[turbofan] Remove the representation dimension from Type.

Adding this back in because it's not part of the stability issue.

BUG=chromium:649967
TBR=jarin@chromium.org

Review-Url: https://codereview.chromium.org/2365373004
Cr-Commit-Position: refs/heads/master@{#39761}
This commit is contained in:
mvstanton 2016-09-27 04:12:24 -07:00 committed by Commit bot
parent 8fea775784
commit c9cc3d164d
5 changed files with 123 additions and 388 deletions

View File

@ -196,7 +196,7 @@ Node* RepresentationChanger::GetTaggedSignedRepresentationFor(
}
// Select the correct X -> Tagged operator.
const Operator* op;
if (Type::Semantic(output_type, jsgraph()->zone())->Is(Type::None())) {
if (output_type->Is(Type::None())) {
// This is an impossible value; it should not be used at runtime.
// We just provide a dummy value here.
return jsgraph()->Constant(0);
@ -293,7 +293,7 @@ Node* RepresentationChanger::GetTaggedPointerRepresentationFor(
break;
}
// Select the correct X -> Tagged operator.
if (Type::Semantic(output_type, jsgraph()->zone())->Is(Type::None())) {
if (output_type->Is(Type::None())) {
// This is an impossible value; it should not be used at runtime.
// We just provide a dummy value here.
return jsgraph()->TheHoleConstant();
@ -338,7 +338,7 @@ Node* RepresentationChanger::GetTaggedRepresentationFor(
}
// Select the correct X -> Tagged operator.
const Operator* op;
if (Type::Semantic(output_type, jsgraph()->zone())->Is(Type::None())) {
if (output_type->Is(Type::None())) {
// This is an impossible value; it should not be used at runtime.
// We just provide a dummy value here.
return jsgraph()->TheHoleConstant();
@ -420,7 +420,7 @@ Node* RepresentationChanger::GetFloat32RepresentationFor(
}
// Select the correct X -> Float32 operator.
const Operator* op = nullptr;
if (Type::Semantic(output_type, jsgraph()->zone())->Is(Type::None())) {
if (output_type->Is(Type::None())) {
// This is an impossible value; it should not be used at runtime.
// We just provide a dummy value here.
return jsgraph()->Float32Constant(0.0f);
@ -490,7 +490,7 @@ Node* RepresentationChanger::GetFloat64RepresentationFor(
}
// Select the correct X -> Float64 operator.
const Operator* op = nullptr;
if (Type::Semantic(output_type, jsgraph()->zone())->Is(Type::None())) {
if (output_type->Is(Type::None())) {
// This is an impossible value; it should not be used at runtime.
// We just provide a dummy value here.
return jsgraph()->Float64Constant(0.0);
@ -576,7 +576,7 @@ Node* RepresentationChanger::GetWord32RepresentationFor(
// Select the correct X -> Word32 operator.
const Operator* op = nullptr;
if (Type::Semantic(output_type, jsgraph()->zone())->Is(Type::None())) {
if (output_type->Is(Type::None())) {
// This is an impossible value; it should not be used at runtime.
// We just provide a dummy value here.
return jsgraph()->Int32Constant(0);
@ -698,7 +698,7 @@ Node* RepresentationChanger::GetBitRepresentationFor(
}
// Select the correct X -> Bit operator.
const Operator* op;
if (Type::Semantic(output_type, jsgraph()->zone())->Is(Type::None())) {
if (output_type->Is(Type::None())) {
// This is an impossible value; it should not be used at runtime.
// We just provide a dummy value here.
return jsgraph()->Int32Constant(0);
@ -737,7 +737,7 @@ Node* RepresentationChanger::GetBitRepresentationFor(
Node* RepresentationChanger::GetWord64RepresentationFor(
Node* node, MachineRepresentation output_rep, Type* output_type) {
if (Type::Semantic(output_type, jsgraph()->zone())->Is(Type::None())) {
if (output_type->Is(Type::None())) {
// This is an impossible value; it should not be used at runtime.
// We just provide a dummy value here.
return jsgraph()->Int64Constant(0);
@ -958,7 +958,7 @@ Node* RepresentationChanger::TypeError(Node* node,
if (!testing_type_errors_) {
std::ostringstream out_str;
out_str << output_rep << " (";
output_type->PrintTo(out_str, Type::SEMANTIC_DIM);
output_type->PrintTo(out_str);
out_str << ")";
std::ostringstream use_str;

View File

@ -72,7 +72,7 @@ bool Type::Contains(RangeType* range, i::Object* val) {
// Min and Max computation.
double Type::Min() {
DCHECK(this->SemanticIs(Number()));
DCHECK(this->Is(Number()));
if (this->IsBitset()) return BitsetType::Min(this->AsBitset());
if (this->IsUnion()) {
double min = +V8_INFINITY;
@ -88,7 +88,7 @@ double Type::Min() {
}
double Type::Max() {
DCHECK(this->SemanticIs(Number()));
DCHECK(this->Is(Number()));
if (this->IsBitset()) return BitsetType::Max(this->AsBitset());
if (this->IsUnion()) {
double max = -V8_INFINITY;
@ -115,13 +115,13 @@ Type::bitset BitsetType::Glb(Type* type) {
} else if (type->IsUnion()) {
SLOW_DCHECK(type->AsUnion()->Wellformed());
return type->AsUnion()->Get(0)->BitsetGlb() |
SEMANTIC(type->AsUnion()->Get(1)->BitsetGlb()); // Shortcut.
type->AsUnion()->Get(1)->BitsetGlb(); // Shortcut.
