of result. // r5: next character of result.
StringHelper::GenerateCopyCharacters(masm, r6, r1, r3, r4, false); StringHelper::GenerateCopyCharacters(masm, r5, r1, r3, r4, false);
__ IncrementCounter(counters->string_add_native(), 1, r2, r3); __ IncrementCounter(counters->string_add_native(), 1, r2, r3);
__ add(sp, sp, Operand(2 * kPointerSize)); __ add(sp, sp, Operand(2 * kPointerSize));
__ Ret(); __ Ret();
@ -6308,7 +6316,7 @@ struct AheadOfTimeWriteBarrierStubList {
static const AheadOfTimeWriteBarrierStubList kAheadOfTime[] = { static const AheadOfTimeWriteBarrierStubList kAheadOfTime[] = {
// Used in RegExpExecStub. // Used in RegExpExecStub.
{ REG(r6), REG(r4), REG(r7), EMIT_REMEMBERED_SET }, { REG(r6), REG(r4), REG(r3), EMIT_REMEMBERED_SET },
// Used in CompileArrayPushCall. // Used in CompileArrayPushCall.
// Also used in StoreIC::GenerateNormal via GenerateDictionaryStore. // Also used in StoreIC::GenerateNormal via GenerateDictionaryStore.
// Also used in KeyedStoreIC::GenerateGeneric. // Also used in KeyedStoreIC::GenerateGeneric.
@ -6335,8 +6343,8 @@ static const AheadOfTimeWriteBarrierStubList kAheadOfTime[] = {
// FastNewClosureStub::Generate // FastNewClosureStub::Generate
{ REG(r2), REG(r4), REG(r1), EMIT_REMEMBERED_SET }, { REG(r2), REG(r4), REG(r1), EMIT_REMEMBERED_SET },
// StringAddStub::Generate // StringAddStub::Generate
{ REG(r7), REG(r1), REG(r4), EMIT_REMEMBERED_SET }, { REG(r3), REG(r1), REG(r4), EMIT_REMEMBERED_SET },
{ REG(r7), REG(r0), REG(r4), EMIT_REMEMBERED_SET }, { REG(r3), REG(r0), REG(r4), EMIT_REMEMBERED_SET },
// Null termination. // Null termination.
{ REG(no_reg), REG(no_reg), REG(no_reg), EMIT_REMEMBERED_SET} { REG(no_reg), REG(no_reg), REG(no_reg), EMIT_REMEMBERED_SET}
}; };

View File

@ -106,7 +106,6 @@ class StringHelper : public AllStatic {
Register scratch2, Register scratch2,
Register scratch3, Register scratch3,
Register scratch4, Register scratch4,
Register scratch5,
int flags); int flags);

