Revert "ARM64: Faster immediate check and fix corner cases"
This reverts r22120 due to build breakage of arm64.debug target. TBR=m.m.capewell@googlemail.com Review URL: https://codereview.chromium.org/361973002 git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@22123 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
This commit is contained in:
parent
d8fb9b9f12
commit
be35a9e768
@ -2104,15 +2104,6 @@ void Assembler::MoveWide(const Register& rd,
|
||||
uint64_t imm,
|
||||
int shift,
|
||||
MoveWideImmediateOp mov_op) {
|
||||
// Ignore the top 32 bits of an immediate if we're moving to a W register.
|
||||
if (rd.Is32Bits()) {
|
||||
// Check that the top 32 bits are zero (a positive 32-bit number) or top
|
||||
// 33 bits are one (a negative 32-bit number, sign extended to 64 bits).
|
||||
ASSERT(((imm >> kWRegSizeInBits) == 0) ||
|
||||
((imm >> (kWRegSizeInBits - 1)) == 0x1ffffffff));
|
||||
imm &= kWRegMask;
|
||||
}
|
||||
|
||||
if (shift >= 0) {
|
||||
// Explicit shift specified.
|
||||
ASSERT((shift == 0) || (shift == 16) || (shift == 32) || (shift == 48));
|
||||
@ -2518,198 +2509,91 @@ bool Assembler::IsImmLogical(uint64_t value,
|
||||
ASSERT((n != NULL) && (imm_s != NULL) && (imm_r != NULL));
|
||||
ASSERT((width == kWRegSizeInBits) || (width == kXRegSizeInBits));
|
||||
|
||||
bool negate = false;
|
||||
|
||||
// Logical immediates are encoded using parameters n, imm_s and imm_r using
|
||||
// the following table:
|
||||
//
|
||||
// N imms immr size S R
|
||||
// 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr)
|
||||
// 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr)
|
||||
// 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr)
|
||||
// 0 110sss xxxrrr 8 UInt(sss) UInt(rrr)
|
||||
// 0 1110ss xxxxrr 4 UInt(ss) UInt(rr)
|
||||
// 0 11110s xxxxxr 2 UInt(s) UInt(r)
|
||||
// N imms immr size S R
|
||||
// 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr)
|
||||
// 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr)
|
||||
// 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr)
|
||||
// 0 110sss xxxrrr 8 UInt(sss) UInt(rrr)
|
||||
// 0 1110ss xxxxrr 4 UInt(ss) UInt(rr)
|
||||
// 0 11110s xxxxxr 2 UInt(s) UInt(r)
|
||||
// (s bits must not be all set)
|
||||
//
|
||||
// A pattern is constructed of size bits, where the least significant S+1 bits
|
||||
// are set. The pattern is rotated right by R, and repeated across a 32 or
|
||||
// 64-bit value, depending on destination register width.
|
||||
// A pattern is constructed of size bits, where the least significant S+1
|
||||
// bits are set. The pattern is rotated right by R, and repeated across a
|
||||
// 32 or 64-bit value, depending on destination register width.
|
||||
//
|
||||
// Put another way: the basic format of a logical immediate is a single
|
||||
// contiguous stretch of 1 bits, repeated across the whole word at intervals
|
||||
// given by a power of 2. To identify them quickly, we first locate the
|
||||
// lowest stretch of 1 bits, then the next 1 bit above that; that combination
|
||||
// is different for every logical immediate, so it gives us all the
|
||||
// information we need to identify the only logical immediate that our input
|
||||
// could be, and then we simply check if that's the value we actually have.
|
||||
// To test if an arbitary immediate can be encoded using this scheme, an
|
||||
// iterative algorithm is used.
|
||||
//
|
||||
// (The rotation parameter does give the possibility of the stretch of 1 bits
|
||||
// going 'round the end' of the word. To deal with that, we observe that in
|
||||
// any situation where that happens the bitwise NOT of the value is also a
|
||||
// valid logical immediate. So we simply invert the input whenever its low bit
|
||||
// is set, and then we know that the rotated case can't arise.)
|
||||
// TODO(mcapewel) This code does not consider using X/W register overlap to
|
||||
// support 64-bit immediates where the top 32-bits are zero, and the bottom
|
||||
// 32-bits are an encodable logical immediate.
