[heap] remove heap init from shipping binary.

This reduces the arm32 binary by around 20kB.

R=jkummerow@chromium.org, mstarzinger@chromium.org

Bug: v8:6055
Change-Id: If9098e49793b29dceb8292aff6f668ca28a07728
Reviewed-on: https://chromium-review.googlesource.com/652427
Reviewed-by: Jakob Kummerow <jkummerow@chromium.org>
Reviewed-by: Michael Starzinger <mstarzinger@chromium.org>
Commit-Queue: Yang Guo <yangguo@chromium.org>
Cr-Commit-Position: refs/heads/master@{#47863}
This commit is contained in:
Yang Guo 2017-09-06 12:48:08 +02:00 committed by Commit Bot
parent eeadb48c28
commit d4c6c7561c
14 changed files with 711 additions and 650 deletions

View File

@ -854,7 +854,7 @@ source_set("v8_maybe_snapshot") {
} else {
# Ignore v8_use_external_startup_data setting if no snapshot is used.
public_deps = [
":v8_builtins_setup",
":v8_init",
":v8_nosnapshot",
]
}
@ -954,7 +954,7 @@ if (v8_use_external_startup_data) {
}
}
v8_source_set("v8_builtins_generators") {
v8_source_set("v8_initializers") {
visibility = [
":*",
"test/cctest:*",
@ -1012,6 +1012,7 @@ v8_source_set("v8_builtins_generators") {
"src/builtins/builtins-utils-gen.h",
"src/builtins/builtins-wasm-gen.cc",
"src/builtins/setup-builtins-internal.cc",
"src/heap/setup-heap-internal.cc",
"src/ic/accessor-assembler.cc",
"src/ic/accessor-assembler.h",
"src/ic/binary-op-assembler.cc",
@ -1089,11 +1090,11 @@ v8_source_set("v8_builtins_generators") {
configs = [ ":internal_config" ]
}
v8_source_set("v8_builtins_setup") {
v8_source_set("v8_init") {
visibility = [ ":*" ] # Only targets in this file can depend on this.
deps = [
":v8_builtins_generators",
":v8_initializers",
]
sources = [
@ -2641,7 +2642,7 @@ if (current_toolchain == v8_snapshot_toolchain) {
deps = [
":v8_base",
":v8_builtins_setup",
":v8_init",
":v8_libbase",
":v8_libplatform",
":v8_nosnapshot",
@ -2754,7 +2755,7 @@ if (is_component_build) {
]
if (v8_use_snapshot) {
public_deps += [ ":v8_builtins_generators" ]
public_deps += [ ":v8_initializers" ]
}
configs = [ ":internal_config" ]
@ -2780,7 +2781,7 @@ if (is_component_build) {
]
if (v8_use_snapshot) {
public_deps += [ ":v8_builtins_generators" ]
public_deps += [ ":v8_initializers" ]
}
public_configs = [ ":external_config" ]