View File

@ -444,15 +444,16 @@ void ElementsTransitionGenerator::GenerateSmiToDouble(
__ push(lr); __ push(lr);
__ ldr(r5, FieldMemOperand(r4, FixedArray::kLengthOffset)); __ ldr(r5, FieldMemOperand(r4, FixedArray::kLengthOffset));
// r4: source FixedArray
// r5: number of elements (smi-tagged) // r5: number of elements (smi-tagged)
// Allocate new FixedDoubleArray. // Allocate new FixedDoubleArray.
// Use lr as a temporary register. // Use lr as a temporary register.
__ mov(lr, Operand(r5, LSL, 2)); __ mov(lr, Operand(r5, LSL, 2));
__ add(lr, lr, Operand(FixedDoubleArray::kHeaderSize)); __ add(lr, lr, Operand(FixedDoubleArray::kHeaderSize));
__ Allocate(lr, r6, r7, r9, &gc_required, DOUBLE_ALIGNMENT); __ Allocate(lr, r6, r4, r9, &gc_required, DOUBLE_ALIGNMENT);
// r6: destination FixedDoubleArray, not tagged as heap object. // r6: destination FixedDoubleArray, not tagged as heap object.
__ ldr(r4, FieldMemOperand(r2, JSObject::kElementsOffset));
// r4: source FixedArray.
// Set destination FixedDoubleArray's length and map. // Set destination FixedDoubleArray's length and map.
__ LoadRoot(r9, Heap::kFixedDoubleArrayMapRootIndex); __ LoadRoot(r9, Heap::kFixedDoubleArrayMapRootIndex);
@ -483,15 +484,15 @@ void ElementsTransitionGenerator::GenerateSmiToDouble(
// Prepare for conversion loop. // Prepare for conversion loop.
__ add(r3, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ add(r3, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ add(r7, r6, Operand(FixedDoubleArray::kHeaderSize)); __ add(r9, r6, Operand(FixedDoubleArray::kHeaderSize));
__ add(r6, r7, Operand(r5, LSL, 2)); __ add(r6, r9, Operand(r5, LSL, 2));
__ mov(r4, Operand(kHoleNanLower32)); __ mov(r4, Operand(kHoleNanLower32));
__ mov(r5, Operand(kHoleNanUpper32)); __ mov(r5, Operand(kHoleNanUpper32));
// r3: begin of source FixedArray element fields, not tagged // r3: begin of source FixedArray element fields, not tagged
// r4: kHoleNanLower32 // r4: kHoleNanLower32
// r5: kHoleNanUpper32 // r5: kHoleNanUpper32
// r6: end of destination FixedDoubleArray, not tagged // r6: end of destination FixedDoubleArray, not tagged
// r7: begin of FixedDoubleArray element fields, not tagged // r9: begin of FixedDoubleArray element fields, not tagged
__ b(&entry); __ b(&entry);
@ -514,30 +515,30 @@ void ElementsTransitionGenerator::GenerateSmiToDouble(
// Convert and copy elements. // Convert and copy elements.
__ bind(&loop); __ bind(&loop);
__ ldr(r9, MemOperand(r3, 4, PostIndex)); __ ldr(lr, MemOperand(r3, 4, PostIndex));
// r9: current element // lr: current element
__ UntagAndJumpIfNotSmi(r9, r9, &convert_hole); __ UntagAndJumpIfNotSmi(lr, lr, &convert_hole);
// Normal smi, convert to double and store. // Normal smi, convert to double and store.
__ vmov(s0, r9); __ vmov(s0, lr);
__ vcvt_f64_s32(d0, s0); __ vcvt_f64_s32(d0, s0);
__ vstr(d0, r7, 0); __ vstr(d0, r9, 0);
__ add(r7, r7, Operand(8)); __ add(r9, r9, Operand(8));
__ b(&entry); __ b(&entry);
// Hole found, store the-hole NaN. // Hole found, store the-hole NaN.
__ bind(&convert_hole); __ bind(&convert_hole);
if (FLAG_debug_code) { if (FLAG_debug_code) {
// Restore a "smi-untagged" heap object. // Restore a "smi-untagged" heap object.