|
||||
|
||||
if (value & 1) {
|
||||
// If the low bit is 1, negate the value, and set a flag to remember that we
|
||||
// did (so that we can adjust the return values appropriately).
|
||||
negate = true;
|
||||
value = ~value;
|
||||
// 1. If the value has all set or all clear bits, it can't be encoded.
|
||||
if ((value == 0) || (value == 0xffffffffffffffffUL) ||
|
||||
((width == kWRegSizeInBits) && (value == 0xffffffff))) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (width == kWRegSizeInBits) {
|
||||
// To handle 32-bit logical immediates, the very easiest thing is to repeat
|
||||
// the input value twice to make a 64-bit word. The correct encoding of that
|
||||
// as a logical immediate will also be the correct encoding of the 32-bit
|
||||
// value.
|
||||
unsigned lead_zero = CountLeadingZeros(value, width);
|
||||
unsigned lead_one = CountLeadingZeros(~value, width);
|
||||
unsigned trail_zero = CountTrailingZeros(value, width);
|
||||
unsigned trail_one = CountTrailingZeros(~value, width);
|
||||
unsigned set_bits = CountSetBits(value, width);
|
||||
|
||||
// The most-significant 32 bits may not be zero (ie. negate is true) so
|
||||
// shift the value left before duplicating it.
|
||||
value <<= kWRegSizeInBits;
|
||||
value |= value >> kWRegSizeInBits;
|
||||
}
|
||||
// The fixed bits in the immediate s field.
|
||||
// If width == 64 (X reg), start at 0xFFFFFF80.
|
||||
// If width == 32 (W reg), start at 0xFFFFFFC0, as the iteration for 64-bit
|
||||
// widths won't be executed.
|
||||
int imm_s_fixed = (width == kXRegSizeInBits) ? -128 : -64;
|
||||
int imm_s_mask = 0x3F;
|
||||
|
||||
// The basic analysis idea: imagine our input word looks like this.
|
||||
//
|
||||
// 0011111000111110001111100011111000111110001111100011111000111110
|
||||
// c b a
|
||||
// |<--d-->|
|
||||
//
|
||||
// We find the lowest set bit (as an actual power-of-2 value, not its index)
|
||||
// and call it a. Then we add a to our original number, which wipes out the
|
||||
// bottommost stretch of set bits and replaces it with a 1 carried into the
|
||||
// next zero bit. Then we look for the new lowest set bit, which is in
|
||||
// position b, and subtract it, so now our number is just like the original
|
||||
// but with the lowest stretch of set bits completely gone. Now we find the
|
||||
// lowest set bit again, which is position c in the diagram above. Then we'll
|
||||
// measure the distance d between bit positions a and c (using CLZ), and that
|
||||
// tells us that the only valid logical immediate that could possibly be equal
|
||||
// to this number is the one in which a stretch of bits running from a to just
|
||||
// below b is replicated every d bits.
|
||||
uint64_t a = LargestPowerOf2Divisor(value);
|
||||
uint64_t value_plus_a = value + a;
|
||||
uint64_t b = LargestPowerOf2Divisor(value_plus_a);
|
||||
uint64_t value_plus_a_minus_b = value_plus_a - b;
|
||||
uint64_t c = LargestPowerOf2Divisor(value_plus_a_minus_b);
|
||||
|
||||
int d, clz_a, out_n;
|
||||
uint64_t mask;
|
||||
|
||||
if (c != 0) {
|
||||
// The general case, in which there is more than one stretch of set bits.
|
||||
// Compute the repeat distance d, and set up a bitmask covering the basic
|
||||
// unit of repetition (i.e. a word with the bottom d bits set). Also, in all
|
||||
// of these cases the N bit of the output will be zero.
|
||||
clz_a = CountLeadingZeros(a, kXRegSizeInBits);
|
||||
int clz_c = CountLeadingZeros(c, kXRegSizeInBits);
|
||||
d = clz_a - clz_c;
|
||||
mask = ((UINT64_C(1) << d) - 1);
|
||||
out_n = 0;
|
||||
} else {
|
||||
// Handle degenerate cases.
