Porting Math.pow changes to x64.

TEST=math-pow.js, regress-397.js

Review URL: http://codereview.chromium.org/8821019

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@10185 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
This commit is contained in:
yangguo@chromium.org 2011-12-07 08:34:27 +00:00
parent b5b91b5add
commit c9c9ea676b
9 changed files with 401 additions and 272 deletions

View File

@ -2940,64 +2940,72 @@ void FloatingPointHelper::CheckFloatOperandsAreInt32(MacroAssembler* masm,
void MathPowStub::Generate(MacroAssembler* masm) {
CpuFeatures::Scope use_sse2(SSE2);
Factory* factory = masm->isolate()->factory();
const Register exponent = eax;
const Register base = edx;
const Register scratch = ecx;
const XMMRegister double_result = xmm3;
const XMMRegister double_base = xmm2;
const XMMRegister double_exponent = xmm1;
const XMMRegister double_scratch = xmm4;
Label double_int_runtime, generic_runtime, done;
Label base_is_smi, unpack_exponent, exponent_not_smi, int_exponent;
// Save 1 in xmm3 - we need this several times later on.
__ mov(ecx, Immediate(1));
__ cvtsi2sd(xmm3, ecx);
Label exponent_not_smi, int_exponent;
// Save 1 in double_result - we need this several times later on.
__ mov(scratch, Immediate(1));
__ cvtsi2sd(double_result, scratch);
if (exponent_type_ == ON_STACK) {
// The exponent (and base) are supplied as arguments on the stack.
Label base_is_smi, unpack_exponent;
// The exponent and base are supplied as arguments on the stack.
// This can only happen if the stub is called from non-optimized code.
// Load input parameters from stack
__ mov(edx, Operand(esp, 2 * kPointerSize));
__ mov(eax, Operand(esp, 1 * kPointerSize));
// edx: base (smi or heap number)
// eax: exponent (smi or heap number)
__ JumpIfSmi(edx, &base_is_smi, Label::kNear);
__ cmp(FieldOperand(edx, HeapObject::kMapOffset),
// Load input parameters from stack.
__ mov(base, Operand(esp, 2 * kPointerSize));
__ mov(exponent, Operand(esp, 1 * kPointerSize));
__ JumpIfSmi(base, &base_is_smi, Label::kNear);
__ cmp(FieldOperand(base, HeapObject::kMapOffset),
factory->heap_number_map());
__ j(not_equal, &generic_runtime);
__ movdbl(xmm1, FieldOperand(edx, HeapNumber::kValueOffset));
__ movdbl(double_base, FieldOperand(base, HeapNumber::kValueOffset));
__ jmp(&unpack_exponent, Label::kNear);
__ bind(&base_is_smi);
__ SmiUntag(edx);
__ cvtsi2sd(xmm1, edx);
__ bind(&unpack_exponent);
__ SmiUntag(base);
__ cvtsi2sd(double_base, base);
__ JumpIfNotSmi(eax, &exponent_not_smi, Label::kNear);
__ SmiUntag(eax);
__ bind(&unpack_exponent);
__ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear);
__ SmiUntag(exponent);
__ jmp(&int_exponent);
__ bind(&exponent_not_smi);
__ cmp(FieldOperand(eax, HeapObject::kMapOffset),
__ cmp(FieldOperand(exponent, HeapObject::kMapOffset),
factory->heap_number_map());
__ j(not_equal, &generic_runtime);
__ movdbl(xmm2, FieldOperand(eax, HeapNumber::kValueOffset));
__ movdbl(double_exponent,
FieldOperand(exponent, HeapNumber::kValueOffset));
} else if (exponent_type_ == TAGGED) {
// xmm1: base as double
// eax: exponent (smi or heap number)
__ JumpIfNotSmi(eax, &exponent_not_smi, Label::kNear);
__ SmiUntag(eax);
__ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear);
__ SmiUntag(exponent);
__ jmp(&int_exponent);
__ bind(&exponent_not_smi);
__ movdbl(xmm2, FieldOperand(eax, HeapNumber::kValueOffset));
__ movdbl(double_exponent,
FieldOperand(exponent, HeapNumber::kValueOffset));
}
if (exponent_type_ != INTEGER) {
Label fast_power;
// xmm1: base as double that is not +/- Infinity or NaN
// xmm2: exponent as double
// Detect integer exponents stored as double.
__ cvttsd2si(eax, Operand(xmm2));
__ cvttsd2si(exponent, Operand(double_exponent));
// Skip to runtime if possibly NaN (indicated by the indefinite integer).
__ cmp(eax, Immediate(0x80000000u));
__ cmp(exponent, Immediate(0x80000000u));
__ j(equal, &generic_runtime);
__ cvtsi2sd(xmm4, eax);
__ ucomisd(xmm2, xmm4); // Already ruled out NaNs for exponent.
__ cvtsi2sd(double_scratch, exponent);
// Already ruled out NaNs for exponent.
__ ucomisd(double_exponent, double_scratch);
__ j(equal, &int_exponent);
if (exponent_type_ == ON_STACK) {
