Reland [turbofan] Implement on-stack returns (Intel)

The original CL introduced a test which uses a random number generator.
I disable the test for now, which is okay because this CL adds to a
work-in-progress feature anyways, and I will fix the problem in another
CL.

Original description:
Add the ability to return (multiple) return values on the stack:

- Extend stack frames with a new buffer region for return slots.
  This region is located at the end of a caller's frame such that
  its slots can be indexed as caller frame slots in a callee
  (located beyond its parameters) and assigned return values.
- Adjust stack frame constructon and deconstruction accordingly.
- Extend linkage computation to support register plus stack returns.
- Reserve return slots in caller frame when respective calls occur.
- Introduce and generate architecture instructions ('peek') for
  reading back results from return slots in the caller.
- Aggressive tests.
- Some minor clean-up.

So far, only ia32 and x64 are implemented.

Change-Id: I8b03fc4e53946daaa0e14a34603f4824a04fad7e
Reviewed-on: https://chromium-review.googlesource.com/819557
Reviewed-by: Ben Titzer <titzer@chromium.org>
Commit-Queue: Andreas Haas <ahaas@chromium.org>
Cr-Commit-Position: refs/heads/master@{#50031}
This commit is contained in:
Andreas Haas 2017-12-12 13:29:10 +01:00 committed by Commit Bot
parent f5a12d8661
commit bd732f7ddd
25 changed files with 816 additions and 207 deletions

View File

@ -1596,22 +1596,27 @@ void InstructionSelector::EmitPrepareArguments(
// Poke any stack arguments.
for (size_t n = 0; n < arguments->size(); ++n) {
PushParameter input = (*arguments)[n];
if (input.node()) {
if (input.node) {
int slot = static_cast<int>(n);
Emit(kArmPoke | MiscField::encode(slot), g.NoOutput(),
g.UseRegister(input.node()));
g.UseRegister(input.node));
}
}
} else {
// Push any stack arguments.
for (PushParameter input : base::Reversed(*arguments)) {
// Skip any alignment holes in pushed nodes.
if (input.node() == nullptr) continue;
Emit(kArmPush, g.NoOutput(), g.UseRegister(input.node()));
if (input.node == nullptr) continue;
Emit(kArmPush, g.NoOutput(), g.UseRegister(input.node));
}
}
}
void InstructionSelector::EmitPrepareResults(ZoneVector<PushParameter>* results,
const CallDescriptor* descriptor,
Node* node) {
// TODO(ahaas): Port.
}
bool InstructionSelector::IsTailCallAddressImmediate() { return false; }

View File

@ -1805,7 +1805,7 @@ void InstructionSelector::EmitPrepareArguments(
// Poke the arguments into the stack.
ArchOpcode poke = to_native_stack ? kArm64PokeCSP : kArm64PokeJSSP;
while (slot >= 0) {
Emit(poke, g.NoOutput(), g.UseRegister((*arguments)[slot].node()),
Emit(poke, g.NoOutput(), g.UseRegister((*arguments)[slot].node),
g.TempImmediate(slot));
slot--;
// TODO(ahaas): Poke arguments in pairs if two subsequent arguments have the
@ -1816,6 +1816,11 @@ void InstructionSelector::EmitPrepareArguments(
}
}
void InstructionSelector::EmitPrepareResults(ZoneVector<PushParameter>* results,
const CallDescriptor* descriptor,
Node* node) {
// TODO(ahaas): Port.
}
bool InstructionSelector::IsTailCallAddressImmediate() { return false; }

View File

@ -13,8 +13,10 @@ namespace internal {
namespace compiler {
Frame::Frame(int fixed_frame_size_in_slots)
: frame_slot_count_(fixed_frame_size_in_slots),
: fixed_slot_count_(fixed_frame_size_in_slots),
frame_slot_count_(fixed_frame_size_in_slots),
spill_slot_count_(0),
return_slot_count_(0),
allocated_registers_(nullptr),
allocated_double_registers_(nullptr) {}

View File

@ -22,7 +22,7 @@ class CallDescriptor;
// into them. Mutable state associated with the frame is stored separately in
// FrameAccessState.
//
// Frames are divided up into three regions.
// Frames are divided up into four regions.
// - The first is the fixed header, which always has a constant size and can be
// predicted before code generation begins depending on the type of code being
// generated.
@ -33,11 +33,15 @@ class CallDescriptor;
// reserved after register allocation, since its size can only be precisely
// determined after register allocation once the number of used callee-saved
// register is certain.
// - The fourth region is a scratch area for return values from other functions
// called, if multiple returns cannot all be passed in registers. This region
// Must be last in a stack frame, so that it is positioned immediately below
// the stack frame of a callee to store to.
//
// The frame region immediately below the fixed header contains spill slots
// starting at slot 4 for JSFunctions. The callee-saved frame region below that
// starts at 4+spill_slot_count_. Callee stack slots corresponding to
// parameters are accessible through negative slot ids.
// starts at 4+spill_slot_count_. Callee stack slots correspond to
// parameters that are accessible through negative slot ids.
//
// Every slot of a caller or callee frame is accessible by the register
// allocator and gap resolver with a SpillSlotOperand containing its
@ -73,7 +77,13 @@ class CallDescriptor;
// |- - - - - - - - -| | |
// | ... | Callee-saved |
// |- - - - - - - - -| | |
// m+r+3 | callee-saved r | v v
// m+r+3 | callee-saved r | v |
// +-----------------+---- |
// m+r+4 | return 0 | ^ |
// |- - - - - - - - -| | |
// | ... | Return |
// |- - - - - - - - -| | |
// | return q-1 | v v
// -----+-----------------+----- <-- stack ptr -------------
//
class Frame : public ZoneObject {
@ -81,8 +91,9 @@ class Frame : public ZoneObject {
explicit Frame(int fixed_frame_size_in_slots);
inline int GetTotalFrameSlotCount() const { return frame_slot_count_; }
inline int GetFixedSlotCount() const { return fixed_slot_count_; }
inline int GetSpillSlotCount() const { return spill_slot_count_; }
inline int GetReturnSlotCount() const { return return_slot_count_; }
void SetAllocatedRegisters(BitVector* regs) {
DCHECK_NULL(allocated_registers_);
@ -112,19 +123,25 @@ class Frame : public ZoneObject {
}
int AllocateSpillSlot(int width, int alignment = 0) {
DCHECK_EQ(frame_slot_count_,
fixed_slot_count_ + spill_slot_count_ + return_slot_count_);
int frame_slot_count_before = frame_slot_count_;
if (alignment <= kPointerSize) {
AllocateAlignedFrameSlots(width);
} else {
// We need to allocate more place for spill slot
// in case we need an aligned spill slot to be
// able to properly align start of spill slot
// and still have enough place to hold all the
// data
AllocateAlignedFrameSlots(width + alignment - kPointerSize);
if (alignment > kPointerSize) {
// Slots are pointer sized, so alignment greater than a pointer size
// requires allocating additional slots.
width += alignment - kPointerSize;
}
AllocateAlignedFrameSlots(width);
spill_slot_count_ += frame_slot_count_ - frame_slot_count_before;
return frame_slot_count_ - 1;
return frame_slot_count_ - return_slot_count_ - 1;
}
void EnsureReturnSlots(int count) {
if (count > return_slot_count_) {
count -= return_slot_count_;
frame_slot_count_ += count;
return_slot_count_ += count;
}
}
int AlignFrame(int alignment = kDoubleSize);
@ -152,8 +169,10 @@ class Frame : public ZoneObject {
}
private:
int fixed_slot_count_;
int frame_slot_count_;
int spill_slot_count_;
int return_slot_count_;
BitVector* allocated_registers_;
BitVector* allocated_double_registers_;

View File

@ -53,7 +53,7 @@ MoveOperands* Split(MoveOperands* move, MachineRepresentation smaller_rep,
src_index = src_loc.register_code() * aliases;
} else {
src_index = src_loc.index();
// For operands that occuply multiple slots, the index refers to the last
// For operands that occupy multiple slots, the index refers to the last
// slot. On little-endian architectures, we start at the high slot and use a
// negative step so that register-to-slot moves are in the correct order.
src_step = -slot_size;