__ SmiTag(r9); __ SmiTag(lr);
__ orr(r9, r9, Operand(1)); __ orr(lr, lr, Operand(1));
__ CompareRoot(r9, Heap::kTheHoleValueRootIndex); __ CompareRoot(lr, Heap::kTheHoleValueRootIndex);
__ Assert(eq, kObjectFoundInSmiOnlyArray); __ Assert(eq, kObjectFoundInSmiOnlyArray);
} }
__ Strd(r4, r5, MemOperand(r7, 8, PostIndex)); __ Strd(r4, r5, MemOperand(r9, 8, PostIndex));
__ bind(&entry); __ bind(&entry);
__ cmp(r7, r6); __ cmp(r9, r6);
__ b(lt, &loop); __ b(lt, &loop);
__ pop(lr); __ pop(lr);
@ -577,7 +578,7 @@ void ElementsTransitionGenerator::GenerateDoubleToObject(
// Allocate new FixedArray. // Allocate new FixedArray.
__ mov(r0, Operand(FixedDoubleArray::kHeaderSize)); __ mov(r0, Operand(FixedDoubleArray::kHeaderSize));
__ add(r0, r0, Operand(r5, LSL, 1)); __ add(r0, r0, Operand(r5, LSL, 1));
__ Allocate(r0, r6, r7, r9, &gc_required, NO_ALLOCATION_FLAGS); __ Allocate(r0, r6, r3, r9, &gc_required, NO_ALLOCATION_FLAGS);
// r6: destination FixedArray, not tagged as heap object // r6: destination FixedArray, not tagged as heap object
// Set destination FixedDoubleArray's length and map. // Set destination FixedDoubleArray's length and map.
__ LoadRoot(r9, Heap::kFixedArrayMapRootIndex); __ LoadRoot(r9, Heap::kFixedArrayMapRootIndex);
@ -589,14 +590,12 @@ void ElementsTransitionGenerator::GenerateDoubleToObject(
__ add(r3, r6, Operand(FixedArray::kHeaderSize)); __ add(r3, r6, Operand(FixedArray::kHeaderSize));
__ add(r6, r6, Operand(kHeapObjectTag)); __ add(r6, r6, Operand(kHeapObjectTag));
__ add(r5, r3, Operand(r5, LSL, 1)); __ add(r5, r3, Operand(r5, LSL, 1));
__ LoadRoot(r7, Heap::kTheHoleValueRootIndex);
__ LoadRoot(r9, Heap::kHeapNumberMapRootIndex); __ LoadRoot(r9, Heap::kHeapNumberMapRootIndex);
// Using offsetted addresses in r4 to fully take advantage of post-indexing. // Using offsetted addresses in r4 to fully take advantage of post-indexing.
// r3: begin of destination FixedArray element fields, not tagged // r3: begin of destination FixedArray element fields, not tagged
// r4: begin of source FixedDoubleArray element fields, not tagged, +4 // r4: begin of source FixedDoubleArray element fields, not tagged, +4
// r5: end of destination FixedArray, not tagged // r5: end of destination FixedArray, not tagged
// r6: destination FixedArray // r6: destination FixedArray
// r7: the-hole pointer
// r9: heap number map // r9: heap number map
__ b(&entry); __ b(&entry);
@ -608,7 +607,7 @@ void ElementsTransitionGenerator::GenerateDoubleToObject(
__ bind(&loop); __ bind(&loop);
__ ldr(r1, MemOperand(r4, 8, PostIndex)); __ ldr(r1, MemOperand(r4, 8, PostIndex));
// lr: current element's upper 32 bit // r1: current element's upper 32 bit
// r4: address of next element's upper 32 bit // r4: address of next element's upper 32 bit
__ cmp(r1, Operand(kHoleNanUpper32)); __ cmp(r1, Operand(kHoleNanUpper32));
__ b(eq, &convert_hole); __ b(eq, &convert_hole);
@ -631,7 +630,8 @@ void ElementsTransitionGenerator::GenerateDoubleToObject(
// Replace the-hole NaN with the-hole pointer. // Replace the-hole NaN with the-hole pointer.
__ bind(&convert_hole); __ bind(&convert_hole);
__ str(r7, MemOperand(r3, 4, PostIndex)); __ LoadRoot(r0, Heap::kTheHoleValueRootIndex);
__ str(r0, MemOperand(r3, 4, PostIndex));
__ bind(&entry); __ bind(&entry);
__ cmp(r3, r5); __ cmp(r3, r5);

