Always update raw pointers when handling interrupts inside RegExp code.

R=mstarzinger@chromium.org
BUG=chromium:469480
LOG=N

Review URL: https://codereview.chromium.org/1034173002

Cr-Commit-Position: refs/heads/master@{#27615}
This commit is contained in:
yangguo 2015-04-07 02:44:47 -07:00 committed by Commit bot
parent 146598f44a
commit c67cb287a9
12 changed files with 200 additions and 766 deletions

View File

@ -1040,102 +1040,22 @@ static T& frame_entry(Address re_frame, int frame_offset) {
} }
template <typename T>
static T* frame_entry_address(Address re_frame, int frame_offset) {
return reinterpret_cast<T*>(re_frame + frame_offset);
}
int RegExpMacroAssemblerARM::CheckStackGuardState(Address* return_address, int RegExpMacroAssemblerARM::CheckStackGuardState(Address* return_address,
Code* re_code, Code* re_code,
Address re_frame) { Address re_frame) {
Isolate* isolate = frame_entry<Isolate*>(re_frame, kIsolate); return NativeRegExpMacroAssembler::CheckStackGuardState(
StackLimitCheck check(isolate); frame_entry<Isolate*>(re_frame, kIsolate),
if (check.JsHasOverflowed()) { frame_entry<int>(re_frame, kStartIndex),
isolate->StackOverflow(); frame_entry<int>(re_frame, kDirectCall) == 1, return_address, re_code,
return EXCEPTION; frame_entry_address<String*>(re_frame, kInputString),
} frame_entry_address<const byte*>(re_frame, kInputStart),
frame_entry_address<const byte*>(re_frame, kInputEnd));
// If not real stack overflow the stack guard was used to interrupt
// execution for another purpose.
// If this is a direct call from JavaScript retry the RegExp forcing the call
// through the runtime system. Currently the direct call cannot handle a GC.
if (frame_entry<int>(re_frame, kDirectCall) == 1) {
return RETRY;
}
// Prepare for possible GC.
HandleScope handles(isolate);
Handle<Code> code_handle(re_code);
Handle<String> subject(frame_entry<String*>(re_frame, kInputString));
// Current string.
bool is_one_byte = subject->IsOneByteRepresentationUnderneath();
DCHECK(re_code->instruction_start() <= *return_address);
DCHECK(*return_address <=
re_code->instruction_start() + re_code->instruction_size());
Object* result = isolate->stack_guard()->HandleInterrupts();
if (*code_handle != re_code) { // Return address no longer valid
int delta = code_handle->address() - re_code->address();
// Overwrite the return address on the stack.
*return_address += delta;
}
if (result->IsException()) {
return EXCEPTION;
}
Handle<String> subject_tmp = subject;
int slice_offset = 0;
// Extract the underlying string and the slice offset.
if (StringShape(*subject_tmp).IsCons()) {
subject_tmp = Handle<String>(ConsString::cast(*subject_tmp)->first());
} else if (StringShape(*subject_tmp).IsSliced()) {
SlicedString* slice = SlicedString::cast(*subject_tmp);
subject_tmp = Handle<String>(slice->parent());
slice_offset = slice->offset();
}
// String might have changed.
if (subject_tmp->IsOneByteRepresentation() != is_one_byte) {
// If we changed between an Latin1 and an UC16 string, the specialized
// code cannot be used, and we need to restart regexp matching from
// scratch (including, potentially, compiling a new version of the code).
return RETRY;
}
// Otherwise, the content of the string might have moved. It must still
// be a sequential or external string with the same content.
// Update the start and end pointers in the stack frame to the current
// location (whether it has actually moved or not).
DCHECK(StringShape(*subject_tmp).IsSequential() ||
StringShape(*subject_tmp).IsExternal());
// The original start address of the characters to match.
const byte* start_address = frame_entry<const byte*>(re_frame, kInputStart);
// Find the current start address of the same character at the current string
// position.
int start_index = frame_entry<int>(re_frame, kStartIndex);
const byte* new_address = StringCharacterPosition(*subject_tmp,
start_index + slice_offset);
if (start_address != new_address) {
// If there is a difference, update the object pointer and start and end
// addresses in the RegExp stack frame to match the new value.
const byte* end_address = frame_entry<const byte* >(re_frame, kInputEnd);
int byte_length = static_cast<int>(end_address - start_address);
frame_entry<const String*>(re_frame, kInputString) = *subject;
frame_entry<const byte*>(re_frame, kInputStart) = new_address;
frame_entry<const byte*>(re_frame, kInputEnd) = new_address + byte_length;
} else if (frame_entry<const String*>(re_frame, kInputString) != *subject) {
// Subject string might have been a ConsString that underwent
// short-circuiting during GC. That will not change start_address but
// will change pointer inside the subject handle.
frame_entry<const String*>(re_frame, kInputString) = *subject;
}
return 0;
} }

