Reland "[heap] Clean-up keys of oldspace weakmaps during scavenge"

This is a reland of 6604f1826d

Original change's description:
> [heap] Clean-up keys of oldspace weakmaps during scavenge
>
> This CL adds handling for cleaning up weakmap (EphemeronHashTable)
> keys during scavenge, even if the weakmap resides in oldspace.
>
> Change-Id: If8d711c050ddbcae4dd6e8da549e0c0d08ba47b2
> Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/1523787
> Commit-Queue: Sigurd Schneider <sigurds@chromium.org>
> Reviewed-by: Jaroslav Sevcik <jarin@chromium.org>
> Reviewed-by: Ulan Degenbaev <ulan@chromium.org>
> Cr-Commit-Position: refs/heads/master@{#60432}

CQ_INCLUDE_TRYBOTS=luci.chrome.try:Mac Builder Perf

Change-Id: Ie640f2b0340637a5391fb17ba3c9e6422eaf306a
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/1541476
Commit-Queue: Sigurd Schneider <sigurds@chromium.org>
Reviewed-by: Jaroslav Sevcik <jarin@chromium.org>
Reviewed-by: Ulan Degenbaev <ulan@chromium.org>
Cr-Commit-Position: refs/heads/master@{#60554}
This commit is contained in:
Sigurd Schneider 2019-03-28 09:41:09 +01:00 committed by Commit Bot
parent 173d234aae
commit d4550f4ac1
43 changed files with 764 additions and 126 deletions

View File

@ -34,6 +34,18 @@ void RecordWriteDescriptor::InitializePlatformSpecific(
data->InitializePlatformSpecific(kParameterCount, default_stub_registers);
}
void EphemeronKeyBarrierDescriptor::InitializePlatformSpecific(
CallInterfaceDescriptorData* data) {
const Register default_stub_registers[] = {r0, r1, r2, r3, r4};
data->RestrictAllocatableRegisters(default_stub_registers,
arraysize(default_stub_registers));
CHECK_LE(static_cast<size_t>(kParameterCount),
arraysize(default_stub_registers));
data->InitializePlatformSpecific(kParameterCount, default_stub_registers);
}
const Register FastNewFunctionContextDescriptor::ScopeInfoRegister() {
return r1;
}

View File

@ -675,6 +675,27 @@ void TurboAssembler::RestoreRegisters(RegList registers) {
ldm(ia_w, sp, regs);
}
void TurboAssembler::CallEphemeronKeyBarrier(Register object, Register address,
SaveFPRegsMode fp_mode) {
EphemeronKeyBarrierDescriptor descriptor;
RegList registers = descriptor.allocatable_registers();
SaveRegisters(registers);
Register object_parameter(
descriptor.GetRegisterParameter(EphemeronKeyBarrierDescriptor::kObject));
Register slot_parameter(descriptor.GetRegisterParameter(
EphemeronKeyBarrierDescriptor::kSlotAddress));
Register fp_mode_parameter(
descriptor.GetRegisterParameter(EphemeronKeyBarrierDescriptor::kFPMode));
MovePair(object_parameter, object, slot_parameter, address);
Move(fp_mode_parameter, Smi::FromEnum(fp_mode));
Call(isolate()->builtins()->builtin_handle(Builtins::kEphemeronKeyBarrier),
RelocInfo::CODE_TARGET);
RestoreRegisters(registers);
}
void TurboAssembler::CallRecordWriteStub(
Register object, Register address,
RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode) {

View File

@ -353,6 +353,8 @@ class V8_EXPORT_PRIVATE TurboAssembler : public TurboAssemblerBase {
void CallRecordWriteStub(Register object, Register address,
RememberedSetAction remembered_set_action,
SaveFPRegsMode fp_mode, Address wasm_target);
void CallEphemeronKeyBarrier(Register object, Register address,
SaveFPRegsMode fp_mode);
// Does a runtime check for 16/32 FP registers. Either way, pushes 32 double
// values to location, saving [d0..(d15|d31)].

View File

@ -34,6 +34,18 @@ void RecordWriteDescriptor::InitializePlatformSpecific(
data->InitializePlatformSpecific(kParameterCount, default_stub_registers);
}
void EphemeronKeyBarrierDescriptor::InitializePlatformSpecific(
CallInterfaceDescriptorData* data) {
const Register default_stub_registers[] = {x0, x1, x2, x3, x4};
data->RestrictAllocatableRegisters(default_stub_registers,
arraysize(default_stub_registers));
CHECK_LE(static_cast<size_t>(kParameterCount),
arraysize(default_stub_registers));
data->InitializePlatformSpecific(kParameterCount, default_stub_registers);
}
const Register FastNewFunctionContextDescriptor::ScopeInfoRegister() {
return x1;
}

View File

@ -3033,6 +3033,28 @@ void TurboAssembler::RestoreRegisters(RegList registers) {
PopCPURegList(regs);
}
void TurboAssembler::CallEphemeronKeyBarrier(Register object, Register address,
SaveFPRegsMode fp_mode) {
EphemeronKeyBarrierDescriptor descriptor;
RegList registers = descriptor.allocatable_registers();
SaveRegisters(registers);
Register object_parameter(
descriptor.GetRegisterParameter(EphemeronKeyBarrierDescriptor::kObject));
Register slot_parameter(descriptor.GetRegisterParameter(
EphemeronKeyBarrierDescriptor::kSlotAddress));
Register fp_mode_parameter(
descriptor.GetRegisterParameter(EphemeronKeyBarrierDescriptor::kFPMode));
MovePair(object_parameter, object, slot_parameter, address);
Mov(fp_mode_parameter, Smi::FromEnum(fp_mode));
Call(isolate()->builtins()->builtin_handle(Builtins::kEphemeronKeyBarrier),
RelocInfo::CODE_TARGET);
RestoreRegisters(registers);
}
void TurboAssembler::CallRecordWriteStub(
Register object, Register address,
RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode) {

View File

@ -746,6 +746,8 @@ class V8_EXPORT_PRIVATE TurboAssembler : public TurboAssemblerBase {
void CallRecordWriteStub(Register object, Register address,
RememberedSetAction remembered_set_action,
SaveFPRegsMode fp_mode, Address wasm_target);
void CallEphemeronKeyBarrier(Register object, Register address,
SaveFPRegsMode fp_mode);
// Alternative forms of Push and Pop, taking a RegList or CPURegList that
// specifies the registers that are to be pushed or popped. Higher-numbered

View File

@ -2342,7 +2342,8 @@ void WeakCollectionsBuiltinsAssembler::AddEntry(
TNode<Object> key, TNode<Object> value, TNode<IntPtrT> number_of_elements) {
// See EphemeronHashTable::AddEntry().
TNode<IntPtrT> value_index = ValueIndexFromKeyIndex(key_index);
UnsafeStoreFixedArrayElement(table, key_index, key);
UnsafeStoreFixedArrayElement(table, key_index, key,
UPDATE_EPHEMERON_KEY_WRITE_BARRIER);
UnsafeStoreFixedArrayElement(table, value_index, value);
// See HashTableBase::ElementAdded().

View File

@ -36,6 +36,7 @@ namespace internal {
#define BUILTIN_LIST_BASE(CPP, API, TFJ, TFC, TFS, TFH, ASM) \
/* GC write barrirer */ \
TFC(RecordWrite, RecordWrite) \
TFC(EphemeronKeyBarrier, EphemeronKeyBarrier) \
\
/* Adaptors for CPP/API builtin */ \
TFC(AdaptorWithExitFrame, CppBuiltinAdaptor) \

View File

@ -449,6 +449,25 @@ TF_BUILTIN(RecordWrite, RecordWriteCodeStubAssembler) {
Return(TrueConstant());
}
TF_BUILTIN(EphemeronKeyBarrier, RecordWriteCodeStubAssembler) {
Label exit(this);
Node* function = ExternalConstant(
ExternalReference::ephemeron_key_write_barrier_function());
Node* isolate_constant =
ExternalConstant(ExternalReference::isolate_address(isolate()));
Node* address = Parameter(Descriptor::kSlotAddress);
Node* object = BitcastTaggedToWord(Parameter(Descriptor::kObject));
Node* fp_mode = Parameter(Descriptor::kFPMode);
CallCFunction3WithCallerSavedRegistersMode(
MachineType::Int32(), MachineType::Pointer(), MachineType::Pointer(),
MachineType::Pointer(), function, object, address, isolate_constant,
fp_mode, &exit);
BIND(&exit);
Return(TrueConstant());
}
class DeletePropertyBaseAssembler : public AccessorAssembler {
public:
explicit DeletePropertyBaseAssembler(compiler::CodeAssemblerState* state)