View File

@ -268,8 +268,8 @@ void Deoptimizer::EntryGenerator::Generate() {
__ bind(&inner_push_loop); __ bind(&inner_push_loop);
__ sub(r3, r3, Operand(sizeof(uint32_t))); __ sub(r3, r3, Operand(sizeof(uint32_t)));
__ add(r6, r2, Operand(r3)); __ add(r6, r2, Operand(r3));
__ ldr(r7, MemOperand(r6, FrameDescription::frame_content_offset())); __ ldr(r6, MemOperand(r6, FrameDescription::frame_content_offset()));
__ push(r7); __ push(r6);
__ bind(&inner_loop_header); __ bind(&inner_loop_header);
__ cmp(r3, Operand::Zero()); __ cmp(r3, Operand::Zero());
__ b(ne, &inner_push_loop); // test for gt? __ b(ne, &inner_push_loop); // test for gt?
@ -315,9 +315,9 @@ void Deoptimizer::EntryGenerator::Generate() {
__ InitializeRootRegister(); __ InitializeRootRegister();
__ pop(ip); // remove pc __ pop(ip); // remove pc
__ pop(r7); // get continuation, leave pc on stack __ pop(ip); // get continuation, leave pc on stack
__ pop(lr); __ pop(lr);
__ Jump(r7); __ Jump(ip);
__ stop("Unreachable."); __ stop("Unreachable.");
} }

View File

@ -64,7 +64,7 @@ const RegList kCalleeSaved =
1 << 4 | // r4 v1 1 << 4 | // r4 v1
1 << 5 | // r5 v2 1 << 5 | // r5 v2
1 << 6 | // r6 v3 1 << 6 | // r6 v3
1 << 7 | // r7 v4 1 << 7 | // r7 v4 (pp in JavaScript code)
1 << 8 | // r8 v5 (cp in JavaScript code) 1 << 8 | // r8 v5 (cp in JavaScript code)
kR9Available << 9 | // r9 v6 kR9Available << 9 | // r9 v6
1 << 10 | // r10 v7 1 << 10 | // r10 v7