View File

@ -1285,104 +1285,19 @@ static T& frame_entry(Address re_frame, int frame_offset) {
} }
int RegExpMacroAssemblerARM64::CheckStackGuardState(Address* return_address, template <typename T>
Code* re_code, static T* frame_entry_address(Address re_frame, int frame_offset) {
Address re_frame, return reinterpret_cast<T*>(re_frame + frame_offset);
int start_offset, }
const byte** input_start,
const byte** input_end) {
Isolate* isolate = frame_entry<Isolate*>(re_frame, kIsolate);
StackLimitCheck check(isolate);
if (check.JsHasOverflowed()) {
isolate->StackOverflow();
return EXCEPTION;
}
// If not real stack overflow the stack guard was used to interrupt
// execution for another purpose.
// If this is a direct call from JavaScript retry the RegExp forcing the call int RegExpMacroAssemblerARM64::CheckStackGuardState(
// through the runtime system. Currently the direct call cannot handle a GC. Address* return_address, Code* re_code, Address re_frame, int start_index,
if (frame_entry<int>(re_frame, kDirectCall) == 1) { const byte** input_start, const byte** input_end) {
return RETRY; return NativeRegExpMacroAssembler::CheckStackGuardState(
} frame_entry<Isolate*>(re_frame, kIsolate), start_index,
frame_entry<int>(re_frame, kDirectCall) == 1, return_address, re_code,
// Prepare for possible GC. frame_entry_address<String*>(re_frame, kInput), input_start, input_end);
HandleScope handles(isolate);
Handle<Code> code_handle(re_code);
Handle<String> subject(frame_entry<String*>(re_frame, kInput));
// Current string.
bool is_one_byte = subject->IsOneByteRepresentationUnderneath();
DCHECK(re_code->instruction_start() <= *return_address);
DCHECK(*return_address <=
re_code->instruction_start() + re_code->instruction_size());
Object* result = isolate->stack_guard()->HandleInterrupts();
if (*code_handle != re_code) { // Return address no longer valid
int delta = code_handle->address() - re_code->address();
// Overwrite the return address on the stack.
*return_address += delta;
}
if (result->IsException()) {
return EXCEPTION;
}
Handle<String> subject_tmp = subject;
int slice_offset = 0;
// Extract the underlying string and the slice offset.
if (StringShape(*subject_tmp).IsCons()) {
subject_tmp = Handle<String>(ConsString::cast(*subject_tmp)->first());
} else if (StringShape(*subject_tmp).IsSliced()) {
SlicedString* slice = SlicedString::cast(*subject_tmp);
subject_tmp = Handle<String>(slice->parent());
slice_offset = slice->offset();
}
// String might have changed.
if (subject_tmp->IsOneByteRepresentation() != is_one_byte) {
// If we changed between an Latin1 and an UC16 string, the specialized
// code cannot be used, and we need to restart regexp matching from
// scratch (including, potentially, compiling a new version of the code).
return RETRY;
}
// Otherwise, the content of the string might have moved. It must still
// be a sequential or external string with the same content.
// Update the start and end pointers in the stack frame to the current
// location (whether it has actually moved or not).
DCHECK(StringShape(*subject_tmp).IsSequential() ||
StringShape(*subject_tmp).IsExternal());
// The original start address of the characters to match.
const byte* start_address = *input_start;
// Find the current start address of the same character at the current string
// position.
const byte* new_address = StringCharacterPosition(*subject_tmp,
start_offset + slice_offset);
if (start_address != new_address) {
// If there is a difference, update the object pointer and start and end
// addresses in the RegExp stack frame to match the new value.
const byte* end_address = *input_end;
int byte_length = static_cast<int>(end_address - start_address);
frame_entry<const String*>(re_frame, kInput) = *subject;
*input_start = new_address;
*input_end = new_address + byte_length;
} else if (frame_entry<const String*>(re_frame, kInput) != *subject) {
// Subject string might have been a ConsString that underwent
// short-circuiting during GC. That will not change start_address but
// will change pointer inside the subject handle.
frame_entry<const String*>(re_frame, kInput) = *subject;
}
return 0;
} }