@ -3006,71 +3014,70 @@ void MathPowStub::Generate(MacroAssembler* masm) {
// for non-constant cases of +/-0.5 as these hardly occur.
Label continue_sqrt, continue_rsqrt, not_plus_half;
// Test for 0.5.
// Load xmm4 with 0.5.
__ mov(ecx, Immediate(0x3F000000u));
__ movd(xmm4, ecx);
__ cvtss2sd(xmm4, xmm4);
// xmm4 now has 0.5.
__ ucomisd(xmm4, xmm2); // Already ruled out NaNs for exponent.
// Load double_scratch with 0.5.
__ mov(scratch, Immediate(0x3F000000u));
__ movd(double_scratch, scratch);
__ cvtss2sd(double_scratch, double_scratch);
// Already ruled out NaNs for exponent.
__ ucomisd(double_scratch, double_exponent);
__ j(not_equal, &not_plus_half, Label::kNear);
// Calculates square root of base. Check for the special case of
// Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
// According to IEEE-754, single-precision -Infinity has the highest
// 9 bits set and the lowest 23 bits cleared.
__ mov(ecx, 0xFF800000u);
__ movd(xmm4, ecx);
__ cvtss2sd(xmm4, xmm4);
__ ucomisd(xmm1, xmm4);
__ mov(scratch, 0xFF800000u);
__ movd(double_scratch, scratch);
__ cvtss2sd(double_scratch, double_scratch);
__ ucomisd(double_base, double_scratch);
// Comparing -Infinity with NaN results in "unordered", which sets the
// zero flag as if both were equal. However, it also sets the carry flag.
__ j(not_equal, &continue_sqrt, Label::kNear);
__ j(carry, &continue_sqrt, Label::kNear);
// Set result to Infinity in the special case.
__ xorps(xmm3, xmm3);
__ subsd(xmm3, xmm4);
__ xorps(double_result, double_result);
__ subsd(double_result, double_scratch);
__ jmp(&done);
__ bind(&continue_sqrt);
// sqrtsd returns -0 when input is -0. ECMA spec requires +0.
__ xorps(xmm4, xmm4);
__ addsd(xmm4, xmm1); // Convert -0 to +0.
__ sqrtsd(xmm3, xmm4);
__ xorps(double_scratch, double_scratch);
__ addsd(double_scratch, double_base); // Convert -0 to +0.
__ sqrtsd(double_result, double_scratch);
__ jmp(&done);
// Test for -0.5.
__ bind(&not_plus_half);
// Load xmm2 with -0.5.
// Since xmm3 is 1 and xmm4 is 0.5 this is simply xmm4 - xmm3.
__ subsd(xmm4, xmm3);
// xmm4 now has -0.5.
__ ucomisd(xmm4, xmm2); // Already ruled out NaNs for exponent.
// Load double_exponent with -0.5 by substracting 1.
__ subsd(double_scratch, double_result);
// Already ruled out NaNs for exponent.
__ ucomisd(double_scratch, double_exponent);
__ j(not_equal, &fast_power, Label::kNear);
// Calculates reciprocal of square root of base. Check for the special
// case of Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
// According to IEEE-754, single-precision -Infinity has the highest
// 9 bits set and the lowest 23 bits cleared.
__ mov(ecx, 0xFF800000u);
__ movd(xmm4, ecx);
__ cvtss2sd(xmm4, xmm4);
__ ucomisd(xmm1, xmm4);
__ mov(scratch, 0xFF800000u);
__ movd(double_scratch, scratch);
__ cvtss2sd(double_scratch, double_scratch);
__ ucomisd(double_base, double_scratch);
// Comparing -Infinity with NaN results in "unordered", which sets the
// zero flag as if both were equal. However, it also sets the carry flag.
__ j(not_equal, &continue_rsqrt, Label::kNear);
__ j(carry, &continue_rsqrt, Label::kNear);
// Set result to 0 in the special case.
__ xorps(xmm3, xmm3);
__ xorps(double_result, double_result);
__ jmp(&done);
__ bind(&continue_rsqrt);
// sqrtsd returns -0 when input is -0. ECMA spec requires +0.
__ xorps(xmm2, xmm2);
__ addsd(xmm2, xmm1); // Convert -0 to +0.
__ sqrtsd(xmm2, xmm2);
__ divsd(xmm3, xmm2);
__ xorps(double_exponent, double_exponent);
__ addsd(double_exponent, double_base); // Convert -0 to +0.
__ sqrtsd(double_exponent, double_exponent);
__ divsd(double_result, double_exponent);
__ jmp(&done);
}
@ -3080,9 +3087,9 @@ void MathPowStub::Generate(MacroAssembler* masm) {
__ fnclex(); // Clear flags to catch exceptions later.
// Transfer (B)ase and (E)xponent onto the FPU register stack.
__ sub(esp, Immediate(kDoubleSize));
__ movdbl(Operand(esp, 0), xmm2);
__ movdbl(Operand(esp, 0), double_exponent);
__ fld_d(Operand(esp, 0)); // E
__ movdbl(Operand(esp, 0), xmm1);
__ movdbl(Operand(esp, 0), double_base);
__ fld_d(Operand(esp, 0)); // B, E
// Exponent is in st(1) and base is in st(0)