View File

@ -3962,9 +3962,8 @@ void FullCodeGenerator::EmitGetCachedArrayIndex(CallRuntime* expr) {
void FullCodeGenerator::EmitFastAsciiArrayJoin(CallRuntime* expr) { void FullCodeGenerator::EmitFastAsciiArrayJoin(CallRuntime* expr) {
Label bailout, done, one_char_separator, long_separator, Label bailout, done, one_char_separator, long_separator, non_trivial_array,
non_trivial_array, not_size_one_array, loop, not_size_one_array, loop, empty_separator_loop, one_char_separator_loop,
empty_separator_loop, one_char_separator_loop,
one_char_separator_loop_entry, long_separator_loop; one_char_separator_loop_entry, long_separator_loop;
ZoneList<Expression*>* args = expr->arguments(); ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 2); ASSERT(args->length() == 2);
@ -3982,19 +3981,18 @@ void FullCodeGenerator::EmitFastAsciiArrayJoin(CallRuntime* expr) {
Register string = r4; Register string = r4;
Register element = r5; Register element = r5;
Register elements_end = r6; Register elements_end = r6;
Register scratch1 = r7; Register scratch = r9;
Register scratch2 = r9;
// Separator operand is on the stack. // Separator operand is on the stack.
__ pop(separator); __ pop(separator);
// Check that the array is a JSArray. // Check that the array is a JSArray.
__ JumpIfSmi(array, &bailout); __ JumpIfSmi(array, &bailout);
__ CompareObjectType(array, scratch1, scratch2, JS_ARRAY_TYPE); __ CompareObjectType(array, scratch, array_length, JS_ARRAY_TYPE);
__ b(ne, &bailout); __ b(ne, &bailout);
// Check that the array has fast elements. // Check that the array has fast elements.
__ CheckFastElements(scratch1, scratch2, &bailout); __ CheckFastElements(scratch, array_length, &bailout);
// If the array has length zero, return the empty string. // If the array has length zero, return the empty string.
__ ldr(array_length, FieldMemOperand(array, JSArray::kLengthOffset)); __ ldr(array_length, FieldMemOperand(array, JSArray::kLengthOffset));
@ -4031,11 +4029,11 @@ void FullCodeGenerator::EmitFastAsciiArrayJoin(CallRuntime* expr) {
__ bind(&loop); __ bind(&loop);
__ ldr(string, MemOperand(element, kPointerSize, PostIndex)); __ ldr(string, MemOperand(element, kPointerSize, PostIndex));
__ JumpIfSmi(string, &bailout); __ JumpIfSmi(string, &bailout);
__ ldr(scratch1, FieldMemOperand(string, HeapObject::kMapOffset)); __ ldr(scratch, FieldMemOperand(string, HeapObject::kMapOffset));
__ ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset)); __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
__ JumpIfInstanceTypeIsNotSequentialAscii(scratch1, scratch2, &bailout); __ JumpIfInstanceTypeIsNotSequentialAscii(scratch, scratch, &bailout);
__ ldr(scratch1, FieldMemOperand(string, SeqOneByteString::kLengthOffset)); __ ldr(scratch, FieldMemOperand(string, SeqOneByteString::kLengthOffset));
__ add(string_length, string_length, Operand(scratch1), SetCC); __ add(string_length, string_length, Operand(scratch), SetCC);
__ b(vs, &bailout); __ b(vs, &bailout);
__ cmp(element, elements_end); __ cmp(element, elements_end);
__ b(lt, &loop); __ b(lt, &loop);
@ -4056,23 +4054,23 @@ void FullCodeGenerator::EmitFastAsciiArrayJoin(CallRuntime* expr) {
// Check that the separator is a flat ASCII string. // Check that the separator is a flat ASCII string.
__ JumpIfSmi(separator, &bailout); __ JumpIfSmi(separator, &bailout);
__ ldr(scratch1, FieldMemOperand(separator, HeapObject::kMapOffset)); __ ldr(scratch, FieldMemOperand(separator, HeapObject::kMapOffset));
__ ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset)); __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
__ JumpIfInstanceTypeIsNotSequentialAscii(scratch1, scratch2, &bailout); __ JumpIfInstanceTypeIsNotSequentialAscii(scratch, scratch, &bailout);
// Add (separator length times array_length) - separator length to the // Add (separator length times array_length) - separator length to the
// string_length to get the length of the result string. array_length is not // string_length to get the length of the result string. array_length is not
// smi but the other values are, so the result is a smi // smi but the other values are, so the result is a smi