View File

@ -1072,102 +1072,22 @@ static T& frame_entry(Address re_frame, int frame_offset) {
} }
template <typename T>
static T* frame_entry_address(Address re_frame, int frame_offset) {
return reinterpret_cast<T*>(re_frame + frame_offset);
}
int RegExpMacroAssemblerIA32::CheckStackGuardState(Address* return_address, int RegExpMacroAssemblerIA32::CheckStackGuardState(Address* return_address,
Code* re_code, Code* re_code,
Address re_frame) { Address re_frame) {
Isolate* isolate = frame_entry<Isolate*>(re_frame, kIsolate); return NativeRegExpMacroAssembler::CheckStackGuardState(
StackLimitCheck check(isolate); frame_entry<Isolate*>(re_frame, kIsolate),
if (check.JsHasOverflowed()) { frame_entry<int>(re_frame, kStartIndex),
isolate->StackOverflow(); frame_entry<int>(re_frame, kDirectCall) == 1, return_address, re_code,
return EXCEPTION; frame_entry_address<String*>(re_frame, kInputString),
} frame_entry_address<const byte*>(re_frame, kInputStart),
frame_entry_address<const byte*>(re_frame, kInputEnd));
// If not real stack overflow the stack guard was used to interrupt
// execution for another purpose.
// If this is a direct call from JavaScript retry the RegExp forcing the call
// through the runtime system. Currently the direct call cannot handle a GC.
if (frame_entry<int>(re_frame, kDirectCall) == 1) {
return RETRY;
}
// Prepare for possible GC.
HandleScope handles(isolate);
Handle<Code> code_handle(re_code);
Handle<String> subject(frame_entry<String*>(re_frame, kInputString));
// Current string.
bool is_one_byte = subject->IsOneByteRepresentationUnderneath();
DCHECK(re_code->instruction_start() <= *return_address);
DCHECK(*return_address <=
re_code->instruction_start() + re_code->instruction_size());
Object* result = isolate->stack_guard()->HandleInterrupts();
if (*code_handle != re_code) { // Return address no longer valid
int delta = code_handle->address() - re_code->address();
// Overwrite the return address on the stack.
*return_address += delta;
}
if (result->IsException()) {
return EXCEPTION;
}
Handle<String> subject_tmp = subject;
int slice_offset = 0;
// Extract the underlying string and the slice offset.
if (StringShape(*subject_tmp).IsCons()) {
subject_tmp = Handle<String>(ConsString::cast(*subject_tmp)->first());
} else if (StringShape(*subject_tmp).IsSliced()) {
SlicedString* slice = SlicedString::cast(*subject_tmp);
subject_tmp = Handle<String>(slice->parent());
slice_offset = slice->offset();
}
// String might have changed.
if (subject_tmp->IsOneByteRepresentation() != is_one_byte) {
// If we changed between an LATIN1 and an UC16 string, the specialized
// code cannot be used, and we need to restart regexp matching from
// scratch (including, potentially, compiling a new version of the code).
return RETRY;
}
// Otherwise, the content of the string might have moved. It must still
// be a sequential or external string with the same content.
// Update the start and end pointers in the stack frame to the current
// location (whether it has actually moved or not).
DCHECK(StringShape(*subject_tmp).IsSequential() ||
StringShape(*subject_tmp).IsExternal());
// The original start address of the characters to match.
const byte* start_address = frame_entry<const byte*>(re_frame, kInputStart);
// Find the current start address of the same character at the current string
// position.
int start_index = frame_entry<int>(re_frame, kStartIndex);
const byte* new_address = StringCharacterPosition(*subject_tmp,
start_index + slice_offset);
if (start_address != new_address) {
// If there is a difference, update the object pointer and start and end
// addresses in the RegExp stack frame to match the new value.
const byte* end_address = frame_entry<const byte* >(re_frame, kInputEnd);
int byte_length = static_cast<int>(end_address - start_address);
frame_entry<const String*>(re_frame, kInputString) = *subject;
frame_entry<const byte*>(re_frame, kInputStart) = new_address;
frame_entry<const byte*>(re_frame, kInputEnd) = new_address + byte_length;
} else if (frame_entry<const String*>(re_frame, kInputString) != *subject) {
// Subject string might have been a ConsString that underwent
// short-circuiting during GC. That will not change start_address but
// will change pointer inside the subject handle.
frame_entry<const String*>(re_frame, kInputString) = *subject;
}
return 0;
} }

View File

@ -833,6 +833,12 @@ Object* Isolate::StackOverflow() {
Throw(*exception, nullptr); Throw(*exception, nullptr);
CaptureAndSetSimpleStackTrace(exception, factory()->undefined_value()); CaptureAndSetSimpleStackTrace(exception, factory()->undefined_value());
#ifdef VERIFY_HEAP
if (FLAG_verify_heap && FLAG_stress_compaction) {
heap()->CollectAllAvailableGarbage("trigger compaction");
}
#endif // VERIFY_HEAP
return heap()->exception(); return heap()->exception();
} }