View File

@ -2781,7 +2781,8 @@ void CodeStubAssembler::StoreFixedArrayOrPropertyArrayElement(
this, Word32Or(IsFixedArraySubclass(object), IsPropertyArray(object)));
CSA_SLOW_ASSERT(this, MatchesParameterMode(index_node, parameter_mode));
DCHECK(barrier_mode == SKIP_WRITE_BARRIER ||
barrier_mode == UPDATE_WRITE_BARRIER);
barrier_mode == UPDATE_WRITE_BARRIER ||
barrier_mode == UPDATE_EPHEMERON_KEY_WRITE_BARRIER);
DCHECK(IsAligned(additional_offset, kTaggedSize));
STATIC_ASSERT(static_cast<int>(FixedArray::kHeaderSize) ==
static_cast<int>(PropertyArray::kHeaderSize));
@ -2814,6 +2815,8 @@ void CodeStubAssembler::StoreFixedArrayOrPropertyArrayElement(
FixedArray::kHeaderSize));
if (barrier_mode == SKIP_WRITE_BARRIER) {
StoreNoWriteBarrier(MachineRepresentation::kTagged, object, offset, value);
} else if (barrier_mode == UPDATE_EPHEMERON_KEY_WRITE_BARRIER) {
StoreEphemeronKey(object, offset, value);
} else {
Store(object, offset, value);
}

View File

@ -225,7 +225,9 @@ class OutOfLineRecordWrite final : public OutOfLineCode {
__ Push(lr);
unwinding_info_writer_->MarkLinkRegisterOnTopOfStack(__ pc_offset());
}
if (stub_mode_ == StubCallMode::kCallWasmRuntimeStub) {
if (mode_ == RecordWriteMode::kValueIsEphemeronKey) {
__ CallEphemeronKeyBarrier(object_, scratch1_, save_fp_mode);
} else if (stub_mode_ == StubCallMode::kCallWasmRuntimeStub) {
__ CallRecordWriteStub(object_, scratch1_, remembered_set_action,
save_fp_mode, wasm::WasmCode::kWasmRecordWrite);
} else {

View File

@ -294,7 +294,9 @@ class OutOfLineRecordWrite final : public OutOfLineCode {
__ Push(lr, padreg);
unwinding_info_writer_->MarkLinkRegisterOnTopOfStack(__ pc_offset(), sp);
}
if (stub_mode_ == StubCallMode::kCallWasmRuntimeStub) {
if (mode_ == RecordWriteMode::kValueIsEphemeronKey) {
__ CallEphemeronKeyBarrier(object_, scratch1_, save_fp_mode);
} else if (stub_mode_ == StubCallMode::kCallWasmRuntimeStub) {
// A direct call to a wasm runtime stub defined in this module.
// Just encode the stub index. This will be patched when the code
// is added to the native module and copied into wasm code space.

View File

@ -297,7 +297,9 @@ class OutOfLineRecordWrite final : public OutOfLineCode {
: OMIT_REMEMBERED_SET;
SaveFPRegsMode const save_fp_mode =
frame()->DidAllocateDoubleRegisters() ? kSaveFPRegs : kDontSaveFPRegs;
if (stub_mode_ == StubCallMode::kCallWasmRuntimeStub) {
if (mode_ == RecordWriteMode::kValueIsEphemeronKey) {
__ CallEphemeronKeyBarrier(object_, scratch1_, save_fp_mode);
} else if (stub_mode_ == StubCallMode::kCallWasmRuntimeStub) {
// A direct call to a wasm runtime stub defined in this module.
// Just encode the stub index. This will be patched when the code
// is added to the native module and copied into wasm code space.

View File

@ -35,7 +35,12 @@ namespace internal {
namespace compiler {
// Modes for ArchStoreWithWriteBarrier below.
enum class RecordWriteMode { kValueIsMap, kValueIsPointer, kValueIsAny };
enum class RecordWriteMode {
kValueIsMap,
kValueIsPointer,
kValueIsEphemeronKey,
kValueIsAny,
};
inline RecordWriteMode WriteBarrierKindToRecordWriteMode(
WriteBarrierKind write_barrier_kind) {
@ -44,6 +49,8 @@ inline RecordWriteMode WriteBarrierKindToRecordWriteMode(
return RecordWriteMode::kValueIsMap;
case kPointerWriteBarrier:
return RecordWriteMode::kValueIsPointer;
case kEphemeronKeyWriteBarrier:
return RecordWriteMode::kValueIsEphemeronKey;
case kFullWriteBarrier:
return RecordWriteMode::kValueIsAny;
case kNoWriteBarrier:

View File

@ -258,7 +258,9 @@ class OutOfLineRecordWrite final : public OutOfLineCode {
SaveFPRegsMode const save_fp_mode =
frame()->DidAllocateDoubleRegisters() ? kSaveFPRegs : kDontSaveFPRegs;
if (stub_mode_ == StubCallMode::kCallWasmRuntimeStub) {
if (mode_ == RecordWriteMode::kValueIsEphemeronKey) {
__ CallEphemeronKeyBarrier(object_, scratch1_, save_fp_mode);
} else if (stub_mode_ == StubCallMode::kCallWasmRuntimeStub) {
// A direct call to a wasm runtime stub defined in this module.
// Just encode the stub index. This will be patched when the code
// is added to the native module and copied into wasm code space.

View File

@ -1009,6 +1009,11 @@ Node* CodeAssembler::Store(Node* base, Node* offset, Node* value) {
value, kFullWriteBarrier);
}
Node* CodeAssembler::StoreEphemeronKey(Node* base, Node* offset, Node* value) {
return raw_assembler()->Store(MachineRepresentation::kTagged, base, offset,
value, kEphemeronKeyWriteBarrier);
}
Node* CodeAssembler::StoreNoWriteBarrier(MachineRepresentation rep, Node* base,
Node* value) {
return raw_assembler()->Store(rep, base, value, kNoWriteBarrier);

View File

@ -943,6 +943,7 @@ class V8_EXPORT_PRIVATE CodeAssembler {
// Store value to raw memory location.
Node* Store(Node* base, Node* value);
Node* Store(Node* base, Node* offset, Node* value);
Node* StoreEphemeronKey(Node* base, Node* offset, Node* value);
Node* StoreNoWriteBarrier(MachineRepresentation rep, Node* base, Node* value);
Node* StoreNoWriteBarrier(MachineRepresentation rep, Node* base, Node* offset,
Node* value);