} else if (type->IsRange()) {
bitset glb = SEMANTIC(
BitsetType::Glb(type->AsRange()->Min(), type->AsRange()->Max()));
return glb | REPRESENTATION(type->BitsetLub());
bitset glb =
BitsetType::Glb(type->AsRange()->Min(), type->AsRange()->Max());
return glb;
} else {
return type->Representation();
return kNone;
}
}
@ -135,7 +135,7 @@ Type::bitset BitsetType::Lub(Type* type) {
int bitset = type->AsUnion()->Get(0)->BitsetLub();
for (int i = 0, n = type->AsUnion()->Length(); i < n; ++i) {
// Other elements only contribute their semantic part.
bitset |= SEMANTIC(type->AsUnion()->Get(i)->BitsetLub());
bitset |= type->AsUnion()->Get(i)->BitsetLub();
}
return bitset;
}
@ -185,10 +185,10 @@ Type::bitset BitsetType::Lub(i::Map* map) {
map == heap->arguments_marker_map() ||
map == heap->optimized_out_map() ||
map == heap->stale_register_map());
return kOtherInternal & kTaggedPointer;
return kOtherInternal;
}
case HEAP_NUMBER_TYPE:
return kNumber & kTaggedPointer;
return kNumber;
case SIMD128_VALUE_TYPE:
return kSimd;
case JS_OBJECT_TYPE:
@ -242,10 +242,10 @@ Type::bitset BitsetType::Lub(i::Map* map) {
case CODE_TYPE:
case PROPERTY_CELL_TYPE:
case MODULE_TYPE:
return kOtherInternal & kTaggedPointer;
return kOtherInternal;
// Remaining instance types are unsupported for now. If any of them do
// require bit set types, they should get kOtherInternal & kTaggedPointer.
// require bit set types, they should get kOtherInternal.
case MUTABLE_HEAP_NUMBER_TYPE:
case FREE_SPACE_TYPE:
#define FIXED_TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
@ -282,8 +282,7 @@ Type::bitset BitsetType::Lub(i::Map* map) {
Type::bitset BitsetType::Lub(i::Object* value) {
DisallowHeapAllocation no_allocation;
if (value->IsNumber()) {
return Lub(value->Number()) &
(value->IsSmi() ? kTaggedSigned : kTaggedPointer);
return Lub(value->Number());
}
return Lub(i::HeapObject::cast(value)->map());
}
@ -316,12 +315,11 @@ size_t BitsetType::BoundariesSize() {
Type::bitset BitsetType::ExpandInternals(Type::bitset bits) {
DisallowHeapAllocation no_allocation;
if (!(bits & SEMANTIC(kPlainNumber))) return bits; // Shortcut.
if (!(bits & kPlainNumber)) return bits; // Shortcut.
const Boundary* boundaries = Boundaries();
for (size_t i = 0; i < BoundariesSize(); ++i) {
DCHECK(BitsetType::Is(boundaries[i].internal, boundaries[i].external));
if (bits & SEMANTIC(boundaries[i].internal))
bits |= SEMANTIC(boundaries[i].external);
if (bits & boundaries[i].internal) bits |= boundaries[i].external;
}
return bits;
}
@ -340,9 +338,7 @@ Type::bitset BitsetType::Lub(double min, double max) {
return lub | mins[BoundariesSize() - 1].internal;
}
Type::bitset BitsetType::NumberBits(bitset bits) {
return SEMANTIC(bits & kPlainNumber);
}
Type::bitset BitsetType::NumberBits(bitset bits) { return bits & kPlainNumber; }
Type::bitset BitsetType::Glb(double min, double max) {
DisallowHeapAllocation no_allocation;
@ -360,16 +356,16 @@ Type::bitset BitsetType::Glb(double min, double max) {
}
// OtherNumber also contains float numbers, so it can never be
// in the greatest lower bound.
return glb & ~(SEMANTIC(kOtherNumber));
return glb & ~(kOtherNumber);
}
double BitsetType::Min(bitset bits) {
DisallowHeapAllocation no_allocation;
DCHECK(Is(SEMANTIC(bits), kNumber));
DCHECK(Is(bits, kNumber));
const Boundary* mins = Boundaries();
bool mz = SEMANTIC(bits & kMinusZero);
bool mz = bits & kMinusZero;
for (size_t i = 0; i < BoundariesSize(); ++i) {
if (Is(SEMANTIC(mins[i].internal), bits)) {
if (Is(mins[i].internal, bits)) {
return mz ? std::min(0.0, mins[i].min) : mins[i].min;
}
}
@ -379,14 +375,14 @@ double BitsetType::Min(bitset bits) {
double BitsetType::Max(bitset bits) {
DisallowHeapAllocation no_allocation;
DCHECK(Is(SEMANTIC(bits), kNumber));
DCHECK(Is(bits, kNumber));
const Boundary* mins = Boundaries();
bool mz = SEMANTIC(bits & kMinusZero);
if (BitsetType::Is(SEMANTIC(mins[BoundariesSize() - 1].internal), bits)) {
bool mz = bits & kMinusZero;
if (BitsetType::Is(mins[BoundariesSize() - 1].internal, bits)) {
return +V8_INFINITY;
}
for (size_t i = BoundariesSize() - 1; i-- > 0;) {
if (Is(SEMANTIC(mins[i].internal), bits)) {
if (Is(mins[i].internal, bits)) {
return mz ? std::max(0.0, mins[i + 1].min - 1) : mins[i + 1].min - 1;
}
}
@ -419,10 +415,6 @@ bool Type::SimplyEquals(Type* that) {
return false;
}
Type::bitset Type::Representation() {
return REPRESENTATION(this->BitsetLub());
}
// Check if [this] <= [that].