View File

@ -2461,325 +2461,6 @@ AllocationResult Heap::AllocateFillerObject(int size, bool double_align,
}
const Heap::StringTypeTable Heap::string_type_table[] = {
#define STRING_TYPE_ELEMENT(type, size, name, camel_name) \
{ type, size, k##camel_name##MapRootIndex } \
,
STRING_TYPE_LIST(STRING_TYPE_ELEMENT)
#undef STRING_TYPE_ELEMENT
};
const Heap::ConstantStringTable Heap::constant_string_table[] = {
{"", kempty_stringRootIndex},
#define CONSTANT_STRING_ELEMENT(name, contents) \
{ contents, k##name##RootIndex } \
,
INTERNALIZED_STRING_LIST(CONSTANT_STRING_ELEMENT)
#undef CONSTANT_STRING_ELEMENT
};
const Heap::StructTable Heap::struct_table[] = {
#define STRUCT_TABLE_ELEMENT(NAME, Name, name) \
{ NAME##_TYPE, Name::kSize, k##Name##MapRootIndex } \
,
STRUCT_LIST(STRUCT_TABLE_ELEMENT)
#undef STRUCT_TABLE_ELEMENT
};
namespace {
void FinalizePartialMap(Heap* heap, Map* map) {
map->set_code_cache(heap->empty_fixed_array());
map->set_dependent_code(DependentCode::cast(heap->empty_fixed_array()));
map->set_raw_transitions(Smi::kZero);
map->set_instance_descriptors(heap->empty_descriptor_array());
if (FLAG_unbox_double_fields) {
map->set_layout_descriptor(LayoutDescriptor::FastPointerLayout());
}
map->set_prototype(heap->null_value());
map->set_constructor_or_backpointer(heap->null_value());
}
} // namespace
bool Heap::CreateInitialMaps() {
HeapObject* obj = nullptr;
{
AllocationResult allocation = AllocatePartialMap(MAP_TYPE, Map::kSize);
if (!allocation.To(&obj)) return false;
}
// Map::cast cannot be used due to uninitialized map field.
Map* new_meta_map = reinterpret_cast<Map*>(obj);
set_meta_map(new_meta_map);
new_meta_map->set_map_after_allocation(new_meta_map);
{ // Partial map allocation
#define ALLOCATE_PARTIAL_MAP(instance_type, size, field_name) \
{ \
Map* map; \
if (!AllocatePartialMap((instance_type), (size)).To(&map)) return false; \
set_##field_name##_map(map); \
}
ALLOCATE_PARTIAL_MAP(FIXED_ARRAY_TYPE, kVariableSizeSentinel, fixed_array);
fixed_array_map()->set_elements_kind(HOLEY_ELEMENTS);
ALLOCATE_PARTIAL_MAP(FIXED_ARRAY_TYPE, kVariableSizeSentinel,
fixed_cow_array)
fixed_cow_array_map()->set_elements_kind(HOLEY_ELEMENTS);
DCHECK_NE(fixed_array_map(), fixed_cow_array_map());
ALLOCATE_PARTIAL_MAP(ODDBALL_TYPE, Oddball::kSize, undefined);
ALLOCATE_PARTIAL_MAP(ODDBALL_TYPE, Oddball::kSize, null);
ALLOCATE_PARTIAL_MAP(ODDBALL_TYPE, Oddball::kSize, the_hole);
#undef ALLOCATE_PARTIAL_MAP
}
// Allocate the empty array.
{
AllocationResult allocation = AllocateEmptyFixedArray();
if (!allocation.To(&obj)) return false;
}
set_empty_fixed_array(FixedArray::cast(obj));
{
AllocationResult allocation = Allocate(null_map(), OLD_SPACE);
if (!allocation.To(&obj)) return false;
}
set_null_value(Oddball::cast(obj));
Oddball::cast(obj)->set_kind(Oddball::kNull);
{
AllocationResult allocation = Allocate(undefined_map(), OLD_SPACE);
if (!allocation.To(&obj)) return false;
}
set_undefined_value(Oddball::cast(obj));
Oddball::cast(obj)->set_kind(Oddball::kUndefined);
DCHECK(!InNewSpace(undefined_value()));
{
AllocationResult allocation = Allocate(the_hole_map(), OLD_SPACE);
if (!allocation.To(&obj)) return false;
}
set_the_hole_value(Oddball::cast(obj));
Oddball::cast(obj)->set_kind(Oddball::kTheHole);
// Set preliminary exception sentinel value before actually initializing it.
set_exception(null_value());
// Setup the struct maps first (needed for the EnumCache).
for (unsigned i = 0; i < arraysize(struct_table); i++) {
const StructTable& entry = struct_table[i];
Map* map;
if (!AllocatePartialMap(entry.type, entry.size).To(&map)) return false;
roots_[entry.index] = map;
}
// Allocate the empty enum cache.
{
AllocationResult allocation = Allocate(tuple2_map(), OLD_SPACE);
if (!allocation.To(&obj)) return false;
}
set_empty_enum_cache(EnumCache::cast(obj));
EnumCache::cast(obj)->set_keys(empty_fixed_array());
EnumCache::cast(obj)->set_indices(empty_fixed_array());
// Allocate the empty descriptor array.
{
AllocationResult allocation =
AllocateUninitializedFixedArray(DescriptorArray::kFirstIndex, TENURED);
if (!allocation.To(&obj)) return false;
}
set_empty_descriptor_array(DescriptorArray::cast(obj));
DescriptorArray::cast(obj)->set(DescriptorArray::kDescriptorLengthIndex,
Smi::kZero);
DescriptorArray::cast(obj)->set(DescriptorArray::kEnumCacheIndex,
empty_enum_cache());
// Fix the instance_descriptors for the existing maps.
FinalizePartialMap(this, meta_map());
FinalizePartialMap(this, fixed_array_map());
FinalizePartialMap(this, fixed_cow_array_map());
FinalizePartialMap(this, undefined_map());
undefined_map()->set_is_undetectable();
FinalizePartialMap(this, null_map());
null_map()->set_is_undetectable();
FinalizePartialMap(this, the_hole_map());
for (unsigned i = 0; i < arraysize(struct_table); ++i) {
const StructTable& entry = struct_table[i];
FinalizePartialMap(this, Map::cast(roots_[entry.index]));
}
{ // Map allocation
#define ALLOCATE_MAP(instance_type, size, field_name) \
{ \
Map* map; \
if (!AllocateMap((instance_type), size).To(&map)) return false; \
set_##field_name##_map(map); \
}
#define ALLOCATE_VARSIZE_MAP(instance_type, field_name) \
ALLOCATE_MAP(instance_type, kVariableSizeSentinel, field_name)
#define ALLOCATE_PRIMITIVE_MAP(instance_type, size, field_name, \
constructor_function_index) \
{ \
ALLOCATE_MAP((instance_type), (size), field_name); \
field_name##_map()->SetConstructorFunctionIndex( \
(constructor_function_index)); \
}
ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, scope_info)
ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, module_info)
ALLOCATE_VARSIZE_MAP(FEEDBACK_VECTOR_TYPE, feedback_vector)
ALLOCATE_PRIMITIVE_MAP(HEAP_NUMBER_TYPE, HeapNumber::kSize, heap_number,
Context::NUMBER_FUNCTION_INDEX)
ALLOCATE_MAP(MUTABLE_HEAP_NUMBER_TYPE, HeapNumber::kSize,
mutable_heap_number)
ALLOCATE_PRIMITIVE_MAP(SYMBOL_TYPE, Symbol::kSize, symbol,
Context::SYMBOL_FUNCTION_INDEX)
ALLOCATE_MAP(FOREIGN_TYPE, Foreign::kSize, foreign)
ALLOCATE_PRIMITIVE_MAP(ODDBALL_TYPE, Oddball::kSize, boolean,
Context::BOOLEAN_FUNCTION_INDEX);
ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, uninitialized);
ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, arguments_marker);
ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, exception);
ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, termination_exception);
ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, optimized_out);
ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, stale_register);
for (unsigned i = 0; i < arraysize(string_type_table); i++) {
const StringTypeTable& entry = string_type_table[i];
{
AllocationResult allocation = AllocateMap(entry.type, entry.size);
if (!allocation.To(&obj)) return false;
}
Map* map = Map::cast(obj);
map->SetConstructorFunctionIndex(Context::STRING_FUNCTION_INDEX);
// Mark cons string maps as unstable, because their objects can change
// maps during GC.
if (StringShape(entry.type).IsCons()) map->mark_unstable();
roots_[entry.index] = map;
}
{ // Create a separate external one byte string map for native sources.
AllocationResult allocation =
AllocateMap(SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE,
ExternalOneByteString::kShortSize);