View File

@ -2006,7 +2006,7 @@ CodeGenerator::CodeGenResult CodeGenerator::AssembleArchInstruction(
}
break;
case kIA32Poke: {
int const slot = MiscField::decode(instr->opcode());
int slot = MiscField::decode(instr->opcode());
if (HasImmediateInput(instr, 0)) {
__ mov(Operand(esp, slot * kPointerSize), i.InputImmediate(0));
} else {
@ -2014,6 +2014,27 @@ CodeGenerator::CodeGenResult CodeGenerator::AssembleArchInstruction(
}
break;
}
case kIA32PeekFloat32: {
int reverse_slot = MiscField::decode(instr->opcode());
int offset =
FrameSlotToFPOffset(frame()->GetTotalFrameSlotCount() - reverse_slot);
__ movss(i.OutputFloatRegister(), Operand(ebp, offset));
break;
}
case kIA32PeekFloat64: {
int reverse_slot = MiscField::decode(instr->opcode());
int offset =
FrameSlotToFPOffset(frame()->GetTotalFrameSlotCount() - reverse_slot);
__ movsd(i.OutputDoubleRegister(), Operand(ebp, offset));
break;
}
case kIA32Peek: {
int reverse_slot = MiscField::decode(instr->opcode());
int offset =
FrameSlotToFPOffset(frame()->GetTotalFrameSlotCount() - reverse_slot);
__ mov(i.OutputRegister(), Operand(ebp, offset));
break;
}
case kSSEF32x4Splat: {
DCHECK_EQ(i.OutputDoubleRegister(), i.InputDoubleRegister(0));
XMMRegister dst = i.OutputSimd128Register();
@ -3493,8 +3514,9 @@ void CodeGenerator::AssembleConstructFrame() {
__ bind(&done);
}
// Skip callee-saved slots, which are pushed below.
// Skip callee-saved and return slots, which are created below.
shrink_slots -= base::bits::CountPopulation(saves);
shrink_slots -= frame()->GetReturnSlotCount();
if (shrink_slots > 0) {
__ sub(esp, Immediate(shrink_slots * kPointerSize));
}
@ -3506,6 +3528,11 @@ void CodeGenerator::AssembleConstructFrame() {
if (((1 << i) & saves)) __ push(Register::from_code(i));
}
}
// Allocate return slots (located after callee-saved).
if (frame()->GetReturnSlotCount() > 0) {
__ sub(esp, Immediate(frame()->GetReturnSlotCount() * kPointerSize));
}
}
void CodeGenerator::AssembleReturn(InstructionOperand* pop) {
@ -3514,6 +3541,10 @@ void CodeGenerator::AssembleReturn(InstructionOperand* pop) {
const RegList saves = descriptor->CalleeSavedRegisters();
// Restore registers.
if (saves != 0) {
const int returns = frame()->GetReturnSlotCount();
if (returns != 0) {
__ add(esp, Immediate(returns * kPointerSize));
}
for (int i = 0; i < Register::kNumRegisters; i++) {
if (!((1 << i) & saves)) continue;
__ pop(Register::from_code(i));

View File

@ -111,6 +111,9 @@ namespace compiler {
V(IA32PushFloat32) \
V(IA32PushFloat64) \
V(IA32Poke) \
V(IA32Peek) \
V(IA32PeekFloat32) \
V(IA32PeekFloat64) \
V(IA32StackCheck) \
V(SSEF32x4Splat) \
V(AVXF32x4Splat) \

View File

@ -263,6 +263,9 @@ int InstructionScheduler::GetTargetInstructionFlags(
return instr->HasOutput() ? kIsLoadOperation : kHasSideEffect;
case kIA32StackCheck:
case kIA32Peek:
case kIA32PeekFloat32:
case kIA32PeekFloat64:
return kIsLoadOperation;
case kIA32Push:

View File

@ -1114,11 +1114,11 @@ void InstructionSelector::EmitPrepareArguments(
// Poke any stack arguments.
for (size_t n = 0; n < arguments->size(); ++n) {
PushParameter input = (*arguments)[n];
if (input.node()) {
if (input.node) {
int const slot = static_cast<int>(n);
InstructionOperand value = g.CanBeImmediate(node)
? g.UseImmediate(input.node())
: g.UseRegister(input.node());
? g.UseImmediate(input.node)
: g.UseRegister(input.node);
Emit(kIA32Poke | MiscField::encode(slot), g.NoOutput(), value);
}
}
@ -1127,28 +1127,27 @@ void InstructionSelector::EmitPrepareArguments(
int effect_level = GetEffectLevel(node);
for (PushParameter input : base::Reversed(*arguments)) {
// Skip any alignment holes in pushed nodes.
Node* input_node = input.node();
if (input.node() == nullptr) continue;
if (g.CanBeMemoryOperand(kIA32Push, node, input_node, effect_level)) {
if (input.node == nullptr) continue;
if (g.CanBeMemoryOperand(kIA32Push, node, input.node, effect_level)) {
InstructionOperand outputs[1];
InstructionOperand inputs[4];
size_t input_count = 0;
InstructionCode opcode = kIA32Push;
AddressingMode mode = g.GetEffectiveAddressMemoryOperand(
input_node, inputs, &input_count);
input.node, inputs, &input_count);
opcode |= AddressingModeField::encode(mode);
Emit(opcode, 0, outputs, input_count, inputs);
} else {
InstructionOperand value =
g.CanBeImmediate(input.node())
? g.UseImmediate(input.node())
g.CanBeImmediate(input.node)
? g.UseImmediate(input.node)
: IsSupported(ATOM) ||
sequence()->IsFP(GetVirtualRegister(input.node()))
? g.UseRegister(input.node())
: g.Use(input.node());
if (input.type() == MachineType::Float32()) {
sequence()->IsFP(GetVirtualRegister(input.node))
? g.UseRegister(input.node)
: g.Use(input.node);
if (input.location.GetType() == MachineType::Float32()) {
Emit(kIA32PushFloat32, g.NoOutput(), value);
} else if (input.type() == MachineType::Float64()) {
} else if (input.location.GetType() == MachineType::Float64()) {
Emit(kIA32PushFloat64, g.NoOutput(), value);
} else {
Emit(kIA32Push, g.NoOutput(), value);
@ -1158,6 +1157,33 @@ void InstructionSelector::EmitPrepareArguments(
}
}
void InstructionSelector::EmitPrepareResults(ZoneVector<PushParameter>* results,
const CallDescriptor* descriptor,
Node* node) {
IA32OperandGenerator g(this);
int reverse_slot = 0;
for (PushParameter output : *results) {
if (!output.location.IsCallerFrameSlot()) continue;
reverse_slot += output.location.GetSizeInPointers();
// Skip any alignment holes in nodes.
if (output.node == nullptr) continue;
DCHECK(!descriptor->IsCFunctionCall());
if (output.location.GetType() == MachineType::Float32()) {
MarkAsFloat32(output.node);
InstructionOperand result = g.DefineAsRegister(output.node);
Emit(kIA32PeekFloat32 | MiscField::encode(reverse_slot), result);
} else if (output.location.GetType() == MachineType::Float64()) {
MarkAsFloat64(output.node);
InstructionOperand result = g.DefineAsRegister(output.node);
Emit(kIA32PeekFloat64 | MiscField::encode(reverse_slot - 1), result);
} else {
InstructionOperand result = g.DefineAsRegister(output.node);
Emit(kIA32Peek | MiscField::encode(reverse_slot), result);
}
}
}
bool InstructionSelector::IsTailCallAddressImmediate() { return true; }

