MIPS: pre-crankshaft updates to code-stubs and stub-cache (3/3)

Highlights:
- code-stubs-mips.cc
-- use EmitFPUTruncate in place of inline code in several places.
-- use BranchF macro rather than lower-level FP cmp and branch for readability.
-- Port of Sven's r8859 (Implement type recording for ToBoolean) and r8886
(Simplify and optimize ToBoolean handling.)
-- Fix bug in TranscendentalCacheStub::Generate where some regs were not
saved across CFunction call.
-- use updated xxxCFunction macros.
-- update InstanceOfStub to support crankshaft
DoDeferredLInstanceOfKnownGlobal
-- Provide code-patching and I-cache flushing support for generated
code, used for InstanceOfStub under crankshaft (not submitted here).
This requires adding new ExternalReference to src/assember.cc,h

- stub-cache-mips.cc
-- port Danno's r8901 (Create a common base class for Fixed-, FixedDouble-
and ExternalArrays) to mips crankshaft branch.

BUG=
TEST=

Review URL: http://codereview.chromium.org/7890001
Patch from Paul Lind <plind44@gmail.com>.

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@9308 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
This commit is contained in:
danno@chromium.org 2011-09-16 09:23:48 +00:00
parent c579bfe6e2
commit c74aae242a
6 changed files with 289 additions and 213 deletions

View File

@ -736,6 +736,10 @@ ExternalReference::ExternalReference(const SCTableReference& table_ref)
: address_(table_ref.address()) {}
ExternalReference ExternalReference::flush_icache_function(Isolate* isolate) {
return ExternalReference(Redirect(isolate, FUNCTION_ADDR(CPU::FlushICache)));
}
ExternalReference ExternalReference::perform_gc_function(Isolate* isolate) {
return ExternalReference(Redirect(isolate,
FUNCTION_ADDR(Runtime::PerformGC)));

View File

@ -561,6 +561,7 @@ class ExternalReference BASE_EMBEDDED {
// pattern. This means that they have to be added to the
// ExternalReferenceTable in serialize.cc manually.
static ExternalReference flush_icache_function(Isolate* isolate);
static ExternalReference perform_gc_function(Isolate* isolate);
static ExternalReference fill_heap_number_with_random_function(
Isolate* isolate);