View File

@ -535,61 +535,68 @@ struct MachineOperatorGlobalCache {
STACK_SLOT_CACHED_SIZES_ALIGNMENTS_LIST(STACKSLOT)
#undef STACKSLOT
#define STORE(Type) \
struct Store##Type##Operator : public Operator1<StoreRepresentation> { \
explicit Store##Type##Operator(WriteBarrierKind write_barrier_kind) \
: Operator1<StoreRepresentation>( \
IrOpcode::kStore, \
Operator::kNoDeopt | Operator::kNoRead | Operator::kNoThrow, \
"Store", 3, 1, 1, 0, 1, 0, \
StoreRepresentation(MachineRepresentation::Type, \
write_barrier_kind)) {} \
}; \
struct Store##Type##NoWriteBarrier##Operator final \
: public Store##Type##Operator { \
Store##Type##NoWriteBarrier##Operator() \
: Store##Type##Operator(kNoWriteBarrier) {} \
}; \
struct Store##Type##MapWriteBarrier##Operator final \
: public Store##Type##Operator { \
Store##Type##MapWriteBarrier##Operator() \
: Store##Type##Operator(kMapWriteBarrier) {} \
}; \
struct Store##Type##PointerWriteBarrier##Operator final \
: public Store##Type##Operator { \
Store##Type##PointerWriteBarrier##Operator() \
: Store##Type##Operator(kPointerWriteBarrier) {} \
}; \
struct Store##Type##FullWriteBarrier##Operator final \
: public Store##Type##Operator { \
Store##Type##FullWriteBarrier##Operator() \
: Store##Type##Operator(kFullWriteBarrier) {} \
}; \
struct UnalignedStore##Type##Operator final \
: public Operator1<UnalignedStoreRepresentation> { \
UnalignedStore##Type##Operator() \
: Operator1<UnalignedStoreRepresentation>( \
IrOpcode::kUnalignedStore, \
Operator::kNoDeopt | Operator::kNoRead | Operator::kNoThrow, \
"UnalignedStore", 3, 1, 1, 0, 1, 0, \
MachineRepresentation::Type) {} \
}; \
struct ProtectedStore##Type##Operator \
: public Operator1<StoreRepresentation> { \
explicit ProtectedStore##Type##Operator() \
: Operator1<StoreRepresentation>( \
IrOpcode::kProtectedStore, \
Operator::kNoDeopt | Operator::kNoRead | Operator::kNoThrow, \
"Store", 3, 1, 1, 0, 1, 0, \
StoreRepresentation(MachineRepresentation::Type, \
kNoWriteBarrier)) {} \
}; \
Store##Type##NoWriteBarrier##Operator kStore##Type##NoWriteBarrier; \
Store##Type##MapWriteBarrier##Operator kStore##Type##MapWriteBarrier; \
Store##Type##PointerWriteBarrier##Operator \
kStore##Type##PointerWriteBarrier; \
Store##Type##FullWriteBarrier##Operator kStore##Type##FullWriteBarrier; \
UnalignedStore##Type##Operator kUnalignedStore##Type; \
#define STORE(Type) \
struct Store##Type##Operator : public Operator1<StoreRepresentation> { \
explicit Store##Type##Operator(WriteBarrierKind write_barrier_kind) \
: Operator1<StoreRepresentation>( \
IrOpcode::kStore, \
Operator::kNoDeopt | Operator::kNoRead | Operator::kNoThrow, \
"Store", 3, 1, 1, 0, 1, 0, \
StoreRepresentation(MachineRepresentation::Type, \
write_barrier_kind)) {} \
}; \
struct Store##Type##NoWriteBarrier##Operator final \
: public Store##Type##Operator { \
Store##Type##NoWriteBarrier##Operator() \
: Store##Type##Operator(kNoWriteBarrier) {} \
}; \
struct Store##Type##MapWriteBarrier##Operator final \
: public Store##Type##Operator { \
Store##Type##MapWriteBarrier##Operator() \
: Store##Type##Operator(kMapWriteBarrier) {} \
}; \
struct Store##Type##PointerWriteBarrier##Operator final \
: public Store##Type##Operator { \
Store##Type##PointerWriteBarrier##Operator() \
: Store##Type##Operator(kPointerWriteBarrier) {} \
}; \
struct Store##Type##EphemeronKeyWriteBarrier##Operator final \
: public Store##Type##Operator { \
Store##Type##EphemeronKeyWriteBarrier##Operator() \
: Store##Type##Operator(kEphemeronKeyWriteBarrier) {} \
}; \
struct Store##Type##FullWriteBarrier##Operator final \
: public Store##Type##Operator { \
Store##Type##FullWriteBarrier##Operator() \
: Store##Type##Operator(kFullWriteBarrier) {} \
}; \
struct UnalignedStore##Type##Operator final \
: public Operator1<UnalignedStoreRepresentation> { \
UnalignedStore##Type##Operator() \
: Operator1<UnalignedStoreRepresentation>( \
IrOpcode::kUnalignedStore, \
Operator::kNoDeopt | Operator::kNoRead | Operator::kNoThrow, \
"UnalignedStore", 3, 1, 1, 0, 1, 0, \
MachineRepresentation::Type) {} \
}; \
struct ProtectedStore##Type##Operator \
: public Operator1<StoreRepresentation> { \
explicit ProtectedStore##Type##Operator() \
: Operator1<StoreRepresentation>( \
IrOpcode::kProtectedStore, \
Operator::kNoDeopt | Operator::kNoRead | Operator::kNoThrow, \
"Store", 3, 1, 1, 0, 1, 0, \
StoreRepresentation(MachineRepresentation::Type, \
kNoWriteBarrier)) {} \
}; \
Store##Type##NoWriteBarrier##Operator kStore##Type##NoWriteBarrier; \
Store##Type##MapWriteBarrier##Operator kStore##Type##MapWriteBarrier; \
Store##Type##PointerWriteBarrier##Operator \
kStore##Type##PointerWriteBarrier; \
Store##Type##EphemeronKeyWriteBarrier##Operator \
kStore##Type##EphemeronKeyWriteBarrier; \
Store##Type##FullWriteBarrier##Operator kStore##Type##FullWriteBarrier; \
UnalignedStore##Type##Operator kUnalignedStore##Type; \
ProtectedStore##Type##Operator kProtectedStore##Type;
MACHINE_REPRESENTATION_LIST(STORE)
#undef STORE
@ -933,18 +940,20 @@ const Operator* MachineOperatorBuilder::StackSlot(MachineRepresentation rep,
const Operator* MachineOperatorBuilder::Store(StoreRepresentation store_rep) {
switch (store_rep.representation()) {
#define STORE(kRep) \
case MachineRepresentation::kRep: \
switch (store_rep.write_barrier_kind()) { \
case kNoWriteBarrier: \
return &cache_.k##Store##kRep##NoWriteBarrier; \
case kMapWriteBarrier: \
return &cache_.k##Store##kRep##MapWriteBarrier; \
case kPointerWriteBarrier: \
return &cache_.k##Store##kRep##PointerWriteBarrier; \
case kFullWriteBarrier: \
return &cache_.k##Store##kRep##FullWriteBarrier; \
} \
#define STORE(kRep) \
case MachineRepresentation::kRep: \
switch (store_rep.write_barrier_kind()) { \
case kNoWriteBarrier: \
return &cache_.k##Store##kRep##NoWriteBarrier; \
case kMapWriteBarrier: \
return &cache_.k##Store##kRep##MapWriteBarrier; \
case kPointerWriteBarrier: \
return &cache_.k##Store##kRep##PointerWriteBarrier; \
case kEphemeronKeyWriteBarrier: \
return &cache_.k##Store##kRep##EphemeronKeyWriteBarrier; \
case kFullWriteBarrier: \
return &cache_.k##Store##kRep##FullWriteBarrier; \
} \
break;
MACHINE_REPRESENTATION_LIST(STORE)
#undef STORE

View File

@ -244,6 +244,9 @@ ExternalReference ExternalReference::store_buffer_overflow_function() {
FUNCTION_REFERENCE(delete_handle_scope_extensions,
HandleScope::DeleteExtensions)
FUNCTION_REFERENCE(ephemeron_key_write_barrier_function,
Heap::EphemeronKeyWriteBarrierFromCode)
FUNCTION_REFERENCE(get_date_field_function, JSDate::GetField)
ExternalReference ExternalReference::date_cache_stamp(Isolate* isolate) {

View File

@ -109,6 +109,8 @@ class StatsCounter;
"copy_typed_array_elements_to_typed_array") \
V(cpu_features, "cpu_features") \
V(delete_handle_scope_extensions, "HandleScope::DeleteExtensions") \
V(ephemeron_key_write_barrier_function, \
"Heap::EphemeronKeyWriteBarrierFromCode") \
V(f64_acos_wrapper_function, "f64_acos_wrapper") \
V(f64_asin_wrapper_function, "f64_asin_wrapper") \
V(f64_mod_wrapper_function, "f64_mod_wrapper") \

View File

@ -731,6 +731,7 @@ enum WriteBarrierKind : uint8_t {
kNoWriteBarrier,
kMapWriteBarrier,
kPointerWriteBarrier,
kEphemeronKeyWriteBarrier,
kFullWriteBarrier
};
@ -746,6 +747,8 @@ inline std::ostream& operator<<(std::ostream& os, WriteBarrierKind kind) {
return os << "MapWriteBarrier";
case kPointerWriteBarrier:
return os << "PointerWriteBarrier";
case kEphemeronKeyWriteBarrier:
return os << "EphemeronKeyWriteBarrier";
case kFullWriteBarrier:
return os << "FullWriteBarrier";
}

View File

@ -115,6 +115,23 @@ inline void GenerationalBarrierInternal(HeapObject object, Address slot,
Heap_GenerationalBarrierSlow(object, slot, value);
}
inline void GenerationalEphemeronKeyBarrierInternal(EphemeronHashTable table,
Address slot,
HeapObject value) {
DCHECK(Heap::PageFlagsAreConsistent(table));
heap_internals::MemoryChunk* value_chunk =
heap_internals::MemoryChunk::FromHeapObject(value);
heap_internals::MemoryChunk* table_chunk =
heap_internals::MemoryChunk::FromHeapObject(table);
if (!value_chunk->InYoungGeneration() || table_chunk->InYoungGeneration()) {
return;
}
Heap* heap = GetHeapFromWritableObject(table);
heap->RecordEphemeronKeyWrite(table, slot);
}
inline void MarkingBarrierInternal(HeapObject object, Address slot,
HeapObject value) {
DCHECK(Heap_PageFlagsAreConsistent(object));
@ -149,6 +166,15 @@ inline void GenerationalBarrier(HeapObject object, ObjectSlot slot,
HeapObject::cast(value));
}
inline void GenerationalEphemeronKeyBarrier(EphemeronHashTable table,
ObjectSlot slot, Object value) {
DCHECK(!HasWeakHeapObjectTag(*slot));
DCHECK(!HasWeakHeapObjectTag(value));
DCHECK(value->IsHeapObject());
heap_internals::GenerationalEphemeronKeyBarrierInternal(
table, slot.address(), HeapObject::cast(value));
}
inline void GenerationalBarrier(HeapObject object, MaybeObjectSlot slot,
MaybeObject value) {
HeapObject value_heap_object;