if (!allocation.To(&obj)) return false;
Map* map = Map::cast(obj);
map->SetConstructorFunctionIndex(Context::STRING_FUNCTION_INDEX);
set_native_source_string_map(map);
}
ALLOCATE_VARSIZE_MAP(FIXED_DOUBLE_ARRAY_TYPE, fixed_double_array)
fixed_double_array_map()->set_elements_kind(HOLEY_DOUBLE_ELEMENTS);
ALLOCATE_VARSIZE_MAP(BYTE_ARRAY_TYPE, byte_array)
ALLOCATE_VARSIZE_MAP(BYTECODE_ARRAY_TYPE, bytecode_array)
ALLOCATE_VARSIZE_MAP(FREE_SPACE_TYPE, free_space)
ALLOCATE_VARSIZE_MAP(PROPERTY_ARRAY_TYPE, property_array)
ALLOCATE_VARSIZE_MAP(SMALL_ORDERED_HASH_MAP_TYPE, small_ordered_hash_map)
ALLOCATE_VARSIZE_MAP(SMALL_ORDERED_HASH_SET_TYPE, small_ordered_hash_set)
#define ALLOCATE_FIXED_TYPED_ARRAY_MAP(Type, type, TYPE, ctype, size) \
ALLOCATE_VARSIZE_MAP(FIXED_##TYPE##_ARRAY_TYPE, fixed_##type##_array)
TYPED_ARRAYS(ALLOCATE_FIXED_TYPED_ARRAY_MAP)
#undef ALLOCATE_FIXED_TYPED_ARRAY_MAP
ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, sloppy_arguments_elements)
ALLOCATE_VARSIZE_MAP(CODE_TYPE, code)
ALLOCATE_MAP(CELL_TYPE, Cell::kSize, cell)
ALLOCATE_MAP(PROPERTY_CELL_TYPE, PropertyCell::kSize, global_property_cell)
ALLOCATE_MAP(WEAK_CELL_TYPE, WeakCell::kSize, weak_cell)
ALLOCATE_MAP(CELL_TYPE, Cell::kSize, no_closures_cell)
ALLOCATE_MAP(CELL_TYPE, Cell::kSize, one_closure_cell)
ALLOCATE_MAP(CELL_TYPE, Cell::kSize, many_closures_cell)
ALLOCATE_MAP(FILLER_TYPE, kPointerSize, one_pointer_filler)
ALLOCATE_MAP(FILLER_TYPE, 2 * kPointerSize, two_pointer_filler)
ALLOCATE_VARSIZE_MAP(TRANSITION_ARRAY_TYPE, transition_array)
ALLOCATE_VARSIZE_MAP(HASH_TABLE_TYPE, hash_table)
ALLOCATE_VARSIZE_MAP(HASH_TABLE_TYPE, ordered_hash_table)
ALLOCATE_VARSIZE_MAP(HASH_TABLE_TYPE, unseeded_number_dictionary)
ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, function_context)
ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, catch_context)
ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, with_context)
ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, debug_evaluate_context)
ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, block_context)
ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, module_context)
ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, eval_context)
ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, script_context)
ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, script_context_table)
ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, native_context)
native_context_map()->set_visitor_id(kVisitNativeContext);
ALLOCATE_MAP(SHARED_FUNCTION_INFO_TYPE, SharedFunctionInfo::kAlignedSize,
shared_function_info)
ALLOCATE_MAP(JS_MESSAGE_OBJECT_TYPE, JSMessageObject::kSize, message_object)
ALLOCATE_MAP(JS_OBJECT_TYPE, JSObject::kHeaderSize + kPointerSize, external)
external_map()->set_is_extensible(false);
#undef ALLOCATE_PRIMITIVE_MAP
#undef ALLOCATE_VARSIZE_MAP
#undef ALLOCATE_MAP
}
{
AllocationResult allocation = AllocateEmptyScopeInfo();
if (!allocation.To(&obj)) return false;
}
set_empty_scope_info(ScopeInfo::cast(obj));
{
AllocationResult allocation = Allocate(boolean_map(), OLD_SPACE);
if (!allocation.To(&obj)) return false;
}
set_true_value(Oddball::cast(obj));
Oddball::cast(obj)->set_kind(Oddball::kTrue);
{
AllocationResult allocation = Allocate(boolean_map(), OLD_SPACE);
if (!allocation.To(&obj)) return false;
}
set_false_value(Oddball::cast(obj));
Oddball::cast(obj)->set_kind(Oddball::kFalse);
{ // Empty arrays
{
ByteArray* byte_array;
if (!AllocateByteArray(0, TENURED).To(&byte_array)) return false;
set_empty_byte_array(byte_array);
}
{
PropertyArray* property_array;
if (!AllocatePropertyArray(0, TENURED).To(&property_array)) return false;
set_empty_property_array(property_array);
}
#define ALLOCATE_EMPTY_FIXED_TYPED_ARRAY(Type, type, TYPE, ctype, size) \
{ \
FixedTypedArrayBase* obj; \
if (!AllocateEmptyFixedTypedArray(kExternal##Type##Array).To(&obj)) \
return false; \
set_empty_fixed_##type##_array(obj); \
}
TYPED_ARRAYS(ALLOCATE_EMPTY_FIXED_TYPED_ARRAY)
#undef ALLOCATE_EMPTY_FIXED_TYPED_ARRAY
}
DCHECK(!InNewSpace(empty_fixed_array()));
return true;
}
AllocationResult Heap::AllocateHeapNumber(MutableMode mode,
PretenureFlag pretenure) {
// Statically ensure that it is safe to allocate heap numbers in paged
@ -2869,21 +2550,6 @@ AllocationResult Heap::AllocateTransitionArray(int capacity) {
return array;
}
bool Heap::CreateApiObjects() {
HandleScope scope(isolate());
set_message_listeners(*TemplateList::New(isolate(), 2));
HeapObject* obj = nullptr;
{
AllocationResult allocation = AllocateStruct(INTERCEPTOR_INFO_TYPE);
if (!allocation.To(&obj)) return false;
}
InterceptorInfo* info = InterceptorInfo::cast(obj);
info->set_flags(0);
set_noop_interceptor_info(info);
return true;
}
void Heap::CreateJSEntryStub() {
JSEntryStub stub(isolate(), StackFrame::ENTRY);
set_js_entry_code(*stub.GetCode());
@ -2928,258 +2594,6 @@ void Heap::CreateFixedStubs() {
Heap::CreateJSConstructEntryStub();
}
void Heap::CreateInitialObjects() {
HandleScope scope(isolate());
Factory* factory = isolate()->factory();
// The -0 value must be set before NewNumber works.
set_minus_zero_value(*factory->NewHeapNumber(-0.0, IMMUTABLE, TENURED));
DCHECK(std::signbit(minus_zero_value()->Number()) != 0);
set_nan_value(*factory->NewHeapNumber(
std::numeric_limits<double>::quiet_NaN(), IMMUTABLE, TENURED));
set_hole_nan_value(
*factory->NewHeapNumberFromBits(kHoleNanInt64, IMMUTABLE, TENURED));
set_infinity_value(*factory->NewHeapNumber(V8_INFINITY, IMMUTABLE, TENURED));
set_minus_infinity_value(
*factory->NewHeapNumber(-V8_INFINITY, IMMUTABLE, TENURED));
// Allocate initial string table.
set_string_table(*StringTable::New(isolate(), kInitialStringTableSize));
// Allocate
// Finish initializing oddballs after creating the string table.
Oddball::Initialize(isolate(), factory->undefined_value(), "undefined",
factory->nan_value(), "undefined", Oddball::kUndefined);
// Initialize the null_value.
Oddball::Initialize(isolate(), factory->null_value(), "null",
handle(Smi::kZero, isolate()), "object", Oddball::kNull);
// Initialize the_hole_value.
Oddball::Initialize(isolate(), factory->the_hole_value(), "hole",
factory->hole_nan_value(), "undefined",
Oddball::kTheHole);
// Initialize the true_value.
Oddball::Initialize(isolate(), factory->true_value(), "true",
handle(Smi::FromInt(1), isolate()), "boolean",
Oddball::kTrue);
// Initialize the false_value.
Oddball::Initialize(isolate(), factory->false_value(), "false",
handle(Smi::kZero, isolate()), "boolean",
Oddball::kFalse);
set_uninitialized_value(
*factory->NewOddball(factory->uninitialized_map(), "uninitialized",
handle(Smi::FromInt(-1), isolate()), "undefined",
Oddball::kUninitialized));
set_arguments_marker(
*factory->NewOddball(factory->arguments_marker_map(), "arguments_marker",
handle(Smi::FromInt(-4), isolate()), "undefined",
Oddball::kArgumentsMarker));
set_termination_exception(*factory->NewOddball(
factory->termination_exception_map(), "termination_exception",
handle(Smi::FromInt(-3), isolate()), "undefined", Oddball::kOther));
set_exception(*factory->NewOddball(factory->exception_map(), "exception",
handle(Smi::FromInt(-5), isolate()),
"undefined", Oddball::kException));
set_optimized_out(*factory->NewOddball(factory->optimized_out_map(),