View File

@ -615,7 +615,7 @@ void FloatingPointHelper::ConvertIntToDouble(MacroAssembler* masm,
void FloatingPointHelper::LoadNumberAsInt32Double(MacroAssembler* masm,
Register object,
Destination destination,
FPURegister double_dst,
DoubleRegister double_dst,
Register dst1,
Register dst2,
Register heap_number_map,
@ -651,25 +651,16 @@ void FloatingPointHelper::LoadNumberAsInt32Double(MacroAssembler* masm,
// Load the double value.
__ ldc1(double_dst, FieldMemOperand(object, HeapNumber::kValueOffset));
// NOTE: ARM uses a MacroAssembler function here (EmitVFPTruncate).
// On MIPS a lot of things cannot be implemented the same way so right
// now it makes a lot more sense to just do things manually.
// Save FCSR.
__ cfc1(scratch1, FCSR);
// Disable FPU exceptions.
__ ctc1(zero_reg, FCSR);
__ trunc_w_d(single_scratch, double_dst);
// Retrieve FCSR.
__ cfc1(scratch2, FCSR);
// Restore FCSR.
__ ctc1(scratch1, FCSR);
// Check for inexact conversion or exception.
__ And(scratch2, scratch2, kFCSRFlagMask);
Register except_flag = scratch2;
__ EmitFPUTruncate(kRoundToZero,
single_scratch,
double_dst,
scratch1,
except_flag,
kCheckForInexactConversion);
// Jump to not_int32 if the operation did not succeed.
__ Branch(not_int32, ne, scratch2, Operand(zero_reg));
__ Branch(not_int32, ne, except_flag, Operand(zero_reg));
if (destination == kCoreRegisters) {
__ Move(dst1, dst2, double_dst);
@ -706,7 +697,7 @@ void FloatingPointHelper::LoadNumberAsInt32(MacroAssembler* masm,
Register scratch1,
Register scratch2,
Register scratch3,
FPURegister double_scratch,
DoubleRegister double_scratch,
Label* not_int32) {
ASSERT(!dst.is(object));
ASSERT(!scratch1.is(object) && !scratch2.is(object) && !scratch3.is(object));
@ -735,27 +726,19 @@ void FloatingPointHelper::LoadNumberAsInt32(MacroAssembler* masm,
// Load the double value.
__ ldc1(double_scratch, FieldMemOperand(object, HeapNumber::kValueOffset));
// NOTE: ARM uses a MacroAssembler function here (EmitVFPTruncate).
// On MIPS a lot of things cannot be implemented the same way so right
// now it makes a lot more sense to just do things manually.
// Save FCSR.
__ cfc1(scratch1, FCSR);
// Disable FPU exceptions.
__ ctc1(zero_reg, FCSR);
__ trunc_w_d(double_scratch, double_scratch);
// Retrieve FCSR.
__ cfc1(scratch2, FCSR);
// Restore FCSR.
__ ctc1(scratch1, FCSR);
// Check for inexact conversion or exception.
__ And(scratch2, scratch2, kFCSRFlagMask);
FPURegister single_scratch = double_scratch.low();
Register except_flag = scratch2;
__ EmitFPUTruncate(kRoundToZero,
single_scratch,
double_scratch,
scratch1,
except_flag,
kCheckForInexactConversion);
// Jump to not_int32 if the operation did not succeed.
__ Branch(not_int32, ne, scratch2, Operand(zero_reg));
__ Branch(not_int32, ne, except_flag, Operand(zero_reg));
// Get the result in the destination register.
__ mfc1(dst, double_scratch);
__ mfc1(dst, single_scratch);
} else {
// Load the double value in the destination registers.
@ -884,7 +867,7 @@ void FloatingPointHelper::CallCCodeForDoubleOperation(
{
AllowExternalCallThatCantCauseGC scope(masm);
__ CallCFunction(
ExternalReference::double_fp_operation(op, masm->isolate()), 4);
ExternalReference::double_fp_operation(op, masm->isolate()), 0, 2);
}
// Store answer in the overwritable heap number.
if (!IsMipsSoftFloatABI) {
@ -1260,7 +1243,7 @@ static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cc) {
if (!CpuFeatures::IsSupported(FPU)) {
__ push(ra);
__ PrepareCallCFunction(4, t4); // Two doubles count as 4 arguments.
__ PrepareCallCFunction(0, 2, t4);
if (!IsMipsSoftFloatABI) {
// We are not using MIPS FPU instructions, and parameters for the runtime
// function call are prepaired in a0-a3 registers, but function we are
@ -1270,19 +1253,15 @@ static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cc) {
__ Move(f12, a0, a1);
__ Move(f14, a2, a3);
}
__ CallCFunction(ExternalReference::compare_doubles(masm->isolate()), 4);
__ CallCFunction(ExternalReference::compare_doubles(masm->isolate()),
0, 2);
__ pop(ra); // Because this function returns int, result is in v0.
__ Ret();
} else {
CpuFeatures::Scope scope(FPU);
Label equal, less_than;
__ c(EQ, D, f12, f14);
__ bc1t(&equal);
__ nop();
__ c(OLT, D, f12, f14);
__ bc1t(&less_than);
__ nop();
__ BranchF(&equal, NULL, eq, f12, f14);
__ BranchF(&less_than, NULL, lt, f12, f14);
// Not equal, not less, not NaN, must be greater.