View File

@ -1100,101 +1100,22 @@ static T& frame_entry(Address re_frame, int frame_offset) {
} }
template <typename T>
static T* frame_entry_address(Address re_frame, int frame_offset) {
return reinterpret_cast<T*>(re_frame + frame_offset);
}
int RegExpMacroAssemblerMIPS::CheckStackGuardState(Address* return_address, int RegExpMacroAssemblerMIPS::CheckStackGuardState(Address* return_address,
Code* re_code, Code* re_code,
Address re_frame) { Address re_frame) {
Isolate* isolate = frame_entry<Isolate*>(re_frame, kIsolate); return NativeRegExpMacroAssembler::CheckStackGuardState(
StackLimitCheck check(isolate); frame_entry<Isolate*>(re_frame, kIsolate),
if (check.JsHasOverflowed()) { frame_entry<int>(re_frame, kStartIndex),
isolate->StackOverflow(); frame_entry<int>(re_frame, kDirectCall) == 1, return_address, re_code,
return EXCEPTION; frame_entry_address<String*>(re_frame, kInputString),
} frame_entry_address<const byte*>(re_frame, kInputStart),
frame_entry_address<const byte*>(re_frame, kInputEnd));
// If not real stack overflow the stack guard was used to interrupt
// execution for another purpose.
// If this is a direct call from JavaScript retry the RegExp forcing the call
// through the runtime system. Currently the direct call cannot handle a GC.
if (frame_entry<int>(re_frame, kDirectCall) == 1) {
return RETRY;
}
// Prepare for possible GC.
HandleScope handles(isolate);
Handle<Code> code_handle(re_code);
Handle<String> subject(frame_entry<String*>(re_frame, kInputString));
// Current string.
bool is_one_byte = subject->IsOneByteRepresentationUnderneath();
DCHECK(re_code->instruction_start() <= *return_address);
DCHECK(*return_address <=
re_code->instruction_start() + re_code->instruction_size());
Object* result = isolate->stack_guard()->HandleInterrupts();
if (*code_handle != re_code) { // Return address no longer valid.
int delta = code_handle->address() - re_code->address();
// Overwrite the return address on the stack.
*return_address += delta;
}
if (result->IsException()) {
return EXCEPTION;
}
Handle<String> subject_tmp = subject;
int slice_offset = 0;
// Extract the underlying string and the slice offset.
if (StringShape(*subject_tmp).IsCons()) {
subject_tmp = Handle<String>(ConsString::cast(*subject_tmp)->first());
} else if (StringShape(*subject_tmp).IsSliced()) {
SlicedString* slice = SlicedString::cast(*subject_tmp);
subject_tmp = Handle<String>(slice->parent());
slice_offset = slice->offset();
}
// String might have changed.
if (subject_tmp->IsOneByteRepresentation() != is_one_byte) {
// If we changed between an Latin1 and an UC16 string, the specialized
// code cannot be used, and we need to restart regexp matching from
// scratch (including, potentially, compiling a new version of the code).
return RETRY;
}
// Otherwise, the content of the string might have moved. It must still
// be a sequential or external string with the same content.
// Update the start and end pointers in the stack frame to the current
// location (whether it has actually moved or not).
DCHECK(StringShape(*subject_tmp).IsSequential() ||
StringShape(*subject_tmp).IsExternal());
// The original start address of the characters to match.
const byte* start_address = frame_entry<const byte*>(re_frame, kInputStart);
// Find the current start address of the same character at the current string
// position.
int start_index = frame_entry<int>(re_frame, kStartIndex);
const byte* new_address = StringCharacterPosition(*subject_tmp,
start_index + slice_offset);
if (start_address != new_address) {
// If there is a difference, update the object pointer and start and end
// addresses in the RegExp stack frame to match the new value.
const byte* end_address = frame_entry<const byte* >(re_frame, kInputEnd);
int byte_length = static_cast<int>(end_address - start_address);
frame_entry<const String*>(re_frame, kInputString) = *subject;
frame_entry<const byte*>(re_frame, kInputStart) = new_address;
frame_entry<const byte*>(re_frame, kInputEnd) = new_address + byte_length;
} else if (frame_entry<const String*>(re_frame, kInputString) != *subject) {
// Subject string might have been a ConsString that underwent
// short-circuiting during GC. That will not change start_address but
// will change pointer inside the subject handle.
frame_entry<const String*>(re_frame, kInputString) = *subject;
}
return 0;
} }

View File

@ -1146,101 +1146,22 @@ static T& frame_entry(Address re_frame, int frame_offset) {
} }
int64_t RegExpMacroAssemblerMIPS::CheckStackGuardState(Address* return_address, template <typename T>
Code* re_code, static T* frame_entry_address(Address re_frame, int frame_offset) {
Address re_frame) { return reinterpret_cast<T*>(re_frame + frame_offset);
Isolate* isolate = frame_entry<Isolate*>(re_frame, kIsolate); }
StackLimitCheck check(isolate);
if (check.JsHasOverflowed()) {
isolate->StackOverflow();
return EXCEPTION;
}
// If not real stack overflow the stack guard was used to interrupt
// execution for another purpose.
// If this is a direct call from JavaScript retry the RegExp forcing the call int64 RegExpMacroAssemblerMIPS::CheckStackGuardState(Address* return_address,
// through the runtime system. Currently the direct call cannot handle a GC. Code* re_code,
if (frame_entry<int>(re_frame, kDirectCall) == 1) { Address re_frame) {
return RETRY; return NativeRegExpMacroAssembler::CheckStackGuardState(
} frame_entry<Isolate*>(re_frame, kIsolate),
frame_entry<int>(re_frame, kStartIndex),
// Prepare for possible GC. frame_entry<int>(re_frame, kDirectCall) == 1, return_address, re_code,
HandleScope handles(isolate); frame_entry_address<String*>(re_frame, kInputString),
Handle<Code> code_handle(re_code); frame_entry_address<const byte*>(re_frame, kInputStart),
frame_entry_address<const byte*>(re_frame, kInputEnd));
Handle<String> subject(frame_entry<String*>(re_frame, kInputString));
// Current string.
bool is_one_byte = subject->IsOneByteRepresentationUnderneath();
DCHECK(re_code->instruction_start() <= *return_address);
DCHECK(*return_address <=
re_code->instruction_start() + re_code->instruction_size());
Object* result = isolate->stack_guard()->HandleInterrupts();
if (*code_handle != re_code) { // Return address no longer valid.
int delta = code_handle->address() - re_code->address();
// Overwrite the return address on the stack.
*return_address += delta;
}
if (result->IsException()) {
return EXCEPTION;
}
Handle<String> subject_tmp = subject;
int slice_offset = 0;
// Extract the underlying string and the slice offset.
if (StringShape(*subject_tmp).IsCons()) {
subject_tmp = Handle<String>(ConsString::cast(*subject_tmp)->first());
} else if (StringShape(*subject_tmp).IsSliced()) {
SlicedString* slice = SlicedString::cast(*subject_tmp);
subject_tmp = Handle<String>(slice->parent());
slice_offset = slice->offset();
}
// String might have changed.
if (subject_tmp->IsOneByteRepresentation() != is_one_byte) {
// If we changed between an Latin1 and an UC16 string, the specialized
// code cannot be used, and we need to restart regexp matching from
// scratch (including, potentially, compiling a new version of the code).
return RETRY;
}
// Otherwise, the content of the string might have moved. It must still
// be a sequential or external string with the same content.
// Update the start and end pointers in the stack frame to the current
// location (whether it has actually moved or not).
DCHECK(StringShape(*subject_tmp).IsSequential() ||
StringShape(*subject_tmp).IsExternal());
// The original start address of the characters to match.
const byte* start_address = frame_entry<const byte*>(re_frame, kInputStart);
// Find the current start address of the same character at the current string
// position.
int start_index = frame_entry<int>(re_frame, kStartIndex);
const byte* new_address = StringCharacterPosition(*subject_tmp,
start_index + slice_offset);
if (start_address != new_address) {
// If there is a difference, update the object pointer and start and end
// addresses in the RegExp stack frame to match the new value.
const byte* end_address = frame_entry<const byte* >(re_frame, kInputEnd);
int byte_length = static_cast<int>(end_address - start_address);
frame_entry<const String*>(re_frame, kInputString) = *subject;
frame_entry<const byte*>(re_frame, kInputStart) = new_address;
frame_entry<const byte*>(re_frame, kInputEnd) = new_address + byte_length;
} else if (frame_entry<const String*>(re_frame, kInputString) != *subject) {
// Subject string might have been a ConsString that underwent
// short-circuiting during GC. That will not change start_address but
// will change pointer inside the subject handle.
frame_entry<const String*>(re_frame, kInputString) = *subject;
}
return 0;
} }