"optimized_out",
handle(Smi::FromInt(-6), isolate()),
"undefined", Oddball::kOptimizedOut));
set_stale_register(
*factory->NewOddball(factory->stale_register_map(), "stale_register",
handle(Smi::FromInt(-7), isolate()), "undefined",
Oddball::kStaleRegister));
for (unsigned i = 0; i < arraysize(constant_string_table); i++) {
Handle<String> str =
factory->InternalizeUtf8String(constant_string_table[i].contents);
roots_[constant_string_table[i].index] = *str;
}
// Create the code_stubs dictionary. The initial size is set to avoid
// expanding the dictionary during bootstrapping.
set_code_stubs(*UnseededNumberDictionary::New(isolate(), 128));
{
HandleScope scope(isolate());
#define SYMBOL_INIT(name) \
{ \
Handle<String> name##d = factory->NewStringFromStaticChars(#name); \
Handle<Symbol> symbol(isolate()->factory()->NewPrivateSymbol()); \
symbol->set_name(*name##d); \
roots_[k##name##RootIndex] = *symbol; \
}
PRIVATE_SYMBOL_LIST(SYMBOL_INIT)
#undef SYMBOL_INIT
}
{
HandleScope scope(isolate());
#define SYMBOL_INIT(name, description) \
Handle<Symbol> name = factory->NewSymbol(); \
Handle<String> name##d = factory->NewStringFromStaticChars(#description); \
name->set_name(*name##d); \
roots_[k##name##RootIndex] = *name;
PUBLIC_SYMBOL_LIST(SYMBOL_INIT)
#undef SYMBOL_INIT
#define SYMBOL_INIT(name, description) \
Handle<Symbol> name = factory->NewSymbol(); \
Handle<String> name##d = factory->NewStringFromStaticChars(#description); \
name->set_is_well_known_symbol(true); \
name->set_name(*name##d); \
roots_[k##name##RootIndex] = *name;
WELL_KNOWN_SYMBOL_LIST(SYMBOL_INIT)
#undef SYMBOL_INIT
// Mark "Interesting Symbols" appropriately.
to_string_tag_symbol->set_is_interesting_symbol(true);
}
Handle<NameDictionary> empty_property_dictionary =
NameDictionary::New(isolate(), 1, TENURED, USE_CUSTOM_MINIMUM_CAPACITY);
DCHECK(!empty_property_dictionary->HasSufficientCapacityToAdd(1));
set_empty_property_dictionary(*empty_property_dictionary);
set_public_symbol_table(*empty_property_dictionary);
set_api_symbol_table(*empty_property_dictionary);
set_api_private_symbol_table(*empty_property_dictionary);
set_number_string_cache(
*factory->NewFixedArray(kInitialNumberStringCacheSize * 2, TENURED));
// Allocate cache for single character one byte strings.
set_single_character_string_cache(
*factory->NewFixedArray(String::kMaxOneByteCharCode + 1, TENURED));
// Allocate cache for string split and regexp-multiple.
set_string_split_cache(*factory->NewFixedArray(
RegExpResultsCache::kRegExpResultsCacheSize, TENURED));
set_regexp_multiple_cache(*factory->NewFixedArray(
RegExpResultsCache::kRegExpResultsCacheSize, TENURED));
set_undefined_cell(*factory->NewCell(factory->undefined_value()));
// Microtask queue uses the empty fixed array as a sentinel for "empty".
// Number of queued microtasks stored in Isolate::pending_microtask_count().
set_microtask_queue(empty_fixed_array());
{
Handle<FixedArray> empty_sloppy_arguments_elements =
factory->NewFixedArray(2, TENURED);
empty_sloppy_arguments_elements->set_map_after_allocation(
sloppy_arguments_elements_map(), SKIP_WRITE_BARRIER);
set_empty_sloppy_arguments_elements(*empty_sloppy_arguments_elements);
}
{
Handle<WeakCell> cell = factory->NewWeakCell(factory->undefined_value());
set_empty_weak_cell(*cell);
cell->clear();
}
set_detached_contexts(empty_fixed_array());
set_retained_maps(ArrayList::cast(empty_fixed_array()));
set_retaining_path_targets(undefined_value());
set_weak_object_to_code_table(*WeakHashTable::New(isolate(), 16, TENURED));
set_weak_new_space_object_to_code_list(
ArrayList::cast(*(factory->NewFixedArray(16, TENURED))));
weak_new_space_object_to_code_list()->SetLength(0);
set_code_coverage_list(undefined_value());
set_script_list(Smi::kZero);
Handle<SeededNumberDictionary> slow_element_dictionary =
SeededNumberDictionary::New(isolate(), 1, TENURED,
USE_CUSTOM_MINIMUM_CAPACITY);
DCHECK(!slow_element_dictionary->HasSufficientCapacityToAdd(1));
slow_element_dictionary->set_requires_slow_elements();
set_empty_slow_element_dictionary(*slow_element_dictionary);
set_materialized_objects(*factory->NewFixedArray(0, TENURED));
// Handling of script id generation is in Heap::NextScriptId().
set_last_script_id(Smi::FromInt(v8::UnboundScript::kNoScriptId));
set_next_template_serial_number(Smi::kZero);
// Allocate the empty OrderedHashTable.
Handle<FixedArray> empty_ordered_hash_table =
factory->NewFixedArray(OrderedHashMap::kHashTableStartIndex, TENURED);
empty_ordered_hash_table->set_map_no_write_barrier(
*factory->ordered_hash_table_map());
for (int i = 0; i < empty_ordered_hash_table->length(); ++i) {
empty_ordered_hash_table->set(i, Smi::kZero);
}
set_empty_ordered_hash_table(*empty_ordered_hash_table);
// Allocate the empty script.
Handle<Script> script = factory->NewScript(factory->empty_string());
script->set_type(Script::TYPE_NATIVE);
set_empty_script(*script);
Handle<PropertyCell> cell = factory->NewPropertyCell(factory->empty_string());
cell->set_value(Smi::FromInt(Isolate::kProtectorValid));
set_array_protector(*cell);
cell = factory->NewPropertyCell(factory->empty_string());
cell->set_value(the_hole_value());
set_empty_property_cell(*cell);
cell = factory->NewPropertyCell(factory->empty_string());
cell->set_value(Smi::FromInt(Isolate::kProtectorValid));
set_array_iterator_protector(*cell);
Handle<Cell> is_concat_spreadable_cell = factory->NewCell(
handle(Smi::FromInt(Isolate::kProtectorValid), isolate()));
set_is_concat_spreadable_protector(*is_concat_spreadable_cell);
cell = factory->NewPropertyCell(factory->empty_string());
cell->set_value(Smi::FromInt(Isolate::kProtectorValid));
set_species_protector(*cell);
Handle<Cell> string_length_overflow_cell = factory->NewCell(
handle(Smi::FromInt(Isolate::kProtectorValid), isolate()));
set_string_length_protector(*string_length_overflow_cell);
Handle<Cell> fast_array_iteration_cell = factory->NewCell(
handle(Smi::FromInt(Isolate::kProtectorValid), isolate()));
set_fast_array_iteration_protector(*fast_array_iteration_cell);
cell = factory->NewPropertyCell(factory->empty_string());
cell->set_value(Smi::FromInt(Isolate::kProtectorValid));
set_array_buffer_neutering_protector(*cell);
set_serialized_templates(empty_fixed_array());
set_serialized_global_proxy_sizes(empty_fixed_array());
set_weak_stack_trace_list(Smi::kZero);
set_noscript_shared_function_infos(Smi::kZero);
// Initialize context slot cache.
isolate_->context_slot_cache()->Clear();
// Initialize descriptor cache.
isolate_->descriptor_lookup_cache()->Clear();
// Initialize compilation cache.
isolate_->compilation_cache()->Clear();
}
bool Heap::RootCanBeWrittenAfterInitialization(Heap::RootListIndex root_index) {
switch (root_index) {
case kNumberStringCacheRootIndex:
@ -6072,22 +5486,6 @@ void Heap::InitializeHashSeed() {
}
}
bool Heap::CreateHeapObjects() {
// Create initial maps.
if (!CreateInitialMaps()) return false;
if (!CreateApiObjects()) return false;
// Create initial objects
CreateInitialObjects();
CHECK_EQ(0u, gc_count_);
set_native_contexts_list(undefined_value());
set_allocation_sites_list(undefined_value());
return true;
}
void Heap::SetStackLimits() {
DCHECK(isolate_ != NULL);
DCHECK(isolate_ == isolate());

