Revert "[bigint] Fix early-return in asIntN"

This reverts commit e110b59cc7.

Reason for revert: Breaks arm debug on chromebook hardware:
https://build.chromium.org/p/client.v8.ports/builders/V8%20Arm%20-%20debug/builds/5335

Original change's description:
> [bigint] Fix early-return in asIntN
> 
> For "top digit" (of the result) comparison to be applicable, we must
> also check that there are no further digits in the source.
> 
> Bug: v8:7150
> Change-Id: I6ad317f6f600e11fef59b9907da1055e5586a3a8
> Reviewed-on: https://chromium-review.googlesource.com/804639
> Reviewed-by: Georg Neis <neis@chromium.org>
> Commit-Queue: Jakob Kummerow <jkummerow@chromium.org>
> Cr-Commit-Position: refs/heads/master@{#49846}

TBR=jkummerow@chromium.org,neis@chromium.org

Change-Id: I5dae82696d3ecb9602f73a2ff4760ed7bbcef1c5
No-Presubmit: true
No-Tree-Checks: true
No-Try: true
Bug: v8:7150
Reviewed-on: https://chromium-review.googlesource.com/806838
Reviewed-by: Michael Achenbach <machenbach@chromium.org>
Commit-Queue: Michael Achenbach <machenbach@chromium.org>
Cr-Commit-Position: refs/heads/master@{#49847}
This commit is contained in:
Michael Achenbach 2017-12-04 22:06:52 +00:00 committed by Commit Bot
parent e110b59cc7
commit cb9e7af4e5
2 changed files with 2 additions and 5 deletions

View File

@ -1928,13 +1928,12 @@ Handle<BigInt> BigInt::AsIntN(uint64_t n, Handle<BigInt> x) {
if (x->is_zero()) return x;
if (n == 0) return MutableBigInt::Zero(x->GetIsolate());
uint64_t needed_length = (n + kDigitBits - 1) / kDigitBits;
uint64_t x_length = static_cast<uint64_t>(x->length());
// If {x} has less than {n} bits, return it directly.
if (x_length < needed_length) return x;
if (static_cast<uint64_t>(x->length()) < needed_length) return x;
DCHECK_LE(needed_length, kMaxInt);
digit_t top_digit = x->digit(static_cast<int>(needed_length) - 1);
digit_t compare_digit = static_cast<digit_t>(1) << ((n - 1) % kDigitBits);
if (x_length == needed_length && top_digit < compare_digit) return x;
if (top_digit < compare_digit) return x;
// Otherwise we have to truncate (which is a no-op in the special case
// of x == -2^(n-1)), and determine the right sign. We also might have
// to subtract from 2^n to simulate having two's complement representation.

View File

@ -145,8 +145,6 @@
}{
assertThrows(() => BigInt.asIntN(3, 12), TypeError);
assertEquals(-4n, BigInt.asIntN(3, "12"));
assertEquals(0x123456789abcdefn,
BigInt.asIntN(64, 0xabcdef0123456789abcdefn));
}
// BigInt.asUintN