View File

@ -668,7 +668,7 @@ struct CallBuffer {
const CallDescriptor* descriptor;
FrameStateDescriptor* frame_state_descriptor;
NodeVector output_nodes;
ZoneVector<PushParameter> output_nodes;
InstructionOperandVector outputs;
InstructionOperandVector instruction_args;
ZoneVector<PushParameter> pushed_nodes;
@ -702,17 +702,28 @@ void InstructionSelector::InitializeCallBuffer(Node* call, CallBuffer* buffer,
if (buffer->descriptor->ReturnCount() > 0) {
// Collect the projections that represent multiple outputs from this call.
if (buffer->descriptor->ReturnCount() == 1) {
buffer->output_nodes.push_back(call);
PushParameter result = {call, buffer->descriptor->GetReturnLocation(0)};
buffer->output_nodes.push_back(result);
} else {
buffer->output_nodes.resize(buffer->descriptor->ReturnCount(), nullptr);
buffer->output_nodes.resize(buffer->descriptor->ReturnCount());
int stack_count = 0;
for (Edge const edge : call->use_edges()) {
if (!NodeProperties::IsValueEdge(edge)) continue;
DCHECK_EQ(IrOpcode::kProjection, edge.from()->opcode());
size_t const index = ProjectionIndexOf(edge.from()->op());
Node* node = edge.from();
DCHECK_EQ(IrOpcode::kProjection, node->opcode());
size_t const index = ProjectionIndexOf(node->op());
DCHECK_LT(index, buffer->output_nodes.size());
DCHECK(!buffer->output_nodes[index]);
buffer->output_nodes[index] = edge.from();
DCHECK(!buffer->output_nodes[index].node);
PushParameter result = {node,
buffer->descriptor->GetReturnLocation(index)};
buffer->output_nodes[index] = result;
if (result.location.IsCallerFrameSlot()) {
stack_count += result.location.GetSizeInPointers();
}
}
frame_->EnsureReturnSlots(stack_count);
}
// Filter out the outputs that aren't live because no projection uses them.
@ -722,22 +733,22 @@ void InstructionSelector::InitializeCallBuffer(Node* call, CallBuffer* buffer,
: buffer->frame_state_descriptor->state_combine()
.ConsumedOutputCount();
for (size_t i = 0; i < buffer->output_nodes.size(); i++) {
bool output_is_live = buffer->output_nodes[i] != nullptr ||
bool output_is_live = buffer->output_nodes[i].node != nullptr ||
i < outputs_needed_by_framestate;
if (output_is_live) {
MachineRepresentation rep =
buffer->descriptor->GetReturnType(static_cast<int>(i))
.representation();
LinkageLocation location =
buffer->descriptor->GetReturnLocation(static_cast<int>(i));
LinkageLocation location = buffer->output_nodes[i].location;
MachineRepresentation rep = location.GetType().representation();
Node* output = buffer->output_nodes[i];
Node* output = buffer->output_nodes[i].node;
InstructionOperand op = output == nullptr
? g.TempLocation(location)
: g.DefineAsLocation(output, location);
MarkAsRepresentation(rep, op);
buffer->outputs.push_back(op);
if (!UnallocatedOperand::cast(op).HasFixedSlotPolicy()) {
buffer->outputs.push_back(op);
buffer->output_nodes[i].node = nullptr;
}
}
}
}
@ -842,8 +853,8 @@ void InstructionSelector::InitializeCallBuffer(Node* call, CallBuffer* buffer,
if (static_cast<size_t>(stack_index) >= buffer->pushed_nodes.size()) {
buffer->pushed_nodes.resize(stack_index + 1);
}
PushParameter parameter(*iter, buffer->descriptor->GetInputType(index));
buffer->pushed_nodes[stack_index] = parameter;
PushParameter param = {*iter, location};
buffer->pushed_nodes[stack_index] = param;
pushed_count++;
} else {
buffer->instruction_args.push_back(op);
@ -2423,6 +2434,8 @@ void InstructionSelector::VisitCall(Node* node, BasicBlock* handler) {
&buffer.instruction_args.front());
if (instruction_selection_failed()) return;
call_instr->MarkAsCall();
EmitPrepareResults(&(buffer.output_nodes), descriptor, node);
}
void InstructionSelector::VisitCallWithCallerSavedRegisters(

View File

@ -10,6 +10,7 @@
#include "src/compiler/common-operator.h"
#include "src/compiler/instruction-scheduler.h"
#include "src/compiler/instruction.h"
#include "src/compiler/linkage.h"
#include "src/compiler/machine-operator.h"
#include "src/compiler/node.h"
#include "src/globals.h"
@ -30,17 +31,13 @@ class StateObjectDeduplicator;
// This struct connects nodes of parameters which are going to be pushed on the
// call stack with their parameter index in the call descriptor of the callee.
class PushParameter {
public:
PushParameter() : node_(nullptr), type_(MachineType::None()) {}
PushParameter(Node* node, MachineType type) : node_(node), type_(type) {}
struct PushParameter {
PushParameter(Node* n = nullptr,
LinkageLocation l = LinkageLocation::ForAnyRegister())
: node(n), location(l) {}
Node* node() const { return node_; }
MachineType type() const { return type_; }
private:
Node* node_;
MachineType type_;
Node* node;
LinkageLocation location;
};
enum class FrameStateInputKind { kAny, kStackSlot };
@ -353,6 +350,8 @@ class V8_EXPORT_PRIVATE InstructionSelector final {
void EmitPrepareArguments(ZoneVector<compiler::PushParameter>* arguments,
const CallDescriptor* descriptor, Node* node);
void EmitPrepareResults(ZoneVector<compiler::PushParameter>* results,
const CallDescriptor* descriptor, Node* node);
void EmitIdentity(Node* node);
bool CanProduceSignalingNaN(Node* node);

View File

@ -316,9 +316,10 @@ void Int64Lowering::LowerNode(Node* node) {
case IrOpcode::kTailCall: {
CallDescriptor* descriptor =
const_cast<CallDescriptor*>(CallDescriptorOf(node->op()));
if (DefaultLowering(node) ||
(descriptor->ReturnCount() == 1 &&
descriptor->GetReturnType(0) == MachineType::Int64())) {
bool returns_require_lowering =
GetReturnCountAfterLowering(descriptor) !=
static_cast<int>(descriptor->ReturnCount());
if (DefaultLowering(node) || returns_require_lowering) {
// Tail calls do not have return values, so adjusting the call
// descriptor is enough.
auto new_descriptor = GetI32WasmCallDescriptor(zone(), descriptor);

View File

@ -197,12 +197,14 @@ class V8_EXPORT_PRIVATE CallDescriptor final
RegList callee_saved_registers,
RegList callee_saved_fp_registers, Flags flags,
const char* debug_name = "",
const RegList allocatable_registers = 0)
const RegList allocatable_registers = 0,
size_t stack_return_count = 0)
: kind_(kind),
target_type_(target_type),
target_loc_(target_loc),
location_sig_(location_sig),
stack_param_count_(stack_param_count),
stack_return_count_(stack_return_count),
properties_(properties),
callee_saved_registers_(callee_saved_registers),
callee_saved_fp_registers_(callee_saved_fp_registers),
@ -232,6 +234,9 @@ class V8_EXPORT_PRIVATE CallDescriptor final
// The number of stack parameters to the call.
size_t StackParameterCount() const { return stack_param_count_; }
// The number of stack return values from the call.
size_t StackReturnCount() const { return stack_return_count_; }
// The number of parameters to the JS function call.
size_t JSParameterCount() const {
DCHECK(IsJSFunctionCall());
@ -318,6 +323,7 @@ class V8_EXPORT_PRIVATE CallDescriptor final
const LinkageLocation target_loc_;
const LocationSignature* const location_sig_;
const size_t stack_param_count_;
const size_t stack_return_count_;
const Operator::Properties properties_;
const RegList callee_saved_registers_;
const RegList callee_saved_fp_registers_;

View File

@ -1181,8 +1181,8 @@ void InstructionSelector::EmitPrepareArguments(
// Poke any stack arguments.
int slot = kCArgSlotCount;
for (PushParameter input : (*arguments)) {
if (input.node()) {
Emit(kMipsStoreToStackSlot, g.NoOutput(), g.UseRegister(input.node()),
if (input.node) {
Emit(kMipsStoreToStackSlot, g.NoOutput(), g.UseRegister(input.node),
g.TempImmediate(slot << kPointerSizeLog2));
++slot;
}
@ -1196,14 +1196,19 @@ void InstructionSelector::EmitPrepareArguments(
}
for (size_t n = 0; n < arguments->size(); ++n) {
PushParameter input = (*arguments)[n];
if (input.node()) {
Emit(kMipsStoreToStackSlot, g.NoOutput(), g.UseRegister(input.node()),
if (input.node) {
Emit(kMipsStoreToStackSlot, g.NoOutput(), g.UseRegister(input.node),
g.TempImmediate(n << kPointerSizeLog2));
}
}
}
}
void InstructionSelector::EmitPrepareResults(ZoneVector<PushParameter>* results,
const CallDescriptor* descriptor,
Node* node) {
// TODO(ahaas): Port.
}
bool InstructionSelector::IsTailCallAddressImmediate() { return false; }