View File

@ -0,0 +1,629 @@
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/setup-isolate.h"
#include "src/ast/context-slot-cache.h"
#include "src/compilation-cache.h"
#include "src/contexts.h"
#include "src/factory.h"
#include "src/heap-symbols.h"
#include "src/heap/heap.h"
#include "src/isolate.h"
#include "src/layout-descriptor.h"
#include "src/lookup-cache.h"
#include "src/objects-inl.h"
#include "src/objects/arguments.h"
#include "src/objects/debug-objects.h"
#include "src/objects/descriptor-array.h"
#include "src/objects/dictionary.h"
#include "src/objects/map.h"
#include "src/objects/module.h"
#include "src/objects/script.h"
#include "src/objects/shared-function-info.h"
#include "src/objects/string.h"
#include "src/regexp/jsregexp.h"
namespace v8 {
namespace internal {
bool SetupIsolateDelegate::SetupHeapInternal(Heap* heap) {
return heap->CreateHeapObjects();
}
bool Heap::CreateHeapObjects() {
// Create initial maps.
if (!CreateInitialMaps()) return false;
if (!CreateApiObjects()) return false;
// Create initial objects
CreateInitialObjects();
CHECK_EQ(0u, gc_count_);
set_native_contexts_list(undefined_value());
set_allocation_sites_list(undefined_value());
return true;
}
const Heap::StringTypeTable Heap::string_type_table[] = {
#define STRING_TYPE_ELEMENT(type, size, name, camel_name) \
{type, size, k##camel_name##MapRootIndex},
STRING_TYPE_LIST(STRING_TYPE_ELEMENT)
#undef STRING_TYPE_ELEMENT
};
const Heap::ConstantStringTable Heap::constant_string_table[] = {
{"", kempty_stringRootIndex},
#define CONSTANT_STRING_ELEMENT(name, contents) {contents, k##name##RootIndex},
INTERNALIZED_STRING_LIST(CONSTANT_STRING_ELEMENT)
#undef CONSTANT_STRING_ELEMENT
};
const Heap::StructTable Heap::struct_table[] = {
#define STRUCT_TABLE_ELEMENT(NAME, Name, name) \
{NAME##_TYPE, Name::kSize, k##Name##MapRootIndex},
STRUCT_LIST(STRUCT_TABLE_ELEMENT)
#undef STRUCT_TABLE_ELEMENT
};
namespace {
void FinalizePartialMap(Heap* heap, Map* map) {
map->set_code_cache(heap->empty_fixed_array());
map->set_dependent_code(DependentCode::cast(heap->empty_fixed_array()));
map->set_raw_transitions(Smi::kZero);
map->set_instance_descriptors(heap->empty_descriptor_array());
if (FLAG_unbox_double_fields) {
map->set_layout_descriptor(LayoutDescriptor::FastPointerLayout());
}
map->set_prototype(heap->null_value());
map->set_constructor_or_backpointer(heap->null_value());
}
} // namespace
bool Heap::CreateInitialMaps() {
HeapObject* obj = nullptr;
{
AllocationResult allocation = AllocatePartialMap(MAP_TYPE, Map::kSize);
if (!allocation.To(&obj)) return false;
}
// Map::cast cannot be used due to uninitialized map field.
Map* new_meta_map = reinterpret_cast<Map*>(obj);
set_meta_map(new_meta_map);
new_meta_map->set_map_after_allocation(new_meta_map);
{ // Partial map allocation
#define ALLOCATE_PARTIAL_MAP(instance_type, size, field_name) \
{ \
Map* map; \
if (!AllocatePartialMap((instance_type), (size)).To(&map)) return false; \
set_##field_name##_map(map); \
}
ALLOCATE_PARTIAL_MAP(FIXED_ARRAY_TYPE, kVariableSizeSentinel, fixed_array);
fixed_array_map()->set_elements_kind(HOLEY_ELEMENTS);
ALLOCATE_PARTIAL_MAP(FIXED_ARRAY_TYPE, kVariableSizeSentinel,
fixed_cow_array)
fixed_cow_array_map()->set_elements_kind(HOLEY_ELEMENTS);
DCHECK_NE(fixed_array_map(), fixed_cow_array_map());
ALLOCATE_PARTIAL_MAP(ODDBALL_TYPE, Oddball::kSize, undefined);
ALLOCATE_PARTIAL_MAP(ODDBALL_TYPE, Oddball::kSize, null);
ALLOCATE_PARTIAL_MAP(ODDBALL_TYPE, Oddball::kSize, the_hole);
#undef ALLOCATE_PARTIAL_MAP
}
// Allocate the empty array.
{
AllocationResult allocation = AllocateEmptyFixedArray();
if (!allocation.To(&obj)) return false;
}
set_empty_fixed_array(FixedArray::cast(obj));
{
AllocationResult allocation = Allocate(null_map(), OLD_SPACE);
if (!allocation.To(&obj)) return false;
}
set_null_value(Oddball::cast(obj));
Oddball::cast(obj)->set_kind(Oddball::kNull);
{
AllocationResult allocation = Allocate(undefined_map(), OLD_SPACE);
if (!allocation.To(&obj)) return false;
}
set_undefined_value(Oddball::cast(obj));
Oddball::cast(obj)->set_kind(Oddball::kUndefined);
DCHECK(!InNewSpace(undefined_value()));
{
AllocationResult allocation = Allocate(the_hole_map(), OLD_SPACE);
if (!allocation.To(&obj)) return false;
}
set_the_hole_value(Oddball::cast(obj));
Oddball::cast(obj)->set_kind(Oddball::kTheHole);
// Set preliminary exception sentinel value before actually initializing it.
set_exception(null_value());
// Setup the struct maps first (needed for the EnumCache).
for (unsigned i = 0; i < arraysize(struct_table); i++) {
const StructTable& entry = struct_table[i];
Map* map;
if (!AllocatePartialMap(entry.type, entry.size).To(&map)) return false;
roots_[entry.index] = map;
}
// Allocate the empty enum cache.
{
AllocationResult allocation = Allocate(tuple2_map(), OLD_SPACE);
if (!allocation.To(&obj)) return false;
}
set_empty_enum_cache(EnumCache::cast(obj));
EnumCache::cast(obj)->set_keys(empty_fixed_array());
EnumCache::cast(obj)->set_indices(empty_fixed_array());
// Allocate the empty descriptor array.
{
AllocationResult allocation =
AllocateUninitializedFixedArray(DescriptorArray::kFirstIndex, TENURED);
if (!allocation.To(&obj)) return false;
}
set_empty_descriptor_array(DescriptorArray::cast(obj));
DescriptorArray::cast(obj)->set(DescriptorArray::kDescriptorLengthIndex,
Smi::kZero);
DescriptorArray::cast(obj)->set(DescriptorArray::kEnumCacheIndex,
empty_enum_cache());
// Fix the instance_descriptors for the existing maps.
FinalizePartialMap(this, meta_map());
FinalizePartialMap(this, fixed_array_map());
FinalizePartialMap(this, fixed_cow_array_map());
FinalizePartialMap(this, undefined_map());
undefined_map()->set_is_undetectable();
FinalizePartialMap(this, null_map());
null_map()->set_is_undetectable();
FinalizePartialMap(this, the_hole_map());
for (unsigned i = 0; i < arraysize(struct_table); ++i) {
const StructTable& entry = struct_table[i];
FinalizePartialMap(this, Map::cast(roots_[entry.index]));
}
{ // Map allocation
#define ALLOCATE_MAP(instance_type, size, field_name) \
{ \
Map* map; \
if (!AllocateMap((instance_type), size).To(&map)) return false; \
set_##field_name##_map(map); \
}
#define ALLOCATE_VARSIZE_MAP(instance_type, field_name) \
ALLOCATE_MAP(instance_type, kVariableSizeSentinel, field_name)
#define ALLOCATE_PRIMITIVE_MAP(instance_type, size, field_name, \
constructor_function_index) \
{ \
ALLOCATE_MAP((instance_type), (size), field_name); \
field_name##_map()->SetConstructorFunctionIndex( \
(constructor_function_index)); \
}
ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, scope_info)
ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, module_info)
ALLOCATE_VARSIZE_MAP(FEEDBACK_VECTOR_TYPE, feedback_vector)
ALLOCATE_PRIMITIVE_MAP(HEAP_NUMBER_TYPE, HeapNumber::kSize, heap_number,
Context::NUMBER_FUNCTION_INDEX)
ALLOCATE_MAP(MUTABLE_HEAP_NUMBER_TYPE, HeapNumber::kSize,
mutable_heap_number)
ALLOCATE_PRIMITIVE_MAP(SYMBOL_TYPE, Symbol::kSize, symbol,
Context::SYMBOL_FUNCTION_INDEX)
ALLOCATE_MAP(FOREIGN_TYPE, Foreign::kSize, foreign)
ALLOCATE_PRIMITIVE_MAP(ODDBALL_TYPE, Oddball::kSize, boolean,
Context::BOOLEAN_FUNCTION_INDEX);
ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, uninitialized);
ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, arguments_marker);
ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, exception);
ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, termination_exception);
ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, optimized_out);
ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, stale_register);
for (unsigned i = 0; i < arraysize(string_type_table); i++) {
const StringTypeTable& entry = string_type_table[i];
{
AllocationResult allocation = AllocateMap(entry.type, entry.size);
if (!allocation.To(&obj)) return false;
}
Map* map = Map::cast(obj);
map->SetConstructorFunctionIndex(Context::STRING_FUNCTION_INDEX);
// Mark cons string maps as unstable, because their objects can change
// maps during GC.
if (StringShape(entry.type).IsCons()) map->mark_unstable();
roots_[entry.index] = map;
}
{ // Create a separate external one byte string map for native sources.
AllocationResult allocation =
AllocateMap(SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE,
ExternalOneByteString::kShortSize);
if (!allocation.To(&obj)) return false;
Map* map = Map::cast(obj);
map->SetConstructorFunctionIndex(Context::STRING_FUNCTION_INDEX);
set_native_source_string_map(map);
}
ALLOCATE_VARSIZE_MAP(FIXED_DOUBLE_ARRAY_TYPE, fixed_double_array)
fixed_double_array_map()->set_elements_kind(HOLEY_DOUBLE_ELEMENTS);
ALLOCATE_VARSIZE_MAP(BYTE_ARRAY_TYPE, byte_array)
ALLOCATE_VARSIZE_MAP(BYTECODE_ARRAY_TYPE, bytecode_array)
ALLOCATE_VARSIZE_MAP(FREE_SPACE_TYPE, free_space)
ALLOCATE_VARSIZE_MAP(PROPERTY_ARRAY_TYPE, property_array)
ALLOCATE_VARSIZE_MAP(SMALL_ORDERED_HASH_MAP_TYPE, small_ordered_hash_map)
ALLOCATE_VARSIZE_MAP(SMALL_ORDERED_HASH_SET_TYPE, small_ordered_hash_set)
#define ALLOCATE_FIXED_TYPED_ARRAY_MAP(Type, type, TYPE, ctype, size) \
ALLOCATE_VARSIZE_MAP(FIXED_##TYPE##_ARRAY_TYPE, fixed_##type##_array)
TYPED_ARRAYS(ALLOCATE_FIXED_TYPED_ARRAY_MAP)
#undef ALLOCATE_FIXED_TYPED_ARRAY_MAP
ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, sloppy_arguments_elements)
ALLOCATE_VARSIZE_MAP(CODE_TYPE, code)
ALLOCATE_MAP(CELL_TYPE, Cell::kSize, cell)
ALLOCATE_MAP(PROPERTY_CELL_TYPE, PropertyCell::kSize, global_property_cell)
ALLOCATE_MAP(WEAK_CELL_TYPE, WeakCell::kSize, weak_cell)
ALLOCATE_MAP(CELL_TYPE, Cell::kSize, no_closures_cell)
ALLOCATE_MAP(CELL_TYPE, Cell::kSize, one_closure_cell)
ALLOCATE_MAP(CELL_TYPE, Cell::kSize, many_closures_cell)
ALLOCATE_MAP(FILLER_TYPE, kPointerSize, one_pointer_filler)
ALLOCATE_MAP(FILLER_TYPE, 2 * kPointerSize, two_pointer_filler)
ALLOCATE_VARSIZE_MAP(TRANSITION_ARRAY_TYPE, transition_array)
ALLOCATE_VARSIZE_MAP(HASH_TABLE_TYPE, hash_table)
ALLOCATE_VARSIZE_MAP(HASH_TABLE_TYPE, ordered_hash_table)
ALLOCATE_VARSIZE_MAP(HASH_TABLE_TYPE, unseeded_number_dictionary)
ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, function_context)
ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, catch_context)
ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, with_context)
ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, debug_evaluate_context)
ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, block_context)
ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, module_context)
ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, eval_context)
ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, script_context)
ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, script_context_table)
ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, native_context)
native_context_map()->set_visitor_id(kVisitNativeContext);
ALLOCATE_MAP(SHARED_FUNCTION_INFO_TYPE, SharedFunctionInfo::kAlignedSize,
shared_function_info)
ALLOCATE_MAP(JS_MESSAGE_OBJECT_TYPE, JSMessageObject::kSize, message_object)
ALLOCATE_MAP(JS_OBJECT_TYPE, JSObject::kHeaderSize + kPointerSize, external)
external_map()->set_is_extensible(false);
#undef ALLOCATE_PRIMITIVE_MAP
#undef ALLOCATE_VARSIZE_MAP
#undef ALLOCATE_MAP
}
{
AllocationResult allocation = AllocateEmptyScopeInfo();
if (!allocation.To(&obj)) return false;
}
set_empty_scope_info(ScopeInfo::cast(obj));
{
AllocationResult allocation = Allocate(boolean_map(), OLD_SPACE);
if (!allocation.To(&obj)) return false;
}
set_true_value(Oddball::cast(obj));
Oddball::cast(obj)->set_kind(Oddball::kTrue);
{
AllocationResult allocation = Allocate(boolean_map(), OLD_SPACE);
if (!allocation.To(&obj)) return false;
}
set_false_value(Oddball::cast(obj));
Oddball::cast(obj)->set_kind(Oddball::kFalse);
{ // Empty arrays
{
ByteArray * byte_array;
if (!AllocateByteArray(0, TENURED).To(&byte_array)) return false;
set_empty_byte_array(byte_array);
}
{
PropertyArray* property_array;
if (!AllocatePropertyArray(0, TENURED).To(&property_array)) return false;
set_empty_property_array(property_array);
}
#define ALLOCATE_EMPTY_FIXED_TYPED_ARRAY(Type, type, TYPE, ctype, size) \
{ \
FixedTypedArrayBase* obj; \
if (!AllocateEmptyFixedTypedArray(kExternal##Type##Array).To(&obj)) \
return false; \
set_empty_fixed_##type##_array(obj); \
}
TYPED_ARRAYS(ALLOCATE_EMPTY_FIXED_TYPED_ARRAY)
#undef ALLOCATE_EMPTY_FIXED_TYPED_ARRAY
}
DCHECK(!InNewSpace(empty_fixed_array()));
return true;
}
bool Heap::CreateApiObjects() {
HandleScope scope(isolate());
set_message_listeners(*TemplateList::New(isolate(), 2));
HeapObject* obj = nullptr;
{
AllocationResult allocation = AllocateStruct(INTERCEPTOR_INFO_TYPE);
if (!allocation.To(&obj)) return false;
}
InterceptorInfo* info = InterceptorInfo::cast(obj);
info->set_flags(0);
set_noop_interceptor_info(info);
return true;
}
void Heap::CreateInitialObjects() {
HandleScope scope(isolate());
Factory* factory = isolate()->factory();
// The -0 value must be set before NewNumber works.
set_minus_zero_value(*factory->NewHeapNumber(-0.0, IMMUTABLE, TENURED));
DCHECK(std::signbit(minus_zero_value()->Number()) != 0);
set_nan_value(*factory->NewHeapNumber(
std::numeric_limits<double>::quiet_NaN(), IMMUTABLE, TENURED));
set_hole_nan_value(
*factory->NewHeapNumberFromBits(kHoleNanInt64, IMMUTABLE, TENURED));
set_infinity_value(*factory->NewHeapNumber(V8_INFINITY, IMMUTABLE, TENURED));
set_minus_infinity_value(
*factory->NewHeapNumber(-V8_INFINITY, IMMUTABLE, TENURED));
// Allocate initial string table.
set_string_table(*StringTable::New(isolate(), kInitialStringTableSize));
// Allocate
// Finish initializing oddballs after creating the string table.
Oddball::Initialize(isolate(), factory->undefined_value(), "undefined",
factory->nan_value(), "undefined", Oddball::kUndefined);
// Initialize the null_value.
Oddball::Initialize(isolate(), factory->null_value(), "null",
handle(Smi::kZero, isolate()), "object", Oddball::kNull);
// Initialize the_hole_value.
Oddball::Initialize(isolate(), factory->the_hole_value(), "hole",
factory->hole_nan_value(), "undefined",
Oddball::kTheHole);
// Initialize the true_value.
Oddball::Initialize(isolate(), factory->true_value(), "true",
handle(Smi::FromInt(1), isolate()), "boolean",
Oddball::kTrue);
// Initialize the false_value.
Oddball::Initialize(isolate(), factory->false_value(), "false",
handle(Smi::kZero, isolate()), "boolean",
Oddball::kFalse);
set_uninitialized_value(
*factory->NewOddball(factory->uninitialized_map(), "uninitialized",
handle(Smi::FromInt(-1), isolate()), "undefined",
