Move string-search functions to separate file.

Review URL: http://codereview.chromium.org/3291021

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@5440 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
This commit is contained in:
lrn@chromium.org 2010-09-10 09:22:41 +00:00
parent 84d8115ecf
commit bc2bf76129
2 changed files with 470 additions and 414 deletions

View File

@ -47,6 +47,7 @@
#include "smart-pointer.h"
#include "stub-cache.h"
#include "v8threads.h"
#include "string-search.h"
namespace v8 {
namespace internal {
@ -2571,420 +2572,6 @@ static Object* Runtime_StringReplaceRegExpWithString(Arguments args) {
}
// Cap on the maximal shift in the Boyer-Moore implementation. By setting a
// limit, we can fix the size of tables.
static const int kBMMaxShift = 0xff;
// Reduce alphabet to this size.
static const int kBMAlphabetSize = 0x100;
// For patterns below this length, the skip length of Boyer-Moore is too short
// to compensate for the algorithmic overhead compared to simple brute force.
static const int kBMMinPatternLength = 7;
// Holds the two buffers used by Boyer-Moore string search's Good Suffix
// shift. Only allows the last kBMMaxShift characters of the needle
// to be indexed.
class BMGoodSuffixBuffers {
public:
BMGoodSuffixBuffers() {}
inline void init(int needle_length) {
ASSERT(needle_length > 1);
int start = needle_length < kBMMaxShift ? 0 : needle_length - kBMMaxShift;
int len = needle_length - start;
biased_suffixes_ = suffixes_ - start;
biased_good_suffix_shift_ = good_suffix_shift_ - start;
for (int i = 0; i <= len; i++) {
good_suffix_shift_[i] = len;
}
}
inline int& suffix(int index) {
ASSERT(biased_suffixes_ + index >= suffixes_);
return biased_suffixes_[index];
}
inline int& shift(int index) {
ASSERT(biased_good_suffix_shift_ + index >= good_suffix_shift_);
return biased_good_suffix_shift_[index];
}
private:
int suffixes_[kBMMaxShift + 1];
int good_suffix_shift_[kBMMaxShift + 1];
int* biased_suffixes_;
int* biased_good_suffix_shift_;
DISALLOW_COPY_AND_ASSIGN(BMGoodSuffixBuffers);
};
// buffers reused by BoyerMoore
static int bad_char_occurrence[kBMAlphabetSize];
static BMGoodSuffixBuffers bmgs_buffers;
// State of the string match tables.
// SIMPLE: No usable content in the buffers.
// BOYER_MOORE_HORSPOOL: The bad_char_occurences table has been populated.
// BOYER_MOORE: The bmgs_buffers tables have also been populated.
// Whenever starting with a new needle, one should call InitializeStringSearch
// to determine which search strategy to use, and in the case of a long-needle
// strategy, the call also initializes the algorithm to SIMPLE.
enum StringSearchAlgorithm { SIMPLE_SEARCH, BOYER_MOORE_HORSPOOL, BOYER_MOORE };
static StringSearchAlgorithm algorithm;
// Compute the bad-char table for Boyer-Moore in the static buffer.
template <typename pchar>
static void BoyerMoorePopulateBadCharTable(Vector<const pchar> pattern) {
// Only preprocess at most kBMMaxShift last characters of pattern.
int start = pattern.length() < kBMMaxShift ? 0
: pattern.length() - kBMMaxShift;
// Run forwards to populate bad_char_table, so that *last* instance
// of character equivalence class is the one registered.
// Notice: Doesn't include the last character.
int table_size = (sizeof(pchar) == 1) ? String::kMaxAsciiCharCode + 1
: kBMAlphabetSize;
if (start == 0) { // All patterns less than kBMMaxShift in length.
memset(bad_char_occurrence, -1, table_size * sizeof(*bad_char_occurrence));
} else {
for (int i = 0; i < table_size; i++) {
bad_char_occurrence[i] = start - 1;
}
}
for (int i = start; i < pattern.length() - 1; i++) {
pchar c = pattern[i];
int bucket = (sizeof(pchar) ==1) ? c : c % kBMAlphabetSize;
bad_char_occurrence[bucket] = i;
}
}
template <typename pchar>
static void BoyerMoorePopulateGoodSuffixTable(Vector<const pchar> pattern) {
int m = pattern.length();
int start = m < kBMMaxShift ? 0 : m - kBMMaxShift;
int len = m - start;
// Compute Good Suffix tables.