View File

@ -1676,7 +1676,7 @@ void InstructionSelector::EmitPrepareArguments(
// Poke any stack arguments.
int slot = kCArgSlotCount;
for (PushParameter input : (*arguments)) {
Emit(kMips64StoreToStackSlot, g.NoOutput(), g.UseRegister(input.node()),
Emit(kMips64StoreToStackSlot, g.NoOutput(), g.UseRegister(input.node),
g.TempImmediate(slot << kPointerSizeLog2));
++slot;
}
@ -1688,14 +1688,19 @@ void InstructionSelector::EmitPrepareArguments(
}
for (size_t n = 0; n < arguments->size(); ++n) {
PushParameter input = (*arguments)[n];
if (input.node()) {
Emit(kMips64StoreToStackSlot, g.NoOutput(), g.UseRegister(input.node()),
if (input.node) {
Emit(kMips64StoreToStackSlot, g.NoOutput(), g.UseRegister(input.node),
g.TempImmediate(static_cast<int>(n << kPointerSizeLog2)));
}
}
}
}
void InstructionSelector::EmitPrepareResults(ZoneVector<PushParameter>* results,
const CallDescriptor* descriptor,
Node* node) {
// TODO(ahaas): Port.
}
bool InstructionSelector::IsTailCallAddressImmediate() { return false; }

View File

@ -134,7 +134,6 @@ void RawMachineAssembler::Return(Node* value) {
current_block_ = nullptr;
}
void RawMachineAssembler::Return(Node* v1, Node* v2) {
Node* values[] = {Int32Constant(0), v1, v2};
Node* ret = MakeNode(common()->Return(2), 3, values);
@ -142,7 +141,6 @@ void RawMachineAssembler::Return(Node* v1, Node* v2) {
current_block_ = nullptr;
}
void RawMachineAssembler::Return(Node* v1, Node* v2, Node* v3) {
Node* values[] = {Int32Constant(0), v1, v2, v3};
Node* ret = MakeNode(common()->Return(3), 4, values);
@ -150,6 +148,24 @@ void RawMachineAssembler::Return(Node* v1, Node* v2, Node* v3) {
current_block_ = nullptr;
}
void RawMachineAssembler::Return(Node* v1, Node* v2, Node* v3, Node* v4) {
Node* values[] = {Int32Constant(0), v1, v2, v3, v4};
Node* ret = MakeNode(common()->Return(4), 5, values);
schedule()->AddReturn(CurrentBlock(), ret);
current_block_ = nullptr;
}
void RawMachineAssembler::Return(int count, Node* vs[]) {
typedef Node* Node_ptr;
Node** values = new Node_ptr[count + 1];
values[0] = Int32Constant(0);
for (int i = 0; i < count; ++i) values[i + 1] = vs[i];
Node* ret = MakeNode(common()->Return(count), count + 1, values);
schedule()->AddReturn(CurrentBlock(), ret);
current_block_ = nullptr;
delete[] values;
}
void RawMachineAssembler::PopAndReturn(Node* pop, Node* value) {
Node* values[] = {pop, value};
Node* ret = MakeNode(common()->Return(1), 2, values);
@ -172,6 +188,14 @@ void RawMachineAssembler::PopAndReturn(Node* pop, Node* v1, Node* v2,
current_block_ = nullptr;
}
void RawMachineAssembler::PopAndReturn(Node* pop, Node* v1, Node* v2, Node* v3,
Node* v4) {
Node* values[] = {pop, v1, v2, v3, v4};
Node* ret = MakeNode(common()->Return(4), 5, values);
schedule()->AddReturn(CurrentBlock(), ret);
current_block_ = nullptr;
}
void RawMachineAssembler::DebugAbort(Node* message) {
AddNode(machine()->DebugAbort(), message);
}

View File

@ -828,9 +828,12 @@ class V8_EXPORT_PRIVATE RawMachineAssembler {
void Return(Node* value);
void Return(Node* v1, Node* v2);
void Return(Node* v1, Node* v2, Node* v3);
void Return(Node* v1, Node* v2, Node* v3, Node* v4);
void Return(int count, Node* v[]);
void PopAndReturn(Node* pop, Node* value);
void PopAndReturn(Node* pop, Node* v1, Node* v2);
void PopAndReturn(Node* pop, Node* v1, Node* v2, Node* v3);
void PopAndReturn(Node* pop, Node* v1, Node* v2, Node* v3, Node* v4);
void Bind(RawMachineLabel* label);
void Deoptimize(Node* state);
void DebugAbort(Node* message);