View File

@ -1104,102 +1104,22 @@ static T& frame_entry(Address re_frame, int frame_offset) {
} }
template <typename T>
static T* frame_entry_address(Address re_frame, int frame_offset) {
return reinterpret_cast<T*>(re_frame + frame_offset);
}
int RegExpMacroAssemblerPPC::CheckStackGuardState(Address* return_address, int RegExpMacroAssemblerPPC::CheckStackGuardState(Address* return_address,
Code* re_code, Code* re_code,
Address re_frame) { Address re_frame) {
Isolate* isolate = frame_entry<Isolate*>(re_frame, kIsolate); return NativeRegExpMacroAssembler::CheckStackGuardState(
StackLimitCheck check(isolate); frame_entry<Isolate*>(re_frame, kIsolate),
if (check.JsHasOverflowed()) { frame_entry<int>(re_frame, kStartIndex),
isolate->StackOverflow(); frame_entry<int>(re_frame, kDirectCall) == 1, return_address, re_code,
return EXCEPTION; frame_entry_address<String*>(re_frame, kInputString),
} frame_entry_address<const byte*>(re_frame, kInputStart),
frame_entry_address<const byte*>(re_frame, kInputEnd));
// If not real stack overflow the stack guard was used to interrupt
// execution for another purpose.
// If this is a direct call from JavaScript retry the RegExp forcing the call
// through the runtime system. Currently the direct call cannot handle a GC.
if (frame_entry<int>(re_frame, kDirectCall) == 1) {
return RETRY;
}
// Prepare for possible GC.
HandleScope handles(isolate);
Handle<Code> code_handle(re_code);
Handle<String> subject(frame_entry<String*>(re_frame, kInputString));
// Current string.
bool is_one_byte = subject->IsOneByteRepresentationUnderneath();
DCHECK(re_code->instruction_start() <= *return_address);
DCHECK(*return_address <=
re_code->instruction_start() + re_code->instruction_size());
Object* result = isolate->stack_guard()->HandleInterrupts();
if (*code_handle != re_code) { // Return address no longer valid
intptr_t delta = code_handle->address() - re_code->address();
// Overwrite the return address on the stack.
*return_address += delta;
}
if (result->IsException()) {
return EXCEPTION;
}
Handle<String> subject_tmp = subject;
int slice_offset = 0;
// Extract the underlying string and the slice offset.
if (StringShape(*subject_tmp).IsCons()) {
subject_tmp = Handle<String>(ConsString::cast(*subject_tmp)->first());
} else if (StringShape(*subject_tmp).IsSliced()) {
SlicedString* slice = SlicedString::cast(*subject_tmp);
subject_tmp = Handle<String>(slice->parent());
slice_offset = slice->offset();
}
// String might have changed.
if (subject_tmp->IsOneByteRepresentation() != is_one_byte) {
// If we changed between an Latin1 and an UC16 string, the specialized
// code cannot be used, and we need to restart regexp matching from
// scratch (including, potentially, compiling a new version of the code).
return RETRY;
}
// Otherwise, the content of the string might have moved. It must still
// be a sequential or external string with the same content.
// Update the start and end pointers in the stack frame to the current
// location (whether it has actually moved or not).
DCHECK(StringShape(*subject_tmp).IsSequential() ||
StringShape(*subject_tmp).IsExternal());
// The original start address of the characters to match.
const byte* start_address = frame_entry<const byte*>(re_frame, kInputStart);
// Find the current start address of the same character at the current string
// position.
int start_index = frame_entry<intptr_t>(re_frame, kStartIndex);
const byte* new_address =
StringCharacterPosition(*subject_tmp, start_index + slice_offset);
if (start_address != new_address) {
// If there is a difference, update the object pointer and start and end
// addresses in the RegExp stack frame to match the new value.
const byte* end_address = frame_entry<const byte*>(re_frame, kInputEnd);
int byte_length = static_cast<int>(end_address - start_address);
frame_entry<const String*>(re_frame, kInputString) = *subject;
frame_entry<const byte*>(re_frame, kInputStart) = new_address;
frame_entry<const byte*>(re_frame, kInputEnd) = new_address + byte_length;
} else if (frame_entry<const String*>(re_frame, kInputString) != *subject) {
// Subject string might have been a ConsString that underwent
// short-circuiting during GC. That will not change start_address but
// will change pointer inside the subject handle.
frame_entry<const String*>(re_frame, kInputString) = *subject;
}
return 0;
} }