bool Type::SlowIs(Type* that) {
DisallowHeapAllocation no_allocation;
@ -436,33 +428,10 @@ bool Type::SlowIs(Type* that) {
return BitsetType::Is(this->AsBitset(), that->BitsetGlb());
}
// Check the representations.
if (!BitsetType::Is(Representation(), that->Representation())) {
return false;
}
// Check the semantic part.
return SemanticIs(that);
}
// Check if SEMANTIC([this]) <= SEMANTIC([that]). The result of the method
// should be independent of the representation axis of the types.
bool Type::SemanticIs(Type* that) {
DisallowHeapAllocation no_allocation;
if (this == that) return true;
if (that->IsBitset()) {
return BitsetType::Is(SEMANTIC(this->BitsetLub()), that->AsBitset());
}
if (this->IsBitset()) {
return BitsetType::Is(SEMANTIC(this->AsBitset()), that->BitsetGlb());
}
// (T1 \/ ... \/ Tn) <= T if (T1 <= T) /\ ... /\ (Tn <= T)
if (this->IsUnion()) {
for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) {
if (!this->AsUnion()->Get(i)->SemanticIs(that)) return false;
if (!this->AsUnion()->Get(i)->Is(that)) return false;
}
return true;
}
@ -470,7 +439,7 @@ bool Type::SemanticIs(Type* that) {
// T <= (T1 \/ ... \/ Tn) if (T <= T1) \/ ... \/ (T <= Tn)
if (that->IsUnion()) {
for (int i = 0, n = that->AsUnion()->Length(); i < n; ++i) {
if (this->SemanticIs(that->AsUnion()->Get(i))) return true;
if (this->Is(that->AsUnion()->Get(i))) return true;
if (i > 1 && this->IsRange()) return false; // Shortcut.
}
return false;
@ -490,21 +459,13 @@ bool Type::SemanticIs(Type* that) {
bool Type::Maybe(Type* that) {
DisallowHeapAllocation no_allocation;
// Take care of the representation part (and also approximate
// the semantic part).
if (!BitsetType::IsInhabited(this->BitsetLub() & that->BitsetLub()))
return false;
return SemanticMaybe(that);
}
bool Type::SemanticMaybe(Type* that) {
DisallowHeapAllocation no_allocation;
// (T1 \/ ... \/ Tn) overlaps T if (T1 overlaps T) \/ ... \/ (Tn overlaps T)
if (this->IsUnion()) {
for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) {
if (this->AsUnion()->Get(i)->SemanticMaybe(that)) return true;
if (this->AsUnion()->Get(i)->Maybe(that)) return true;
}
return false;
}
@ -512,14 +473,11 @@ bool Type::SemanticMaybe(Type* that) {
// T overlaps (T1 \/ ... \/ Tn) if (T overlaps T1) \/ ... \/ (T overlaps Tn)
if (that->IsUnion()) {
for (int i = 0, n = that->AsUnion()->Length(); i < n; ++i) {
if (this->SemanticMaybe(that->AsUnion()->Get(i))) return true;
if (this->Maybe(that->AsUnion()->Get(i))) return true;
}
return false;
}
if (!BitsetType::SemanticIsInhabited(this->BitsetLub() & that->BitsetLub()))
return false;
if (this->IsBitset() && that->IsBitset()) return true;
if (this->IsRange()) {
@ -540,7 +498,7 @@ bool Type::SemanticMaybe(Type* that) {
}
}
if (that->IsRange()) {
return that->SemanticMaybe(this); // This case is handled above.
return that->Maybe(this); // This case is handled above.
}
if (this->IsBitset() || that->IsBitset()) return true;
@ -588,8 +546,7 @@ bool UnionType::Wellformed() {
if (i != 1) DCHECK(!this->Get(i)->IsRange()); // (3)
DCHECK(!this->Get(i)->IsUnion()); // (4)
for (int j = 0; j < this->Length(); ++j) {
if (i != j && i != 0)
DCHECK(!this->Get(i)->SemanticIs(this->Get(j))); // (5)
if (i != j && i != 0) DCHECK(!this->Get(i)->Is(this->Get(j))); // (5)
}
}
DCHECK(!this->Get(1)->IsRange() ||
@ -622,25 +579,15 @@ Type* Type::Intersect(Type* type1, Type* type2, Zone* zone) {
// Slow case: create union.
// Figure out the representation of the result first.