__ ldr(scratch1, FieldMemOperand(separator, SeqOneByteString::kLengthOffset)); __ ldr(scratch, FieldMemOperand(separator, SeqOneByteString::kLengthOffset));
__ sub(string_length, string_length, Operand(scratch1)); __ sub(string_length, string_length, Operand(scratch));
__ smull(scratch2, ip, array_length, scratch1); __ smull(scratch, ip, array_length, scratch);
// Check for smi overflow. No overflow if higher 33 bits of 64-bit result are // Check for smi overflow. No overflow if higher 33 bits of 64-bit result are
// zero. // zero.
__ cmp(ip, Operand::Zero()); __ cmp(ip, Operand::Zero());
__ b(ne, &bailout); __ b(ne, &bailout);
__ tst(scratch2, Operand(0x80000000)); __ tst(scratch, Operand(0x80000000));
__ b(ne, &bailout); __ b(ne, &bailout);
__ add(string_length, string_length, Operand(scratch2), SetCC); __ add(string_length, string_length, Operand(scratch), SetCC);
__ b(vs, &bailout); __ b(vs, &bailout);
__ SmiUntag(string_length); __ SmiUntag(string_length);
@ -4089,9 +4087,9 @@ void FullCodeGenerator::EmitFastAsciiArrayJoin(CallRuntime* expr) {
// array_length: Length of the array. // array_length: Length of the array.
__ AllocateAsciiString(result, __ AllocateAsciiString(result,
string_length, string_length,
scratch1, scratch,
scratch2, string, // used as scratch
elements_end, elements_end, // used as scratch
&bailout); &bailout);
// Prepare for looping. Set up elements_end to end of the array. Set // Prepare for looping. Set up elements_end to end of the array. Set
// result_pos to the position of the result where to write the first // result_pos to the position of the result where to write the first
@ -4104,8 +4102,8 @@ void FullCodeGenerator::EmitFastAsciiArrayJoin(CallRuntime* expr) {
Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
// Check the length of the separator. // Check the length of the separator.
__ ldr(scratch1, FieldMemOperand(separator, SeqOneByteString::kLengthOffset)); __ ldr(scratch, FieldMemOperand(separator, SeqOneByteString::kLengthOffset));
__ cmp(scratch1, Operand(Smi::FromInt(1))); __ cmp(scratch, Operand(Smi::FromInt(1)));
__ b(eq, &one_char_separator); __ b(eq, &one_char_separator);
__ b(gt, &long_separator); __ b(gt, &long_separator);
@ -4123,7 +4121,7 @@ void FullCodeGenerator::EmitFastAsciiArrayJoin(CallRuntime* expr) {
__ add(string, __ add(string,
string, string,
Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
__ CopyBytes(string, result_pos, string_length, scratch1); __ CopyBytes(string, result_pos, string_length, scratch);
__ cmp(element, elements_end); __ cmp(element, elements_end);
__ b(lt, &empty_separator_loop); // End while (element < elements_end). __ b(lt, &empty_separator_loop); // End while (element < elements_end).
ASSERT(result.is(r0)); ASSERT(result.is(r0));
@ -4155,7 +4153,7 @@ void FullCodeGenerator::EmitFastAsciiArrayJoin(CallRuntime* expr) {
__ add(string, __ add(string,
string, string,
Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
__ CopyBytes(string, result_pos, string_length, scratch1); __ CopyBytes(string, result_pos, string_length, scratch);
__ cmp(element, elements_end); __ cmp(element, elements_end);
__ b(lt, &one_char_separator_loop); // End while (element < elements_end). __ b(lt, &one_char_separator_loop); // End while (element < elements_end).
ASSERT(result.is(r0)); ASSERT(result.is(r0));
@ -4176,7 +4174,7 @@ void FullCodeGenerator::EmitFastAsciiArrayJoin(CallRuntime* expr) {
__ add(string, __ add(string,
separator, separator,
Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
__ CopyBytes(string, result_pos, string_length, scratch1); __ CopyBytes(string, result_pos, string_length, scratch);
__ bind(&long_separator); __ bind(&long_separator);
__ ldr(string, MemOperand(element, kPointerSize, PostIndex)); __ ldr(string, MemOperand(element, kPointerSize, PostIndex));
@ -4185,7 +4183,7 @@ void FullCodeGenerator::EmitFastAsciiArrayJoin(CallRuntime* expr) {
__ add(string, __ add(string,
string, string,
Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
__ CopyBytes(string, result_pos, string_length, scratch1); __ CopyBytes(string, result_pos, string_length, scratch);
__ cmp(element, elements_end); __ cmp(element, elements_end);
__ b(lt, &long_separator_loop); // End while (element < elements_end). __ b(lt, &long_separator_loop); // End while (element < elements_end).
ASSERT(result.is(r0)); ASSERT(result.is(r0));