bmgs_buffers.init(m);
bmgs_buffers.shift(m-1) = 1;
bmgs_buffers.suffix(m) = m + 1;
pchar last_char = pattern[m - 1];
int suffix = m + 1;
for (int i = m; i > start;) {
for (pchar c = pattern[i - 1]; suffix <= m && c != pattern[suffix - 1];) {
if (bmgs_buffers.shift(suffix) == len) {
bmgs_buffers.shift(suffix) = suffix - i;
}
suffix = bmgs_buffers.suffix(suffix);
}
i--;
suffix--;
bmgs_buffers.suffix(i) = suffix;
if (suffix == m) {
// No suffix to extend, so we check against last_char only.
while (i > start && pattern[i - 1] != last_char) {
if (bmgs_buffers.shift(m) == len) {
bmgs_buffers.shift(m) = m - i;
}
i--;
bmgs_buffers.suffix(i) = m;
}
if (i > start) {
i--;
suffix--;
bmgs_buffers.suffix(i) = suffix;
}
}
}
if (suffix < m) {
for (int i = start; i <= m; i++) {
if (bmgs_buffers.shift(i) == len) {
bmgs_buffers.shift(i) = suffix - start;
}
if (i == suffix) {
suffix = bmgs_buffers.suffix(suffix);
}
}
}
}
template <typename schar, typename pchar>
static inline int CharOccurrence(int char_code) {
if (sizeof(schar) == 1) {
return bad_char_occurrence[char_code];
}
if (sizeof(pchar) == 1) {
if (char_code > String::kMaxAsciiCharCode) {
return -1;
}
return bad_char_occurrence[char_code];
}
return bad_char_occurrence[char_code % kBMAlphabetSize];
}
// Restricted simplified Boyer-Moore string matching.
// Uses only the bad-shift table of Boyer-Moore and only uses it
// for the character compared to the last character of the needle.
template <typename schar, typename pchar>
static int BoyerMooreHorspool(Vector<const schar> subject,
Vector<const pchar> pattern,
int start_index,
bool* complete) {
ASSERT(algorithm <= BOYER_MOORE_HORSPOOL);
int n = subject.length();
int m = pattern.length();
int badness = -m;
// How bad we are doing without a good-suffix table.
int idx; // No matches found prior to this index.
pchar last_char = pattern[m - 1];
int last_char_shift = m - 1 - CharOccurrence<schar, pchar>(last_char);
// Perform search
for (idx = start_index; idx <= n - m;) {
int j = m - 1;
int c;
while (last_char != (c = subject[idx + j])) {
int bc_occ = CharOccurrence<schar, pchar>(c);
int shift = j - bc_occ;
idx += shift;
badness += 1 - shift; // at most zero, so badness cannot increase.
if (idx > n - m) {
*complete = true;
return -1;
}
}
j--;
while (j >= 0 && pattern[j] == (subject[idx + j])) j--;
if (j < 0) {
*complete = true;
return idx;
} else {
idx += last_char_shift;
// Badness increases by the number of characters we have
// checked, and decreases by the number of characters we
// can skip by shifting. It's a measure of how we are doing
// compared to reading each character exactly once.
badness += (m - j) - last_char_shift;
if (badness > 0) {
*complete = false;
return idx;
}
}
}
*complete = true;
return -1;
}
template <typename schar, typename pchar>
static int BoyerMooreIndexOf(Vector<const schar> subject,
Vector<const pchar> pattern,
int idx) {
ASSERT(algorithm <= BOYER_MOORE);
int n = subject.length();
int m = pattern.length();
// Only preprocess at most kBMMaxShift last characters of pattern.
int start = m < kBMMaxShift ? 0 : m - kBMMaxShift;
pchar last_char = pattern[m - 1];
// Continue search from i.
while (idx <= n - m) {
int j = m - 1;
schar c;
while (last_char != (c = subject[idx + j])) {
int shift = j - CharOccurrence<schar, pchar>(c);
idx += shift;
if (idx > n - m) {
return -1;
}
}
while (j >= 0 && pattern[j] == (c = subject[idx + j])) j--;
if (j < 0) {
return idx;
} else if (j < start) {
// we have matched more than our tables allow us to be smart about.