// The rest of the method should not change this representation and
// it should not make any decisions based on representations (i.e.,
// it should only use the semantic part of types).
const bitset representation =
type1->Representation() & type2->Representation();
// Semantic subtyping check - this is needed for consistency with the
// semi-fast case above - we should behave the same way regardless of
// representations. Intersection with a universal bitset should only update
// the representations.
if (type1->SemanticIs(type2)) {
// semi-fast case above.
if (type1->Is(type2)) {
type2 = Any();
} else if (type2->SemanticIs(type1)) {
} else if (type2->Is(type1)) {
type1 = Any();
}
bitset bits =
SEMANTIC(type1->BitsetGlb() & type2->BitsetGlb()) | representation;
bitset bits = type1->BitsetGlb() & type2->BitsetGlb();
int size1 = type1->IsUnion() ? type1->AsUnion()->Length() : 1;
int size2 = type2->IsUnion() ? type2->AsUnion()->Length() : 1;
if (!AddIsSafe(size1, size2)) return Any();
@ -660,8 +607,7 @@ Type* Type::Intersect(Type* type1, Type* type2, Zone* zone) {
// If the range is not empty, then insert it into the union and
// remove the number bits from the bitset.
if (!lims.IsEmpty()) {
size = UpdateRange(RangeType::New(lims, representation, zone), result, size,
zone);
size = UpdateRange(RangeType::New(lims, zone), result, size, zone);
// Remove the number bits.
bitset number_bits = BitsetType::NumberBits(bits);
@ -682,7 +628,7 @@ int Type::UpdateRange(Type* range, UnionType* result, int size, Zone* zone) {
// Remove any components that just got subsumed.
for (int i = 2; i < size;) {
if (result->Get(i)->SemanticIs(range)) {
if (result->Get(i)->Is(range)) {
result->Set(i, result->Get(--size));
} else {
++i;
@ -726,7 +672,7 @@ int Type::IntersectAux(Type* lhs, Type* rhs, UnionType* result, int size,
return size;
}
if (!BitsetType::SemanticIsInhabited(lhs->BitsetLub() & rhs->BitsetLub())) {
if (!BitsetType::IsInhabited(lhs->BitsetLub() & rhs->BitsetLub())) {
return size;
}
@ -778,7 +724,7 @@ Type* Type::NormalizeRangeAndBitset(Type* range, bitset* bits, Zone* zone) {
// If the range is semantically contained within the bitset, return None and
// leave the bitset untouched.
bitset range_lub = SEMANTIC(range->BitsetLub());
bitset range_lub = range->BitsetLub();
if (BitsetType::Is(range_lub, *bits)) {
return None();
}
@ -806,7 +752,7 @@ Type* Type::NormalizeRangeAndBitset(Type* range, bitset* bits, Zone* zone) {
if (bitset_max > range_max) {
range_max = bitset_max;
}
return RangeType::New(range_min, range_max, BitsetType::kNone, zone);
return RangeType::New(range_min, range_max, zone);
}
Type* Type::Union(Type* type1, Type* type2, Zone* zone) {
@ -823,13 +769,6 @@ Type* Type::Union(Type* type1, Type* type2, Zone* zone) {
if (type1->Is(type2)) return type2;
if (type2->Is(type1)) return type1;
// Figure out the representation of the result.
// The rest of the method should not change this representation and
// it should not make any decisions based on representations (i.e.,
// it should only use the semantic part of types).
const bitset representation =
type1->Representation() | type2->Representation();
// Slow case: create union.
int size1 = type1->IsUnion() ? type1->AsUnion()->Length() : 1;
int size2 = type2->IsUnion() ? type2->AsUnion()->Length() : 1;
@ -842,7 +781,7 @@ Type* Type::Union(Type* type1, Type* type2, Zone* zone) {
size = 0;
// Compute the new bitset.
bitset new_bitset = SEMANTIC(type1->BitsetGlb() | type2->BitsetGlb());
bitset new_bitset = type1->BitsetGlb() | type2->BitsetGlb();
// Deal with ranges.
Type* range = None();
@ -852,14 +791,13 @@ Type* Type::Union(Type* type1, Type* type2, Zone* zone) {
RangeType::Limits lims =
RangeType::Limits::Union(RangeType::Limits(range1->AsRange()),
RangeType::Limits(range2->AsRange()));
Type* union_range = RangeType::New(lims, representation, zone);
Type* union_range = RangeType::New(lims, zone);
range = NormalizeRangeAndBitset(union_range, &new_bitset, zone);
} else if (range1 != NULL) {
range = NormalizeRangeAndBitset(range1, &new_bitset, zone);
} else if (range2 != NULL) {
range = NormalizeRangeAndBitset(range2, &new_bitset, zone);
}
new_bitset = SEMANTIC(new_bitset) | representation;
Type* bits = BitsetType::New(new_bitset);
result->Set(size++, bits);
if (!range->IsNone()) result->Set(size++, range);
@ -880,7 +818,7 @@ int Type::AddToUnion(Type* type, UnionType* result, int size, Zone* zone) {
return size;
}
for (int i = 0; i < size; ++i) {
if (type->SemanticIs(result->Get(i))) return size;
if (type->Is(result->Get(i))) return size;
}
result->Set(size++, type);
return size;
@ -896,15 +834,10 @@ Type* Type::NormalizeUnion(Type* union_type, int size, Zone* zone) {
}
bitset bits = unioned->Get(0)->AsBitset();
// If the union only consists of a range, we can get rid of the union.