View File

@ -42,30 +42,82 @@ bool NativeRegExpMacroAssembler::CanReadUnaligned() {
const byte* NativeRegExpMacroAssembler::StringCharacterPosition( const byte* NativeRegExpMacroAssembler::StringCharacterPosition(
String* subject, String* subject,
int start_index) { int start_index) {
// Not just flat, but ultra flat. if (subject->IsConsString()) {
DCHECK(subject->IsExternalString() || subject->IsSeqString()); subject = ConsString::cast(subject)->first();
} else if (subject->IsSlicedString()) {
start_index += SlicedString::cast(subject)->offset();
subject = SlicedString::cast(subject)->parent();
}
DCHECK(start_index >= 0); DCHECK(start_index >= 0);
DCHECK(start_index <= subject->length()); DCHECK(start_index <= subject->length());
if (subject->IsOneByteRepresentation()) { if (subject->IsSeqOneByteString()) {
const byte* address; return reinterpret_cast<const byte*>(
if (StringShape(subject).IsExternal()) { SeqOneByteString::cast(subject)->GetChars() + start_index);
const uint8_t* data = ExternalOneByteString::cast(subject)->GetChars(); } else if (subject->IsSeqTwoByteString()) {
address = reinterpret_cast<const byte*>(data); return reinterpret_cast<const byte*>(
} else { SeqTwoByteString::cast(subject)->GetChars() + start_index);
DCHECK(subject->IsSeqOneByteString()); } else if (subject->IsExternalOneByteString()) {
const uint8_t* data = SeqOneByteString::cast(subject)->GetChars(); return reinterpret_cast<const byte*>(
address = reinterpret_cast<const byte*>(data); ExternalOneByteString::cast(subject)->GetChars() + start_index);
}
return address + start_index;
}
const uc16* data;
if (StringShape(subject).IsExternal()) {
data = ExternalTwoByteString::cast(subject)->GetChars();
} else { } else {
DCHECK(subject->IsSeqTwoByteString()); return reinterpret_cast<const byte*>(
data = SeqTwoByteString::cast(subject)->GetChars(); ExternalTwoByteString::cast(subject)->GetChars() + start_index);
} }
return reinterpret_cast<const byte*>(data + start_index); }
int NativeRegExpMacroAssembler::CheckStackGuardState(
Isolate* isolate, int start_index, bool is_direct_call,
Address* return_address, Code* re_code, String** subject,
const byte** input_start, const byte** input_end) {
DCHECK(re_code->instruction_start() <= *return_address);
DCHECK(*return_address <= re_code->instruction_end());
int return_value = 0;
// Prepare for possible GC.
HandleScope handles(isolate);
Handle<Code> code_handle(re_code);
Handle<String> subject_handle(*subject);
bool is_one_byte = subject_handle->IsOneByteRepresentationUnderneath();
StackLimitCheck check(isolate);
if (check.JsHasOverflowed()) {
isolate->StackOverflow();
return_value = EXCEPTION;
} else if (is_direct_call) {
// If not real stack overflow the stack guard was used to interrupt
// execution for another purpose. If this is a direct call from JavaScript
// retry the RegExp forcing the call through the runtime system.
// Currently the direct call cannot handle a GC.
return_value = RETRY;
} else {
Object* result = isolate->stack_guard()->HandleInterrupts();
if (result->IsException()) return_value = EXCEPTION;
}
DisallowHeapAllocation no_gc;
if (*code_handle != re_code) { // Return address no longer valid
intptr_t delta = code_handle->address() - re_code->address();
// Overwrite the return address on the stack.
*return_address += delta;
}
// If we continue, we need to update the subject string addresses.
if (return_value == 0) {
// String encoding might have changed.
if (subject_handle->IsOneByteRepresentationUnderneath() != is_one_byte) {
// If we changed between an LATIN1 and an UC16 string, the specialized
// code cannot be used, and we need to restart regexp matching from
// scratch (including, potentially, compiling a new version of the code).
return_value = RETRY;
} else {
*subject = *subject_handle;
intptr_t byte_length = *input_end - *input_start;
*input_start = StringCharacterPosition(*subject, start_index);
*input_end = *input_start + byte_length;
}
}
return return_value;
} }