|
||||
//
|
||||
// If any of those 'find lowest set bit' operations didn't find a set bit at
|
||||
// all, then the word will have been zero thereafter, so in particular the
|
||||
// last lowest_set_bit operation will have returned zero. So we can test for
|
||||
// all the special case conditions in one go by seeing if c is zero.
|
||||
if (a == 0) {
|
||||
// The input was zero (or all 1 bits, which will come to here too after we
|
||||
// inverted it at the start of the function), for which we just return
|
||||
// false.
|
||||
return false;
|
||||
} else {
|
||||
// Otherwise, if c was zero but a was not, then there's just one stretch
|
||||
// of set bits in our word, meaning that we have the trivial case of
|
||||
// d == 64 and only one 'repetition'. Set up all the same variables as in
|
||||
// the general case above, and set the N bit in the output.
|
||||
clz_a = CountLeadingZeros(a, kXRegSizeInBits);
|
||||
d = 64;
|
||||
mask = ~UINT64_C(0);
|
||||
out_n = 1;
|
||||
for (;;) {
|
||||
// 2. If the value is two bits wide, it can be encoded.
|
||||
if (width == 2) {
|
||||
*n = 0;
|
||||
*imm_s = 0x3C;
|
||||
*imm_r = (value & 3) - 1;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
// If the repeat period d is not a power of two, it can't be encoded.
|
||||
if (!IS_POWER_OF_TWO(d)) {
|
||||
*n = (width == 64) ? 1 : 0;
|
||||
*imm_s = ((imm_s_fixed | (set_bits - 1)) & imm_s_mask);
|
||||
if ((lead_zero + set_bits) == width) {
|
||||
*imm_r = 0;
|
||||
} else {
|
||||
*imm_r = (lead_zero > 0) ? (width - trail_zero) : lead_one;
|
||||
}
|
||||
|
||||
// 3. If the sum of leading zeros, trailing zeros and set bits is equal to
|
||||
// the bit width of the value, it can be encoded.
|
||||
if (lead_zero + trail_zero + set_bits == width) {
|
||||
return true;
|
||||
}
|
||||
|
||||
// 4. If the sum of leading ones, trailing ones and unset bits in the
|
||||
// value is equal to the bit width of the value, it can be encoded.
|
||||
if (lead_one + trail_one + (width - set_bits) == width) {
|
||||
return true;
|
||||
}
|
||||
|
||||
// 5. If the most-significant half of the bitwise value is equal to the
|
||||
// least-significant half, return to step 2 using the least-significant
|
||||
// half of the value.
|
||||
uint64_t mask = (1UL << (width >> 1)) - 1;
|
||||
if ((value & mask) == ((value >> (width >> 1)) & mask)) {
|
||||
width >>= 1;
|
||||
set_bits >>= 1;
|
||||
imm_s_fixed >>= 1;
|
||||
continue;
|
||||
}
|
||||
|
||||
// 6. Otherwise, the value can't be encoded.
|
||||
return false;
|
||||
}
|
||||
|
||||
if (((b - a) & ~mask) != 0) {
|
||||
// If the bit stretch (b - a) does not fit within the mask derived from the
|
||||
// repeat period, then fail.
|
||||
return false;
|
||||
}
|
||||
|
||||
// The only possible option is b - a repeated every d bits. Now we're going to
|
||||
// actually construct the valid logical immediate derived from that
|
||||
// specification, and see if it equals our original input.
|
||||
//
|
||||
// To repeat a value every d bits, we multiply it by a number of the form
|
||||
// (1 + 2^d + 2^(2d) + ...), i.e. 0x0001000100010001 or similar. These can
|
||||
// be derived using a table lookup on CLZ(d).
|
||||
static const uint64_t multipliers[] = {
|
||||
0x0000000000000001UL,
|
||||
0x0000000100000001UL,
|
||||
0x0001000100010001UL,
|
||||
0x0101010101010101UL,
|
||||
0x1111111111111111UL,
|
||||
0x5555555555555555UL,
|
||||
};
|
||||
int multiplier_idx = CountLeadingZeros(d, kXRegSizeInBits) - 57;
|
||||
// Ensure that the index to the multipliers array is within bounds.