// Fall back on BMH shift.
idx += m - 1 - CharOccurrence<schar, pchar>(last_char);
} else {
int gs_shift = bmgs_buffers.shift(j + 1); // Good suffix shift.
int bc_occ = CharOccurrence<schar, pchar>(c);
int shift = j - bc_occ; // Bad-char shift.
if (gs_shift > shift) {
shift = gs_shift;
}
idx += shift;
}
}
return -1;
}
// Trivial string search for shorter strings.
// On return, if "complete" is set to true, the return value is the
// final result of searching for the patter in the subject.
// If "complete" is set to false, the return value is the index where
// further checking should start, i.e., it's guaranteed that the pattern
// does not occur at a position prior to the returned index.
template <typename pchar, typename schar>
static int SimpleIndexOf(Vector<const schar> subject,
Vector<const pchar> pattern,
int idx,
bool* complete) {
ASSERT(pattern.length() > 1);
int pattern_length = pattern.length();
// Badness is a count of how much work we have done. When we have
// done enough work we decide it's probably worth switching to a better
// algorithm.
int badness = -10 - (pattern_length << 2);
// We know our pattern is at least 2 characters, we cache the first so
// the common case of the first character not matching is faster.
pchar pattern_first_char = pattern[0];
for (int i = idx, n = subject.length() - pattern_length; i <= n; i++) {
badness++;
if (badness > 0) {
*complete = false;
return i;
}
if (sizeof(schar) == 1 && sizeof(pchar) == 1) {
const schar* pos = reinterpret_cast<const schar*>(
memchr(subject.start() + i,
pattern_first_char,
n - i + 1));
if (pos == NULL) {
*complete = true;
return -1;
}
i = static_cast<int>(pos - subject.start());
} else {
if (subject[i] != pattern_first_char) continue;
}
int j = 1;
do {
if (pattern[j] != subject[i+j]) {
break;
}
j++;
} while (j < pattern_length);
if (j == pattern_length) {
*complete = true;
return i;
}
badness += j;
}
*complete = true;
return -1;
}
// Simple indexOf that never bails out. For short patterns only.
template <typename pchar, typename schar>
static int SimpleIndexOf(Vector<const schar> subject,
Vector<const pchar> pattern,
int idx) {
int pattern_length = pattern.length();
pchar pattern_first_char = pattern[0];
for (int i = idx, n = subject.length() - pattern_length; i <= n; i++) {
if (sizeof(schar) == 1 && sizeof(pchar) == 1) {
const schar* pos = reinterpret_cast<const schar*>(
memchr(subject.start() + i,
pattern_first_char,
n - i + 1));
if (pos == NULL) return -1;
i = static_cast<int>(pos - subject.start());
} else {
if (subject[i] != pattern_first_char) continue;
}
int j = 1;
while (j < pattern_length) {
if (pattern[j] != subject[i+j]) {
break;
}
j++;
}
if (j == pattern_length) {
return i;
}
}
return -1;
}
// Strategy for searching for a string in another string.
enum StringSearchStrategy { SEARCH_FAIL, SEARCH_SHORT, SEARCH_LONG };
template <typename pchar>
static inline StringSearchStrategy InitializeStringSearch(
Vector<const pchar> pat, bool ascii_subject) {
// We have an ASCII haystack and a non-ASCII needle. Check if there
// really is a non-ASCII character in the needle and bail out if there
// is.
if (ascii_subject && sizeof(pchar) > 1) {
for (int i = 0; i < pat.length(); i++) {
uc16 c = pat[i];
if (c > String::kMaxAsciiCharCode) {
return SEARCH_FAIL;
}
}
}
if (pat.length() < kBMMinPatternLength) {
return SEARCH_SHORT;
}
algorithm = SIMPLE_SEARCH;
return SEARCH_LONG;
}
// Dispatch long needle searches to different algorithms.
template <typename schar, typename pchar>
static int ComplexIndexOf(Vector<const schar> sub,
Vector<const pchar> pat,
int start_index) {
ASSERT(pat.length() >= kBMMinPatternLength);
// Try algorithms in order of increasing setup cost and expected performance.
bool complete;
int idx = start_index;
switch (algorithm) {
case SIMPLE_SEARCH:
idx = SimpleIndexOf(sub, pat, idx, &complete);
if (complete) return idx;
BoyerMoorePopulateBadCharTable(pat);
algorithm = BOYER_MOORE_HORSPOOL;
// FALLTHROUGH.
case BOYER_MOORE_HORSPOOL:
idx = BoyerMooreHorspool(sub, pat, idx, &complete);
if (complete) return idx;
// Build the Good Suffix table and continue searching.