View File

@ -215,6 +215,12 @@ class NativeRegExpMacroAssembler: public RegExpMacroAssembler {
static const byte* StringCharacterPosition(String* subject, int start_index); static const byte* StringCharacterPosition(String* subject, int start_index);
static int CheckStackGuardState(Isolate* isolate, int start_index,
bool is_direct_call, Address* return_address,
Code* re_code, String** subject,
const byte** input_start,
const byte** input_end);
// Byte map of one byte characters with a 0xff if the character is a word // Byte map of one byte characters with a 0xff if the character is a word
// character (digit, letter or underscore) and 0x00 otherwise. // character (digit, letter or underscore) and 0x00 otherwise.
// Used by generated RegExp code. // Used by generated RegExp code.

View File

@ -1176,102 +1176,22 @@ static T& frame_entry(Address re_frame, int frame_offset) {
} }
template <typename T>
static T* frame_entry_address(Address re_frame, int frame_offset) {
return reinterpret_cast<T*>(re_frame + frame_offset);
}
int RegExpMacroAssemblerX64::CheckStackGuardState(Address* return_address, int RegExpMacroAssemblerX64::CheckStackGuardState(Address* return_address,
Code* re_code, Code* re_code,
Address re_frame) { Address re_frame) {
Isolate* isolate = frame_entry<Isolate*>(re_frame, kIsolate); return NativeRegExpMacroAssembler::CheckStackGuardState(
StackLimitCheck check(isolate); frame_entry<Isolate*>(re_frame, kIsolate),
if (check.JsHasOverflowed()) { frame_entry<int>(re_frame, kStartIndex),
isolate->StackOverflow(); frame_entry<int>(re_frame, kDirectCall) == 1, return_address, re_code,
return EXCEPTION; frame_entry_address<String*>(re_frame, kInputString),
} frame_entry_address<const byte*>(re_frame, kInputStart),
frame_entry_address<const byte*>(re_frame, kInputEnd));
// If not real stack overflow the stack guard was used to interrupt
// execution for another purpose.
// If this is a direct call from JavaScript retry the RegExp forcing the call
// through the runtime system. Currently the direct call cannot handle a GC.
if (frame_entry<int>(re_frame, kDirectCall) == 1) {
return RETRY;
}
// Prepare for possible GC.
HandleScope handles(isolate);
Handle<Code> code_handle(re_code);
Handle<String> subject(frame_entry<String*>(re_frame, kInputString));
// Current string.
bool is_one_byte = subject->IsOneByteRepresentationUnderneath();
DCHECK(re_code->instruction_start() <= *return_address);
DCHECK(*return_address <=
re_code->instruction_start() + re_code->instruction_size());
Object* result = isolate->stack_guard()->HandleInterrupts();
if (*code_handle != re_code) { // Return address no longer valid
intptr_t delta = code_handle->address() - re_code->address();
// Overwrite the return address on the stack.
*return_address += delta;
}
if (result->IsException()) {
return EXCEPTION;
}
Handle<String> subject_tmp = subject;
int slice_offset = 0;
// Extract the underlying string and the slice offset.
if (StringShape(*subject_tmp).IsCons()) {
subject_tmp = Handle<String>(ConsString::cast(*subject_tmp)->first());
} else if (StringShape(*subject_tmp).IsSliced()) {
SlicedString* slice = SlicedString::cast(*subject_tmp);
subject_tmp = Handle<String>(slice->parent());
slice_offset = slice->offset();
}
// String might have changed.
if (subject_tmp->IsOneByteRepresentation() != is_one_byte) {
// If we changed between an Latin1 and an UC16 string, the specialized
// code cannot be used, and we need to restart regexp matching from
// scratch (including, potentially, compiling a new version of the code).
return RETRY;
}
// Otherwise, the content of the string might have moved. It must still
// be a sequential or external string with the same content.
// Update the start and end pointers in the stack frame to the current
// location (whether it has actually moved or not).
DCHECK(StringShape(*subject_tmp).IsSequential() ||
StringShape(*subject_tmp).IsExternal());
// The original start address of the characters to match.
const byte* start_address = frame_entry<const byte*>(re_frame, kInputStart);
// Find the current start address of the same character at the current string
// position.
int start_index = frame_entry<int>(re_frame, kStartIndex);
const byte* new_address = StringCharacterPosition(*subject_tmp,
start_index + slice_offset);
if (start_address != new_address) {
// If there is a difference, update the object pointer and start and end
// addresses in the RegExp stack frame to match the new value.
const byte* end_address = frame_entry<const byte* >(re_frame, kInputEnd);
int byte_length = static_cast<int>(end_address - start_address);
frame_entry<const String*>(re_frame, kInputString) = *subject;
frame_entry<const byte*>(re_frame, kInputStart) = new_address;
frame_entry<const byte*>(re_frame, kInputEnd) = new_address + byte_length;
} else if (frame_entry<const String*>(re_frame, kInputString) != *subject) {
// Subject string might have been a ConsString that underwent
// short-circuiting during GC. That will not change start_address but
// will change pointer inside the subject handle.
frame_entry<const String*>(re_frame, kInputString) = *subject;
}
return 0;
} }