View File

@ -47,7 +47,7 @@ LinkageLocation stackloc(int i, MachineType type) {
// == ia32 ===================================================================
// ===========================================================================
#define GP_PARAM_REGISTERS esi, eax, edx, ecx, ebx
#define GP_RETURN_REGISTERS eax, edx, ecx
#define GP_RETURN_REGISTERS eax, edx
#define FP_PARAM_REGISTERS xmm1, xmm2, xmm3, xmm4, xmm5, xmm6
#define FP_RETURN_REGISTERS xmm1, xmm2
@ -56,7 +56,7 @@ LinkageLocation stackloc(int i, MachineType type) {
// == x64 ====================================================================
// ===========================================================================
#define GP_PARAM_REGISTERS rsi, rax, rdx, rcx, rbx, rdi
#define GP_RETURN_REGISTERS rax, rdx, rcx
#define GP_RETURN_REGISTERS rax, rdx
#define FP_PARAM_REGISTERS xmm1, xmm2, xmm3, xmm4, xmm5, xmm6
#define FP_RETURN_REGISTERS xmm1, xmm2
@ -65,7 +65,7 @@ LinkageLocation stackloc(int i, MachineType type) {
// == arm ====================================================================
// ===========================================================================
#define GP_PARAM_REGISTERS r3, r0, r1, r2
#define GP_RETURN_REGISTERS r0, r1, r3
#define GP_RETURN_REGISTERS r0, r1
#define FP_PARAM_REGISTERS d0, d1, d2, d3, d4, d5, d6, d7
#define FP_RETURN_REGISTERS d0, d1
@ -74,7 +74,7 @@ LinkageLocation stackloc(int i, MachineType type) {
// == arm64 ====================================================================
// ===========================================================================
#define GP_PARAM_REGISTERS x7, x0, x1, x2, x3, x4, x5, x6
#define GP_RETURN_REGISTERS x0, x1, x2
#define GP_RETURN_REGISTERS x0, x1
#define FP_PARAM_REGISTERS d0, d1, d2, d3, d4, d5, d6, d7
#define FP_RETURN_REGISTERS d0, d1
@ -83,7 +83,7 @@ LinkageLocation stackloc(int i, MachineType type) {
// == mips ===================================================================
// ===========================================================================
#define GP_PARAM_REGISTERS a0, a1, a2, a3
#define GP_RETURN_REGISTERS v0, v1, t7
#define GP_RETURN_REGISTERS v0, v1
#define FP_PARAM_REGISTERS f2, f4, f6, f8, f10, f12, f14
#define FP_RETURN_REGISTERS f2, f4
@ -92,7 +92,7 @@ LinkageLocation stackloc(int i, MachineType type) {
// == mips64 =================================================================
// ===========================================================================
#define GP_PARAM_REGISTERS a0, a1, a2, a3, a4, a5, a6, a7
#define GP_RETURN_REGISTERS v0, v1, t3
#define GP_RETURN_REGISTERS v0, v1
#define FP_PARAM_REGISTERS f2, f4, f6, f8, f10, f12, f14
#define FP_RETURN_REGISTERS f2, f4
@ -101,7 +101,7 @@ LinkageLocation stackloc(int i, MachineType type) {
// == ppc & ppc64 ============================================================
// ===========================================================================
#define GP_PARAM_REGISTERS r10, r3, r4, r5, r6, r7, r8, r9
#define GP_RETURN_REGISTERS r3, r4, r5
#define GP_RETURN_REGISTERS r3, r4
#define FP_PARAM_REGISTERS d1, d2, d3, d4, d5, d6, d7, d8
#define FP_RETURN_REGISTERS d1, d2
@ -110,7 +110,7 @@ LinkageLocation stackloc(int i, MachineType type) {
// == s390x ==================================================================
// ===========================================================================
#define GP_PARAM_REGISTERS r6, r2, r3, r4, r5
#define GP_RETURN_REGISTERS r2, r3, r4
#define GP_RETURN_REGISTERS r2, r3
#define FP_PARAM_REGISTERS d0, d2, d4, d6
#define FP_RETURN_REGISTERS d0, d2, d4, d6
@ -119,7 +119,7 @@ LinkageLocation stackloc(int i, MachineType type) {
// == s390 ===================================================================
// ===========================================================================
#define GP_PARAM_REGISTERS r6, r2, r3, r4, r5
#define GP_RETURN_REGISTERS r2, r3, r4
#define GP_RETURN_REGISTERS r2, r3
#define FP_PARAM_REGISTERS d0, d2
#define FP_RETURN_REGISTERS d0, d2
@ -158,6 +158,8 @@ struct Allocator {
int stack_offset;
void AdjustStackOffset(int offset) { stack_offset += offset; }
LinkageLocation Next(ValueType type) {
if (IsFloatingPoint(type)) {
// Allocate a floating point register/stack location.
@ -226,25 +228,28 @@ CallDescriptor* GetWasmCallDescriptor(Zone* zone, wasm::FunctionSig* fsig) {
LocationSignature::Builder locations(zone, fsig->return_count(),
fsig->parameter_count() + 1);
Allocator rets = return_registers;
// Add return location(s).
const int return_count = static_cast<int>(locations.return_count_);
for (int i = 0; i < return_count; i++) {
ValueType ret = fsig->GetReturn(i);
locations.AddReturn(rets.Next(ret));
}
// Add register and/or stack parameter(s).
Allocator params = parameter_registers;
// Add parameter for the wasm_context.
// The wasm_context.
locations.AddParam(params.Next(MachineType::PointerRepresentation()));
// Add register and/or stack parameter(s).
const int parameter_count = static_cast<int>(fsig->parameter_count());
for (int i = 0; i < parameter_count; i++) {
ValueType param = fsig->GetParam(i);
locations.AddParam(params.Next(param));
auto l = params.Next(param);
locations.AddParam(l);
}
// Add return location(s).
Allocator rets = return_registers;
rets.AdjustStackOffset(params.stack_offset);
const int return_count = static_cast<int>(locations.return_count_);
for (int i = 0; i < return_count; i++) {
ValueType ret = fsig->GetReturn(i);
auto l = rets.Next(ret);
locations.AddReturn(l);
}
const RegList kCalleeSaveRegisters = 0;
@ -260,17 +265,19 @@ CallDescriptor* GetWasmCallDescriptor(Zone* zone, wasm::FunctionSig* fsig) {
? CallDescriptor::kCallWasmFunction
: CallDescriptor::kCallCodeObject;
return new (zone) CallDescriptor( // --
kind, // kind
target_type, // target MachineType
target_loc, // target location
locations.Build(), // location_sig
params.stack_offset, // stack_parameter_count
compiler::Operator::kNoProperties, // properties
kCalleeSaveRegisters, // callee-saved registers
kCalleeSaveFPRegisters, // callee-saved fp regs
flags, // flags
"wasm-call");
return new (zone) CallDescriptor( // --
kind, // kind
target_type, // target MachineType
target_loc, // target location
locations.Build(), // location_sig
params.stack_offset, // stack_parameter_count
compiler::Operator::kNoProperties, // properties
kCalleeSaveRegisters, // callee-saved registers
kCalleeSaveFPRegisters, // callee-saved fp regs
flags, // flags
"wasm-call", // debug name
0, // allocatable registers
rets.stack_offset - params.stack_offset); // stack_return_count
}
CallDescriptor* ReplaceTypeInCallDescriptorWith(
@ -295,21 +302,7 @@ CallDescriptor* ReplaceTypeInCallDescriptorWith(
LocationSignature::Builder locations(zone, return_count, parameter_count);
Allocator rets = return_registers;
for (size_t i = 0; i < descriptor->ReturnCount(); i++) {
if (descriptor->GetReturnType(i) == input_type) {
for (size_t j = 0; j < num_replacements; j++) {
locations.AddReturn(rets.Next(output_type));
}
} else {
locations.AddReturn(
rets.Next(descriptor->GetReturnType(i).representation()));
}
}
Allocator params = parameter_registers;
for (size_t i = 0; i < descriptor->ParameterCount(); i++) {
if (descriptor->GetParameterType(i) == input_type) {
for (size_t j = 0; j < num_replacements; j++) {
@ -321,17 +314,32 @@ CallDescriptor* ReplaceTypeInCallDescriptorWith(
}
}
return new (zone) CallDescriptor( // --
descriptor->kind(), // kind
descriptor->GetInputType(0), // target MachineType
descriptor->GetInputLocation(0), // target location
locations.Build(), // location_sig
params.stack_offset, // stack_parameter_count
descriptor->properties(), // properties
descriptor->CalleeSavedRegisters(), // callee-saved registers
descriptor->CalleeSavedFPRegisters(), // callee-saved fp regs
descriptor->flags(), // flags
descriptor->debug_name());
Allocator rets = return_registers;
rets.AdjustStackOffset(params.stack_offset);
for (size_t i = 0; i < descriptor->ReturnCount(); i++) {
if (descriptor->GetReturnType(i) == input_type) {
for (size_t j = 0; j < num_replacements; j++) {
locations.AddReturn(rets.Next(output_type));
}
} else {
locations.AddReturn(
rets.Next(descriptor->GetReturnType(i).representation()));
}
}
return new (zone) CallDescriptor( // --
descriptor->kind(), // kind
descriptor->GetInputType(0), // target MachineType
descriptor->GetInputLocation(0), // target location
locations.Build(), // location_sig
params.stack_offset, // stack_parameter_count
descriptor->properties(), // properties
descriptor->CalleeSavedRegisters(), // callee-saved registers
descriptor->CalleeSavedFPRegisters(), // callee-saved fp regs
descriptor->flags(), // flags
descriptor->debug_name(), // debug name
descriptor->AllocatableRegisters(), // allocatable registers
rets.stack_offset - params.stack_offset); // stack_return_count
}
CallDescriptor* GetI32WasmCallDescriptor(Zone* zone,

View File

@ -2231,7 +2231,7 @@ CodeGenerator::CodeGenResult CodeGenerator::AssembleArchInstruction(
}
break;
case kX64Poke: {
int const slot = MiscField::decode(instr->opcode());
int slot = MiscField::decode(instr->opcode());
if (HasImmediateInput(instr, 0)) {
__ movq(Operand(rsp, slot * kPointerSize), i.InputImmediate(0));
} else {
@ -2239,6 +2239,27 @@ CodeGenerator::CodeGenResult CodeGenerator::AssembleArchInstruction(
}
break;
}
case kX64PeekFloat32: {
int reverse_slot = MiscField::decode(instr->opcode());
int offset =
FrameSlotToFPOffset(frame()->GetTotalFrameSlotCount() - reverse_slot);
__ Movss(i.OutputFloatRegister(), Operand(rbp, offset));
break;
}
case kX64PeekFloat64: {
int reverse_slot = MiscField::decode(instr->opcode());
int offset =
FrameSlotToFPOffset(frame()->GetTotalFrameSlotCount() - reverse_slot);
__ Movsd(i.OutputDoubleRegister(), Operand(rbp, offset));
break;
}
case kX64Peek: {
int reverse_slot = MiscField::decode(instr->opcode());
int offset =
FrameSlotToFPOffset(frame()->GetTotalFrameSlotCount() - reverse_slot);
__ movq(i.OutputRegister(), Operand(rbp, offset));
break;
}
// TODO(gdeepti): Get rid of redundant moves for F32x4Splat/Extract below
case kX64F32x4Splat: {
XMMRegister dst = i.OutputSimd128Register();
@ -3206,9 +3227,10 @@ void CodeGenerator::AssembleConstructFrame() {
__ bind(&done);
}
// Skip callee-saved slots, which are pushed below.
// Skip callee-saved and return slots, which are created below.
shrink_slots -= base::bits::CountPopulation(saves);
shrink_slots -= base::bits::CountPopulation(saves_fp);
shrink_slots -= frame()->GetReturnSlotCount();
if (shrink_slots > 0) {
__ subq(rsp, Immediate(shrink_slots * kPointerSize));
}
@ -3235,6 +3257,11 @@ void CodeGenerator::AssembleConstructFrame() {
__ pushq(Register::from_code(i));
}
}
// Allocate return slots (located after callee-saved).
if (frame()->GetReturnSlotCount() > 0) {
__ subq(rsp, Immediate(frame()->GetReturnSlotCount() * kPointerSize));
}
}
void CodeGenerator::AssembleReturn(InstructionOperand* pop) {
@ -3243,6 +3270,10 @@ void CodeGenerator::AssembleReturn(InstructionOperand* pop) {
// Restore registers.
const RegList saves = descriptor->CalleeSavedRegisters();
if (saves != 0) {
const int returns = frame()->GetReturnSlotCount();
if (returns != 0) {
__ addq(rsp, Immediate(returns * kPointerSize));
}
for (int i = 0; i < Register::kNumRegisters; i++) {
if (!((1 << i) & saves)) continue;
__ popq(Register::from_code(i));