View File

@ -18,6 +18,7 @@ class HeapObject;
class MaybeObject;
class Object;
class RelocInfo;
class EphemeronHashTable;
// Note: In general it is preferred to use the macros defined in
// object-macros.h.
@ -37,6 +38,8 @@ void WriteBarrierForCode(Code host);
void GenerationalBarrier(HeapObject object, ObjectSlot slot, Object value);
void GenerationalBarrier(HeapObject object, MaybeObjectSlot slot,
MaybeObject value);
void GenerationalEphemeronKeyBarrier(EphemeronHashTable table, ObjectSlot slot,
Object value);
void GenerationalBarrierForElements(Heap* heap, FixedArray array, int offset,
int length);
void GenerationalBarrierForCode(Code host, RelocInfo* rinfo, HeapObject object);

View File

@ -3755,6 +3755,11 @@ class SlotVerifyingVisitor : public ObjectVisitor {
}
}
protected:
bool InUntypedSet(ObjectSlot slot) {
return untyped_->count(slot.address()) > 0;
}
private:
bool InTypedSet(SlotType type, Address slot) {
return typed_->count(std::make_pair(type, slot)) > 0;
@ -3766,8 +3771,10 @@ class SlotVerifyingVisitor : public ObjectVisitor {
class OldToNewSlotVerifyingVisitor : public SlotVerifyingVisitor {
public:
OldToNewSlotVerifyingVisitor(std::set<Address>* untyped,
std::set<std::pair<SlotType, Address>>* typed)
: SlotVerifyingVisitor(untyped, typed) {}
std::set<std::pair<SlotType, Address>>* typed,
EphemeronRememberedSet* ephemeron_remembered_set)
: SlotVerifyingVisitor(untyped, typed),
ephemeron_remembered_set_(ephemeron_remembered_set) {}
bool ShouldHaveBeenRecorded(HeapObject host, MaybeObject target) override {
DCHECK_IMPLIES(target->IsStrongOrWeak() && Heap::InYoungGeneration(target),
@ -3775,6 +3782,30 @@ class OldToNewSlotVerifyingVisitor : public SlotVerifyingVisitor {
return target->IsStrongOrWeak() && Heap::InYoungGeneration(target) &&
!Heap::InYoungGeneration(host);
}
void VisitEphemeron(HeapObject host, int index, ObjectSlot key,
ObjectSlot target) override {
VisitPointer(host, target);
if (FLAG_minor_mc) {
VisitPointer(host, target);
} else {
// Keys are handled separately and should never appear in this set.
CHECK(!InUntypedSet(key));
Object k = *key;
if (!ObjectInYoungGeneration(host) && ObjectInYoungGeneration(k)) {
EphemeronHashTable table = EphemeronHashTable::cast(host);
auto it = ephemeron_remembered_set_->find(table);
CHECK(it != ephemeron_remembered_set_->end());
int slot_index =
EphemeronHashTable::SlotToIndex(table.address(), key.address());
int entry = EphemeronHashTable::IndexToEntry(slot_index);
CHECK(it->second.find(entry) != it->second.end());
}
}
}
private:
EphemeronRememberedSet* ephemeron_remembered_set_;
};
template <RememberedSetType direction>
@ -3812,7 +3843,8 @@ void Heap::VerifyRememberedSetFor(HeapObject object) {
if (!InYoungGeneration(object)) {
store_buffer()->MoveAllEntriesToRememberedSet();
CollectSlots<OLD_TO_NEW>(chunk, start, end, &old_to_new, &typed_old_to_new);
OldToNewSlotVerifyingVisitor visitor(&old_to_new, &typed_old_to_new);
OldToNewSlotVerifyingVisitor visitor(&old_to_new, &typed_old_to_new,
&this->ephemeron_remembered_set_);
object->IterateBody(&visitor);
}
// TODO(ulan): Add old to old slot set verification once all weak objects
@ -5791,6 +5823,27 @@ void Heap::GenerationalBarrierSlow(HeapObject object, Address slot,
heap->store_buffer()->InsertEntry(slot);
}
void Heap::RecordEphemeronKeyWrite(EphemeronHashTable table, Address slot) {
DCHECK(ObjectInYoungGeneration(HeapObjectSlot(slot).ToHeapObject()));
int slot_index = EphemeronHashTable::SlotToIndex(table.address(), slot);
int entry = EphemeronHashTable::IndexToEntry(slot_index);
auto it =
ephemeron_remembered_set_.insert({table, std::unordered_set<int>()});
it.first->second.insert(entry);
}
void Heap::EphemeronKeyWriteBarrierFromCode(Address raw_object,
Address key_slot_address,
Isolate* isolate) {
EphemeronHashTable table = EphemeronHashTable::cast(Object(raw_object));
if (!ObjectInYoungGeneration(table)) {
isolate->heap()->RecordEphemeronKeyWrite(table, key_slot_address);
}
MaybeObjectSlot key_slot(key_slot_address);
isolate->heap()->incremental_marking()->RecordMaybeWeakWrite(table, key_slot,
*key_slot);
}
void Heap::GenerationalBarrierForElementsSlow(Heap* heap, FixedArray array,
int offset, int length) {
for (int i = 0; i < length; i++) {

View File

@ -199,8 +199,16 @@ struct CommentStatistic {
};
#endif
using EphemeronRememberedSet =
std::unordered_map<EphemeronHashTable, std::unordered_set<int>,
Object::Hasher>;
class Heap {
public:
// Stores ephemeron entries where the EphemeronHashTable is in old-space,
// and the key of the entry is in new-space. Such keys do not appear in the
// usual OLD_TO_NEW remembered set.
EphemeronRememberedSet ephemeron_remembered_set_;
enum FindMementoMode { kForRuntime, kForGC };
enum HeapState {
@ -343,6 +351,10 @@ class Heap {
V8_EXPORT_PRIVATE static void GenerationalBarrierSlow(HeapObject object,
Address slot,
HeapObject value);
V8_EXPORT_PRIVATE void RecordEphemeronKeyWrite(EphemeronHashTable table,
Address key_slot);
V8_EXPORT_PRIVATE static void EphemeronKeyWriteBarrierFromCode(
Address raw_object, Address address, Isolate* isolate);
V8_EXPORT_PRIVATE static void GenerationalBarrierForElementsSlow(
Heap* heap, FixedArray array, int offset, int length);
V8_EXPORT_PRIVATE static void GenerationalBarrierForCodeSlow(