|
||||
ASSERT((multiplier_idx >= 0) &&
|
||||
(static_cast<size_t>(multiplier_idx) <
|
||||
(sizeof(multipliers) / sizeof(multipliers[0]))));
|
||||
uint64_t multiplier = multipliers[multiplier_idx];
|
||||
uint64_t candidate = (b - a) * multiplier;
|
||||
|
||||
if (value != candidate) {
|
||||
// The candidate pattern doesn't match our input value, so fail.
|
||||
return false;
|
||||
}
|
||||
|
||||
// We have a match! This is a valid logical immediate, so now we have to
|
||||
// construct the bits and pieces of the instruction encoding that generates
|
||||
// it.
|
||||
|
||||
// Count the set bits in our basic stretch. The special case of clz(0) == -1
|
||||
// makes the answer come out right for stretches that reach the very top of
|
||||
// the word (e.g. numbers like 0xffffc00000000000).
|
||||
int clz_b = (b == 0) ? -1 : CountLeadingZeros(b, kXRegSizeInBits);
|
||||
int s = clz_a - clz_b;
|
||||
|
||||
// Decide how many bits to rotate right by, to put the low bit of that basic
|
||||
// stretch in position a.
|
||||
int r;
|
||||
if (negate) {
|
||||
// If we inverted the input right at the start of this function, here's
|
||||
// where we compensate: the number of set bits becomes the number of clear
|
||||
// bits, and the rotation count is based on position b rather than position
|
||||
// a (since b is the location of the 'lowest' 1 bit after inversion).
|
||||
s = d - s;
|
||||
r = (clz_b + 1) & (d - 1);
|
||||
} else {
|
||||
r = (clz_a + 1) & (d - 1);
|
||||
}
|
||||
|
||||
// Now we're done, except for having to encode the S output in such a way that
|
||||
// it gives both the number of set bits and the length of the repeated
|
||||
// segment. The s field is encoded like this:
|
||||
//
|
||||
// imms size S
|
||||
// ssssss 64 UInt(ssssss)
|
||||
// 0sssss 32 UInt(sssss)
|
||||
// 10ssss 16 UInt(ssss)
|
||||
// 110sss 8 UInt(sss)
|
||||
// 1110ss 4 UInt(ss)
|
||||
// 11110s 2 UInt(s)
|
||||
//
|
||||
// So we 'or' (-d << 1) with our computed s to form imms.
|
||||
*n = out_n;
|
||||
*imm_s = ((-d << 1) | (s - 1)) & 0x3f;
|
||||
*imm_r = r;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
|
@ -64,23 +64,17 @@ void MacroAssembler::LogicalMacro(const Register& rd,
|
||||
} else if (operand.IsImmediate()) {
|
||||
int64_t immediate = operand.ImmediateValue();
|
||||
unsigned reg_size = rd.SizeInBits();
|
||||
ASSERT(rd.Is64Bits() || is_uint32(immediate));
|
||||
|
||||
// If the operation is NOT, invert the operation and immediate.
|
||||
if ((op & NOT) == NOT) {
|
||||
op = static_cast<LogicalOp>(op & ~NOT);
|
||||
immediate = ~immediate;
|
||||
if (rd.Is32Bits()) {
|
||||
immediate &= kWRegMask;
|
||||
}
|
||||
}
|
||||
|
||||
// Ignore the top 32 bits of an immediate if we're moving to a W register.
|
||||
if (rd.Is32Bits()) {
|
||||
// Check that the top 32 bits are consistent.
|
||||
ASSERT(((immediate >> kWRegSizeInBits) == 0) ||
|
||||
((immediate >> kWRegSizeInBits) == -1));
|
||||
immediate &= kWRegMask;
|
||||
}
|
||||
|
||||
ASSERT(rd.Is64Bits() || is_uint32(immediate));
|
||||
|
||||
// Special cases for all set or all clear immediates.