@ -3105,7 +3112,7 @@ void MathPowStub::Generate(MacroAssembler* masm) {
__ test_b(eax, 0x5F); // We check for all but precision exception.
__ j(not_zero, &fast_power_failed, Label::kNear);
__ fstp_d(Operand(esp, 0));
__ movdbl(xmm3, Operand(esp, 0));
__ movdbl(double_result, Operand(esp, 0));
__ add(esp, Immediate(kDoubleSize));
__ jmp(&done);
@ -3117,49 +3124,46 @@ void MathPowStub::Generate(MacroAssembler* masm) {
// Calculate power with integer exponent.
__ bind(&int_exponent);
// xmm1: base as double that is not +/- Infinity or NaN
// eax: exponent as untagged integer
__ mov(ecx, eax); // Back up exponent.
__ movsd(xmm4, xmm1); // Back up base.
__ movsd(xmm2, xmm3); // Load xmm2 with 1.
const XMMRegister double_scratch2 = double_exponent;
__ mov(scratch, exponent); // Back up exponent.
__ movsd(double_scratch, double_base); // Back up base.
__ movsd(double_scratch2, double_result); // Load double_exponent with 1.
// Get absolute value of exponent.
Label no_neg, while_true, no_multiply;
__ cmp(eax, 0);
__ cmp(exponent, 0);
__ j(greater_equal, &no_neg, Label::kNear);
__ neg(eax);
__ neg(exponent);
__ bind(&no_neg);
__ bind(&while_true);
__ shr(eax, 1);
__ shr(exponent, 1);
__ j(not_carry, &no_multiply, Label::kNear);
__ mulsd(xmm3, xmm1);
__ mulsd(double_result, double_base);
__ bind(&no_multiply);
__ mulsd(xmm1, xmm1);
__ mulsd(double_base, double_base);
__ j(not_zero, &while_true);
// base has the original value of the exponent - if the exponent is
// negative return 1/result.
__ test(ecx, ecx);
// scratch has the original value of the exponent - if the exponent is
// negative, return 1/result.
__ test(scratch, scratch);
__ j(positive, &done);
__ divsd(xmm2, xmm3);
__ movsd(xmm3, xmm2);
__ divsd(double_scratch2, double_result);
__ movsd(double_result, double_scratch2);
// Test whether result is zero. Bail out to check for subnormal result.
// Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
__ xorps(xmm2, xmm2);
__ ucomisd(xmm2, xmm3); // Result cannot be NaN.
__ xorps(double_scratch2, double_scratch2);
__ ucomisd(double_scratch2, double_result); // Result cannot be NaN.
__ j(equal, &double_int_runtime);
// Returning or bailing out.
if (exponent_type_ == ON_STACK) {
// The stub is called from non-optimized code, which expects the result
// as heap number in eax.
// as heap number in exponent.
__ bind(&done);
// xmm3: result
__ AllocateHeapNumber(eax, ecx, edx, &generic_runtime);
__ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm3);
__ AllocateHeapNumber(exponent, scratch, base, &generic_runtime);
__ movdbl(FieldOperand(exponent, HeapNumber::kValueOffset), double_result);
__ ret(2 * kPointerSize);
// The arguments are still on the stack.
@ -3170,28 +3174,23 @@ void MathPowStub::Generate(MacroAssembler* masm) {
__ jmp(&done);
Label return_from_runtime;
StubRuntimeCallHelper callhelper;
__ bind(&generic_runtime);
// xmm1: base
// xmm2: exponent
{
AllowExternalCallThatCantCauseGC scope(masm);
__ PrepareCallCFunction(4, eax);
__ movdbl(Operand(esp, 0 * kDoubleSize), xmm1);
__ movdbl(Operand(esp, 1 * kDoubleSize), xmm2);
__ PrepareCallCFunction(4, exponent);
__ movdbl(Operand(esp, 0 * kDoubleSize), double_base);
__ movdbl(Operand(esp, 1 * kDoubleSize), double_exponent);
__ CallCFunction(
ExternalReference::power_double_double_function(masm->isolate()), 4);
}
__ jmp(&return_from_runtime, Label::kNear);
__ bind(&double_int_runtime);
// xmm4: base
// ecx: exponent
{
AllowExternalCallThatCantCauseGC scope(masm);
__ PrepareCallCFunction(4, eax);
__ movdbl(Operand(esp, 0 * kDoubleSize), xmm4);
__ mov(Operand(esp, 1 * kDoubleSize), ecx);
__ PrepareCallCFunction(4, exponent);
__ movdbl(Operand(esp, 0 * kDoubleSize), double_scratch);
__ mov(Operand(esp, 1 * kDoubleSize), scratch);
__ CallCFunction(
ExternalReference::power_double_int_function(masm->isolate()), 4);
}
@ -3201,10 +3200,9 @@ void MathPowStub::Generate(MacroAssembler* masm) {
// Store it into the (fixed) result register.
__ sub(esp, Immediate(kDoubleSize));
__ fstp_d(Operand(esp, 0));
__ movdbl(xmm3, Operand(esp, 0));
__ movdbl(double_result, Operand(esp, 0));
__ add(esp, Immediate(kDoubleSize));
// xmm3: result
__ bind(&done);
__ ret(0);
}