View File

@ -506,9 +506,7 @@ void MarkCompactCollector::CollectGarbage() {
RecordObjectStats();
StartSweepSpaces();
Evacuate();
Finish();
}
@ -1086,8 +1084,11 @@ class MarkCompactWeakObjectRetainer : public WeakObjectRetainer {
class RecordMigratedSlotVisitor : public ObjectVisitor {
public:
explicit RecordMigratedSlotVisitor(MarkCompactCollector* collector)
: collector_(collector) {}
explicit RecordMigratedSlotVisitor(
MarkCompactCollector* collector,
EphemeronRememberedSet* ephemeron_remembered_set)
: collector_(collector),
ephemeron_remembered_set_(ephemeron_remembered_set) {}
inline void VisitPointer(HeapObject host, ObjectSlot p) final {
DCHECK(!HasWeakHeapObjectTag(*p));
@ -1114,6 +1115,23 @@ class RecordMigratedSlotVisitor : public ObjectVisitor {
}
}
inline void VisitEphemeron(HeapObject host, int index, ObjectSlot key,
ObjectSlot value) override {
DCHECK(host->IsEphemeronHashTable());
DCHECK(!Heap::InYoungGeneration(host));
VisitPointer(host, value);
if (ephemeron_remembered_set_ && Heap::InYoungGeneration(*key)) {
auto table = EphemeronHashTable::unchecked_cast(host);
auto insert_result =
ephemeron_remembered_set_->insert({table, std::unordered_set<int>()});
insert_result.first->second.insert(index);
} else {
VisitPointer(host, key);
}
}
inline void VisitCodeTarget(Code host, RelocInfo* rinfo) override {
DCHECK_EQ(host, rinfo->host());
DCHECK(RelocInfo::IsCodeTargetMode(rinfo->rmode()));
@ -1157,6 +1175,7 @@ class RecordMigratedSlotVisitor : public ObjectVisitor {
}
MarkCompactCollector* collector_;
EphemeronRememberedSet* ephemeron_remembered_set_;
};
class MigrationObserver {
@ -1455,7 +1474,8 @@ class EvacuateRecordOnlyVisitor final : public HeapObjectVisitor {
explicit EvacuateRecordOnlyVisitor(Heap* heap) : heap_(heap) {}
inline bool Visit(HeapObject object, int size) override {
RecordMigratedSlotVisitor visitor(heap_->mark_compact_collector());
RecordMigratedSlotVisitor visitor(heap_->mark_compact_collector(),
&heap_->ephemeron_remembered_set_);
object->IterateBodyFast(&visitor);
return true;
}
@ -2254,6 +2274,14 @@ void MarkCompactCollector::ClearWeakCollections() {
}
}
}
for (auto it = heap_->ephemeron_remembered_set_.begin();
it != heap_->ephemeron_remembered_set_.end();) {
if (!non_atomic_marking_state()->IsBlackOrGrey(it->first)) {
it = heap_->ephemeron_remembered_set_.erase(it);
} else {
++it;
}
}
}
void MarkCompactCollector::ClearWeakReferences() {
@ -2762,16 +2790,36 @@ void Evacuator::Finalize() {
class FullEvacuator : public Evacuator {
public:
FullEvacuator(MarkCompactCollector* collector,
RecordMigratedSlotVisitor* record_visitor)
: Evacuator(collector->heap(), record_visitor), collector_(collector) {}
explicit FullEvacuator(MarkCompactCollector* collector)
: Evacuator(collector->heap(), &record_visitor_),
record_visitor_(collector, &ephemeron_remembered_set_),
collector_(collector) {}
GCTracer::BackgroundScope::ScopeId GetBackgroundTracingScope() override {
return GCTracer::BackgroundScope::MC_BACKGROUND_EVACUATE_COPY;
}
inline void Finalize() {
Evacuator::Finalize();
for (auto it = ephemeron_remembered_set_.begin();
it != ephemeron_remembered_set_.end(); ++it) {
auto insert_result =
heap()->ephemeron_remembered_set_.insert({it->first, it->second});
if (!insert_result.second) {
// Insertion didn't happen, there was already an item.
auto set = insert_result.first->second;
for (int entry : it->second) {
set.insert(entry);
}
}
}
}
protected:
void RawEvacuatePage(MemoryChunk* chunk, intptr_t* live_bytes) override;
EphemeronRememberedSet ephemeron_remembered_set_;
RecordMigratedSlotVisitor record_visitor_;
MarkCompactCollector* collector_;
};
@ -2858,7 +2906,6 @@ class PageEvacuationTask : public ItemParallelJob::Task {
template <class Evacuator, class Collector>
void MarkCompactCollectorBase::CreateAndExecuteEvacuationTasks(
Collector* collector, ItemParallelJob* job,
RecordMigratedSlotVisitor* record_visitor,
MigrationObserver* migration_observer, const intptr_t live_bytes) {
// Used for trace summary.
double compaction_speed = 0;
@ -2873,7 +2920,7 @@ void MarkCompactCollectorBase::CreateAndExecuteEvacuationTasks(
NumberOfParallelCompactionTasks(job->NumberOfItems());
Evacuator** evacuators = new Evacuator*[wanted_num_tasks];
for (int i = 0; i < wanted_num_tasks; i++) {
evacuators[i] = new Evacuator(collector, record_visitor);
evacuators[i] = new Evacuator(collector);
if (profiling) evacuators[i]->AddObserver(&profiling_observer);
if (migration_observer != nullptr)
evacuators[i]->AddObserver(migration_observer);
@ -2955,9 +3002,8 @@ void MarkCompactCollector::EvacuatePagesInParallel() {
if (evacuation_job.NumberOfItems() == 0) return;
RecordMigratedSlotVisitor record_visitor(this);
CreateAndExecuteEvacuationTasks<FullEvacuator>(
this, &evacuation_job, &record_visitor, nullptr, live_bytes);
CreateAndExecuteEvacuationTasks<FullEvacuator>(this, &evacuation_job, nullptr,
live_bytes);
PostProcessEvacuationCandidates();
}
@ -3501,6 +3547,57 @@ int MarkCompactCollector::CollectOldSpaceArrayBufferTrackerItems(
return pages;
}
class EphemeronTableUpdatingItem : public UpdatingItem {
public:
enum EvacuationState { kRegular, kAborted };
explicit EphemeronTableUpdatingItem(Heap* heap) : heap_(heap) {}
~EphemeronTableUpdatingItem() override = default;
void Process() override {
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.gc"),
"EphemeronTableUpdatingItem::Process");
for (auto it = heap_->ephemeron_remembered_set_.begin();
it != heap_->ephemeron_remembered_set_.end();) {
EphemeronHashTable table = it->first;
auto& indices = it->second;
if (table.map_word().IsForwardingAddress()) {
// The table has moved, and RecordMigratedSlotVisitor::VisitEphemeron
// inserts entries for the moved table into ephemeron_remembered_set_.
it = heap_->ephemeron_remembered_set_.erase(it);
continue;
}
DCHECK(table.map().IsMap());
DCHECK(table.Object::IsEphemeronHashTable());
for (auto iti = indices.begin(); iti != indices.end();) {
// EphemeronHashTable keys must be heap objects.
HeapObjectSlot key_slot(
table->RawFieldOfElementAt(EphemeronHashTable::EntryToIndex(*iti)));
HeapObject key = key_slot.ToHeapObject();
MapWord map_word = key->map_word();
if (map_word.IsForwardingAddress()) {
key = map_word.ToForwardingAddress();
key_slot.StoreHeapObject(key);
}
if (!heap_->InYoungGeneration(key)) {
iti = indices.erase(iti);
} else {
++iti;
}
}
if (indices.size() == 0) {
it = heap_->ephemeron_remembered_set_.erase(it);
} else {
++it;
}
}
}
private:
Heap* const heap_;
};
void MarkCompactCollector::UpdatePointersAfterEvacuation() {
TRACE_GC(heap()->tracer(), GCTracer::Scope::MC_EVACUATE_UPDATE_POINTERS);
@ -3533,12 +3630,16 @@ void MarkCompactCollector::UpdatePointersAfterEvacuation() {
: NumberOfParallelPointerUpdateTasks(remembered_set_pages,
old_to_new_slots_);
const int to_space_tasks = CollectToSpaceUpdatingItems(&updating_job);
const int num_tasks = Max(to_space_tasks, remembered_set_tasks);
const int num_ephemeron_table_updating_tasks = 1;
const int num_tasks =
Max(to_space_tasks,
remembered_set_tasks + num_ephemeron_table_updating_tasks);
for (int i = 0; i < num_tasks; i++) {
updating_job.AddTask(new PointersUpdatingTask(
isolate(),
GCTracer::BackgroundScope::MC_BACKGROUND_EVACUATE_UPDATE_POINTERS));
}
updating_job.AddItem(new EphemeronTableUpdatingItem(heap()));
updating_job.Run();
}
@ -4026,7 +4127,7 @@ class YoungGenerationRecordMigratedSlotVisitor final
public:
explicit YoungGenerationRecordMigratedSlotVisitor(
MarkCompactCollector* collector)
: RecordMigratedSlotVisitor(collector) {}
: RecordMigratedSlotVisitor(collector, nullptr) {}
void VisitCodeTarget(Code host, RelocInfo* rinfo) final { UNREACHABLE(); }
void VisitEmbeddedPointer(Code host, RelocInfo* rinfo) final {
@ -4650,9 +4751,10 @@ namespace {
class YoungGenerationEvacuator : public Evacuator {
public:
YoungGenerationEvacuator(MinorMarkCompactCollector* collector,
RecordMigratedSlotVisitor* record_visitor)
: Evacuator(collector->heap(), record_visitor), collector_(collector) {}
explicit YoungGenerationEvacuator(MinorMarkCompactCollector* collector)
: Evacuator(collector->heap(), &record_visitor_),
record_visitor_(collector->heap()->mark_compact_collector()),
collector_(collector) {}
GCTracer::BackgroundScope::ScopeId GetBackgroundTracingScope() override {
return GCTracer::BackgroundScope::MINOR_MC_BACKGROUND_EVACUATE_COPY;
@ -4661,6 +4763,7 @@ class YoungGenerationEvacuator : public Evacuator {
protected:
void RawEvacuatePage(MemoryChunk* chunk, intptr_t* live_bytes) override;
YoungGenerationRecordMigratedSlotVisitor record_visitor_;
MinorMarkCompactCollector* collector_;
};
@ -4766,10 +4869,8 @@ void MinorMarkCompactCollector::EvacuatePagesInParallel() {
YoungGenerationMigrationObserver observer(heap(),
heap()->mark_compact_collector());
YoungGenerationRecordMigratedSlotVisitor record_visitor(
heap()->mark_compact_collector());
CreateAndExecuteEvacuationTasks<YoungGenerationEvacuator>(
this, &evacuation_job, &record_visitor, &observer, live_bytes);
this, &evacuation_job, &observer, live_bytes);
}
int MinorMarkCompactCollector::CollectNewSpaceArrayBufferTrackerItems(

View File

@ -273,10 +273,10 @@ class MarkCompactCollectorBase {
MemoryChunk* chunk, RememberedSetUpdatingMode updating_mode) = 0;
template <class Evacuator, class Collector>
void CreateAndExecuteEvacuationTasks(
Collector* collector, ItemParallelJob* job,
RecordMigratedSlotVisitor* record_visitor,
MigrationObserver* migration_observer, const intptr_t live_bytes);
void CreateAndExecuteEvacuationTasks(Collector* collector,
ItemParallelJob* job,
MigrationObserver* migration_observer,
const intptr_t live_bytes);
// Returns whether this page should be moved according to heuristics.
bool ShouldMovePage(Page* p, intptr_t live_bytes);