__ li(v0, Operand(GREATER));
@ -1475,9 +1454,7 @@ void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm,
__ JumpIfSmi(probe, not_found);
__ ldc1(f12, FieldMemOperand(object, HeapNumber::kValueOffset));
__ ldc1(f14, FieldMemOperand(probe, HeapNumber::kValueOffset));
__ c(EQ, D, f12, f14);
__ bc1t(&load_result_from_cache);
__ nop(); // bc1t() requires explicit fill of branch delay slot.
__ BranchF(&load_result_from_cache, NULL, eq, f12, f14);
__ Branch(not_found);
} else {
// Note that there is no cache check for non-FPU case, even though
@ -1593,9 +1570,7 @@ void CompareStub::Generate(MacroAssembler* masm) {
__ li(t2, Operand(EQUAL));
// Check if either rhs or lhs is NaN.
__ c(UN, D, f12, f14);
__ bc1t(&nan);
__ nop();
__ BranchF(NULL, &nan, eq, f12, f14);
// Check if LESS condition is satisfied. If true, move conditionally
// result to v0.
@ -1713,89 +1688,116 @@ void CompareStub::Generate(MacroAssembler* masm) {
}
// The stub returns zero for false, and a non-zero value for true.
// The stub expects its argument in the tos_ register and returns its result in
// it, too: zero for false, and a non-zero value for true.
void ToBooleanStub::Generate(MacroAssembler* masm) {
// This stub uses FPU instructions.
CpuFeatures::Scope scope(FPU);
Label false_result;
Label not_heap_number;
Register scratch0 = t5.is(tos_) ? t3 : t5;
Label patch;
const Register map = t5.is(tos_) ? t3 : t5;
// undefined -> false
__ LoadRoot(scratch0, Heap::kUndefinedValueRootIndex);
__ Branch(&false_result, eq, tos_, Operand(scratch0));
// undefined -> false.
CheckOddball(masm, UNDEFINED, Heap::kUndefinedValueRootIndex, false);
// Boolean -> its value
__ LoadRoot(scratch0, Heap::kFalseValueRootIndex);
__ Branch(&false_result, eq, tos_, Operand(scratch0));
__ LoadRoot(scratch0, Heap::kTrueValueRootIndex);
// "tos_" is a register and contains a non-zero value. Hence we implicitly
// return true if the equal condition is satisfied.
__ Ret(eq, tos_, Operand(scratch0));
// Boolean -> its value.
CheckOddball(masm, BOOLEAN, Heap::kFalseValueRootIndex, false);
CheckOddball(masm, BOOLEAN, Heap::kTrueValueRootIndex, true);
// Smis: 0 -> false, all other -> true
__ And(scratch0, tos_, tos_);
__ Branch(&false_result, eq, scratch0, Operand(zero_reg));
__ And(scratch0, tos_, Operand(kSmiTagMask));
// "tos_" is a register and contains a non-zero value. Hence we implicitly
// return true if the not equal condition is satisfied.
__ Ret(eq, scratch0, Operand(zero_reg));
// 'null' -> false.
CheckOddball(masm, NULL_TYPE, Heap::kNullValueRootIndex, false);
// 'null' -> false
__ LoadRoot(scratch0, Heap::kNullValueRootIndex);
__ Branch(&false_result, eq, tos_, Operand(scratch0));
if (types_.Contains(SMI)) {
// Smis: 0 -> false, all other -> true
__ And(at, tos_, kSmiTagMask);
// tos_ contains the correct return value already
__ Ret(eq, at, Operand(zero_reg));
} else if (types_.NeedsMap()) {
// If we need a map later and have a Smi -> patch.
__ JumpIfSmi(tos_, &patch);
}
// HeapNumber => false if +0, -0, or NaN.
__ lw(scratch0, FieldMemOperand(tos_, HeapObject::kMapOffset));
__ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
__ Branch(&not_heap_number, ne, scratch0, Operand(at));
if (types_.NeedsMap()) {
__ lw(map, FieldMemOperand(tos_, HeapObject::kMapOffset));
__ ldc1(f12, FieldMemOperand(tos_, HeapNumber::kValueOffset));
__ fcmp(f12, 0.0, UEQ);
if (types_.CanBeUndetectable()) {
__ lbu(at, FieldMemOperand(map, Map::kBitFieldOffset));
__ And(at, at, Operand(1 << Map::kIsUndetectable));
// Undetectable -> false.
__ movn(tos_, zero_reg, at);
__ Ret(ne, at, Operand(zero_reg));
}
}
// "tos_" is a register, and contains a non zero value by default.
// Hence we only need to overwrite "tos_" with zero to return false for
// FP_ZERO or FP_NAN cases. Otherwise, by default it returns true.
__ movt(tos_, zero_reg);
__ Ret();
if (types_.Contains(SPEC_OBJECT)) {
// Spec object -> true.
__ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset));
// tos_ contains the correct non-zero return value already.
__ Ret(ge, at, Operand(FIRST_SPEC_OBJECT_TYPE));
}
__ bind(&not_heap_number);
if (types_.Contains(STRING)) {
// String value -> false iff empty.
__ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset));
Label skip;