BoyerMoorePopulateGoodSuffixTable(pat);
algorithm = BOYER_MOORE;
// FALLTHROUGH.
case BOYER_MOORE:
return BoyerMooreIndexOf(sub, pat, idx);
}
UNREACHABLE();
return -1;
}
// Dispatch to different search strategies for a single search.
// If searching multiple times on the same needle, the search
// strategy should only be computed once and then dispatch to different
// loops.
template <typename schar, typename pchar>
static int StringSearch(Vector<const schar> sub,
Vector<const pchar> pat,
int start_index) {
bool ascii_subject = (sizeof(schar) == 1);
StringSearchStrategy strategy = InitializeStringSearch(pat, ascii_subject);
switch (strategy) {
case SEARCH_FAIL: return -1;
case SEARCH_SHORT: return SimpleIndexOf(sub, pat, start_index);
case SEARCH_LONG: return ComplexIndexOf(sub, pat, start_index);
}
UNREACHABLE();
return -1;
}
// Perform string match of pattern on subject, starting at start index.
// Caller must ensure that 0 <= start_index <= sub->length(),
// and should check that pat->length() + start_index <= sub->length()
@ -5170,6 +4757,12 @@ static Object* Runtime_StringTrim(Arguments args) {
}
// Define storage for buffers declared in header file.
// TODO(lrn): Remove these when rewriting search code.
int BMBuffers::bad_char_occurrence[kBMAlphabetSize];
BMGoodSuffixBuffers BMBuffers::bmgs_buffers;
template <typename schar, typename pchar>
void FindStringIndices(Vector<const schar> subject,
Vector<const pchar> pattern,

463
src/string-search.h Normal file
View File

@ -0,0 +1,463 @@
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_STRING_SEARCH_H_
#define V8_STRING_SEARCH_H_
namespace v8 {
namespace internal {
// Cap on the maximal shift in the Boyer-Moore implementation. By setting a
// limit, we can fix the size of tables. For a needle longer than this limit,
// search will not be optimal, since we only build tables for a smaller suffix
// of the string, which is a safe approximation.
static const int kBMMaxShift = 250;
// Reduce alphabet to this size.
// One of the tables used by Boyer-Moore and Boyer-Moore-Horspool has size
// proportional to the input alphabet. We reduce the alphabet size by
// equating input characters modulo a smaller alphabet size. This gives
// a potentially less efficient searching, but is a safe approximation.
// For needles using only characters in the same Unicode 256-code point page,
// there is no search speed degradation.
static const int kBMAlphabetSize = 256;
// For patterns below this length, the skip length of Boyer-Moore is too short
// to compensate for the algorithmic overhead compared to simple brute force.
static const int kBMMinPatternLength = 7;
// Holds the two buffers used by Boyer-Moore string search's Good Suffix
// shift. Only allows the last kBMMaxShift characters of the needle
// to be indexed.
class BMGoodSuffixBuffers {
public:
BMGoodSuffixBuffers() {}
inline void Initialize(int needle_length) {
ASSERT(needle_length > 1);
int start = needle_length < kBMMaxShift ? 0 : needle_length - kBMMaxShift;
int len = needle_length - start;
biased_suffixes_ = suffixes_ - start;
biased_good_suffix_shift_ = good_suffix_shift_ - start;
for (int i = 0; i <= len; i++) {
good_suffix_shift_[i] = len;
}
}
inline int& suffix(int index) {
ASSERT(biased_suffixes_ + index >= suffixes_);
return biased_suffixes_[index];
}
inline int& shift(int index) {
ASSERT(biased_good_suffix_shift_ + index >= good_suffix_shift_);
return biased_good_suffix_shift_[index];
}
private:
int suffixes_[kBMMaxShift + 1];
int good_suffix_shift_[kBMMaxShift + 1];
int* biased_suffixes_;
int* biased_good_suffix_shift_;
DISALLOW_COPY_AND_ASSIGN(BMGoodSuffixBuffers);
};
// buffers reused by BoyerMoore
struct BMBuffers {
public:
static int bad_char_occurrence[kBMAlphabetSize];
static BMGoodSuffixBuffers bmgs_buffers;
};
// State of the string match tables.