View File

@ -98,6 +98,20 @@ class IterateAndScavengePromotedObjectsVisitor final : public ObjectVisitor {
HandleSlot(host, FullHeapObjectSlot(&heap_object), heap_object);
}
inline void VisitEphemeron(HeapObject obj, int entry, ObjectSlot key,
ObjectSlot value) override {
DCHECK(Heap::IsLargeObject(obj) || obj->IsEphemeronHashTable());
VisitPointer(obj, value);
if (ObjectInYoungGeneration(*key)) {
// We cannot check the map here, as it might be a large object.
scavenger_->RememberPromotedEphemeron(
EphemeronHashTable::unchecked_cast(obj), entry);
} else {
VisitPointer(obj, key);
}
}
private:
template <typename TSlot>
V8_INLINE void VisitPointersImpl(HeapObject host, TSlot start, TSlot end) {
@ -392,6 +406,12 @@ void Scavenger::IterateAndScavengePromotedObject(HeapObject target, Map map,
target->IterateBodyFast(map, size, &visitor);
}
void Scavenger::RememberPromotedEphemeron(EphemeronHashTable table, int entry) {
auto indices =
ephemeron_remembered_set_.insert({table, std::unordered_set<int>()});
indices.first->second.insert(entry);
}
void Scavenger::AddPageToSweeperIfNecessary(MemoryChunk* page) {
AllocationSpace space = page->owner()->identity();
if ((space == OLD_SPACE) && !page->SweepingDone()) {
@ -460,29 +480,64 @@ void ScavengerCollector::ProcessWeakReferences(
ScavengeWeakObjectRetainer weak_object_retainer;
heap_->ProcessYoungWeakReferences(&weak_object_retainer);
ClearYoungEphemerons(ephemeron_table_list);
ClearOldEphemerons();
}
// Clears ephemerons contained in {EphemeronHashTable}s in young generation.
// Clear ephemeron entries from EphemeronHashTables in new-space whenever the
// entry has a dead new-space key.
void ScavengerCollector::ClearYoungEphemerons(
EphemeronTableList* ephemeron_table_list) {
ephemeron_table_list->Iterate([this](EphemeronHashTable table) {
for (int i = 0; i < table->Capacity(); i++) {
ObjectSlot key_slot =
table->RawFieldOfElementAt(EphemeronHashTable::EntryToIndex(i));
Object key = *key_slot;
if (key->IsHeapObject()) {
if (IsUnscavengedHeapObject(heap_, HeapObject::cast(key))) {
table->RemoveEntry(i);
} else {
HeapObject forwarded = ForwardingAddress(HeapObject::cast(key));
HeapObjectReference::Update(HeapObjectSlot(key_slot), forwarded);
}
// Keys in EphemeronHashTables must be heap objects.
HeapObjectSlot key_slot(
table->RawFieldOfElementAt(EphemeronHashTable::EntryToIndex(i)));
HeapObject key = key_slot.ToHeapObject();
if (IsUnscavengedHeapObject(heap_, key)) {
table->RemoveEntry(i);
} else {
HeapObject forwarded = ForwardingAddress(key);
key_slot.StoreHeapObject(forwarded);
}
}
});
ephemeron_table_list->Clear();
}
// Clear ephemeron entries from EphemeronHashTables in old-space whenever the
// entry has a dead new-space key.
void ScavengerCollector::ClearOldEphemerons() {
for (auto it = heap_->ephemeron_remembered_set_.begin();
it != heap_->ephemeron_remembered_set_.end();) {
EphemeronHashTable table = it->first;
auto& indices = it->second;
for (auto iti = indices.begin(); iti != indices.end();) {
// Keys in EphemeronHashTables must be heap objects.
HeapObjectSlot key_slot(
table->RawFieldOfElementAt(EphemeronHashTable::EntryToIndex(*iti)));
HeapObject key = key_slot.ToHeapObject();
if (IsUnscavengedHeapObject(heap_, key)) {
table->RemoveEntry(*iti);
iti = indices.erase(iti);
} else {
HeapObject forwarded = ForwardingAddress(key);
key_slot.StoreHeapObject(forwarded);
if (!Heap::InYoungGeneration(forwarded)) {
iti = indices.erase(iti);
} else {
++iti;
}
}
}
if (indices.size() == 0) {
it = heap_->ephemeron_remembered_set_.erase(it);
} else {
++it;
}
}
}
void Scavenger::Finalize() {
heap()->MergeAllocationSitePretenuringFeedback(local_pretenuring_feedback_);
heap()->IncrementSemiSpaceCopiedObjectSize(copied_size_);
@ -490,6 +545,14 @@ void Scavenger::Finalize() {
collector_->MergeSurvivingNewLargeObjects(surviving_new_large_objects_);
allocator_.Finalize();
ephemeron_table_list_.FlushToGlobal();
for (auto it = ephemeron_remembered_set_.begin();
it != ephemeron_remembered_set_.end(); ++it) {
auto insert_result = heap()->ephemeron_remembered_set_.insert(
{it->first, std::unordered_set<int>()});
for (int entry : it->second) {
insert_result.first->second.insert(entry);
}
}
}
void Scavenger::AddEphemeronHashTable(EphemeronHashTable table) {

View File

@ -48,6 +48,7 @@ class ScavengerCollector {
void ProcessWeakReferences(EphemeronTableList* ephemeron_table_list);
void ClearYoungEphemerons(EphemeronTableList* ephemeron_table_list);
void ClearOldEphemerons();
void HandleSurvivingNewLargeObjects();
Isolate* const isolate_;
@ -201,6 +202,7 @@ class Scavenger {
int object_size);
void IterateAndScavengePromotedObject(HeapObject target, Map map, int size);
void RememberPromotedEphemeron(EphemeronHashTable table, int index);
ScavengerCollector* const collector_;
Heap* const heap_;
@ -212,6 +214,8 @@ class Scavenger {
size_t promoted_size_;
LocalAllocator allocator_;
SurvivingNewLargeObjectsMap surviving_new_large_objects_;
EphemeronRememberedSet ephemeron_remembered_set_;
const bool is_logging_;
const bool is_incremental_marking_;
const bool is_compacting_;

View File

@ -36,6 +36,19 @@ void RecordWriteDescriptor::InitializePlatformSpecific(
data->InitializePlatformSpecific(kParameterCount, default_stub_registers);
}
void EphemeronKeyBarrierDescriptor::InitializePlatformSpecific(
CallInterfaceDescriptorData* data) {
static const Register default_stub_registers[] = {ecx, edx, esi, edi,
kReturnRegister0};
data->RestrictAllocatableRegisters(default_stub_registers,
arraysize(default_stub_registers));
CHECK_LE(static_cast<size_t>(kParameterCount),
arraysize(default_stub_registers));
data->InitializePlatformSpecific(kParameterCount, default_stub_registers);
}
const Register FastNewFunctionContextDescriptor::ScopeInfoRegister() {
return edi;
}

View File

@ -381,6 +381,33 @@ void TurboAssembler::RestoreRegisters(RegList registers) {
}
}
void TurboAssembler::CallEphemeronKeyBarrier(Register object, Register address,
SaveFPRegsMode fp_mode) {
EphemeronKeyBarrierDescriptor descriptor;
RegList registers = descriptor.allocatable_registers();
SaveRegisters(registers);
Register object_parameter(
descriptor.GetRegisterParameter(EphemeronKeyBarrierDescriptor::kObject));
Register slot_parameter(descriptor.GetRegisterParameter(
EphemeronKeyBarrierDescriptor::kSlotAddress));
Register fp_mode_parameter(
descriptor.GetRegisterParameter(EphemeronKeyBarrierDescriptor::kFPMode));
push(object);
push(address);
pop(slot_parameter);
pop(object_parameter);
Move(fp_mode_parameter, Smi::FromEnum(fp_mode));
Call(isolate()->builtins()->builtin_handle(Builtins::kEphemeronKeyBarrier),
RelocInfo::CODE_TARGET);
RestoreRegisters(registers);
}
void TurboAssembler::CallRecordWriteStub(
Register object, Register address,
RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode) {

View File

@ -389,6 +389,8 @@ class V8_EXPORT_PRIVATE TurboAssembler : public TurboAssemblerBase {
void CallRecordWriteStub(Register object, Register address,
RememberedSetAction remembered_set_action,
SaveFPRegsMode fp_mode, Address wasm_target);
void CallEphemeronKeyBarrier(Register object, Register address,
SaveFPRegsMode fp_mode);
// Calculate how much stack space (in bytes) are required to store caller
// registers excluding those specified in the arguments.