Oddball::kUninitialized));
set_arguments_marker(
*factory->NewOddball(factory->arguments_marker_map(), "arguments_marker",
handle(Smi::FromInt(-4), isolate()), "undefined",
Oddball::kArgumentsMarker));
set_termination_exception(*factory->NewOddball(
factory->termination_exception_map(), "termination_exception",
handle(Smi::FromInt(-3), isolate()), "undefined", Oddball::kOther));
set_exception(*factory->NewOddball(factory->exception_map(), "exception",
handle(Smi::FromInt(-5), isolate()),
"undefined", Oddball::kException));
set_optimized_out(*factory->NewOddball(factory->optimized_out_map(),
"optimized_out",
handle(Smi::FromInt(-6), isolate()),
"undefined", Oddball::kOptimizedOut));
set_stale_register(
*factory->NewOddball(factory->stale_register_map(), "stale_register",
handle(Smi::FromInt(-7), isolate()), "undefined",
Oddball::kStaleRegister));
for (unsigned i = 0; i < arraysize(constant_string_table); i++) {
Handle<String> str =
factory->InternalizeUtf8String(constant_string_table[i].contents);
roots_[constant_string_table[i].index] = *str;
}
// Create the code_stubs dictionary. The initial size is set to avoid
// expanding the dictionary during bootstrapping.
set_code_stubs(*UnseededNumberDictionary::New(isolate(), 128));
{
HandleScope scope(isolate());
#define SYMBOL_INIT(name) \
{ \
Handle<String> name##d = factory->NewStringFromStaticChars(#name); \
Handle<Symbol> symbol(isolate()->factory()->NewPrivateSymbol()); \
symbol->set_name(*name##d); \
roots_[k##name##RootIndex] = *symbol; \
}
PRIVATE_SYMBOL_LIST(SYMBOL_INIT)
#undef SYMBOL_INIT
}
{
HandleScope scope(isolate());
#define SYMBOL_INIT(name, description) \
Handle<Symbol> name = factory->NewSymbol(); \
Handle<String> name##d = factory->NewStringFromStaticChars(#description); \
name->set_name(*name##d); \
roots_[k##name##RootIndex] = *name;
PUBLIC_SYMBOL_LIST(SYMBOL_INIT)
#undef SYMBOL_INIT
#define SYMBOL_INIT(name, description) \
Handle<Symbol> name = factory->NewSymbol(); \
Handle<String> name##d = factory->NewStringFromStaticChars(#description); \
name->set_is_well_known_symbol(true); \
name->set_name(*name##d); \
roots_[k##name##RootIndex] = *name;
WELL_KNOWN_SYMBOL_LIST(SYMBOL_INIT)
#undef SYMBOL_INIT
// Mark "Interesting Symbols" appropriately.
to_string_tag_symbol->set_is_interesting_symbol(true);
}
Handle<NameDictionary> empty_property_dictionary =
NameDictionary::New(isolate(), 1, TENURED, USE_CUSTOM_MINIMUM_CAPACITY);
DCHECK(!empty_property_dictionary->HasSufficientCapacityToAdd(1));
set_empty_property_dictionary(*empty_property_dictionary);
set_public_symbol_table(*empty_property_dictionary);
set_api_symbol_table(*empty_property_dictionary);
set_api_private_symbol_table(*empty_property_dictionary);
set_number_string_cache(
*factory->NewFixedArray(kInitialNumberStringCacheSize * 2, TENURED));
// Allocate cache for single character one byte strings.
set_single_character_string_cache(
*factory->NewFixedArray(String::kMaxOneByteCharCode + 1, TENURED));
// Allocate cache for string split and regexp-multiple.
set_string_split_cache(*factory->NewFixedArray(
RegExpResultsCache::kRegExpResultsCacheSize, TENURED));
set_regexp_multiple_cache(*factory->NewFixedArray(
RegExpResultsCache::kRegExpResultsCacheSize, TENURED));
set_undefined_cell(*factory->NewCell(factory->undefined_value()));
// Microtask queue uses the empty fixed array as a sentinel for "empty".
// Number of queued microtasks stored in Isolate::pending_microtask_count().
set_microtask_queue(empty_fixed_array());
{
Handle<FixedArray> empty_sloppy_arguments_elements =
factory->NewFixedArray(2, TENURED);
empty_sloppy_arguments_elements->set_map_after_allocation(
sloppy_arguments_elements_map(), SKIP_WRITE_BARRIER);
set_empty_sloppy_arguments_elements(*empty_sloppy_arguments_elements);
}
{
Handle<WeakCell> cell = factory->NewWeakCell(factory->undefined_value());
set_empty_weak_cell(*cell);
cell->clear();
}
set_detached_contexts(empty_fixed_array());
set_retained_maps(ArrayList::cast(empty_fixed_array()));
set_retaining_path_targets(undefined_value());
set_weak_object_to_code_table(*WeakHashTable::New(isolate(), 16, TENURED));
set_weak_new_space_object_to_code_list(
ArrayList::cast(*(factory->NewFixedArray(16, TENURED))));
weak_new_space_object_to_code_list()->SetLength(0);
set_code_coverage_list(undefined_value());
set_script_list(Smi::kZero);
Handle<SeededNumberDictionary> slow_element_dictionary =
SeededNumberDictionary::New(isolate(), 1, TENURED,
USE_CUSTOM_MINIMUM_CAPACITY);
DCHECK(!slow_element_dictionary->HasSufficientCapacityToAdd(1));
slow_element_dictionary->set_requires_slow_elements();
set_empty_slow_element_dictionary(*slow_element_dictionary);
set_materialized_objects(*factory->NewFixedArray(0, TENURED));
// Handling of script id generation is in Heap::NextScriptId().
set_last_script_id(Smi::FromInt(v8::UnboundScript::kNoScriptId));
set_next_template_serial_number(Smi::kZero);
// Allocate the empty OrderedHashTable.
Handle<FixedArray> empty_ordered_hash_table =
factory->NewFixedArray(OrderedHashMap::kHashTableStartIndex, TENURED);
empty_ordered_hash_table->set_map_no_write_barrier(
*factory->ordered_hash_table_map());
for (int i = 0; i < empty_ordered_hash_table->length(); ++i) {
empty_ordered_hash_table->set(i, Smi::kZero);
}
set_empty_ordered_hash_table(*empty_ordered_hash_table);
// Allocate the empty script.
Handle<Script> script = factory->NewScript(factory->empty_string());
script->set_type(Script::TYPE_NATIVE);
set_empty_script(*script);
Handle<PropertyCell> cell = factory->NewPropertyCell(factory->empty_string());
cell->set_value(Smi::FromInt(Isolate::kProtectorValid));
set_array_protector(*cell);
cell = factory->NewPropertyCell(factory->empty_string());
cell->set_value(the_hole_value());
set_empty_property_cell(*cell);
cell = factory->NewPropertyCell(factory->empty_string());
cell->set_value(Smi::FromInt(Isolate::kProtectorValid));
set_array_iterator_protector(*cell);
Handle<Cell> is_concat_spreadable_cell = factory->NewCell(
handle(Smi::FromInt(Isolate::kProtectorValid), isolate()));
set_is_concat_spreadable_protector(*is_concat_spreadable_cell);
cell = factory->NewPropertyCell(factory->empty_string());
cell->set_value(Smi::FromInt(Isolate::kProtectorValid));
set_species_protector(*cell);
Handle<Cell> string_length_overflow_cell = factory->NewCell(
handle(Smi::FromInt(Isolate::kProtectorValid), isolate()));
set_string_length_protector(*string_length_overflow_cell);
Handle<Cell> fast_array_iteration_cell = factory->NewCell(
handle(Smi::FromInt(Isolate::kProtectorValid), isolate()));
set_fast_array_iteration_protector(*fast_array_iteration_cell);
cell = factory->NewPropertyCell(factory->empty_string());
cell->set_value(Smi::FromInt(Isolate::kProtectorValid));
set_array_buffer_neutering_protector(*cell);
set_serialized_templates(empty_fixed_array());
set_serialized_global_proxy_sizes(empty_fixed_array());
set_weak_stack_trace_list(Smi::kZero);
set_noscript_shared_function_infos(Smi::kZero);
// Initialize context slot cache.
isolate_->context_slot_cache()->Clear();
// Initialize descriptor cache.
isolate_->descriptor_lookup_cache()->Clear();
// Initialize compilation cache.
isolate_->compilation_cache()->Clear();
}
} // namespace internal
} // namespace v8