View File

@ -2991,12 +2991,12 @@ void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
void LCodeGen::DoPower(LPower* instr) {
Representation exponent_type = instr->hydrogen()->right()->representation();
// Having marked this as a call, we can use any registers.
// Just make sure that the input registers are the expected ones.
// Just make sure that the input/output registers are the expected ones.
ASSERT(!instr->InputAt(1)->IsDoubleRegister() ||
ToDoubleRegister(instr->InputAt(1)).is(xmm2));
ToDoubleRegister(instr->InputAt(1)).is(xmm1));
ASSERT(!instr->InputAt(1)->IsRegister() ||
ToRegister(instr->InputAt(1)).is(eax));
ASSERT(ToDoubleRegister(instr->InputAt(0)).is(xmm1));
ASSERT(ToDoubleRegister(instr->InputAt(0)).is(xmm2));
ASSERT(ToDoubleRegister(instr->result()).is(xmm3));
if (exponent_type.IsTagged()) {

View File

@ -1446,9 +1446,9 @@ LInstruction* LChunkBuilder::DoPower(HPower* instr) {
// We need to use fixed result register for the call.
Representation exponent_type = instr->right()->representation();
ASSERT(instr->left()->representation().IsDouble());
LOperand* left = UseFixedDouble(instr->left(), xmm1);
LOperand* left = UseFixedDouble(instr->left(), xmm2);
LOperand* right = exponent_type.IsDouble() ?
UseFixedDouble(instr->right(), xmm2) :
UseFixedDouble(instr->right(), xmm1) :
UseFixed(instr->right(), eax);
LPower* result = new(zone()) LPower(left, right);
return MarkAsCall(DefineFixedDouble(result, xmm3), instr,

View File

@ -2307,6 +2307,27 @@ void Assembler::fyl2x() {
}
void Assembler::f2xm1() {
EnsureSpace ensure_space(this);
emit(0xD9);
emit(0xF0);
}
void Assembler::fscale() {
EnsureSpace ensure_space(this);
emit(0xD9);
emit(0xFD);
}
void Assembler::fninit() {
EnsureSpace ensure_space(this);
emit(0xDB);
emit(0xE3);
}
void Assembler::fadd(int i) {
EnsureSpace ensure_space(this);
emit_farith(0xDC, 0xC0, i);

View File

@ -1277,6 +1277,9 @@ class Assembler : public AssemblerBase {
void fcos();
void fptan();
void fyl2x();
void f2xm1();
void fscale();
void fninit();
void frndint();