View File

@ -46,6 +46,7 @@ namespace internal {
V(ConstructWithSpread) \
V(ContextOnly) \
V(CppBuiltinAdaptor) \
V(EphemeronKeyBarrier) \
V(FastNewFunctionContext) \
V(FastNewObject) \
V(FrameDropperTrampoline) \
@ -728,6 +729,16 @@ class RecordWriteDescriptor final : public CallInterfaceDescriptor {
DECLARE_DESCRIPTOR(RecordWriteDescriptor, CallInterfaceDescriptor)
};
class EphemeronKeyBarrierDescriptor final : public CallInterfaceDescriptor {
public:
DEFINE_PARAMETERS_NO_CONTEXT(kObject, kSlotAddress, kFPMode)
DEFINE_PARAMETER_TYPES(MachineType::TaggedPointer(), // kObject
MachineType::Pointer(), // kSlotAddress
MachineType::TaggedSigned()) // kFPMode
DECLARE_DESCRIPTOR(EphemeronKeyBarrierDescriptor, CallInterfaceDescriptor)
};
class TypeConversionDescriptor final : public CallInterfaceDescriptor {
public:
DEFINE_PARAMETERS(kArgument)

View File

@ -125,7 +125,6 @@ class FlexibleBodyDescriptor final : public BodyDescriptorBase {
static inline int SizeOf(Map map, HeapObject object);
};
typedef FlexibleBodyDescriptor<HeapObject::kHeaderSize> StructBodyDescriptor;
template <int start_offset>

View File

@ -6617,7 +6617,8 @@ void HashTable<Derived, Shape>::Rehash(ReadOnlyRoots roots, Derived new_table) {
uint32_t hash = Shape::HashForObject(roots, k);
uint32_t insertion_index =
EntryToIndex(new_table->FindInsertionEntry(hash));
for (int j = 0; j < Shape::kEntrySize; j++) {
new_table->set_key(insertion_index, get(from_index), mode);
for (int j = 1; j < Shape::kEntrySize; j++) {
new_table->set(insertion_index + j, get(from_index + j), mode);
}
}
@ -6645,13 +6646,16 @@ void HashTable<Derived, Shape>::Swap(uint32_t entry1, uint32_t entry2,
int index1 = EntryToIndex(entry1);
int index2 = EntryToIndex(entry2);
Object temp[Shape::kEntrySize];
Derived* self = static_cast<Derived*>(this);
for (int j = 0; j < Shape::kEntrySize; j++) {
temp[j] = get(index1 + j);
}
for (int j = 0; j < Shape::kEntrySize; j++) {
self->set_key(index1, get(index2), mode);
for (int j = 1; j < Shape::kEntrySize; j++) {
set(index1 + j, get(index2 + j), mode);
}
for (int j = 0; j < Shape::kEntrySize; j++) {
self->set_key(index2, temp[0], mode);
for (int j = 1; j < Shape::kEntrySize; j++) {
set(index2 + j, temp[j], mode);
}
}
@ -6687,10 +6691,12 @@ void HashTable<Derived, Shape>::Rehash(ReadOnlyRoots roots) {
}
// Wipe deleted entries.
Object the_hole = roots.the_hole_value();
Object undefined = roots.undefined_value();
HeapObject undefined = roots.undefined_value();
Derived* self = static_cast<Derived*>(this);
for (uint32_t current = 0; current < capacity; current++) {
if (KeyAt(current) == the_hole) {
set(EntryToIndex(current) + kEntryKeyIndex, undefined);
self->set_key(EntryToIndex(current) + kEntryKeyIndex, undefined,
SKIP_WRITE_BARRIER);
}
}
SetNumberOfDeletedElements(0);
@ -6780,7 +6786,6 @@ uint32_t HashTable<Derived, Shape>::FindInsertionEntry(uint32_t hash) {
return entry;
}
// This class is used for looking up two character strings in the string table.
// If we don't have a hit we don't want to waste much time so we unroll the
// string hash calculation loop here for speed. Doesn't work if the two
@ -7965,7 +7970,7 @@ Handle<Derived> ObjectHashTableBase<Derived, Shape>::Put(Isolate* isolate,
// Key is already in table, just overwrite value.
if (entry != kNotFound) {
table->set(Derived::EntryToIndex(entry) + 1, *value);
table->set(Derived::EntryToValueIndex(entry), *value);
return table;
}
@ -8030,15 +8035,16 @@ Handle<Derived> ObjectHashTableBase<Derived, Shape>::Remove(
template <typename Derived, typename Shape>
void ObjectHashTableBase<Derived, Shape>::AddEntry(int entry, Object key,
Object value) {
this->set(Derived::EntryToIndex(entry), key);
this->set(Derived::EntryToIndex(entry) + 1, value);
this->ElementAdded();
Derived* self = static_cast<Derived*>(this);
self->set_key(Derived::EntryToIndex(entry), key);
self->set(Derived::EntryToValueIndex(entry), value);
self->ElementAdded();
}
template <typename Derived, typename Shape>
void ObjectHashTableBase<Derived, Shape>::RemoveEntry(int entry) {
this->set_the_hole(Derived::EntryToIndex(entry));
this->set_the_hole(Derived::EntryToIndex(entry) + 1);
this->set_the_hole(Derived::EntryToValueIndex(entry));
this->ElementRemoved();
}

View File

@ -193,10 +193,10 @@ class PropertyDescriptorObject;
enum WriteBarrierMode {
SKIP_WRITE_BARRIER,
UPDATE_WEAK_WRITE_BARRIER,
UPDATE_EPHEMERON_KEY_WRITE_BARRIER,
UPDATE_WRITE_BARRIER
};
// PropertyNormalizationMode is used to specify whether to keep
// inobject properties when normalizing properties of a JSObject.
enum PropertyNormalizationMode {

View File

@ -49,6 +49,27 @@ CAST_ACCESSOR(ObjectHashTable)
CAST_ACCESSOR(EphemeronHashTable)
CAST_ACCESSOR(ObjectHashSet)
void EphemeronHashTable::set_key(int index, Object value) {
DCHECK_NE(GetReadOnlyRoots().fixed_cow_array_map(), map());
DCHECK(IsEphemeronHashTable());
DCHECK_GE(index, 0);
DCHECK_LT(index, this->length());
int offset = kHeaderSize + index * kTaggedSize;
RELAXED_WRITE_FIELD(*this, offset, value);
EPHEMERON_KEY_WRITE_BARRIER(*this, offset, value);
}
void EphemeronHashTable::set_key(int index, Object value,
WriteBarrierMode mode) {
DCHECK_NE(GetReadOnlyRoots().fixed_cow_array_map(), map());
DCHECK(IsEphemeronHashTable());
DCHECK_GE(index, 0);
DCHECK_LT(index, this->length());
int offset = kHeaderSize + index * kTaggedSize;
RELAXED_WRITE_FIELD(*this, offset, value);
CONDITIONAL_EPHEMERON_KEY_WRITE_BARRIER(*this, offset, value, mode);
}
int HashTableBase::NumberOfElements() const {
return Smi::ToInt(get(kNumberOfElementsIndex));
}
@ -143,6 +164,19 @@ bool HashTable<Derived, Shape>::ToKey(ReadOnlyRoots roots, int entry,
return true;
}
template <typename Derived, typename Shape>
void HashTable<Derived, Shape>::set_key(int index, Object value) {
DCHECK(!IsEphemeronHashTable());
FixedArray::set(index, value);
}
template <typename Derived, typename Shape>
void HashTable<Derived, Shape>::set_key(int index, Object value,
WriteBarrierMode mode) {
DCHECK(!IsEphemeronHashTable());
FixedArray::set(index, value, mode);
}
template <typename KeyT>
bool BaseShape<KeyT>::IsKey(ReadOnlyRoots roots, Object key) {
return IsLive(roots, key);

View File

@ -183,6 +183,16 @@ class HashTable : public HashTableBase {
return (entry * kEntrySize) + kElementsStartIndex;
}
// Returns the index for an entry (of the key)
static constexpr inline int IndexToEntry(int index) {
return (index - kElementsStartIndex) / kEntrySize;
}
// Returns the index for a slot address in the object.
static constexpr inline int SlotToIndex(Address object, Address slot) {
return static_cast<int>((slot - object - kHeaderSize) / kTaggedSize);
}
// Ensure enough space for n additional elements.
V8_WARN_UNUSED_RESULT static Handle<Derived> EnsureCapacity(
Isolate* isolate, Handle<Derived> table, int n,
@ -205,6 +215,9 @@ class HashTable : public HashTableBase {
V8_WARN_UNUSED_RESULT static Handle<Derived> Shrink(
Isolate* isolate, Handle<Derived> table, int additionalCapacity = 0);
inline void set_key(int index, Object value);
inline void set_key(int index, Object value, WriteBarrierMode mode);
private:
// Ensure that kMaxRegularCapacity yields a non-large object dictionary.
STATIC_ASSERT(EntryToIndex(kMaxRegularCapacity) < kMaxRegularLength);
@ -347,6 +360,10 @@ class EphemeronHashTable
protected:
friend class MarkCompactCollector;
friend class ScavengerCollector;
friend class HashTable<EphemeronHashTable, EphemeronHashTableShape>;
friend class ObjectHashTableBase<EphemeronHashTable, EphemeronHashTableShape>;
inline void set_key(int index, Object value);
inline void set_key(int index, Object value, WriteBarrierMode mode);
OBJECT_CONSTRUCTORS(
EphemeronHashTable,