View File

@ -1394,7 +1394,7 @@ void KeyedStoreIC::GenerateGeneric(MacroAssembler* masm,
Register receiver = r2; Register receiver = r2;
Register receiver_map = r3; Register receiver_map = r3;
Register elements_map = r6; Register elements_map = r6;
Register elements = r7; // Elements array of the receiver. Register elements = r9; // Elements array of the receiver.
// r4 and r5 are used as general scratch registers. // r4 and r5 are used as general scratch registers.
// Check that the key is a smi. // Check that the key is a smi.

View File

@ -3879,9 +3879,9 @@ void LCodeGen::DoPower(LPower* instr) {
} else if (exponent_type.IsTagged()) { } else if (exponent_type.IsTagged()) {
Label no_deopt; Label no_deopt;
__ JumpIfSmi(r2, &no_deopt); __ JumpIfSmi(r2, &no_deopt);
__ ldr(r7, FieldMemOperand(r2, HeapObject::kMapOffset)); __ ldr(r6, FieldMemOperand(r2, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kHeapNumberMapRootIndex); __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
__ cmp(r7, Operand(ip)); __ cmp(r6, Operand(ip));
DeoptimizeIf(ne, instr->environment()); DeoptimizeIf(ne, instr->environment());
__ bind(&no_deopt); __ bind(&no_deopt);
MathPowStub stub(MathPowStub::TAGGED); MathPowStub stub(MathPowStub::TAGGED);
@ -5386,24 +5386,24 @@ void LCodeGen::DoToFastProperties(LToFastProperties* instr) {
void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) { void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) {
Label materialized; Label materialized;
// Registers will be used as follows: // Registers will be used as follows:
// r7 = literals array. // r6 = literals array.
// r1 = regexp literal. // r1 = regexp literal.
// r0 = regexp literal clone. // r0 = regexp literal clone.
// r2 and r4-r6 are used as temporaries. // r2-5 are used as temporaries.
int literal_offset = int literal_offset =
FixedArray::OffsetOfElementAt(instr->hydrogen()->literal_index()); FixedArray::OffsetOfElementAt(instr->hydrogen()->literal_index());
__ LoadHeapObject(r7, instr->hydrogen()->literals()); __ LoadHeapObject(r6, instr->hydrogen()->literals());
__ ldr(r1, FieldMemOperand(r7, literal_offset)); __ ldr(r1, FieldMemOperand(r6, literal_offset));
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex); __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
__ cmp(r1, ip); __ cmp(r1, ip);
__ b(ne, &materialized); __ b(ne, &materialized);
// Create regexp literal using runtime function // Create regexp literal using runtime function
// Result will be in r0. // Result will be in r0.
__ mov(r6, Operand(Smi::FromInt(instr->hydrogen()->literal_index()))); __ mov(r5, Operand(Smi::FromInt(instr->hydrogen()->literal_index())));
__ mov(r5, Operand(instr->hydrogen()->pattern())); __ mov(r4, Operand(instr->hydrogen()->pattern()));
__ mov(r4, Operand(instr->hydrogen()->flags())); __ mov(r3, Operand(instr->hydrogen()->flags()));
__ Push(r7, r6, r5, r4); __ Push(r6, r5, r4, r3);
CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr); CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr);
__ mov(r1, r0); __ mov(r1, r0);

View File

@ -1337,7 +1337,7 @@ void MacroAssembler::PushTryHandler(StackHandler::Kind kind,
STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
// For the JSEntry handler, we must preserve r0-r4, r5-r7 are available. // For the JSEntry handler, we must preserve r0-r4, r5-r6 are available.
// We will build up the handler from the bottom by pushing on the stack. // We will build up the handler from the bottom by pushing on the stack.
// Set up the code object (r5) and the state (r6) for pushing. // Set up the code object (r5) and the state (r6) for pushing.
unsigned state = unsigned state =
@ -1348,9 +1348,9 @@ void MacroAssembler::PushTryHandler(StackHandler::Kind kind,
// Push the frame pointer, context, state, and code object. // Push the frame pointer, context, state, and code object.
if (kind == StackHandler::JS_ENTRY) { if (kind == StackHandler::JS_ENTRY) {
mov(r7, Operand(Smi::FromInt(0))); // Indicates no context. mov(cp, Operand(Smi::FromInt(0))); // Indicates no context.
mov(ip, Operand::Zero()); // NULL frame pointer. mov(ip, Operand::Zero()); // NULL frame pointer.
stm(db_w, sp, r5.bit() | r6.bit() | r7.bit() | ip.bit()); stm(db_w, sp, r5.bit() | r6.bit() | cp.bit() | ip.bit());
} else { } else {
stm(db_w, sp, r5.bit() | r6.bit() | cp.bit() | fp.bit()); stm(db_w, sp, r5.bit() | r6.bit() | cp.bit() | fp.bit());
} }
@ -2305,13 +2305,15 @@ void MacroAssembler::CallApiFunctionAndReturn(
ExternalReference::handle_scope_level_address(isolate()), ExternalReference::handle_scope_level_address(isolate()),
next_address); next_address);
ASSERT(!thunk_last_arg.is(r3));
// Allocate HandleScope in callee-save registers. // Allocate HandleScope in callee-save registers.
mov(r7, Operand(next_address)); mov(r9, Operand(next_address));
ldr(r4, MemOperand(r7, kNextOffset)); ldr(r4, MemOperand(r9, kNextOffset));
ldr(r5, MemOperand(r7, kLimitOffset)); ldr(r5, MemOperand(r9, kLimitOffset));
ldr(r6, MemOperand(r7, kLevelOffset)); ldr(r6, MemOperand(r9, kLevelOffset));
add(r6, r6, Operand(1)); add(r6, r6, Operand(1));
str(r6, MemOperand(r7, kLevelOffset)); str(r6, MemOperand(r9, kLevelOffset));
if (FLAG_log_timer_events) { if (FLAG_log_timer_events) {
FrameScope frame(this, StackFrame::MANUAL); FrameScope frame(this, StackFrame::MANUAL);
@ -2322,7 +2324,6 @@ void MacroAssembler::CallApiFunctionAndReturn(
PopSafepointRegisters(); PopSafepointRegisters();
} }
ASSERT(!thunk_last_arg.is(r3));
Label profiler_disabled; Label profiler_disabled;
Label end_profiler_check; Label end_profiler_check;
bool* is_profiling_flag = bool* is_profiling_flag =
@ -2368,15 +2369,15 @@ void MacroAssembler::CallApiFunctionAndReturn(
bind(&return_value_loaded); bind(&return_value_loaded);
// No more valid handles (the result handle was the last one). Restore // No more valid handles (the result handle was the last one). Restore
// previous handle scope. // previous handle scope.
str(r4, MemOperand(r7, kNextOffset)); str(r4, MemOperand(r9, kNextOffset));
if (emit_debug_code()) { if (emit_debug_code()) {
ldr(r1, MemOperand(r7, kLevelOffset)); ldr(r1, MemOperand(r9, kLevelOffset));
cmp(r1, r6); cmp(r1, r6);
Check(eq, kUnexpectedLevelAfterReturnFromApiCall); Check(eq, kUnexpectedLevelAfterReturnFromApiCall);
} }
sub(r6, r6, Operand(1)); sub(r6, r6, Operand(1));
str(r6, MemOperand(r7, kLevelOffset)); str(r6, MemOperand(r9, kLevelOffset));
ldr(ip, MemOperand(r7, kLimitOffset)); ldr(ip, MemOperand(r9, kLimitOffset));
cmp(r5, ip); cmp(r5, ip);
b(ne, &delete_allocated_handles); b(ne, &delete_allocated_handles);
@ -2409,7 +2410,7 @@ void MacroAssembler::CallApiFunctionAndReturn(
// HandleScope limit has changed. Delete allocated extensions. // HandleScope limit has changed. Delete allocated extensions.
bind(&delete_allocated_handles); bind(&delete_allocated_handles);
str(r5, MemOperand(r7, kLimitOffset)); str(r5, MemOperand(r9, kLimitOffset));
mov(r4, r0); mov(r4, r0);
PrepareCallCFunction(1, r5); PrepareCallCFunction(1, r5);
mov(r0, Operand(ExternalReference::isolate_address(isolate()))); mov(r0, Operand(ExternalReference::isolate_address(isolate())));