if (size == 2 && SEMANTIC(bits) == BitsetType::kNone) {
bitset representation = REPRESENTATION(bits);
if (representation == unioned->Get(1)->Representation()) {
return unioned->Get(1);
}
if (size == 2 && bits == BitsetType::kNone) {
if (unioned->Get(1)->IsRange()) {
return RangeType::New(unioned->Get(1)->AsRange()->Min(),
unioned->Get(1)->AsRange()->Max(),
unioned->Get(0)->AsBitset(), zone);
unioned->Get(1)->AsRange()->Max(), zone);
}
}
unioned->Shrink(size);
@ -912,19 +845,6 @@ Type* Type::NormalizeUnion(Type* union_type, int size, Zone* zone) {
return union_type;
}
// -----------------------------------------------------------------------------
// Component extraction
// static
Type* Type::Representation(Type* t, Zone* zone) {
return BitsetType::New(t->Representation());
}
// static
Type* Type::Semantic(Type* t, Zone* zone) {
return Intersect(t, BitsetType::New(BitsetType::kSemantic), zone);
}
// -----------------------------------------------------------------------------
// Iteration.
@ -994,20 +914,12 @@ void Type::Iterator<T>::Advance() {
const char* BitsetType::Name(bitset bits) {
switch (bits) {
case REPRESENTATION(kAny):
return "Any";
#define RETURN_NAMED_REPRESENTATION_TYPE(type, value) \
case REPRESENTATION(k##type): \
#define RETURN_NAMED_TYPE(type, value) \
case k##type: \
return #type;
REPRESENTATION_BITSET_TYPE_LIST(RETURN_NAMED_REPRESENTATION_TYPE)
#undef RETURN_NAMED_REPRESENTATION_TYPE
#define RETURN_NAMED_SEMANTIC_TYPE(type, value) \
case SEMANTIC(k##type): \
return #type;
SEMANTIC_BITSET_TYPE_LIST(RETURN_NAMED_SEMANTIC_TYPE)
INTERNAL_BITSET_TYPE_LIST(RETURN_NAMED_SEMANTIC_TYPE)
#undef RETURN_NAMED_SEMANTIC_TYPE
PROPER_BITSET_TYPE_LIST(RETURN_NAMED_TYPE)
INTERNAL_BITSET_TYPE_LIST(RETURN_NAMED_TYPE)
#undef RETURN_NAMED_TYPE
default:
return NULL;
@ -1025,13 +937,9 @@ void BitsetType::Print(std::ostream& os, // NOLINT
// clang-format off
static const bitset named_bitsets[] = {
#define BITSET_CONSTANT(type, value) REPRESENTATION(k##type),
REPRESENTATION_BITSET_TYPE_LIST(BITSET_CONSTANT)
#undef BITSET_CONSTANT
#define BITSET_CONSTANT(type, value) SEMANTIC(k##type),
#define BITSET_CONSTANT(type, value) k##type,
INTERNAL_BITSET_TYPE_LIST(BITSET_CONSTANT)
SEMANTIC_BITSET_TYPE_LIST(BITSET_CONSTANT)
PROPER_BITSET_TYPE_LIST(BITSET_CONSTANT)
#undef BITSET_CONSTANT
};
// clang-format on
@ -1051,43 +959,37 @@ void BitsetType::Print(std::ostream& os, // NOLINT
os << ")";
}
void Type::PrintTo(std::ostream& os, PrintDimension dim) {
void Type::PrintTo(std::ostream& os) {
DisallowHeapAllocation no_allocation;
if (dim != REPRESENTATION_DIM) {
if (this->IsBitset()) {
BitsetType::Print(os, SEMANTIC(this->AsBitset()));
} else if (this->IsConstant()) {
os << "Constant(" << Brief(*this->AsConstant()->Value()) << ")";
} else if (this->IsRange()) {
std::ostream::fmtflags saved_flags = os.setf(std::ios::fixed);
std::streamsize saved_precision = os.precision(0);
os << "Range(" << this->AsRange()->Min() << ", " << this->AsRange()->Max()
<< ")";
os.flags(saved_flags);
os.precision(saved_precision);
} else if (this->IsUnion()) {
os << "(";
for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) {
Type* type_i = this->AsUnion()->Get(i);
if (i > 0) os << " | ";
type_i->PrintTo(os, dim);
}
os << ")";
} else if (this->IsTuple()) {
os << "<";
for (int i = 0, n = this->AsTuple()->Arity(); i < n; ++i) {
Type* type_i = this->AsTuple()->Element(i);
if (i > 0) os << ", ";
type_i->PrintTo(os, dim);
}
os << ">";
} else {
UNREACHABLE();
if (this->IsBitset()) {
BitsetType::Print(os, this->AsBitset());
} else if (this->IsConstant()) {
os << "Constant(" << Brief(*this->AsConstant()->Value()) << ")";
} else if (this->IsRange()) {
std::ostream::fmtflags saved_flags = os.setf(std::ios::fixed);
std::streamsize saved_precision = os.precision(0);
os << "Range(" << this->AsRange()->Min() << ", " << this->AsRange()->Max()
<< ")";
os.flags(saved_flags);
os.precision(saved_precision);
} else if (this->IsUnion()) {
os << "(";
for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) {
Type* type_i = this->AsUnion()->Get(i);
if (i > 0) os << " | ";
type_i->PrintTo(os);
}
}
if (dim == BOTH_DIMS) os << "/";
if (dim != SEMANTIC_DIM) {
BitsetType::Print(os, REPRESENTATION(this->BitsetLub()));
os << ")";
} else if (this->IsTuple()) {
os << "<";
for (int i = 0, n = this->AsTuple()->Arity(); i < n; ++i) {
Type* type_i = this->AsTuple()->Element(i);
if (i > 0) os << ", ";
type_i->PrintTo(os);
}
os << ">";
} else {
UNREACHABLE();
}
}

View File

@ -22,13 +22,7 @@ namespace compiler {
// can express class types (a.k.a. specific maps) and singleton types (i.e.,
// concrete constants).