View File

@ -290,9 +290,18 @@
GenerationalBarrier(object, (object)->RawMaybeWeakField(offset), value); \
} while (false)
#define EPHEMERON_KEY_WRITE_BARRIER(object, offset, value) \
do { \
DCHECK_NOT_NULL(GetHeapFromWritableObject(object)); \
EphemeronHashTable table = EphemeronHashTable::cast(object); \
MarkingBarrier(object, (object)->RawField(offset), value); \
GenerationalEphemeronKeyBarrier(table, (object)->RawField(offset), value); \
} while (false)
#define CONDITIONAL_WRITE_BARRIER(object, offset, value, mode) \
do { \
DCHECK_NOT_NULL(GetHeapFromWritableObject(object)); \
DCHECK_NE(mode, UPDATE_EPHEMERON_KEY_WRITE_BARRIER); \
if (mode != SKIP_WRITE_BARRIER) { \
if (mode == UPDATE_WRITE_BARRIER) { \
MarkingBarrier(object, (object)->RawField(offset), value); \
@ -304,6 +313,7 @@
#define CONDITIONAL_WEAK_WRITE_BARRIER(object, offset, value, mode) \
do { \
DCHECK_NOT_NULL(GetHeapFromWritableObject(object)); \
DCHECK_NE(mode, UPDATE_EPHEMERON_KEY_WRITE_BARRIER); \
if (mode != SKIP_WRITE_BARRIER) { \
if (mode == UPDATE_WRITE_BARRIER) { \
MarkingBarrier(object, (object)->RawMaybeWeakField(offset), value); \
@ -312,6 +322,20 @@
} \
} while (false)
#define CONDITIONAL_EPHEMERON_KEY_WRITE_BARRIER(object, offset, value, mode) \
do { \
DCHECK_NOT_NULL(GetHeapFromWritableObject(object)); \
DCHECK_NE(mode, UPDATE_EPHEMERON_KEY_WRITE_BARRIER); \
EphemeronHashTable table = EphemeronHashTable::cast(object); \
if (mode != SKIP_WRITE_BARRIER) { \
if (mode == UPDATE_WRITE_BARRIER) { \
MarkingBarrier(object, (object)->RawField(offset), value); \
} \
GenerationalEphemeronKeyBarrier(table, (object)->RawField(offset), \
value); \
} \
} while (false)
#define READ_DOUBLE_FIELD(p, offset) ReadDoubleValue(FIELD_ADDR(p, offset))
#define WRITE_DOUBLE_FIELD(p, offset, value) \

View File

@ -35,6 +35,19 @@ void RecordWriteDescriptor::InitializePlatformSpecific(
data->InitializePlatformSpecific(kParameterCount, default_stub_registers);
}
void EphemeronKeyBarrierDescriptor::InitializePlatformSpecific(
CallInterfaceDescriptorData* data) {
const Register default_stub_registers[] = {arg_reg_1, arg_reg_2, arg_reg_3,
arg_reg_4, kReturnRegister0};
data->RestrictAllocatableRegisters(default_stub_registers,
arraysize(default_stub_registers));
CHECK_LE(static_cast<size_t>(kParameterCount),
arraysize(default_stub_registers));
data->InitializePlatformSpecific(kParameterCount, default_stub_registers);
}
const Register FastNewFunctionContextDescriptor::ScopeInfoRegister() {
return rdi;
}

View File

@ -386,6 +386,29 @@ void TurboAssembler::RestoreRegisters(RegList registers) {
}
}
void TurboAssembler::CallEphemeronKeyBarrier(Register object, Register address,
SaveFPRegsMode fp_mode) {
EphemeronKeyBarrierDescriptor descriptor;
RegList registers = descriptor.allocatable_registers();
SaveRegisters(registers);
Register object_parameter(
descriptor.GetRegisterParameter(EphemeronKeyBarrierDescriptor::kObject));
Register slot_parameter(descriptor.GetRegisterParameter(
EphemeronKeyBarrierDescriptor::kSlotAddress));
Register fp_mode_parameter(
descriptor.GetRegisterParameter(EphemeronKeyBarrierDescriptor::kFPMode));
MovePair(slot_parameter, address, object_parameter, object);
Smi smi_fm = Smi::FromEnum(fp_mode);
Move(fp_mode_parameter, smi_fm);
Call(isolate()->builtins()->builtin_handle(Builtins::kEphemeronKeyBarrier),
RelocInfo::CODE_TARGET);
RestoreRegisters(registers);
}
void TurboAssembler::CallRecordWriteStub(
Register object, Register address,
RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode) {

View File

@ -441,6 +441,8 @@ class V8_EXPORT_PRIVATE TurboAssembler : public TurboAssemblerBase {
void CallRecordWriteStub(Register object, Register address,
RememberedSetAction remembered_set_action,
SaveFPRegsMode fp_mode, Address wasm_target);
void CallEphemeronKeyBarrier(Register object, Register address,
SaveFPRegsMode fp_mode);
void MoveNumber(Register dst, double value);
void MoveNonSmi(Register dst, double value);

View File

@ -149,6 +149,78 @@ TEST(Shrinking) {
CHECK_EQ(32, EphemeronHashTable::cast(weakmap->table())->Capacity());
}
namespace {
bool EphemeronHashTableContainsKey(EphemeronHashTable table, HeapObject key) {
for (int i = 0; i < table.Capacity(); ++i) {
if (table->KeyAt(i) == key) return true;
}
return false;
}
} // namespace
TEST(WeakMapPromotion) {
LocalContext context;
Isolate* isolate = GetIsolateFrom(&context);
Factory* factory = isolate->factory();
HandleScope scope(isolate);
Handle<JSWeakMap> weakmap = isolate->factory()->NewJSWeakMap();
CcTest::CollectAllGarbage();
CHECK(ObjectInYoungGeneration(weakmap->table()));
Handle<Map> map = factory->NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
Handle<JSObject> object = factory->NewJSObjectFromMap(map);
Handle<Smi> smi(Smi::FromInt(1), isolate);
int32_t object_hash = object->GetOrCreateHash(isolate)->value();
JSWeakCollection::Set(weakmap, object, smi, object_hash);
CHECK(EphemeronHashTableContainsKey(
EphemeronHashTable::cast(weakmap->table()), *object));
CcTest::CollectAllGarbage();
CHECK(ObjectInYoungGeneration(*object));
CHECK(!ObjectInYoungGeneration(weakmap->table()));
CHECK(EphemeronHashTableContainsKey(
EphemeronHashTable::cast(weakmap->table()), *object));
CcTest::CollectAllGarbage();
CHECK(!ObjectInYoungGeneration(*object));
CHECK(!ObjectInYoungGeneration(weakmap->table()));
CHECK(EphemeronHashTableContainsKey(
EphemeronHashTable::cast(weakmap->table()), *object));
}
TEST(WeakMapScavenge) {
LocalContext context;
Isolate* isolate = GetIsolateFrom(&context);
Factory* factory = isolate->factory();
HandleScope scope(isolate);
Handle<JSWeakMap> weakmap = isolate->factory()->NewJSWeakMap();
CcTest::CollectAllGarbage();
CHECK(ObjectInYoungGeneration(weakmap->table()));
Handle<Map> map = factory->NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
Handle<JSObject> object = factory->NewJSObjectFromMap(map);
Handle<Smi> smi(Smi::FromInt(1), isolate);
int32_t object_hash = object->GetOrCreateHash(isolate)->value();
JSWeakCollection::Set(weakmap, object, smi, object_hash);
CHECK(EphemeronHashTableContainsKey(
EphemeronHashTable::cast(weakmap->table()), *object));
heap::GcAndSweep(isolate->heap(), NEW_SPACE);
CHECK(ObjectInYoungGeneration(*object));
CHECK(!ObjectInYoungGeneration(weakmap->table()));
CHECK(EphemeronHashTableContainsKey(
EphemeronHashTable::cast(weakmap->table()), *object));
heap::GcAndSweep(isolate->heap(), NEW_SPACE);
CHECK(!ObjectInYoungGeneration(*object));
CHECK(!ObjectInYoungGeneration(weakmap->table()));
CHECK(EphemeronHashTableContainsKey(
EphemeronHashTable::cast(weakmap->table()), *object));
}
// Test that weak map values on an evacuation candidate which are not reachable
// by other paths are correctly recorded in the slots buffer.