View File

@ -1071,102 +1071,22 @@ static T& frame_entry(Address re_frame, int frame_offset) {
} }
template <typename T>
static T* frame_entry_address(Address re_frame, int frame_offset) {
return reinterpret_cast<T*>(re_frame + frame_offset);
}
int RegExpMacroAssemblerX87::CheckStackGuardState(Address* return_address, int RegExpMacroAssemblerX87::CheckStackGuardState(Address* return_address,
Code* re_code, Code* re_code,
Address re_frame) { Address re_frame) {
Isolate* isolate = frame_entry<Isolate*>(re_frame, kIsolate); return NativeRegExpMacroAssembler::CheckStackGuardState(
StackLimitCheck check(isolate); frame_entry<Isolate*>(re_frame, kIsolate),
if (check.JsHasOverflowed()) { frame_entry<int>(re_frame, kStartIndex),
isolate->StackOverflow(); frame_entry<int>(re_frame, kDirectCall) == 1, return_address, re_code,
return EXCEPTION; frame_entry_address<String*>(re_frame, kInputString),
} frame_entry_address<const byte*>(re_frame, kInputStart),
frame_entry_address<const byte*>(re_frame, kInputEnd));
// If not real stack overflow the stack guard was used to interrupt
// execution for another purpose.
// If this is a direct call from JavaScript retry the RegExp forcing the call
// through the runtime system. Currently the direct call cannot handle a GC.
if (frame_entry<int>(re_frame, kDirectCall) == 1) {
return RETRY;
}
// Prepare for possible GC.
HandleScope handles(isolate);
Handle<Code> code_handle(re_code);
Handle<String> subject(frame_entry<String*>(re_frame, kInputString));
// Current string.
bool is_one_byte = subject->IsOneByteRepresentationUnderneath();
DCHECK(re_code->instruction_start() <= *return_address);
DCHECK(*return_address <=
re_code->instruction_start() + re_code->instruction_size());
Object* result = isolate->stack_guard()->HandleInterrupts();
if (*code_handle != re_code) { // Return address no longer valid
int delta = code_handle->address() - re_code->address();
// Overwrite the return address on the stack.
*return_address += delta;
}
if (result->IsException()) {
return EXCEPTION;
}
Handle<String> subject_tmp = subject;
int slice_offset = 0;
// Extract the underlying string and the slice offset.
if (StringShape(*subject_tmp).IsCons()) {
subject_tmp = Handle<String>(ConsString::cast(*subject_tmp)->first());
} else if (StringShape(*subject_tmp).IsSliced()) {
SlicedString* slice = SlicedString::cast(*subject_tmp);
subject_tmp = Handle<String>(slice->parent());
slice_offset = slice->offset();
}
// String might have changed.
if (subject_tmp->IsOneByteRepresentation() != is_one_byte) {
// If we changed between an LATIN1 and an UC16 string, the specialized
// code cannot be used, and we need to restart regexp matching from
// scratch (including, potentially, compiling a new version of the code).
return RETRY;
}
// Otherwise, the content of the string might have moved. It must still
// be a sequential or external string with the same content.
// Update the start and end pointers in the stack frame to the current
// location (whether it has actually moved or not).
DCHECK(StringShape(*subject_tmp).IsSequential() ||
StringShape(*subject_tmp).IsExternal());
// The original start address of the characters to match.
const byte* start_address = frame_entry<const byte*>(re_frame, kInputStart);
// Find the current start address of the same character at the current string
// position.
int start_index = frame_entry<int>(re_frame, kStartIndex);
const byte* new_address = StringCharacterPosition(*subject_tmp,
start_index + slice_offset);
if (start_address != new_address) {
// If there is a difference, update the object pointer and start and end
// addresses in the RegExp stack frame to match the new value.
const byte* end_address = frame_entry<const byte* >(re_frame, kInputEnd);
int byte_length = static_cast<int>(end_address - start_address);
frame_entry<const String*>(re_frame, kInputString) = *subject;
frame_entry<const byte*>(re_frame, kInputStart) = new_address;
frame_entry<const byte*>(re_frame, kInputEnd) = new_address + byte_length;
} else if (frame_entry<const String*>(re_frame, kInputString) != *subject) {
// Subject string might have been a ConsString that underwent
// short-circuiting during GC. That will not change start_address but
// will change pointer inside the subject handle.
frame_entry<const String*>(re_frame, kInputString) = *subject;
}
return 0;
} }

View File

@ -0,0 +1,13 @@
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Flags: --allow-natives-syntax --stress-compaction --verify-heap
// Flags: --stack-size=100
// Load the debug context to fill up code space.
%GetDebugContext();
%GetDebugContext();
// Recurse and run regexp code.
assertThrows(function f() { f(/./.test("a")); }, RangeError);