__ Branch(&skip, ge, at, Operand(FIRST_NONSTRING_TYPE));
__ lw(tos_, FieldMemOperand(tos_, String::kLengthOffset));
__ Ret(); // the string length is OK as the return value
__ bind(&skip);
}
// It can be an undetectable object.
// Undetectable => false.
__ lw(at, FieldMemOperand(tos_, HeapObject::kMapOffset));
__ lbu(scratch0, FieldMemOperand(at, Map::kBitFieldOffset));
__ And(scratch0, scratch0, Operand(1 << Map::kIsUndetectable));
__ Branch(&false_result, eq, scratch0, Operand(1 << Map::kIsUndetectable));
if (types_.Contains(HEAP_NUMBER)) {
// Heap number -> false iff +0, -0, or NaN.
Label not_heap_number;
__ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
__ Branch(&not_heap_number, ne, map, Operand(at));
Label zero_or_nan, number;
__ ldc1(f2, FieldMemOperand(tos_, HeapNumber::kValueOffset));
__ BranchF(&number, &zero_or_nan, ne, f2, kDoubleRegZero);
// "tos_" is a register, and contains a non zero value by default.
// Hence we only need to overwrite "tos_" with zero to return false for
// FP_ZERO or FP_NAN cases. Otherwise, by default it returns true.
__ bind(&zero_or_nan);
__ mov(tos_, zero_reg);
__ bind(&number);
__ Ret();
__ bind(&not_heap_number);
}
// JavaScript object => true.
__ lw(scratch0, FieldMemOperand(tos_, HeapObject::kMapOffset));
__ lbu(scratch0, FieldMemOperand(scratch0, Map::kInstanceTypeOffset));
__ bind(&patch);
GenerateTypeTransition(masm);
}
// "tos_" is a register and contains a non-zero value.
// Hence we implicitly return true if the greater than
// condition is satisfied.
__ Ret(ge, scratch0, Operand(FIRST_SPEC_OBJECT_TYPE));
// Check for string.
__ lw(scratch0, FieldMemOperand(tos_, HeapObject::kMapOffset));
__ lbu(scratch0, FieldMemOperand(scratch0, Map::kInstanceTypeOffset));
// "tos_" is a register and contains a non-zero value.
// Hence we implicitly return true if the greater than
// condition is satisfied.
__ Ret(ge, scratch0, Operand(FIRST_NONSTRING_TYPE));
void ToBooleanStub::CheckOddball(MacroAssembler* masm,
Type type,
Heap::RootListIndex value,
bool result) {
if (types_.Contains(type)) {
// If we see an expected oddball, return its ToBoolean value tos_.
__ LoadRoot(at, value);
__ Subu(at, at, tos_); // This is a check for equality for the movz below.
// The value of a root is never NULL, so we can avoid loading a non-null
// value into tos_ when we want to return 'true'.
if (!result) {
__ movz(tos_, zero_reg, at);
}
__ Ret(eq, at, Operand(zero_reg));
}
}
// String value => false iff empty, i.e., length is zero.
__ lw(tos_, FieldMemOperand(tos_, String::kLengthOffset));
// If length is zero, "tos_" contains zero ==> false.
// If length is not zero, "tos_" contains a non-zero value ==> true.
__ Ret();
// Return 0 in "tos_" for false.
__ bind(&false_result);
__ mov(tos_, zero_reg);
__ Ret();
void ToBooleanStub::GenerateTypeTransition(MacroAssembler* masm) {
__ Move(a3, tos_);
__ li(a2, Operand(Smi::FromInt(tos_.code())));
__ li(a1, Operand(Smi::FromInt(types_.ToByte())));
__ Push(a3, a2, a1);
// Patch the caller to an appropriate specialized stub and return the
// operation result to the caller of the stub.
__ TailCallExternalReference(
ExternalReference(IC_Utility(IC::kToBoolean_Patch), masm->isolate()),
3,
1);
}
@ -2721,26 +2723,16 @@ void BinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) {
// Otherwise return a heap number if allowed, or jump to type
// transition.
// NOTE: ARM uses a MacroAssembler function here (EmitVFPTruncate).
// On MIPS a lot of things cannot be implemented the same way so right
// now it makes a lot more sense to just do things manually.
// Save FCSR.
__ cfc1(scratch1, FCSR);
// Disable FPU exceptions.
__ ctc1(zero_reg, FCSR);
__ trunc_w_d(single_scratch, f10);
// Retrieve FCSR.
__ cfc1(scratch2, FCSR);
// Restore FCSR.
__ ctc1(scratch1, FCSR);
// Check for inexact conversion or exception.
__ And(scratch2, scratch2, kFCSRFlagMask);
Register except_flag = scratch2;
__ EmitFPUTruncate(kRoundToZero,
single_scratch,
f10,
scratch1,
except_flag);
if (result_type_ <= BinaryOpIC::INT32) {
// If scratch2 != 0, result does not fit in a 32-bit integer.
__ Branch(&transition, ne, scratch2, Operand(zero_reg));
// If except_flag != 0, result does not fit in a 32-bit integer.
__ Branch(&transition, ne, except_flag, Operand(zero_reg));
}
// Check if the result fits in a smi.
@ -3229,7 +3221,6 @@ void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