|
||||
if (immediate == 0) {
|
||||
switch (op) {
|
||||
|
@ -78,11 +78,6 @@ int CountSetBits(uint64_t value, int width) {
|
||||
}
|
||||
|
||||
|
||||
uint64_t LargestPowerOf2Divisor(uint64_t value) {
|
||||
return value & -value;
|
||||
}
|
||||
|
||||
|
||||
int MaskToBit(uint64_t mask) {
|
||||
ASSERT(CountSetBits(mask, 64) == 1);
|
||||
return CountTrailingZeros(mask, 64);
|
||||
|
@ -57,7 +57,6 @@ int CountLeadingZeros(uint64_t value, int width);
|
||||
int CountLeadingSignBits(int64_t value, int width);
|
||||
int CountTrailingZeros(uint64_t value, int width);
|
||||
int CountSetBits(uint64_t value, int width);
|
||||
uint64_t LargestPowerOf2Divisor(uint64_t value);
|
||||
int MaskToBit(uint64_t mask);
|
||||
|
||||
|
||||
|
@ -426,9 +426,6 @@ TEST(mov_imm_w) {
|
||||
__ Mov(w4, 0x00001234L);
|
||||
__ Mov(w5, 0x12340000L);
|
||||
__ Mov(w6, 0x12345678L);
|
||||
__ Mov(w7, (int32_t)0x80000000);
|
||||
__ Mov(w8, (int32_t)0xffff0000);
|
||||
__ Mov(w9, kWMinInt);
|
||||
END();
|
||||
|
||||
RUN();
|
||||
@ -440,9 +437,6 @@ TEST(mov_imm_w) {
|
||||
ASSERT_EQUAL_64(0x00001234L, x4);
|
||||
ASSERT_EQUAL_64(0x12340000L, x5);
|
||||
ASSERT_EQUAL_64(0x12345678L, x6);
|
||||
ASSERT_EQUAL_64(0x80000000L, x7);
|
||||
ASSERT_EQUAL_64(0xffff0000L, x8);
|
||||
ASSERT_EQUAL_32(kWMinInt, w9);
|
||||
|
||||
TEARDOWN();
|
||||
}
|
||||
@ -594,9 +588,6 @@ TEST(bitwise_wide_imm) {
|
||||
|
||||
__ Orr(x10, x0, Operand(0x1234567890abcdefUL));
|
||||
__ Orr(w11, w1, Operand(0x90abcdef));
|
||||
|
||||
__ Orr(w12, w0, kWMinInt);
|
||||
__ Eor(w13, w0, kWMinInt);
|
||||
END();
|
||||
|
||||
RUN();
|
||||
@ -605,8 +596,6 @@ TEST(bitwise_wide_imm) {
|
||||
ASSERT_EQUAL_64(0xf0f0f0f0f0f0f0f0UL, x1);
|
||||
ASSERT_EQUAL_64(0x1234567890abcdefUL, x10);
|
||||
ASSERT_EQUAL_64(0xf0fbfdffUL, x11);
|
||||
ASSERT_EQUAL_32(kWMinInt, w12);
|
||||
ASSERT_EQUAL_32(kWMinInt, w13);
|
||||
|
||||
TEARDOWN();
|
||||
}
|
||||
@ -3373,10 +3362,8 @@ TEST(add_sub_wide_imm) {
|
||||
__ Add(w12, w0, Operand(0x12345678));
|
||||
__ Add(w13, w1, Operand(0xffffffff));
|
||||
|
||||
__ Add(w18, w0, Operand(kWMinInt));
|
||||
__ Sub(w19, w0, Operand(kWMinInt));
|
||||
|
||||
__ Sub(x20, x0, Operand(0x1234567890abcdefUL));
|
||||
|
||||
__ Sub(w21, w0, Operand(0x12345678));
|
||||
END();
|
||||
|
||||
@ -3388,10 +3375,8 @@ TEST(add_sub_wide_imm) {
|
||||
ASSERT_EQUAL_32(0x12345678, w12);
|
||||
ASSERT_EQUAL_64(0x0, x13);
|
||||
|
||||
ASSERT_EQUAL_32(kWMinInt, w18);
|
||||
ASSERT_EQUAL_32(kWMinInt, w19);
|
||||
|
||||
ASSERT_EQUAL_64(-0x1234567890abcdefUL, x20);
|
||||
|
||||
ASSERT_EQUAL_32(-0x12345678, w21);
|
||||
|
||||
TEARDOWN();
|
||||
|
Loading…
Reference in New Issue
Block a user