View File

@ -1991,152 +1991,274 @@ void FloatingPointHelper::NumbersToSmis(MacroAssembler* masm,
void MathPowStub::Generate(MacroAssembler* masm) {
// Registers are used as follows:
// rdx = base
// rax = exponent
// rcx = temporary, result
// Choose register conforming to calling convention (when bailing out).
#ifdef _WIN64
const Register exponent = rdx;
#else
const Register exponent = rdi;
#endif
const Register base = rax;
const Register scratch = rcx;
const XMMRegister double_result = xmm3;
const XMMRegister double_base = xmm2;
const XMMRegister double_exponent = xmm1;
const XMMRegister double_scratch = xmm4;
Label allocate_return, call_runtime;
Label double_int_runtime, generic_runtime, done;
Label exponent_not_smi, int_exponent;
// Load input parameters.
__ movq(rdx, Operand(rsp, 2 * kPointerSize));
__ movq(rax, Operand(rsp, 1 * kPointerSize));
// Save 1 in double_result - we need this several times later on.
__ movq(scratch, Immediate(1));
__ cvtlsi2sd(double_result, scratch);
// Save 1 in xmm3 - we need this several times later on.
__ Set(rcx, 1);
__ cvtlsi2sd(xmm3, rcx);
if (exponent_type_ == ON_STACK) {
Label base_is_smi, unpack_exponent;
// The exponent and base are supplied as arguments on the stack.
// This can only happen if the stub is called from non-optimized code.
// Load input parameters from stack.
__ movq(base, Operand(rsp, 2 * kPointerSize));
__ movq(exponent, Operand(rsp, 1 * kPointerSize));
__ JumpIfSmi(base, &base_is_smi, Label::kNear);
__ CompareRoot(FieldOperand(base, HeapObject::kMapOffset),
Heap::kHeapNumberMapRootIndex);
__ j(not_equal, &generic_runtime);
Label exponent_nonsmi;
Label base_nonsmi;
// If the exponent is a heap number go to that specific case.
__ JumpIfNotSmi(rax, &exponent_nonsmi);
__ JumpIfNotSmi(rdx, &base_nonsmi);
__ movsd(double_base, FieldOperand(base, HeapNumber::kValueOffset));
__ jmp(&unpack_exponent, Label::kNear);
// Optimized version when both exponent and base are smis.
Label powi;
__ SmiToInteger32(rdx, rdx);
__ cvtlsi2sd(xmm0, rdx);
__ jmp(&powi);
// Exponent is a smi and base is a heapnumber.
__ bind(&base_nonsmi);
__ CompareRoot(FieldOperand(rdx, HeapObject::kMapOffset),
Heap::kHeapNumberMapRootIndex);
__ j(not_equal, &call_runtime);
__ bind(&base_is_smi);
__ SmiToInteger32(base, base);
__ cvtlsi2sd(double_base, base);
__ bind(&unpack_exponent);
__ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
__ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear);
__ SmiToInteger32(exponent, exponent);
__ jmp(&int_exponent);
// Optimized version of pow if exponent is a smi.
// xmm0 contains the base.
__ bind(&powi);
__ SmiToInteger32(rax, rax);
__ bind(&exponent_not_smi);
__ CompareRoot(FieldOperand(exponent, HeapObject::kMapOffset),
Heap::kHeapNumberMapRootIndex);
__ j(not_equal, &generic_runtime);
__ movsd(double_exponent, FieldOperand(exponent, HeapNumber::kValueOffset));
} else if (exponent_type_ == TAGGED) {
__ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear);
__ SmiToInteger32(exponent, exponent);
__ jmp(&int_exponent);
// Save exponent in base as we need to check if exponent is negative later.
// We know that base and exponent are in different registers.
__ movq(rdx, rax);
__ bind(&exponent_not_smi);
__ movsd(double_exponent, FieldOperand(exponent, HeapNumber::kValueOffset));
}
if (exponent_type_ != INTEGER) {
Label fast_power;
// Detect integer exponents stored as double.
__ cvttsd2si(exponent, double_exponent);
// Skip to runtime if possibly NaN (indicated by the indefinite integer).
__ cmpl(exponent, Immediate(0x80000000u));
__ j(equal, &generic_runtime);
__ cvtlsi2sd(double_scratch, exponent);
// Already ruled out NaNs for exponent.
__ ucomisd(double_exponent, double_scratch);
__ j(equal, &int_exponent);
if (exponent_type_ == ON_STACK) {
// Detect square root case. Crankshaft detects constant +/-0.5 at
// compile time and uses DoMathPowHalf instead. We then skip this check
// for non-constant cases of +/-0.5 as these hardly occur.
Label continue_sqrt, continue_rsqrt, not_plus_half;
// Test for 0.5.
// Load double_scratch with 0.5.
__ movq(scratch, V8_UINT64_C(0x3FE0000000000000), RelocInfo::NONE);
__ movq(double_scratch, scratch);
// Already ruled out NaNs for exponent.
__ ucomisd(double_scratch, double_exponent);
__ j(not_equal, &not_plus_half, Label::kNear);
// Calculates square root of base. Check for the special case of
// Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
// According to IEEE-754, double-precision -Infinity has the highest
// 12 bits set and the lowest 52 bits cleared.