//
// Types consist of two dimensions: semantic (value range) and representation.
// Both are related through subtyping.
//
//
// SEMANTIC DIMENSION
//
// The following equations and inequations hold for the semantic axis:
// The following equations and inequations hold:
//
// None <= T
// T <= Any
@ -40,41 +34,12 @@ namespace compiler {
// InternalizedString < String
//
// Receiver = Object \/ Proxy
// RegExp < Object
// OtherUndetectable < Object
// DetectableReceiver = Receiver - OtherUndetectable
//
// Constant(x) < T iff instance_type(map(x)) < T
//
//
// REPRESENTATIONAL DIMENSION
//
// For the representation axis, the following holds:
//
// None <= R
// R <= Any
//
// UntaggedInt = UntaggedInt1 \/ UntaggedInt8 \/
// UntaggedInt16 \/ UntaggedInt32
// UntaggedFloat = UntaggedFloat32 \/ UntaggedFloat64
// UntaggedNumber = UntaggedInt \/ UntaggedFloat
// Untagged = UntaggedNumber \/ UntaggedPtr
// Tagged = TaggedInt \/ TaggedPtr
//
// Subtyping relates the two dimensions, for example:
//
// Number <= Tagged \/ UntaggedNumber
// Object <= TaggedPtr \/ UntaggedPtr
//
// That holds because the semantic type constructors defined by the API create
// types that allow for all possible representations, and dually, the ones for
// representation types initially include all semantic ranges. Representations
// can then e.g. be narrowed for a given semantic type using intersection:
//
// SignedSmall /\ TaggedInt (a 'smi')
// Number /\ TaggedPtr (a heap number)
//
//
// RANGE TYPES
//
// A range type represents a continuous integer interval by its minimum and
@ -125,64 +90,37 @@ namespace compiler {
// Internally, all 'primitive' types, and their unions, are represented as
// bitsets. Bit 0 is reserved for tagging. Only structured types require
// allocation.
// Note that the bitset representation is closed under both Union and Intersect.
// -----------------------------------------------------------------------------
// Values for bitset types
// clang-format off
#define MASK_BITSET_TYPE_LIST(V) \
V(Representation, 0xffc00000u) \
V(Semantic, 0x003ffffeu)
#define REPRESENTATION(k) ((k) & BitsetType::kRepresentation)
#define SEMANTIC(k) ((k) & BitsetType::kSemantic)
#define REPRESENTATION_BITSET_TYPE_LIST(V) \
V(None, 0) \
V(UntaggedBit, 1u << 22 | kSemantic) \
V(UntaggedIntegral8, 1u << 23 | kSemantic) \
V(UntaggedIntegral16, 1u << 24 | kSemantic) \
V(UntaggedIntegral32, 1u << 25 | kSemantic) \
V(UntaggedFloat32, 1u << 26 | kSemantic) \
V(UntaggedFloat64, 1u << 27 | kSemantic) \
V(UntaggedSimd128, 1u << 28 | kSemantic) \
V(UntaggedPointer, 1u << 29 | kSemantic) \
V(TaggedSigned, 1u << 30 | kSemantic) \
V(TaggedPointer, 1u << 31 | kSemantic) \
\
V(UntaggedIntegral, kUntaggedBit | kUntaggedIntegral8 | \
kUntaggedIntegral16 | kUntaggedIntegral32) \
V(UntaggedFloat, kUntaggedFloat32 | kUntaggedFloat64) \
V(UntaggedNumber, kUntaggedIntegral | kUntaggedFloat) \
V(Untagged, kUntaggedNumber | kUntaggedPointer) \
V(Tagged, kTaggedSigned | kTaggedPointer)
#define INTERNAL_BITSET_TYPE_LIST(V) \
V(OtherUnsigned31, 1u << 1 | REPRESENTATION(kTagged | kUntaggedNumber)) \
V(OtherUnsigned32, 1u << 2 | REPRESENTATION(kTagged | kUntaggedNumber)) \
V(OtherSigned32, 1u << 3 | REPRESENTATION(kTagged | kUntaggedNumber)) \
V(OtherNumber, 1u << 4 | REPRESENTATION(kTagged | kUntaggedNumber))
V(OtherUnsigned31, 1u << 1) \