// SIMPLE: No usable content in the buffers.
// BOYER_MOORE_HORSPOOL: The bad_char_occurence table has been populated.
// BOYER_MOORE: The bmgs_buffers tables have also been populated.
// Whenever starting with a new needle, one should call InitializeStringSearch
// to determine which search strategy to use, and in the case of a long-needle
// strategy, the call also initializes the algorithm to SIMPLE.
enum StringSearchAlgorithm { SIMPLE_SEARCH, BOYER_MOORE_HORSPOOL, BOYER_MOORE };
static StringSearchAlgorithm algorithm;
// Compute the bad-char table for Boyer-Moore in the static buffer.
template <typename PatternChar>
static void BoyerMoorePopulateBadCharTable(Vector<const PatternChar> pattern) {
// Only preprocess at most kBMMaxShift last characters of pattern.
int start = Max(pattern.length() - kBMMaxShift, 0);
// Run forwards to populate bad_char_table, so that *last* instance
// of character equivalence class is the one registered.
// Notice: Doesn't include the last character.
int table_size = (sizeof(PatternChar) == 1) ? String::kMaxAsciiCharCode + 1
: kBMAlphabetSize;
if (start == 0) { // All patterns less than kBMMaxShift in length.
memset(BMBuffers::bad_char_occurrence,
-1,
table_size * sizeof(*BMBuffers::bad_char_occurrence));
} else {
for (int i = 0; i < table_size; i++) {
BMBuffers::bad_char_occurrence[i] = start - 1;
}
}
for (int i = start; i < pattern.length() - 1; i++) {
PatternChar c = pattern[i];
int bucket = (sizeof(PatternChar) ==1) ? c : c % kBMAlphabetSize;
BMBuffers::bad_char_occurrence[bucket] = i;
}
}
template <typename PatternChar>
static void BoyerMoorePopulateGoodSuffixTable(
Vector<const PatternChar> pattern) {
int m = pattern.length();
int start = m < kBMMaxShift ? 0 : m - kBMMaxShift;
int len = m - start;
// Compute Good Suffix tables.
BMBuffers::bmgs_buffers.Initialize(m);
BMBuffers::bmgs_buffers.shift(m-1) = 1;
BMBuffers::bmgs_buffers.suffix(m) = m + 1;
PatternChar last_char = pattern[m - 1];
int suffix = m + 1;
{
int i = m;
while (i > start) {
PatternChar c = pattern[i - 1];
while (suffix <= m && c != pattern[suffix - 1]) {
if (BMBuffers::bmgs_buffers.shift(suffix) == len) {
BMBuffers::bmgs_buffers.shift(suffix) = suffix - i;
}
suffix = BMBuffers::bmgs_buffers.suffix(suffix);
}
BMBuffers::bmgs_buffers.suffix(--i) = --suffix;
if (suffix == m) {
// No suffix to extend, so we check against last_char only.
while ((i > start) && (pattern[i - 1] != last_char)) {
if (BMBuffers::bmgs_buffers.shift(m) == len) {
BMBuffers::bmgs_buffers.shift(m) = m - i;
}
BMBuffers::bmgs_buffers.suffix(--i) = m;
}
if (i > start) {
BMBuffers::bmgs_buffers.suffix(--i) = --suffix;
}
}
}
}
if (suffix < m) {
for (int i = start; i <= m; i++) {
if (BMBuffers::bmgs_buffers.shift(i) == len) {
BMBuffers::bmgs_buffers.shift(i) = suffix - start;
}
if (i == suffix) {
suffix = BMBuffers::bmgs_buffers.suffix(suffix);
}
}
}
}
template <typename SubjectChar, typename PatternChar>
static inline int CharOccurrence(int char_code) {
if (sizeof(SubjectChar) == 1) {
return BMBuffers::bad_char_occurrence[char_code];
}
if (sizeof(PatternChar) == 1) {
if (char_code > String::kMaxAsciiCharCode) {
return -1;
}
return BMBuffers::bad_char_occurrence[char_code];
}
return BMBuffers::bad_char_occurrence[char_code % kBMAlphabetSize];
}
// Restricted simplified Boyer-Moore string matching.