__ movq(scratch, V8_UINT64_C(0xFFF0000000000000), RelocInfo::NONE);
__ movq(double_scratch, scratch);
__ ucomisd(double_scratch, double_base);
// Comparing -Infinity with NaN results in "unordered", which sets the
// zero flag as if both were equal. However, it also sets the carry flag.
__ j(not_equal, &continue_sqrt, Label::kNear);
__ j(carry, &continue_sqrt, Label::kNear);
// Set result to Infinity in the special case.
__ xorps(double_result, double_result);
__ subsd(double_result, double_scratch);
__ jmp(&done);
__ bind(&continue_sqrt);
// sqrtsd returns -0 when input is -0. ECMA spec requires +0.
__ xorps(double_scratch, double_scratch);
__ addsd(double_scratch, double_base); // Convert -0 to 0.
__ sqrtsd(double_result, double_scratch);
__ jmp(&done);
// Test for -0.5.
__ bind(&not_plus_half);
// Load double_scratch with -0.5 by substracting 1.
__ subsd(double_scratch, double_result);
// Already ruled out NaNs for exponent.
__ ucomisd(double_scratch, double_exponent);
__ j(not_equal, &fast_power, Label::kNear);
// Calculates reciprocal of square root of base. Check for the special
// case of Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
// According to IEEE-754, double-precision -Infinity has the highest
// 12 bits set and the lowest 52 bits cleared.
__ movq(scratch, V8_UINT64_C(0xFFF0000000000000), RelocInfo::NONE);
__ movq(double_scratch, scratch);
__ ucomisd(double_scratch, double_base);
// Comparing -Infinity with NaN results in "unordered", which sets the
// zero flag as if both were equal. However, it also sets the carry flag.
__ j(not_equal, &continue_rsqrt, Label::kNear);
__ j(carry, &continue_rsqrt, Label::kNear);
// Set result to 0 in the special case.
__ xorps(double_result, double_result);
__ jmp(&done);
__ bind(&continue_rsqrt);
// sqrtsd returns -0 when input is -0. ECMA spec requires +0.
__ xorps(double_exponent, double_exponent);
__ addsd(double_exponent, double_base); // Convert -0 to +0.
__ sqrtsd(double_exponent, double_exponent);
__ divsd(double_result, double_exponent);
__ jmp(&done);
}
// Using FPU instructions to calculate power.
Label fast_power_failed;
__ bind(&fast_power);
__ fnclex(); // Clear flags to catch exceptions later.
// Transfer (B)ase and (E)xponent onto the FPU register stack.
__ subq(rsp, Immediate(kDoubleSize));
__ movsd(Operand(rsp, 0), double_exponent);
__ fld_d(Operand(rsp, 0)); // E
__ movsd(Operand(rsp, 0), double_base);
__ fld_d(Operand(rsp, 0)); // B, E
// Exponent is in st(1) and base is in st(0)
// B ^ E = (2^(E * log2(B)) - 1) + 1 = (2^X - 1) + 1 for X = E * log2(B)
// FYL2X calculates st(1) * log2(st(0))
__ fyl2x(); // X
__ fld(0); // X, X
__ frndint(); // rnd(X), X
__ fsub(1); // rnd(X), X-rnd(X)
__ fxch(1); // X - rnd(X), rnd(X)
// F2XM1 calculates 2^st(0) - 1 for -1 < st(0) < 1
__ f2xm1(); // 2^(X-rnd(X)) - 1, rnd(X)
__ fld1(); // 1, 2^(X-rnd(X)) - 1, rnd(X)
__ faddp(1); // 1, 2^(X-rnd(X)), rnd(X)
// FSCALE calculates st(0) * 2^st(1)
__ fscale(); // 2^X, rnd(X)
__ fstp(1);
// Bail out to runtime in case of exceptions in the status word.
__ fnstsw_ax();
__ testb(rax, Immediate(0x5F)); // Check for all but precision exception.
__ j(not_zero, &fast_power_failed, Label::kNear);
__ fstp_d(Operand(rsp, 0));
__ movsd(double_result, Operand(rsp, 0));
__ addq(rsp, Immediate(kDoubleSize));
__ jmp(&done);
__ bind(&fast_power_failed);
__ fninit();
__ addq(rsp, Immediate(kDoubleSize));
__ jmp(&generic_runtime);
}
// Calculate power with integer exponent.
__ bind(&int_exponent);
const XMMRegister double_scratch2 = double_exponent;
// Back up exponent as we need to check if exponent is negative later.
__ movq(scratch, exponent); // Back up exponent.
__ movsd(double_scratch, double_base); // Back up base.
__ movsd(double_scratch2, double_result); // Load double_exponent with 1.
// Get absolute value of exponent.
Label no_neg;
__ cmpl(rax, Immediate(0));
__ j(greater_equal, &no_neg, Label::kNear);
__ negl(rax);
Label no_neg, while_true, no_multiply;
__ cmpl(scratch, Immediate(0));
__ j(positive, &no_neg, Label::kNear);
__ negl(scratch);
__ bind(&no_neg);
// Load xmm1 with 1.
__ movaps(xmm1, xmm3);
Label while_true;
Label no_multiply;
__ bind(&while_true);
__ shrl(rax, Immediate(1));
__ shrl(scratch, Immediate(1));
__ j(not_carry, &no_multiply, Label::kNear);
__ mulsd(xmm1, xmm0);
__ mulsd(double_result, double_scratch);
__ bind(&no_multiply);
__ mulsd(xmm0, xmm0);
__ mulsd(double_scratch, double_scratch);
__ j(not_zero, &while_true);
// Base has the original value of the exponent - if the exponent is