__ lw(t0, MemOperand(cache_entry, 0));
__ lw(t1, MemOperand(cache_entry, 4));
__ lw(t2, MemOperand(cache_entry, 8));
__ Addu(cache_entry, cache_entry, 12);
__ Branch(&calculate, ne, a2, Operand(t0));
__ Branch(&calculate, ne, a3, Operand(t1));
// Cache hit. Load result, cleanup and return.
@ -3263,13 +3254,13 @@ void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
// Register a0 holds precalculated cache entry address; preserve
// it on the stack and pop it into register cache_entry after the
// call.
__ push(cache_entry);
__ Push(cache_entry, a2, a3);
GenerateCallCFunction(masm, scratch0);
__ GetCFunctionDoubleResult(f4);
// Try to update the cache. If we cannot allocate a
// heap number, we return the result without updating.
__ pop(cache_entry);
__ Pop(cache_entry, a2, a3);
__ LoadRoot(t1, Heap::kHeapNumberMapRootIndex);
__ AllocateHeapNumber(t2, scratch0, scratch1, t1, &no_update);
__ sdc1(f4, FieldMemOperand(t2, HeapNumber::kValueOffset));
@ -3323,22 +3314,25 @@ void TranscendentalCacheStub::GenerateCallCFunction(MacroAssembler* masm,
__ push(ra);
__ PrepareCallCFunction(2, scratch);
if (IsMipsSoftFloatABI) {
__ Move(v0, v1, f4);
__ Move(a0, a1, f4);
} else {
__ mov_d(f12, f4);
}
switch (type_) {
case TranscendentalCache::SIN:
__ CallCFunction(
ExternalReference::math_sin_double_function(masm->isolate()), 2);
ExternalReference::math_sin_double_function(masm->isolate()),
0, 1);
break;
case TranscendentalCache::COS:
__ CallCFunction(
ExternalReference::math_cos_double_function(masm->isolate()), 2);
ExternalReference::math_cos_double_function(masm->isolate()),
0, 1);
break;
case TranscendentalCache::LOG:
__ CallCFunction(
ExternalReference::math_log_double_function(masm->isolate()), 2);
ExternalReference::math_log_double_function(masm->isolate()),
0, 1);
break;
default:
UNIMPLEMENTED();
@ -3421,12 +3415,12 @@ void MathPowStub::Generate(MacroAssembler* masm) {
heapnumbermap,
&call_runtime);
__ push(ra);
__ PrepareCallCFunction(3, scratch);
__ PrepareCallCFunction(1, 1, scratch);
__ SetCallCDoubleArguments(double_base, exponent);
{
AllowExternalCallThatCantCauseGC scope(masm);
__ CallCFunction(
ExternalReference::power_double_int_function(masm->isolate()), 3);
ExternalReference::power_double_int_function(masm->isolate()), 1, 1);
__ pop(ra);
__ GetCFunctionDoubleResult(double_result);
}
@ -3452,7 +3446,7 @@ void MathPowStub::Generate(MacroAssembler* masm) {
heapnumbermap,
&call_runtime);
__ push(ra);
__ PrepareCallCFunction(4, scratch);
__ PrepareCallCFunction(0, 2, scratch);
// ABI (o32) for func(double a, double b): a in f12, b in f14.
ASSERT(double_base.is(f12));
ASSERT(double_exponent.is(f14));
@ -3460,7 +3454,9 @@ void MathPowStub::Generate(MacroAssembler* masm) {
{
AllowExternalCallThatCantCauseGC scope(masm);
__ CallCFunction(
ExternalReference::power_double_double_function(masm->isolate()), 4);
ExternalReference::power_double_double_function(masm->isolate()),
0,
2);
__ pop(ra);
__ GetCFunctionDoubleResult(double_result);
}
@ -3505,9 +3501,10 @@ void CEntryStub::GenerateCore(MacroAssembler* masm,
if (do_gc) {
// Move result passed in v0 into a0 to call PerformGC.
__ mov(a0, v0);
__ PrepareCallCFunction(1, a1);
__ PrepareCallCFunction(1, 0, a1);
__ CallCFunction(
ExternalReference::perform_gc_function(masm->isolate()), 1);
ExternalReference::perform_gc_function(masm->isolate()),
1, 0);
}
ExternalReference scope_depth =
@ -3712,8 +3709,11 @@ void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
CpuFeatures::Scope scope(FPU);
// Save callee-saved FPU registers.
__ MultiPushFPU(kCalleeSavedFPU);
// Set up the reserved register for 0.0.
__ Move(kDoubleRegZero, 0.0);
}
// Load argv in s0 register.
int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize;
if (CpuFeatures::IsSupported(FPU)) {
@ -3870,11 +3870,10 @@ void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
// * object: a0 or at sp + 1 * kPointerSize.
// * function: a1 or at sp.
//
// Inlined call site patching is a crankshaft-specific feature that is not
// implemented on MIPS.
// An inlined call site may have been generated before calling this stub.
// In this case the offset to the inline site to patch is passed on the stack,
// in the safepoint slot for register t0.
void InstanceofStub::Generate(MacroAssembler* masm) {
// This is a crankshaft-specific feature that has not been implemented yet.
ASSERT(!HasCallSiteInlineCheck());