View File

@ -143,6 +143,9 @@ namespace compiler {
V(X64Inc32) \
V(X64Push) \
V(X64Poke) \
V(X64Peek) \
V(X64PeekFloat32) \
V(X64PeekFloat64) \
V(X64StackCheck) \
V(X64F32x4Splat) \
V(X64F32x4ExtractLane) \

View File

@ -254,6 +254,9 @@ int InstructionScheduler::GetTargetInstructionFlags(
return instr->HasOutput() ? kIsLoadOperation : kHasSideEffect;
case kX64StackCheck:
case kX64Peek:
case kX64PeekFloat32:
case kX64PeekFloat64:
return kIsLoadOperation;
case kX64Push:

View File

@ -1540,11 +1540,11 @@ void InstructionSelector::EmitPrepareArguments(
// Poke any stack arguments.
for (size_t n = 0; n < arguments->size(); ++n) {
PushParameter input = (*arguments)[n];
if (input.node()) {
if (input.node) {
int slot = static_cast<int>(n);
InstructionOperand value = g.CanBeImmediate(input.node())
? g.UseImmediate(input.node())
: g.UseRegister(input.node());
InstructionOperand value = g.CanBeImmediate(input.node)
? g.UseImmediate(input.node)
: g.UseRegister(input.node);
Emit(kX64Poke | MiscField::encode(slot), g.NoOutput(), value);
}
}
@ -1552,31 +1552,56 @@ void InstructionSelector::EmitPrepareArguments(
// Push any stack arguments.
int effect_level = GetEffectLevel(node);
for (PushParameter input : base::Reversed(*arguments)) {
Node* input_node = input.node();
if (g.CanBeImmediate(input_node)) {
Emit(kX64Push, g.NoOutput(), g.UseImmediate(input_node));
if (g.CanBeImmediate(input.node)) {
Emit(kX64Push, g.NoOutput(), g.UseImmediate(input.node));
} else if (IsSupported(ATOM) ||
sequence()->IsFP(GetVirtualRegister(input_node))) {
sequence()->IsFP(GetVirtualRegister(input.node))) {
// TODO(titzer): X64Push cannot handle stack->stack double moves
// because there is no way to encode fixed double slots.
Emit(kX64Push, g.NoOutput(), g.UseRegister(input_node));
} else if (g.CanBeMemoryOperand(kX64Push, node, input_node,
Emit(kX64Push, g.NoOutput(), g.UseRegister(input.node));
} else if (g.CanBeMemoryOperand(kX64Push, node, input.node,
effect_level)) {
InstructionOperand outputs[1];
InstructionOperand inputs[4];
size_t input_count = 0;
InstructionCode opcode = kX64Push;
AddressingMode mode = g.GetEffectiveAddressMemoryOperand(
input_node, inputs, &input_count);
input.node, inputs, &input_count);
opcode |= AddressingModeField::encode(mode);
Emit(opcode, 0, outputs, input_count, inputs);
} else {
Emit(kX64Push, g.NoOutput(), g.Use(input_node));
Emit(kX64Push, g.NoOutput(), g.Use(input.node));
}
}
}
}
void InstructionSelector::EmitPrepareResults(ZoneVector<PushParameter>* results,
const CallDescriptor* descriptor,
Node* node) {
X64OperandGenerator g(this);
int reverse_slot = 0;
for (PushParameter output : *results) {
if (!output.location.IsCallerFrameSlot()) continue;
reverse_slot += output.location.GetSizeInPointers();
// Skip any alignment holes in nodes.
if (output.node == nullptr) continue;
DCHECK(!descriptor->IsCFunctionCall());
if (output.location.GetType() == MachineType::Float32()) {
MarkAsFloat32(output.node);
InstructionOperand result = g.DefineAsRegister(output.node);
Emit(kX64PeekFloat32 | MiscField::encode(reverse_slot), result);
} else if (output.location.GetType() == MachineType::Float64()) {
MarkAsFloat64(output.node);
InstructionOperand result = g.DefineAsRegister(output.node);
Emit(kX64PeekFloat64 | MiscField::encode(reverse_slot), result);
} else {
InstructionOperand result = g.DefineAsRegister(output.node);
Emit(kX64Peek | MiscField::encode(reverse_slot), result);
}
}
}
bool InstructionSelector::IsTailCallAddressImmediate() { return true; }

View File

@ -113,6 +113,10 @@
'test-strings/StringOOM*': [PASS, ['mode == debug', SKIP]],
'test-serialize/CustomSnapshotDataBlobImmortalImmovableRoots': [PASS, ['mode == debug', SKIP]],
'test-parsing/ObjectRestNegativeTestSlow': [PASS, ['mode == debug', SKIP]],
# todo(ahaas): Flaky test. I want to remove this test eventually but keep it
# for now for debugging.
'test-multiple-return/ReturnMultipleRandom': [SKIP],
}], # ALWAYS
##############################################################################
@ -157,6 +161,18 @@
'test-api/Float64Array': [SKIP],
}], # 'arch == arm64 and mode == debug and simulator_run'
##############################################################################
# TODO(ahaas): Port multiple return values to ARM and MIPS
['arch == arm or arch == arm64 or arch == mips or arch == mips64 or arch == mipsel or arch == mips64el', {
'test-multiple-return/*': [SKIP],
}],
['system == windows and arch == x64', {
'test-multiple-return/ReturnMultipleInt32': [SKIP],
'test-multiple-return/ReturnMultipleInt64': [SKIP],
'test-multiple-return/ReturnMultipleFloat32': [SKIP],
'test-multiple-return/ReturnMultipleFloat64': [SKIP],
}],
##############################################################################
['asan == True', {
# Skip tests not suitable for ASAN.