// negative return 1/result.
__ testl(rdx, rdx);
__ j(positive, &allocate_return);
// Special case if xmm1 has reached infinity.
__ divsd(xmm3, xmm1);
__ movaps(xmm1, xmm3);
__ xorps(xmm0, xmm0);
__ ucomisd(xmm0, xmm1);
__ j(equal, &call_runtime);
// scratch has the original value of the exponent - if the exponent is
// negative, return 1/result.
__ testl(exponent, exponent);
__ j(greater, &done);
__ divsd(double_scratch2, double_result);
__ movsd(double_result, double_scratch2);
// Test whether result is zero. Bail out to check for subnormal result.
// Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
__ xorps(double_scratch2, double_scratch2);
__ ucomisd(double_scratch2, double_result);
__ j(equal, &double_int_runtime);
__ jmp(&allocate_return);
// Returning or bailing out.
if (exponent_type_ == ON_STACK) {
// The stub is called from non-optimized code, which expects the result
// as heap number in eax.
__ bind(&done);
__ AllocateHeapNumber(rax, rcx, &generic_runtime);
__ movsd(FieldOperand(rax, HeapNumber::kValueOffset), double_result);
__ ret(2 * kPointerSize);
// Exponent (or both) is a heapnumber - no matter what we should now work
// on doubles.
__ bind(&exponent_nonsmi);
__ CompareRoot(FieldOperand(rax, HeapObject::kMapOffset),
Heap::kHeapNumberMapRootIndex);
__ j(not_equal, &call_runtime);
__ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
// Test if exponent is nan.
__ ucomisd(xmm1, xmm1);
__ j(parity_even, &call_runtime);
// The arguments are still on the stack.
__ bind(&generic_runtime);
__ bind(&double_int_runtime);
__ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1);
} else {
__ jmp(&done);
Label base_not_smi, handle_special_cases;
__ JumpIfNotSmi(rdx, &base_not_smi, Label::kNear);
__ SmiToInteger32(rdx, rdx);
__ cvtlsi2sd(xmm0, rdx);
__ jmp(&handle_special_cases, Label::kNear);
Label return_from_runtime;
StubRuntimeCallHelper callhelper;
__ bind(&generic_runtime);
// Move base to the correct argument register. Exponent is already in xmm1.
__ movsd(xmm0, double_base);
ASSERT(double_exponent.is(xmm1));
{
AllowExternalCallThatCantCauseGC scope(masm);
__ PrepareCallCFunction(2);
__ CallCFunction(
ExternalReference::power_double_double_function(masm->isolate()), 2);
}
__ jmp(&return_from_runtime, Label::kNear);
__ bind(&base_not_smi);
__ CompareRoot(FieldOperand(rdx, HeapObject::kMapOffset),
Heap::kHeapNumberMapRootIndex);
__ j(not_equal, &call_runtime);
__ movl(rcx, FieldOperand(rdx, HeapNumber::kExponentOffset));
__ andl(rcx, Immediate(HeapNumber::kExponentMask));
__ cmpl(rcx, Immediate(HeapNumber::kExponentMask));
// base is NaN or +/-Infinity
__ j(greater_equal, &call_runtime);
__ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
__ bind(&double_int_runtime);
// Move base to the correct argument register.
__ movsd(xmm0, double_base);
// Exponent is already in the correct argument register:
// edi (not rdi) on Linux and edx on Windows.
{
AllowExternalCallThatCantCauseGC scope(masm);
__ PrepareCallCFunction(2);
__ CallCFunction(
ExternalReference::power_double_int_function(masm->isolate()), 2);
}
// base is in xmm0 and exponent is in xmm1.
__ bind(&handle_special_cases);
Label not_minus_half;
// Test for -0.5.
// Load xmm2 with -0.5.
__ movq(rcx, V8_UINT64_C(0xBFE0000000000000), RelocInfo::NONE);
__ movq(xmm2, rcx);
// xmm2 now has -0.5.
__ ucomisd(xmm2, xmm1);
__ j(not_equal, &not_minus_half, Label::kNear);
__ bind(&return_from_runtime);
// Return value is in xmm0.
__ movsd(double_result, xmm0);
// Restore context register.
__ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
// Calculates reciprocal of square root.
// sqrtsd returns -0 when input is -0. ECMA spec requires +0.
__ xorps(xmm1, xmm1);
__ addsd(xmm1, xmm0);
__ sqrtsd(xmm1, xmm1);
__ divsd(xmm3, xmm1);
__ movaps(xmm1, xmm3);
__ jmp(&allocate_return);
// Test for 0.5.
__ bind(&not_minus_half);
// Load xmm2 with 0.5.
// Since xmm3 is 1 and xmm2 is -0.5 this is simply xmm2 + xmm3.
__ addsd(xmm2, xmm3);
// xmm2 now has 0.5.
__ ucomisd(xmm2, xmm1);
__ j(not_equal, &call_runtime);
// Calculates square root.
// sqrtsd returns -0 when input is -0. ECMA spec requires +0.
__ xorps(xmm1, xmm1);
__ addsd(xmm1, xmm0); // Convert -0 to 0.
__ sqrtsd(xmm1, xmm1);
__ bind(&allocate_return);
__ AllocateHeapNumber(rcx, rax, &call_runtime);
__ movsd(FieldOperand(rcx, HeapNumber::kValueOffset), xmm1);
__ movq(rax, rcx);
__ ret(2 * kPointerSize);
__ bind(&call_runtime);
__ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1);
__ bind(&done);
__ ret(0);
}
}