// Call site inlining and patching implies arguments in registers.
ASSERT(HasArgsInRegisters() || !HasCallSiteInlineCheck());
// ReturnTrueFalse is only implemented for inlined call sites.
@ -3888,6 +3887,8 @@ void InstanceofStub::Generate(MacroAssembler* masm) {
const Register inline_site = t5;
const Register scratch = a2;
const int32_t kDeltaToLoadBoolResult = 4 * kPointerSize;
Label slow, loop, is_instance, is_not_instance, not_js_object;
if (!HasArgsInRegisters()) {
@ -3903,10 +3904,10 @@ void InstanceofStub::Generate(MacroAssembler* masm) {
// real lookup and update the call site cache.
if (!HasCallSiteInlineCheck()) {
Label miss;
__ LoadRoot(t1, Heap::kInstanceofCacheFunctionRootIndex);
__ Branch(&miss, ne, function, Operand(t1));
__ LoadRoot(t1, Heap::kInstanceofCacheMapRootIndex);
__ Branch(&miss, ne, map, Operand(t1));
__ LoadRoot(at, Heap::kInstanceofCacheFunctionRootIndex);
__ Branch(&miss, ne, function, Operand(at));
__ LoadRoot(at, Heap::kInstanceofCacheMapRootIndex);
__ Branch(&miss, ne, map, Operand(at));
__ LoadRoot(v0, Heap::kInstanceofCacheAnswerRootIndex);
__ DropAndRet(HasArgsInRegisters() ? 0 : 2);
@ -3926,7 +3927,15 @@ void InstanceofStub::Generate(MacroAssembler* masm) {
__ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
__ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex);
} else {
UNIMPLEMENTED_MIPS();
ASSERT(HasArgsInRegisters());
// Patch the (relocated) inlined map check.
// The offset was stored in t0 safepoint slot.
// (See LCodeGen::DoDeferredLInstanceOfKnownGlobal)
__ LoadFromSafepointRegisterSlot(scratch, t0);
__ Subu(inline_site, ra, scratch);
// Patch the relocated value to map.
__ PatchRelocatedValue(inline_site, scratch, map);
}
// Register mapping: a3 is object map and t0 is function prototype.
@ -3952,7 +3961,16 @@ void InstanceofStub::Generate(MacroAssembler* masm) {
__ mov(v0, zero_reg);
__ StoreRoot(v0, Heap::kInstanceofCacheAnswerRootIndex);
} else {
UNIMPLEMENTED_MIPS();
// Patch the call site to return true.
__ LoadRoot(v0, Heap::kTrueValueRootIndex);
__ Addu(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
// Get the boolean result location in scratch and patch it.
__ PatchRelocatedValue(inline_site, scratch, v0);
if (!ReturnTrueFalseObject()) {
ASSERT_EQ(Smi::FromInt(0), 0);
__ mov(v0, zero_reg);
}
}
__ DropAndRet(HasArgsInRegisters() ? 0 : 2);
@ -3961,8 +3979,17 @@ void InstanceofStub::Generate(MacroAssembler* masm) {
__ li(v0, Operand(Smi::FromInt(1)));
__ StoreRoot(v0, Heap::kInstanceofCacheAnswerRootIndex);
} else {
UNIMPLEMENTED_MIPS();
// Patch the call site to return false.
__ LoadRoot(v0, Heap::kFalseValueRootIndex);
__ Addu(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
// Get the boolean result location in scratch and patch it.
__ PatchRelocatedValue(inline_site, scratch, v0);
if (!ReturnTrueFalseObject()) {
__ li(v0, Operand(Smi::FromInt(1)));
}
}
__ DropAndRet(HasArgsInRegisters() ? 0 : 2);
Label object_not_null, object_not_null_or_smi;
@ -6477,39 +6504,25 @@ void ICCompareStub::GenerateHeapNumbers(MacroAssembler* masm) {
__ Subu(a2, a0, Operand(kHeapObjectTag));
__ ldc1(f2, MemOperand(a2, HeapNumber::kValueOffset));
Label fpu_eq, fpu_lt, fpu_gt;
// Compare operands (test if unordered).
__ c(UN, D, f0, f2);
// Don't base result on status bits when a NaN is involved.
__ bc1t(&unordered);
__ nop();
// Return a result of -1, 0, or 1, or use CompareStub for NaNs.
Label fpu_eq, fpu_lt;
// Test if equal, and also handle the unordered/NaN case.
__ BranchF(&fpu_eq, &unordered, eq, f0, f2);
// Test if equal.
__ c(EQ, D, f0, f2);
__ bc1t(&fpu_eq);
__ nop();
// Test if less (unordered case is already handled).
__ BranchF(&fpu_lt, NULL, lt, f0, f2);
// Test if unordered or less (unordered case is already handled).
__ c(ULT, D, f0, f2);
__ bc1t(&fpu_lt);
__ nop();
// Otherwise it's greater, so just fall thru, and return.
__ Ret(USE_DELAY_SLOT);
__ li(v0, Operand(GREATER)); // In delay slot.
// Otherwise it's greater.
__ bc1f(&fpu_gt);
__ nop();
// Return a result of -1, 0, or 1.
__ bind(&fpu_eq);
__ li(v0, Operand(EQUAL));
__ Ret();
__ Ret(USE_DELAY_SLOT);
__ li(v0, Operand(EQUAL)); // In delay slot.
__ bind(&fpu_lt);
__ li(v0, Operand(LESS));
__ Ret();
__ bind(&fpu_gt);
__ li(v0, Operand(GREATER));
__ Ret();
__ Ret(USE_DELAY_SLOT);
__ li(v0, Operand(LESS)); // In delay slot.
__ bind(&unordered);
}