// Uses only the bad-shift table of Boyer-Moore and only uses it
// for the character compared to the last character of the needle.
template <typename SubjectChar, typename PatternChar>
static int BoyerMooreHorspool(Vector<const SubjectChar> subject,
Vector<const PatternChar> pattern,
int start_index,
bool* complete) {
ASSERT(algorithm <= BOYER_MOORE_HORSPOOL);
int n = subject.length();
int m = pattern.length();
int badness = -m;
// How bad we are doing without a good-suffix table.
int idx; // No matches found prior to this index.
PatternChar last_char = pattern[m - 1];
int last_char_shift =
m - 1 - CharOccurrence<SubjectChar, PatternChar>(last_char);
// Perform search
for (idx = start_index; idx <= n - m;) {
int j = m - 1;
int c;
while (last_char != (c = subject[idx + j])) {
int bc_occ = CharOccurrence<SubjectChar, PatternChar>(c);
int shift = j - bc_occ;
idx += shift;
badness += 1 - shift; // at most zero, so badness cannot increase.
if (idx > n - m) {
*complete = true;
return -1;
}
}
j--;
while (j >= 0 && pattern[j] == (subject[idx + j])) j--;
if (j < 0) {
*complete = true;
return idx;
} else {
idx += last_char_shift;
// Badness increases by the number of characters we have
// checked, and decreases by the number of characters we
// can skip by shifting. It's a measure of how we are doing
// compared to reading each character exactly once.
badness += (m - j) - last_char_shift;
if (badness > 0) {
*complete = false;
return idx;
}
}
}
*complete = true;
return -1;
}
template <typename SubjectChar, typename PatternChar>
static int BoyerMooreIndexOf(Vector<const SubjectChar> subject,
Vector<const PatternChar> pattern,
int idx) {
ASSERT(algorithm <= BOYER_MOORE);
int n = subject.length();
int m = pattern.length();
// Only preprocess at most kBMMaxShift last characters of pattern.
int start = m < kBMMaxShift ? 0 : m - kBMMaxShift;
PatternChar last_char = pattern[m - 1];
// Continue search from i.
while (idx <= n - m) {
int j = m - 1;
SubjectChar c;
while (last_char != (c = subject[idx + j])) {
int shift = j - CharOccurrence<SubjectChar, PatternChar>(c);
idx += shift;
if (idx > n - m) {
return -1;
}
}
while (j >= 0 && pattern[j] == (c = subject[idx + j])) j--;
if (j < 0) {
return idx;
} else if (j < start) {
// we have matched more than our tables allow us to be smart about.
// Fall back on BMH shift.
idx += m - 1 - CharOccurrence<SubjectChar, PatternChar>(last_char);
} else {
int gs_shift = BMBuffers::bmgs_buffers.shift(j + 1);
int bc_occ = CharOccurrence<SubjectChar, PatternChar>(c);
int shift = j - bc_occ;
if (gs_shift > shift) {
shift = gs_shift;
}
idx += shift;
}
}
return -1;
}
// Trivial string search for shorter strings.
// On return, if "complete" is set to true, the return value is the
// final result of searching for the patter in the subject.
// If "complete" is set to false, the return value is the index where
// further checking should start, i.e., it's guaranteed that the pattern
// does not occur at a position prior to the returned index.
template <typename PatternChar, typename SubjectChar>
static int SimpleIndexOf(Vector<const SubjectChar> subject,
Vector<const PatternChar> pattern,
int idx,
bool* complete) {
ASSERT(pattern.length() > 1);
int pattern_length = pattern.length();
// Badness is a count of how much work we have done. When we have
// done enough work we decide it's probably worth switching to a better
// algorithm.
int badness = -10 - (pattern_length << 2);
// We know our pattern is at least 2 characters, we cache the first so
// the common case of the first character not matching is faster.