View File

@ -911,15 +911,19 @@ int DisassemblerX64::RegisterFPUInstruction(int escape_opcode,
switch (modrm_byte) {
case 0xE0: mnem = "fchs"; break;
case 0xE1: mnem = "fabs"; break;
case 0xE3: mnem = "fninit"; break;
case 0xE4: mnem = "ftst"; break;
case 0xE8: mnem = "fld1"; break;
case 0xEB: mnem = "fldpi"; break;
case 0xED: mnem = "fldln2"; break;
case 0xEE: mnem = "fldz"; break;
case 0xF0: mnem = "f2xm1"; break;
case 0xF1: mnem = "fyl2x"; break;
case 0xF2: mnem = "fptan"; break;
case 0xF5: mnem = "fprem1"; break;
case 0xF7: mnem = "fincstp"; break;
case 0xF8: mnem = "fprem"; break;
case 0xFD: mnem = "fscale"; break;
case 0xFE: mnem = "fsin"; break;
case 0xFF: mnem = "fcos"; break;
default: UnimplementedInstruction();

View File

@ -2880,58 +2880,39 @@ void LCodeGen::DoMathPowHalf(LUnaryMathOperation* instr) {
void LCodeGen::DoPower(LPower* instr) {
LOperand* left = instr->InputAt(0);
XMMRegister left_reg = ToDoubleRegister(left);
ASSERT(!left_reg.is(xmm1));
LOperand* right = instr->InputAt(1);
XMMRegister result_reg = ToDoubleRegister(instr->result());
Representation exponent_type = instr->hydrogen()->right()->representation();
if (exponent_type.IsDouble()) {
__ PrepareCallCFunction(2);
// Move arguments to correct registers
__ movaps(xmm0, left_reg);
ASSERT(ToDoubleRegister(right).is(xmm1));
__ CallCFunction(
ExternalReference::power_double_double_function(isolate()), 2);
} else if (exponent_type.IsInteger32()) {
__ PrepareCallCFunction(2);
// Move arguments to correct registers: xmm0 and edi (not rdi).
// On Windows, the registers are xmm0 and edx.
__ movaps(xmm0, left_reg);
// Having marked this as a call, we can use any registers.
// Just make sure that the input/output registers are the expected ones.
// Choose register conforming to calling convention (when bailing out).
#ifdef _WIN64
ASSERT(ToRegister(right).is(rdx));
Register exponent = rdx;
#else
ASSERT(ToRegister(right).is(rdi));
Register exponent = rdi;
#endif
__ CallCFunction(
ExternalReference::power_double_int_function(isolate()), 2);
} else {
ASSERT(exponent_type.IsTagged());
Register right_reg = ToRegister(right);
ASSERT(!instr->InputAt(1)->IsRegister() ||
ToRegister(instr->InputAt(1)).is(exponent));
ASSERT(!instr->InputAt(1)->IsDoubleRegister() ||
ToDoubleRegister(instr->InputAt(1)).is(xmm1));
ASSERT(ToDoubleRegister(instr->InputAt(0)).is(xmm2));
ASSERT(ToDoubleRegister(instr->result()).is(xmm3));
Label non_smi, call;
__ JumpIfNotSmi(right_reg, &non_smi);
__ SmiToInteger32(right_reg, right_reg);
__ cvtlsi2sd(xmm1, right_reg);
__ jmp(&call);
__ bind(&non_smi);
__ CmpObjectType(right_reg, HEAP_NUMBER_TYPE , kScratchRegister);
if (exponent_type.IsTagged()) {
Label no_deopt;
__ JumpIfSmi(exponent, &no_deopt);
__ CmpObjectType(exponent, HEAP_NUMBER_TYPE, rcx);
DeoptimizeIf(not_equal, instr->environment());
__ movsd(xmm1, FieldOperand(right_reg, HeapNumber::kValueOffset));
__ bind(&call);
__ PrepareCallCFunction(2);
// Move arguments to correct registers xmm0 and xmm1.
__ movaps(xmm0, left_reg);
// Right argument is already in xmm1.
__ CallCFunction(
ExternalReference::power_double_double_function(isolate()), 2);
__ bind(&no_deopt);
MathPowStub stub(MathPowStub::TAGGED);
__ CallStub(&stub);
} else if (exponent_type.IsInteger32()) {
MathPowStub stub(MathPowStub::INTEGER);
__ CallStub(&stub);
} else {
ASSERT(exponent_type.IsDouble());
MathPowStub stub(MathPowStub::DOUBLE);
__ CallStub(&stub);
}
// Return value is in xmm0.
__ movaps(result_reg, xmm0);
// Restore context register.
__ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
}

View File

@ -1397,7 +1397,7 @@ LInstruction* LChunkBuilder::DoPower(HPower* instr) {
UseFixed(instr->right(), rdi);
#endif
LPower* result = new LPower(left, right);
return MarkAsCall(DefineFixedDouble(result, xmm1), instr,
return MarkAsCall(DefineFixedDouble(result, xmm3), instr,
CAN_DEOPTIMIZE_EAGERLY);
}