View File

@ -818,6 +818,20 @@ void MacroAssembler::MultiPopReversedFPU(RegList regs) {
}
void MacroAssembler::FlushICache(Register address, unsigned instructions) {
RegList saved_regs = kJSCallerSaved | ra.bit();
MultiPush(saved_regs);
// Save to a0 in case address == t0.
Move(a0, address);
PrepareCallCFunction(2, t0);
li(a1, instructions * kInstrSize);
CallCFunction(ExternalReference::flush_icache_function(isolate()), 2);
MultiPop(saved_regs);
}
void MacroAssembler::Ext(Register rt,
Register rs,
uint16_t pos,
@ -4605,6 +4619,37 @@ void MacroAssembler::CallCFunctionHelper(Register function,
#undef BRANCH_ARGS_CHECK
void MacroAssembler::PatchRelocatedValue(Register li_location,
Register scratch,
Register new_value) {
lw(scratch, MemOperand(li_location));
// At this point scratch is a lui(at, ...) instruction.
if (emit_debug_code()) {
And(scratch, scratch, kOpcodeMask);
Check(eq, "The instruction to patch should be a lui.",
scratch, Operand(LUI));
lw(scratch, MemOperand(li_location));
}
srl(t9, new_value, kImm16Bits);
Ins(scratch, t9, 0, kImm16Bits);
sw(scratch, MemOperand(li_location));
lw(scratch, MemOperand(li_location, kInstrSize));
// scratch is now ori(at, ...).
if (emit_debug_code()) {
And(scratch, scratch, kOpcodeMask);
Check(eq, "The instruction to patch should be an ori.",
scratch, Operand(ORI));
lw(scratch, MemOperand(li_location, kInstrSize));
}
Ins(scratch, new_value, 0, kImm16Bits);
sw(scratch, MemOperand(li_location, kInstrSize));
// Update the I-cache so the new lui and ori can be executed.
FlushICache(li_location, 2);
}
void MacroAssembler::LoadInstanceDescriptors(Register map,
Register descriptors) {
lw(descriptors,