V(OtherUnsigned32, 1u << 2) \
V(OtherSigned32, 1u << 3) \
V(OtherNumber, 1u << 4) \
#define SEMANTIC_BITSET_TYPE_LIST(V) \
V(Negative31, 1u << 5 | REPRESENTATION(kTagged | kUntaggedNumber)) \
V(Null, 1u << 6 | REPRESENTATION(kTaggedPointer)) \
V(Undefined, 1u << 7 | REPRESENTATION(kTaggedPointer)) \
V(Boolean, 1u << 8 | REPRESENTATION(kTaggedPointer)) \
V(Unsigned30, 1u << 9 | REPRESENTATION(kTagged | kUntaggedNumber)) \
V(MinusZero, 1u << 10 | REPRESENTATION(kTagged | kUntaggedNumber)) \
V(NaN, 1u << 11 | REPRESENTATION(kTagged | kUntaggedNumber)) \
V(Symbol, 1u << 12 | REPRESENTATION(kTaggedPointer)) \
V(InternalizedString, 1u << 13 | REPRESENTATION(kTaggedPointer)) \
V(OtherString, 1u << 14 | REPRESENTATION(kTaggedPointer)) \
V(Simd, 1u << 15 | REPRESENTATION(kTaggedPointer)) \
V(OtherObject, 1u << 17 | REPRESENTATION(kTaggedPointer)) \
V(OtherUndetectable, 1u << 16 | REPRESENTATION(kTaggedPointer)) \
V(Proxy, 1u << 18 | REPRESENTATION(kTaggedPointer)) \
V(Function, 1u << 19 | REPRESENTATION(kTaggedPointer)) \
V(Hole, 1u << 20 | REPRESENTATION(kTaggedPointer)) \
V(OtherInternal, 1u << 21 | REPRESENTATION(kTagged | kUntagged)) \
#define PROPER_BITSET_TYPE_LIST(V) \
V(None, 0u) \
V(Negative31, 1u << 5) \
V(Null, 1u << 6) \
V(Undefined, 1u << 7) \
V(Boolean, 1u << 8) \
V(Unsigned30, 1u << 9) \
V(MinusZero, 1u << 10) \
V(NaN, 1u << 11) \
V(Symbol, 1u << 12) \
V(InternalizedString, 1u << 13) \
V(OtherString, 1u << 14) \
V(Simd, 1u << 15) \
V(OtherObject, 1u << 17) \
V(OtherUndetectable, 1u << 16) \
V(Proxy, 1u << 18) \
V(Function, 1u << 19) \
V(Hole, 1u << 20) \
V(OtherInternal, 1u << 21) \
\
V(Signed31, kUnsigned30 | kNegative31) \
V(Signed32, kSigned31 | kOtherUnsigned31 | kOtherSigned32) \
@ -243,15 +181,9 @@ namespace compiler {
* occur as part of PlainNumber.
*/
#define PROPER_BITSET_TYPE_LIST(V) \
REPRESENTATION_BITSET_TYPE_LIST(V) \
SEMANTIC_BITSET_TYPE_LIST(V)
#define BITSET_TYPE_LIST(V) \
MASK_BITSET_TYPE_LIST(V) \
REPRESENTATION_BITSET_TYPE_LIST(V) \
INTERNAL_BITSET_TYPE_LIST(V) \
SEMANTIC_BITSET_TYPE_LIST(V)
#define BITSET_TYPE_LIST(V) \
INTERNAL_BITSET_TYPE_LIST(V) \
PROPER_BITSET_TYPE_LIST(V)
class Type;
@ -276,13 +208,7 @@ class BitsetType {
return static_cast<bitset>(reinterpret_cast<uintptr_t>(this) ^ 1u);
}
static bool IsInhabited(bitset bits) {
return SEMANTIC(bits) != kNone && REPRESENTATION(bits) != kNone;
}
static bool SemanticIsInhabited(bitset bits) {
return SEMANTIC(bits) != kNone;
}
static bool IsInhabited(bitset bits) { return bits != kNone; }
static bool Is(bitset bits1, bitset bits2) {
return (bits1 | bits2) == bits2;
@ -389,7 +315,6 @@ class ConstantType : public TypeBase {
Handle<i::Object> object_;
};
// TODO(neis): Also cache value if numerical.
// TODO(neis): Allow restricting the representation.
// -----------------------------------------------------------------------------
// Range types.
@ -415,21 +340,18 @@ class RangeType : public TypeBase {
friend class BitsetType;
friend class UnionType;
static Type* New(double min, double max, BitsetType::bitset representation,
Zone* zone) {
return New(Limits(min, max), representation, zone);
static Type* New(double min, double max, Zone* zone) {
return New(Limits(min, max), zone);
}
static bool IsInteger(double x) {
return nearbyint(x) == x && !i::IsMinusZero(x); // Allows for infinities.