PatternChar pattern_first_char = pattern[0];
for (int i = idx, n = subject.length() - pattern_length; i <= n; i++) {
badness++;
if (badness > 0) {
*complete = false;
return i;
}
if (sizeof(SubjectChar) == 1 && sizeof(PatternChar) == 1) {
const SubjectChar* pos = reinterpret_cast<const SubjectChar*>(
memchr(subject.start() + i,
pattern_first_char,
n - i + 1));
if (pos == NULL) {
*complete = true;
return -1;
}
i = static_cast<int>(pos - subject.start());
} else {
if (subject[i] != pattern_first_char) continue;
}
int j = 1;
do {
if (pattern[j] != subject[i+j]) {
break;
}
j++;
} while (j < pattern_length);
if (j == pattern_length) {
*complete = true;
return i;
}
badness += j;
}
*complete = true;
return -1;
}
// Simple indexOf that never bails out. For short patterns only.
template <typename PatternChar, typename SubjectChar>
static int SimpleIndexOf(Vector<const SubjectChar> subject,
Vector<const PatternChar> pattern,
int idx) {
int pattern_length = pattern.length();
PatternChar pattern_first_char = pattern[0];
for (int i = idx, n = subject.length() - pattern_length; i <= n; i++) {
if (sizeof(SubjectChar) == 1 && sizeof(PatternChar) == 1) {
const SubjectChar* pos = reinterpret_cast<const SubjectChar*>(
memchr(subject.start() + i,
pattern_first_char,
n - i + 1));
if (pos == NULL) return -1;
i = static_cast<int>(pos - subject.start());
} else {
if (subject[i] != pattern_first_char) continue;
}
int j = 1;
while (j < pattern_length) {
if (pattern[j] != subject[i+j]) {
break;
}
j++;
}
if (j == pattern_length) {
return i;
}
}
return -1;
}
// Strategy for searching for a string in another string.
enum StringSearchStrategy { SEARCH_FAIL, SEARCH_SHORT, SEARCH_LONG };
template <typename PatternChar>
static inline StringSearchStrategy InitializeStringSearch(
Vector<const PatternChar> pat, bool ascii_subject) {
// We have an ASCII haystack and a non-ASCII needle. Check if there
// really is a non-ASCII character in the needle and bail out if there
// is.
if (ascii_subject && sizeof(PatternChar) > 1) {
for (int i = 0; i < pat.length(); i++) {
uc16 c = pat[i];
if (c > String::kMaxAsciiCharCode) {
return SEARCH_FAIL;
}
}
}
if (pat.length() < kBMMinPatternLength) {
return SEARCH_SHORT;
}
algorithm = SIMPLE_SEARCH;
return SEARCH_LONG;
}
// Dispatch long needle searches to different algorithms.
template <typename SubjectChar, typename PatternChar>
static int ComplexIndexOf(Vector<const SubjectChar> sub,
Vector<const PatternChar> pat,
int start_index) {
ASSERT(pat.length() >= kBMMinPatternLength);
// Try algorithms in order of increasing setup cost and expected performance.
bool complete;
int idx = start_index;
switch (algorithm) {
case SIMPLE_SEARCH:
idx = SimpleIndexOf(sub, pat, idx, &complete);
if (complete) return idx;
BoyerMoorePopulateBadCharTable(pat);
algorithm = BOYER_MOORE_HORSPOOL;
// FALLTHROUGH.
case BOYER_MOORE_HORSPOOL:
idx = BoyerMooreHorspool(sub, pat, idx, &complete);
if (complete) return idx;
// Build the Good Suffix table and continue searching.
BoyerMoorePopulateGoodSuffixTable(pat);
algorithm = BOYER_MOORE;
// FALLTHROUGH.
case BOYER_MOORE:
return BoyerMooreIndexOf(sub, pat, idx);
}
UNREACHABLE();
return -1;
}
// Dispatch to different search strategies for a single search.
// If searching multiple times on the same needle, the search
// strategy should only be computed once and then dispatch to different
// loops.
template <typename SubjectChar, typename PatternChar>
static int StringSearch(Vector<const SubjectChar> sub,
Vector<const PatternChar> pat,
int start_index) {
bool ascii_subject = (sizeof(SubjectChar) == 1);
StringSearchStrategy strategy = InitializeStringSearch(pat, ascii_subject);
switch (strategy) {
case SEARCH_FAIL: return -1;
case SEARCH_SHORT: return SimpleIndexOf(sub, pat, start_index);
case SEARCH_LONG: return ComplexIndexOf(sub, pat, start_index);
}
UNREACHABLE();
return -1;
}
}} // namespace v8::internal
#endif // V8_STRING_SEARCH_H_