View File

@ -5,6 +5,7 @@
#include <cmath>
#include <functional>
#include <limits>
#include <memory>
#include "src/assembler.h"
#include "src/base/bits.h"
@ -12,6 +13,7 @@
#include "src/codegen.h"
#include "src/compiler.h"
#include "src/compiler/linkage.h"
#include "src/machine-type.h"
#include "src/macro-assembler.h"
#include "src/objects-inl.h"
#include "test/cctest/cctest.h"
@ -24,90 +26,455 @@ namespace compiler {
namespace {
CallDescriptor* GetCallDescriptor(Zone* zone, int return_count,
int param_count) {
LocationSignature::Builder locations(zone, return_count, param_count);
const RegisterConfiguration* config = RegisterConfiguration::Default();
int index(MachineType type) { return static_cast<int>(type.representation()); }
// Add return location(s).
CHECK(return_count <= config->num_allocatable_general_registers());
for (int i = 0; i < return_count; i++) {
locations.AddReturn(LinkageLocation::ForRegister(
config->allocatable_general_codes()[i], MachineType::AnyTagged()));
int size(MachineType type) {
return 1 << ElementSizeLog2Of(type.representation());
}
bool is_float(MachineType type) {
MachineRepresentation rep = type.representation();
return rep == MachineRepresentation::kFloat32 ||
rep == MachineRepresentation::kFloat64;
}
int num_registers(MachineType type) {
const RegisterConfiguration* config = RegisterConfiguration::Default();
switch (type.representation()) {
case MachineRepresentation::kWord32:
case MachineRepresentation::kWord64:
return config->num_allocatable_general_registers();
case MachineRepresentation::kFloat32:
return config->num_allocatable_float_registers();
case MachineRepresentation::kFloat64:
return config->num_allocatable_double_registers();
default:
UNREACHABLE();
}
}
const int* codes(MachineType type) {
const RegisterConfiguration* config = RegisterConfiguration::Default();
switch (type.representation()) {
case MachineRepresentation::kWord32:
case MachineRepresentation::kWord64:
return config->allocatable_general_codes();
case MachineRepresentation::kFloat32:
return config->allocatable_float_codes();
case MachineRepresentation::kFloat64:
return config->allocatable_double_codes();
default:
UNREACHABLE();
}
}
CallDescriptor* CreateMonoCallDescriptor(Zone* zone, int return_count,
int param_count, MachineType type) {
LocationSignature::Builder locations(zone, return_count, param_count);
int span = std::max(1, size(type) / kPointerSize);
int stack_params = 0;
for (int i = 0; i < param_count; i++) {
LinkageLocation location = LinkageLocation::ForAnyRegister();
if (i < num_registers(type)) {
location = LinkageLocation::ForRegister(codes(type)[i], type);
} else {
int slot = span * (i - param_count);
location = LinkageLocation::ForCallerFrameSlot(slot, type);
stack_params += span;
}
locations.AddParam(location);
}
// Add register and/or stack parameter(s).
CHECK(param_count <= config->num_allocatable_general_registers());
for (int i = 0; i < param_count; i++) {
locations.AddParam(LinkageLocation::ForRegister(
config->allocatable_general_codes()[i], MachineType::AnyTagged()));
int stack_returns = 0;
for (int i = 0; i < return_count; i++) {
LinkageLocation location = LinkageLocation::ForAnyRegister();
if (i < num_registers(type)) {
location = LinkageLocation::ForRegister(codes(type)[i], type);
} else {
int slot = span * (num_registers(type) - i) - stack_params - 1;
location = LinkageLocation::ForCallerFrameSlot(slot, type);
stack_returns += span;
}
locations.AddReturn(location);
}
const RegList kCalleeSaveRegisters = 0;
const RegList kCalleeSaveFPRegisters = 0;
// The target for wasm calls is always a code object.
MachineType target_type = MachineType::AnyTagged();
LinkageLocation target_loc = LinkageLocation::ForAnyRegister();
LinkageLocation target_loc = LinkageLocation::ForAnyRegister(target_type);
return new (zone) CallDescriptor( // --
CallDescriptor::kCallCodeObject, // kind
target_type, // target MachineType
target_loc, // target location
locations.Build(), // location_sig
0, // js_parameter_count
stack_params, // on-stack parameter count
compiler::Operator::kNoProperties, // properties
kCalleeSaveRegisters, // callee-saved registers
kCalleeSaveFPRegisters, // callee-saved fp regs
CallDescriptor::kNoFlags, // flags
"c-call");
"c-call", // debug name
0, // allocatable registers
stack_returns); // on-stack return count
}
MachineType RandomType(v8::base::RandomNumberGenerator* rng) {
switch (rng->NextInt(4)) {
case 0:
#if (!V8_TARGET_ARCH_32_BIT)
return MachineType::Int64();
// Else fall through.
#endif
case 1:
return MachineType::Int32();
case 2:
return MachineType::Float32();
case 3:
return MachineType::Float64();
default:
UNREACHABLE();
}
}
LinkageLocation alloc(MachineType type, int* int_count, int* float_count,
int* stack_slots) {
int* count = is_float(type) ? float_count : int_count;
LinkageLocation location = LinkageLocation::ForAnyRegister(); // Dummy.
if (*count < num_registers(type)) {
location = LinkageLocation::ForRegister(codes(type)[*count], type);
} else {
location = LinkageLocation::ForCallerFrameSlot(-*stack_slots - 1, type);
*stack_slots += std::max(1, size(type) / kPointerSize);
}
++*count;
return location;
}
CallDescriptor* CreateRandomCallDescriptor(
Zone* zone, int return_count, int param_count,
v8::base::RandomNumberGenerator* rng) {
LocationSignature::Builder locations(zone, return_count, param_count);
int stack_slots = 0;
int int_params = 0;
int float_params = 0;
for (int i = 0; i < param_count; i++) {
MachineType type = RandomType(rng);
LinkageLocation location =
alloc(type, &int_params, &float_params, &stack_slots);
locations.AddParam(location);
}
int stack_params = stack_slots;
int int_returns = 0;
int float_returns = 0;
for (int i = 0; i < return_count; i++) {
MachineType type = RandomType(rng);
LinkageLocation location =
alloc(type, &int_returns, &float_returns, &stack_slots);
locations.AddReturn(location);
}
int stack_returns = stack_slots - stack_params;
MachineType target_type = MachineType::AnyTagged();
LinkageLocation target_loc = LinkageLocation::ForAnyRegister(target_type);
return new (zone) CallDescriptor( // --
CallDescriptor::kCallCodeObject, // kind
target_type, // target MachineType
target_loc, // target location
locations.Build(), // location_sig
stack_params, // on-stack parameter count
compiler::Operator::kNoProperties, // properties
0, // callee-saved registers
0, // callee-saved fp regs
CallDescriptor::kNoFlags, // flags
"c-call", // debug name
0, // allocatable registers
stack_returns); // on-stack return count
}
} // namespace
TEST(ReturnThreeValues) {
v8::internal::AccountingAllocator allocator;
Zone zone(&allocator, ZONE_NAME);
CallDescriptor* desc = GetCallDescriptor(&zone, 3, 2);
HandleAndZoneScope handles;
RawMachineAssembler m(handles.main_isolate(),
new (handles.main_zone()) Graph(handles.main_zone()),
desc, MachineType::PointerRepresentation(),
InstructionSelector::SupportedMachineOperatorFlags());
Node* p0 = m.Parameter(0);
Node* p1 = m.Parameter(1);
Node* add = m.Int32Add(p0, p1);
Node* sub = m.Int32Sub(p0, p1);
Node* mul = m.Int32Mul(p0, p1);
m.Return(add, sub, mul);
CompilationInfo info(ArrayVector("testing"), handles.main_zone(), Code::STUB);
Handle<Code> code = Pipeline::GenerateCodeForTesting(
&info, handles.main_isolate(), desc, m.graph(), m.Export());
#ifdef ENABLE_DISASSEMBLER
if (FLAG_print_code) {
OFStream os(stdout);
code->Disassemble("three_value", os);
Node* Constant(RawMachineAssembler& m, MachineType type, int value) {
switch (type.representation()) {
case MachineRepresentation::kWord32:
return m.Int32Constant(static_cast<int32_t>(value));
case MachineRepresentation::kWord64:
return m.Int64Constant(static_cast<int64_t>(value));
case MachineRepresentation::kFloat32:
return m.Float32Constant(static_cast<float>(value));
case MachineRepresentation::kFloat64:
return m.Float64Constant(static_cast<double>(value));
default:
UNREACHABLE();
}
}
Node* Add(RawMachineAssembler& m, MachineType type, Node* a, Node* b) {
switch (type.representation()) {
case MachineRepresentation::kWord32:
return m.Int32Add(a, b);
case MachineRepresentation::kWord64:
return m.Int64Add(a, b);
case MachineRepresentation::kFloat32:
return m.Float32Add(a, b);
case MachineRepresentation::kFloat64:
return m.Float64Add(a, b);
default:
UNREACHABLE();
}
}
Node* Sub(RawMachineAssembler& m, MachineType type, Node* a, Node* b) {
switch (type.representation()) {
case MachineRepresentation::kWord32:
return m.Int32Sub(a, b);
case MachineRepresentation::kWord64:
return m.Int64Sub(a, b);
case MachineRepresentation::kFloat32:
return m.Float32Sub(a, b);
case MachineRepresentation::kFloat64:
return m.Float64Sub(a, b);
default:
UNREACHABLE();
}
}
Node* Mul(RawMachineAssembler& m, MachineType type, Node* a, Node* b) {
switch (type.representation()) {
case MachineRepresentation::kWord32:
return m.Int32Mul(a, b);
case MachineRepresentation::kWord64:
return m.Int64Mul(a, b);
case MachineRepresentation::kFloat32:
return m.Float32Mul(a, b);
case MachineRepresentation::kFloat64:
return m.Float64Mul(a, b);
default:
UNREACHABLE();
}
}
Node* ToInt32(RawMachineAssembler& m, MachineType type, Node* a) {
switch (type.representation()) {
case MachineRepresentation::kWord32:
return a;
case MachineRepresentation::kWord64:
return m.TruncateInt64ToInt32(a);
case MachineRepresentation::kFloat32:
return m.TruncateFloat32ToInt32(a);
case MachineRepresentation::kFloat64:
return m.RoundFloat64ToInt32(a);
default:
UNREACHABLE();
}
}
void TestReturnMultipleValues(MachineType type) {
const int kMaxCount = 20;
for (int count = 0; count < kMaxCount; ++count) {
printf("\n==== type = %s, count = %d ====\n\n\n",
MachineReprToString(type.representation()), count);
v8::internal::AccountingAllocator allocator;
Zone zone(&allocator, ZONE_NAME);
CallDescriptor* desc = CreateMonoCallDescriptor(&zone, count, 2, type);
HandleAndZoneScope handles;
RawMachineAssembler m(handles.main_isolate(),
new (handles.main_zone()) Graph(handles.main_zone()),
desc, MachineType::PointerRepresentation(),
InstructionSelector::SupportedMachineOperatorFlags());
Node* p0 = m.Parameter(0);
Node* p1 = m.Parameter(1);
typedef Node* Node_ptr;
std::unique_ptr<Node_ptr[]> returns(new Node_ptr[count]);
for (int i = 0; i < count; ++i) {
if (i % 3 == 0) returns[i] = Add(m, type, p0, p1);
if (i % 3 == 1) returns[i] = Sub(m, type, p0, p1);
if (i % 3 == 2) returns[i] = Mul(m, type, p0, p1);
}
m.Return(count, returns.get());
CompilationInfo info(ArrayVector("testing"), handles.main_zone(),
Code::STUB);
Handle<Code> code = Pipeline::GenerateCodeForTesting(
&info, handles.main_isolate(), desc, m.graph(), m.Export());
#ifdef ENABLE_DISASSEMBLER
if (FLAG_print_code) {
OFStream os(stdout);
code->Disassemble("multi_value", os);
}
#endif
RawMachineAssemblerTester<int32_t> mt;
Node* a = mt.Int32Constant(123);
Node* b = mt.Int32Constant(456);
Node* ret3 = mt.AddNode(mt.common()->Call(desc), mt.HeapConstant(code), a, b);
Node* x = mt.AddNode(mt.common()->Projection(0), ret3);
Node* y = mt.AddNode(mt.common()->Projection(1), ret3);
Node* z = mt.AddNode(mt.common()->Projection(2), ret3);
Node* ret = mt.Int32Add(mt.Int32Add(x, y), z);
mt.Return(ret);
const int a = 47, b = 12;
int expect = 0;
for (int i = 0, sign = +1; i < count; ++i) {
if (i % 3 == 0) expect += sign * (a + b);
if (i % 3 == 1) expect += sign * (a - b);
if (i % 3 == 2) expect += sign * (a * b);
if (i % 4 == 0) sign = -sign;
}
RawMachineAssemblerTester<int32_t> mt;
Node* na = Constant(mt, type, a);
Node* nb = Constant(mt, type, b);
Node* ret_multi =
mt.AddNode(mt.common()->Call(desc), mt.HeapConstant(code), na, nb);
Node* ret = Constant(mt, type, 0);
bool sign = false;
for (int i = 0; i < count; ++i) {
Node* x = (count == 1)
? ret_multi
: mt.AddNode(mt.common()->Projection(i), ret_multi);
ret = sign ? Sub(mt, type, ret, x) : Add(mt, type, ret, x);
if (i % 4 == 0) sign = !sign;
}
mt.Return(ToInt32(mt, type, ret));
#ifdef ENABLE_DISASSEMBLER
Handle<Code> code2 = mt.GetCode();
if (FLAG_print_code) {
OFStream os(stdout);
code2->Disassemble("three_value_call", os);
}
Handle<Code> code2 = mt.GetCode();
if (FLAG_print_code) {
OFStream os(stdout);
code2->Disassemble("multi_value_call", os);
}
#endif
CHECK_EQ((123 + 456) + (123 - 456) + (123 * 456), mt.Call());
CHECK_EQ(expect, mt.Call());
}
}
#define TEST_MULTI(Type, type) \
TEST(ReturnMultiple##Type) { TestReturnMultipleValues(type); }
TEST_MULTI(Int32, MachineType::Int32())
#if (!V8_TARGET_ARCH_32_BIT)
TEST_MULTI(Int64, MachineType::Int64())
#endif
TEST_MULTI(Float32, MachineType::Float32())
TEST_MULTI(Float64, MachineType::Float64())
#undef TEST_MULTI
TEST(ReturnMultipleRandom) {
// TODO(titzer): Test without RNG?
v8::base::RandomNumberGenerator* rng(CcTest::random_number_generator());
const int kNumberOfRuns = 10;
for (int run = 0; run < kNumberOfRuns; ++run) {
printf("\n==== Run %d ====\n\n", run);
v8::internal::AccountingAllocator allocator;
Zone zone(&allocator, ZONE_NAME);
// Create randomized descriptor.
int param_count = rng->NextInt(20);
int return_count = rng->NextInt(10);
CallDescriptor* desc =
CreateRandomCallDescriptor(&zone, return_count, param_count, rng);
printf("[");
for (size_t j = 0; j < desc->ParameterCount(); ++j) {
printf(" %s",
MachineReprToString(desc->GetParameterType(j).representation()));
}
printf(" ] -> [");
for (size_t j = 0; j < desc->ReturnCount(); ++j) {
printf(" %s",
MachineReprToString(desc->GetReturnType(j).representation()));
}
printf(" ]\n\n");
// Count parameters of each type.
const size_t num_types =
static_cast<size_t>(MachineRepresentation::kLastRepresentation) + 1;
std::unique_ptr<int[]> counts(new int[num_types]);
for (size_t i = 0; i < num_types; ++i) {
counts[i] = 0;
}
for (size_t i = 0; i < desc->ParameterCount(); ++i) {
++counts[index(desc->GetParameterType(i))];
}
// Generate random inputs.
std::unique_ptr<int[]> inputs(new int[desc->ParameterCount()]);
std::unique_ptr<int[]> outputs(new int[desc->ReturnCount()]);
for (size_t i = 0; i < desc->ParameterCount(); ++i) {
inputs[i] = rng->NextInt(10000);
}
HandleAndZoneScope handles;
RawMachineAssembler m(handles.main_isolate(),
new (handles.main_zone()) Graph(handles.main_zone()),
desc, MachineType::PointerRepresentation(),
InstructionSelector::SupportedMachineOperatorFlags());
// Generate Callee, returning random picks of its parameters.
typedef Node* Node_ptr;
std::unique_ptr<Node_ptr[]> params(
new Node_ptr[desc->ParameterCount() + 1]);
std::unique_ptr<Node_ptr[]> returns(new Node_ptr[desc->ReturnCount()]);
for (size_t i = 0; i < desc->ParameterCount(); ++i) {
params[i] = m.Parameter(i);
}
for (size_t i = 0; i < desc->ReturnCount(); ++i) {
MachineType type = desc->GetReturnType(i);
// Find a random same-type parameter to return. Use a constant if none.
if (counts[index(type)] == 0) {
returns[i] = Constant(m, type, 42);
outputs[i] = 42;
} else {
int n = rng->NextInt(counts[index(type)]);
int k;
for (k = 0;; ++k) {
if (desc->GetParameterType(k) == desc->GetReturnType(i) && --n < 0) {
break;
}
}
returns[i] = params[k];
outputs[i] = inputs[k];
}
}
m.Return(static_cast<int>(desc->ReturnCount()), returns.get());
CompilationInfo info(ArrayVector("testing"), handles.main_zone(),
Code::STUB);
Handle<Code> code = Pipeline::GenerateCodeForTesting(
&info, handles.main_isolate(), desc, m.graph(), m.Export());
#ifdef ENABLE_DISASSEMBLER
if (FLAG_print_code) {
OFStream os(stdout);
code->Disassemble("multi_value", os);
}
#endif
// Generate caller.
int expect = 0;
RawMachineAssemblerTester<int32_t> mt;
params[0] = mt.HeapConstant(code);
for (size_t i = 0; i < desc->ParameterCount(); ++i) {
params[i + 1] = Constant(mt, desc->GetParameterType(i), inputs[i]);
}
Node* ret_multi =
mt.AddNode(mt.common()->Call(desc),
static_cast<int>(desc->ParameterCount() + 1), params.get());
Node* ret = Constant(mt, MachineType::Int32(), 0);
for (size_t i = 0; i < desc->ReturnCount(); ++i) {
if (rng->NextInt(3) == 0) continue; // Skip random outputs.
Node* x = (desc->ReturnCount() == 1)
? ret_multi
: mt.AddNode(mt.common()->Projection(i), ret_multi);
ret = mt.Int32Add(ret, ToInt32(mt, desc->GetReturnType(i), x));
expect += outputs[i];
}
mt.Return(ret);
#ifdef ENABLE_DISASSEMBLER
Handle<Code> code2 = mt.GetCode();
if (FLAG_print_code) {
OFStream os(stdout);
code2->Disassemble("multi_value_call", os);
}
#endif
CHECK_EQ(expect, mt.Call());
}
}
} // namespace compiler

View File

@ -198,6 +198,12 @@
'asm/embenchen/lua_binarytrees': [SKIP],
}], # novfp3 == True
##############################################################################
# TODO(ahaas): Port multiple return values to ARM and MIPS
['arch == arm or arch == arm64 or arch == mips or arch == mips64 or arch == mipsel or arch == mips64el', {
'wasm/multi-value': [SKIP],
}],
##############################################################################
['gc_stress == True', {
# Skip tests not suitable for GC stress.