View File

@ -45,8 +45,9 @@ inline MemOperand FieldMemOperand(Register object, int offset) {
// Give alias names to registers // Give alias names to registers
const Register cp = { 8 }; // JavaScript context pointer const Register pp = { kRegister_r7_Code }; // Constant pool pointer.
const Register kRootRegister = { 10 }; // Roots array pointer. const Register cp = { kRegister_r8_Code }; // JavaScript context pointer.
const Register kRootRegister = { kRegister_r10_Code }; // Roots array pointer.
// Flags used for AllocateHeapNumber // Flags used for AllocateHeapNumber
enum TaggingMode { enum TaggingMode {

View File

@ -874,8 +874,8 @@ static void GenerateFastApiDirectCall(MacroAssembler* masm,
// Store call data. // Store call data.
__ str(r6, MemOperand(sp, 3 * kPointerSize)); __ str(r6, MemOperand(sp, 3 * kPointerSize));
// Store isolate. // Store isolate.
__ mov(r7, Operand(ExternalReference::isolate_address(masm->isolate()))); __ mov(r5, Operand(ExternalReference::isolate_address(masm->isolate())));
__ str(r7, MemOperand(sp, 4 * kPointerSize)); __ str(r5, MemOperand(sp, 4 * kPointerSize));
// Store ReturnValue default and ReturnValue. // Store ReturnValue default and ReturnValue.
__ LoadRoot(r5, Heap::kUndefinedValueRootIndex); __ LoadRoot(r5, Heap::kUndefinedValueRootIndex);
__ str(r5, MemOperand(sp, 5 * kPointerSize)); __ str(r5, MemOperand(sp, 5 * kPointerSize));
@ -1855,15 +1855,15 @@ Handle<Code> CallStubCompiler::CompileArrayPushCall(
if (FLAG_smi_only_arrays && !FLAG_trace_elements_transitions) { if (FLAG_smi_only_arrays && !FLAG_trace_elements_transitions) {
Label fast_object, not_fast_object; Label fast_object, not_fast_object;
__ CheckFastObjectElements(r3, r7, &not_fast_object); __ CheckFastObjectElements(r3, r9, &not_fast_object);
__ jmp(&fast_object); __ jmp(&fast_object);
// In case of fast smi-only, convert to fast object, otherwise bail out. // In case of fast smi-only, convert to fast object, otherwise bail out.
__ bind(&not_fast_object); __ bind(&not_fast_object);
__ CheckFastSmiElements(r3, r7, &call_builtin); __ CheckFastSmiElements(r3, r9, &call_builtin);
__ ldr(r7, FieldMemOperand(r4, HeapObject::kMapOffset)); __ ldr(r9, FieldMemOperand(r4, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kHeapNumberMapRootIndex); __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
__ cmp(r7, ip); __ cmp(r9, ip);
__ b(eq, &call_builtin); __ b(eq, &call_builtin);
// edx: receiver // edx: receiver
// r3: map // r3: map
@ -1871,7 +1871,7 @@ Handle<Code> CallStubCompiler::CompileArrayPushCall(
__ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS, __ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS,
FAST_ELEMENTS, FAST_ELEMENTS,
r3, r3,
r7, r9,
&try_holey_map); &try_holey_map);
__ mov(r2, receiver); __ mov(r2, receiver);
ElementsTransitionGenerator:: ElementsTransitionGenerator::
@ -1884,7 +1884,7 @@ Handle<Code> CallStubCompiler::CompileArrayPushCall(
__ LoadTransitionedArrayMapConditional(FAST_HOLEY_SMI_ELEMENTS, __ LoadTransitionedArrayMapConditional(FAST_HOLEY_SMI_ELEMENTS,
FAST_HOLEY_ELEMENTS, FAST_HOLEY_ELEMENTS,
r3, r3,
r7, r9,
&call_builtin); &call_builtin);
__ mov(r2, receiver); __ mov(r2, receiver);
ElementsTransitionGenerator:: ElementsTransitionGenerator::
@ -1917,7 +1917,6 @@ Handle<Code> CallStubCompiler::CompileArrayPushCall(
__ bind(&attempt_to_grow_elements); __ bind(&attempt_to_grow_elements);
// r0: array's length + 1. // r0: array's length + 1.
// r4: elements' length.
if (!FLAG_inline_new) { if (!FLAG_inline_new) {
__ b(&call_builtin); __ b(&call_builtin);
@ -1928,8 +1927,8 @@ Handle<Code> CallStubCompiler::CompileArrayPushCall(
// the new element is non-Smi. For now, delegate to the builtin. // the new element is non-Smi. For now, delegate to the builtin.
Label no_fast_elements_check; Label no_fast_elements_check;
__ JumpIfSmi(r2, &no_fast_elements_check); __ JumpIfSmi(r2, &no_fast_elements_check);
__ ldr(r7, FieldMemOperand(receiver, HeapObject::kMapOffset)); __ ldr(r9, FieldMemOperand(receiver, HeapObject::kMapOffset));
__ CheckFastObjectElements(r7, r7, &call_builtin); __ CheckFastObjectElements(r9, r9, &call_builtin);
__ bind(&no_fast_elements_check); __ bind(&no_fast_elements_check);
ExternalReference new_space_allocation_top = ExternalReference new_space_allocation_top =
@ -1941,8 +1940,8 @@ Handle<Code> CallStubCompiler::CompileArrayPushCall(
// Load top and check if it is the end of elements. // Load top and check if it is the end of elements.
__ add(end_elements, elements, Operand::PointerOffsetFromSmiKey(r0)); __ add(end_elements, elements, Operand::PointerOffsetFromSmiKey(r0));
__ add(end_elements, end_elements, Operand(kEndElementsOffset)); __ add(end_elements, end_elements, Operand(kEndElementsOffset));
__ mov(r7, Operand(new_space_allocation_top)); __ mov(r4, Operand(new_space_allocation_top));
__ ldr(r3, MemOperand(r7)); __ ldr(r3, MemOperand(r4));
__ cmp(end_elements, r3); __ cmp(end_elements, r3);
__ b(ne, &call_builtin); __ b(ne, &call_builtin);
@ -1954,7 +1953,7 @@ Handle<Code> CallStubCompiler::CompileArrayPushCall(
// We fit and could grow elements. // We fit and could grow elements.
// Update new_space_allocation_top. // Update new_space_allocation_top.
__ str(r3, MemOperand(r7)); __ str(r3, MemOperand(r4));
// Push the argument. // Push the argument.
__ str(r2, MemOperand(end_elements)); __ str(r2, MemOperand(end_elements));
// Fill the rest with holes. // Fill the rest with holes.
@ -1965,6 +1964,7 @@ Handle<Code> CallStubCompiler::CompileArrayPushCall(
// Update elements' and array's sizes. // Update elements' and array's sizes.
__ str(r0, FieldMemOperand(receiver, JSArray::kLengthOffset)); __ str(r0, FieldMemOperand(receiver, JSArray::kLengthOffset));
__ ldr(r4, FieldMemOperand(elements, FixedArray::kLengthOffset));
__ add(r4, r4, Operand(Smi::FromInt(kAllocationDelta))); __ add(r4, r4, Operand(Smi::FromInt(kAllocationDelta)));
__ str(r4, FieldMemOperand(elements, FixedArray::kLengthOffset)); __ str(r4, FieldMemOperand(elements, FixedArray::kLengthOffset));

View File

@ -826,6 +826,16 @@ DEFINE_implication(print_all_code, trace_codegen)
#endif #endif
#endif #endif
//
// Read-only flags
//
#undef FLAG
#define FLAG FLAG_READONLY
// assembler-arm.h
DEFINE_bool(enable_ool_constant_pool, false,
"enable use of out-of-line constant pools (ARM only)")
// Cleanup... // Cleanup...
#undef FLAG_FULL #undef FLAG_FULL
#undef FLAG_READONLY #undef FLAG_READONLY