View File

@ -577,6 +577,10 @@ class MacroAssembler: public Assembler {
// into register dst.
void LoadFromSafepointRegisterSlot(Register dst, Register src);
// Flush the I-cache from asm code. You should use CPU::FlushICache from C.
// Does not handle errors.
void FlushICache(Register address, unsigned instructions);
// MIPS32 R2 instruction macro.
void Ins(Register rt, Register rs, uint16_t pos, uint16_t size);
void Ext(Register rt, Register rs, uint16_t pos, uint16_t size);
@ -1210,6 +1214,11 @@ class MacroAssembler: public Assembler {
void EnterFrame(StackFrame::Type type);
void LeaveFrame(StackFrame::Type type);
// Patch the relocated value (lui/ori pair).
void PatchRelocatedValue(Register li_location,
Register scratch,
Register new_value);
private:
void CallCFunctionHelper(Register function,
ExternalReference function_reference,

View File

@ -2560,7 +2560,12 @@ MaybeObject* CallStubCompiler::CompileCallGlobal(JSObject* object,
? CALL_AS_FUNCTION
: CALL_AS_METHOD;
if (V8::UseCrankshaft()) {
UNIMPLEMENTED_MIPS();
// TODO(kasperl): For now, we always call indirectly through the
// code field in the function to allow recompilation to take effect
// without changing any of the call sites.
__ lw(a3, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
__ InvokeCode(a3, expected, arguments(), JUMP_FUNCTION,
NullCallWrapper(), call_kind);
} else {
__ InvokeCode(code, expected, arguments(), RelocInfo::CODE_TARGET,
JUMP_FUNCTION, call_kind);
@ -3837,7 +3842,6 @@ void KeyedStoreStubCompiler::GenerateStoreExternalArray(
__ lw(a3, FieldMemOperand(receiver, JSObject::kElementsOffset));
// Check that the index is in range.
__ SmiUntag(t0, key);
__ lw(t1, FieldMemOperand(a3, ExternalArray::kLengthOffset));
// Unsigned comparison catches both negative and too-large values.
__ Branch(&miss_force_generic, Ugreater_equal, key, Operand(t1));
@ -3845,7 +3849,6 @@ void KeyedStoreStubCompiler::GenerateStoreExternalArray(
// Handle both smis and HeapNumbers in the fast path. Go to the
// runtime for all other kinds of values.
// a3: external array.
// t0: key (integer).
if (elements_kind == EXTERNAL_PIXEL_ELEMENTS) {
// Double to pixel conversion is only implemented in the runtime for now.
@ -3857,7 +3860,6 @@ void KeyedStoreStubCompiler::GenerateStoreExternalArray(
__ lw(a3, FieldMemOperand(a3, ExternalArray::kExternalPointerOffset));
// a3: base pointer of external storage.
// t0: key (integer).
// t1: value (integer).
switch (elements_kind) {
@ -3874,33 +3876,36 @@ void KeyedStoreStubCompiler::GenerateStoreExternalArray(
__ mov(v0, t1); // Value is in range 0..255.
__ bind(&done);
__ mov(t1, v0);
__ addu(t8, a3, t0);
__ srl(t8, key, 1);
__ addu(t8, a3, t8);
__ sb(t1, MemOperand(t8, 0));
}
break;
case EXTERNAL_BYTE_ELEMENTS:
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
__ addu(t8, a3, t0);
__ srl(t8, key, 1);
__ addu(t8, a3, t8);
__ sb(t1, MemOperand(t8, 0));
break;
case EXTERNAL_SHORT_ELEMENTS:
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
__ sll(t8, t0, 1);
__ addu(t8, a3, t8);
__ addu(t8, a3, key);
__ sh(t1, MemOperand(t8, 0));
break;
case EXTERNAL_INT_ELEMENTS:
case EXTERNAL_UNSIGNED_INT_ELEMENTS:
__ sll(t8, t0, 2);
__ sll(t8, key, 1);
__ addu(t8, a3, t8);
__ sw(t1, MemOperand(t8, 0));
break;
case EXTERNAL_FLOAT_ELEMENTS:
// Perform int-to-float conversion and store to memory.
__ SmiUntag(t0, key);
StoreIntAsFloat(masm, a3, t0, t1, t2, t3, t4);
break;
case EXTERNAL_DOUBLE_ELEMENTS:
__ sll(t8, t0, 3);
__ sll(t8, key, 2);
__ addu(a3, a3, t8);
// a3: effective address of the double element
FloatingPointHelper::Destination destination;
@ -3930,12 +3935,11 @@ void KeyedStoreStubCompiler::GenerateStoreExternalArray(
}
// Entry registers are intact, a0 holds the value which is the return value.
__ mov(v0, value);
__ mov(v0, a0);
__ Ret();
if (elements_kind != EXTERNAL_PIXEL_ELEMENTS) {
// a3: external array.
// t0: index (integer).
__ bind(&check_heap_number);
__ GetObjectType(value, t1, t2);
__ Branch(&slow, ne, t2, Operand(HEAP_NUMBER_TYPE));
@ -3943,7 +3947,6 @@ void KeyedStoreStubCompiler::GenerateStoreExternalArray(
__ lw(a3, FieldMemOperand(a3, ExternalArray::kExternalPointerOffset));
// a3: base pointer of external storage.
// t0: key (integer).
// The WebGL specification leaves the behavior of storing NaN and
// +/-Infinity into integer arrays basically undefined. For more
@ -3956,11 +3959,11 @@ void KeyedStoreStubCompiler::GenerateStoreExternalArray(
if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) {
__ cvt_s_d(f0, f0);
__ sll(t8, t0, 2);
__ sll(t8, key, 1);
__ addu(t8, a3, t8);
__ swc1(f0, MemOperand(t8, 0));
} else if (elements_kind == EXTERNAL_DOUBLE_ELEMENTS) {
__ sll(t8, t0, 3);
__ sll(t8, key, 2);
__ addu(t8, a3, t8);
__ sdc1(f0, MemOperand(t8, 0));
} else {
@ -3969,18 +3972,18 @@ void KeyedStoreStubCompiler::GenerateStoreExternalArray(
switch (elements_kind) {
case EXTERNAL_BYTE_ELEMENTS:
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
__ addu(t8, a3, t0);
__ srl(t8, key, 1);
__ addu(t8, a3, t8);
__ sb(t3, MemOperand(t8, 0));
break;
case EXTERNAL_SHORT_ELEMENTS:
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
__ sll(t8, t0, 1);
__ addu(t8, a3, t8);
__ addu(t8, a3, key);
__ sh(t3, MemOperand(t8, 0));
break;
case EXTERNAL_INT_ELEMENTS:
case EXTERNAL_UNSIGNED_INT_ELEMENTS:
__ sll(t8, t0, 2);
__ sll(t8, key, 1);
__ addu(t8, a3, t8);
__ sw(t3, MemOperand(t8, 0));
break;
@ -3998,7 +4001,7 @@ void KeyedStoreStubCompiler::GenerateStoreExternalArray(
// Entry registers are intact, a0 holds the value
// which is the return value.
__ mov(v0, value);
__ mov(v0, a0);
__ Ret();
} else {
// FPU is not available, do manual conversions.
@ -4053,13 +4056,13 @@ void KeyedStoreStubCompiler::GenerateStoreExternalArray(
__ or_(t3, t7, t6);
__ bind(&done);
__ sll(t9, a1, 2);
__ sll(t9, key, 1);
__ addu(t9, a2, t9);
__ sw(t3, MemOperand(t9, 0));
// Entry registers are intact, a0 holds the value which is the return
// value.
__ mov(v0, value);
__ mov(v0, a0);
__ Ret();
__ bind(&nan_or_infinity_or_zero);
@ -4077,6 +4080,7 @@ void KeyedStoreStubCompiler::GenerateStoreExternalArray(
// t8: effective address of destination element.
__ sw(t4, MemOperand(t8, 0));
__ sw(t3, MemOperand(t8, Register::kSizeInBytes));
__ mov(v0, a0);
__ Ret();
} else {
bool is_signed_type = IsElementTypeSigned(elements_kind);
@ -4139,18 +4143,18 @@ void KeyedStoreStubCompiler::GenerateStoreExternalArray(
switch (elements_kind) {
case EXTERNAL_BYTE_ELEMENTS:
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
__ addu(t8, a3, t0);
__ srl(t8, key, 1);
__ addu(t8, a3, t8);
__ sb(t3, MemOperand(t8, 0));
break;
case EXTERNAL_SHORT_ELEMENTS:
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
__ sll(t8, t0, 1);
__ addu(t8, a3, t8);
__ addu(t8, a3, key);
__ sh(t3, MemOperand(t8, 0));
break;
case EXTERNAL_INT_ELEMENTS:
case EXTERNAL_UNSIGNED_INT_ELEMENTS:
__ sll(t8, t0, 2);
__ sll(t8, key, 1);
__ addu(t8, a3, t8);
__ sw(t3, MemOperand(t8, 0));
break;