}
static Type* New(Limits lim, BitsetType::bitset representation, Zone* zone) {
static Type* New(Limits lim, Zone* zone) {
DCHECK(IsInteger(lim.min) && IsInteger(lim.max));
DCHECK(lim.min <= lim.max);
DCHECK(REPRESENTATION(representation) == representation);
BitsetType::bitset bits =
SEMANTIC(BitsetType::Lub(lim.min, lim.max)) | representation;
BitsetType::bitset bits = BitsetType::Lub(lim.min, lim.max);
return AsType(new (zone->New(sizeof(RangeType))) RangeType(bits, lim));
}
@ -556,9 +478,7 @@ class Type {
return ConstantType::New(value, zone);
}
static Type* Range(double min, double max, Zone* zone) {
return RangeType::New(min, max, REPRESENTATION(BitsetType::kTagged |
BitsetType::kUntaggedNumber),
zone);
return RangeType::New(min, max, zone);
}
static Type* Tuple(Type* first, Type* second, Type* third, Zone* zone) {
Type* tuple = TupleType::New(3, zone);
@ -586,10 +506,6 @@ class Type {
}
static Type* For(i::Handle<i::Map> map) { return For(*map); }
// Extraction of components.
static Type* Representation(Type* t, Zone* zone);
static Type* Semantic(Type* t, Zone* zone);
// Predicates.
bool IsInhabited() { return BitsetType::IsInhabited(this->BitsetLub()); }
@ -655,9 +571,7 @@ class Type {
// Printing.
enum PrintDimension { BOTH_DIMS, SEMANTIC_DIM, REPRESENTATION_DIM };
void PrintTo(std::ostream& os, PrintDimension dim = BOTH_DIMS); // NOLINT
void PrintTo(std::ostream& os);
#ifdef DEBUG
void Print();
@ -690,16 +604,10 @@ class Type {
}
UnionType* AsUnion() { return UnionType::cast(this); }
bitset Representation();
// Auxiliary functions.
bool SemanticMaybe(Type* that);
bitset BitsetGlb() { return BitsetType::Glb(this); }
bitset BitsetLub() { return BitsetType::Lub(this); }
bool SlowIs(Type* that);
bool SemanticIs(Type* that);
static bool Overlap(RangeType* lhs, RangeType* rhs);
static bool Contains(RangeType* lhs, RangeType* rhs);

View File

@ -187,72 +187,6 @@ struct Tests {
}
}
void PointwiseRepresentation() {
// Check we can decompose type into semantics and representation and
// then compose it back to get an equivalent type.
int counter = 0;
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
counter++;
Type* type1 = *it1;
Type* representation = T.Representation(type1);
Type* semantic = T.Semantic(type1);
Type* composed = T.Union(representation, semantic);
CHECK(type1->Equals(composed));
}
// Pointwiseness of Union.
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
Type* type1 = *it1;
Type* type2 = *it2;
Type* representation1 = T.Representation(type1);
Type* semantic1 = T.Semantic(type1);
Type* representation2 = T.Representation(type2);
Type* semantic2 = T.Semantic(type2);
Type* direct_union = T.Union(type1, type2);
Type* representation_union = T.Union(representation1, representation2);
Type* semantic_union = T.Union(semantic1, semantic2);
Type* composed_union = T.Union(representation_union, semantic_union);
CHECK(direct_union->Equals(composed_union));
}
}
// Pointwiseness of Intersect.
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
Type* type1 = *it1;
Type* type2 = *it2;
Type* representation1 = T.Representation(type1);
Type* semantic1 = T.Semantic(type1);
Type* representation2 = T.Representation(type2);
Type* semantic2 = T.Semantic(type2);
Type* direct_intersection = T.Intersect(type1, type2);
Type* representation_intersection =
T.Intersect(representation1, representation2);
Type* semantic_intersection = T.Intersect(semantic1, semantic2);
Type* composed_intersection =
T.Union(representation_intersection, semantic_intersection);
CHECK(direct_intersection->Equals(composed_intersection));
}
}
// Pointwiseness of Is.
for (TypeIterator it1 = T.types.begin(); it1 != T.types.end(); ++it1) {
for (TypeIterator it2 = T.types.begin(); it2 != T.types.end(); ++it2) {
Type* type1 = *it1;
Type* type2 = *it2;
Type* representation1 = T.Representation(type1);
Type* semantic1 = T.Semantic(type1);
Type* representation2 = T.Representation(type2);
Type* semantic2 = T.Semantic(type2);
bool representation_is = representation1->Is(representation2);
bool semantic_is = semantic1->Is(semantic2);
bool direct_is = type1->Is(type2);
CHECK(direct_is == (semantic_is && representation_is));
}
}
}
void Constant() {
// Constructor
for (ValueIterator vt = T.values.begin(); vt != T.values.end(); ++vt) {
@ -1153,8 +1087,6 @@ struct Tests {
TEST(IsSomeType) { Tests().IsSomeType(); }
TEST(PointwiseRepresentation) { Tests().PointwiseRepresentation(); }
TEST(BitsetType) { Tests().Bitset(); }
TEST(ConstantType) { Tests().Constant(); }

View File

@ -108,9 +108,6 @@ class Types {
PROPER_BITSET_TYPE_LIST(DECLARE_TYPE)
#undef DECLARE_TYPE
#define DECLARE_TYPE(name, value) Type* Mask##name##ForTesting;
MASK_BITSET_TYPE_LIST(DECLARE_TYPE)
#undef DECLARE_TYPE
Type* SignedSmall;
Type* UnsignedSmall;
@ -142,10 +139,6 @@ class Types {
Type* Intersect(Type* t1, Type* t2) { return Type::Intersect(t1, t2, zone_); }
Type* Representation(Type* t) { return Type::Representation(t, zone_); }
Type* Semantic(Type* t) { return Type::Semantic(t, zone_); }
Type* Random() {
return types[rng_->NextInt(static_cast<int>(types.size()))];
}