View File

@ -2775,7 +2775,11 @@ bool Isolate::Init(StartupDeserializer* des) {
deoptimizer_data_ = new DeoptimizerData(heap()->memory_allocator());
const bool create_heap_objects = (des == NULL);
if (create_heap_objects && !heap_.CreateHeapObjects()) {
if (setup_delegate_ == nullptr) {
setup_delegate_ = new SetupIsolateDelegate(create_heap_objects);
}
if (!setup_delegate_->SetupHeap(&heap_)) {
V8::FatalProcessOutOfMemory("heap object creation");
return false;
}
@ -2788,10 +2792,7 @@ bool Isolate::Init(StartupDeserializer* des) {
InitializeThreadLocal();
bootstrapper_->Initialize(create_heap_objects);
if (setup_delegate_ == nullptr) {
setup_delegate_ = new SetupIsolateDelegate();
}
setup_delegate_->SetupBuiltins(this, create_heap_objects);
setup_delegate_->SetupBuiltins(this);
if (create_heap_objects) heap_.CreateFixedStubs();
if (FLAG_log_internal_timer_events) {
@ -2815,7 +2816,7 @@ bool Isolate::Init(StartupDeserializer* des) {
if (!create_heap_objects) des->DeserializeInto(this);
load_stub_cache_->Initialize();
store_stub_cache_->Initialize();
setup_delegate_->SetupInterpreter(interpreter_, create_heap_objects);
setup_delegate_->SetupInterpreter(interpreter_);
heap_.NotifyDeserializationComplete();
}

View File

@ -12,14 +12,13 @@
namespace v8 {
namespace internal {
void SetupIsolateDelegate::SetupBuiltins(Isolate* isolate,
bool create_heap_objects) {
DCHECK(!create_heap_objects);
void SetupIsolateDelegate::SetupBuiltins(Isolate* isolate) {
DCHECK(!create_heap_objects_);
// No actual work to be done; builtins will be deserialized from the snapshot.
}
void SetupIsolateDelegate::SetupInterpreter(
interpreter::Interpreter* interpreter, bool create_heap_objects) {
interpreter::Interpreter* interpreter) {
#if defined(V8_USE_SNAPSHOT) && !defined(V8_USE_SNAPSHOT_WITH_UNWINDING_INFO)
if (FLAG_perf_prof_unwinding_info) {
OFStream os(stdout);
@ -31,5 +30,11 @@ void SetupIsolateDelegate::SetupInterpreter(
DCHECK(interpreter->IsDispatchTableInitialized());
}
bool SetupIsolateDelegate::SetupHeap(Heap* heap) {
DCHECK(!create_heap_objects_);
// No actual work to be done; heap will be deserialized from the snapshot.
return true;
}
} // namespace internal
} // namespace v8

View File

@ -5,6 +5,7 @@
#include "src/setup-isolate.h"
#include "src/base/logging.h"
#include "src/heap/heap-inl.h"
#include "src/interpreter/interpreter.h"
#include "src/interpreter/setup-interpreter.h"
#include "src/isolate.h"
@ -12,9 +13,8 @@
namespace v8 {
namespace internal {
void SetupIsolateDelegate::SetupBuiltins(Isolate* isolate,
bool create_heap_objects) {
if (create_heap_objects) {
void SetupIsolateDelegate::SetupBuiltins(Isolate* isolate) {
if (create_heap_objects_) {
SetupBuiltinsInternal(isolate);
} else {
DCHECK(isolate->snapshot_available());
@ -22,13 +22,22 @@ void SetupIsolateDelegate::SetupBuiltins(Isolate* isolate,
}
void SetupIsolateDelegate::SetupInterpreter(
interpreter::Interpreter* interpreter, bool create_heap_objects) {
if (create_heap_objects) {
interpreter::Interpreter* interpreter) {
if (create_heap_objects_) {
interpreter::SetupInterpreter::InstallBytecodeHandlers(interpreter);
} else {
DCHECK(interpreter->IsDispatchTableInitialized());
}
}
bool SetupIsolateDelegate::SetupHeap(Heap* heap) {
if (create_heap_objects_) {
return SetupHeapInternal(heap);
} else {
DCHECK(heap->isolate()->snapshot_available());
return true;
}
}
} // namespace internal
} // namespace v8

View File

@ -10,6 +10,7 @@ namespace internal {
class Builtins;
class Code;
class Heap;
class Isolate;
namespace interpreter {
@ -31,19 +32,25 @@ class Interpreter;
// linked in by the latter two Delegate implementations.
class SetupIsolateDelegate {
public:
SetupIsolateDelegate() {}
explicit SetupIsolateDelegate(bool create_heap_objects)
: create_heap_objects_(create_heap_objects) {}
virtual ~SetupIsolateDelegate() {}
virtual void SetupBuiltins(Isolate* isolate, bool create_heap_objects);
virtual void SetupBuiltins(Isolate* isolate);
virtual void SetupInterpreter(interpreter::Interpreter* interpreter,
bool create_heap_objects);
virtual void SetupInterpreter(interpreter::Interpreter* interpreter);
virtual bool SetupHeap(Heap* heap);
protected:
static void SetupBuiltinsInternal(Isolate* isolate);
static void AddBuiltin(Builtins* builtins, int index, Code* code);
static void PopulateWithPlaceholders(Isolate* isolate);
static void ReplacePlaceholders(Isolate* isolate);
static bool SetupHeapInternal(Heap* heap);
const bool create_heap_objects_;
};
} // namespace internal

View File

@ -99,7 +99,7 @@
# The dependency on v8_base should come from a transitive
# dependency however the Android toolchain requires libv8_base.a
# to appear before libv8_snapshot.a so it's listed explicitly.
'dependencies': ['v8_base', 'v8_builtins_setup', 'v8_nosnapshot'],
'dependencies': ['v8_base', 'v8_init', 'v8_nosnapshot'],
}],
['v8_use_snapshot=="true" and v8_use_external_startup_data==0', {
# The dependency on v8_base should come from a transitive
@ -133,10 +133,10 @@
]
},
{
'target_name': 'v8_builtins_setup',
'target_name': 'v8_init',
'type': 'static_library',
'dependencies': [
'v8_builtins_generators',
'v8_initializers',
],
'variables': {
'optimize': 'max',
@ -157,7 +157,7 @@
],
},
{
'target_name': 'v8_builtins_generators',
'target_name': 'v8_initializers',
'type': 'static_library',
'dependencies': [
'v8_base',
@ -216,6 +216,7 @@
'builtins/builtins-utils-gen.h',
'builtins/builtins-wasm-gen.cc',
'builtins/setup-builtins-internal.cc',
'heap/setup-heap-internal.cc',
'ic/accessor-assembler.cc',
'ic/accessor-assembler.h',
'ic/binary-op-assembler.cc',
@ -2469,7 +2470,7 @@
'type': 'executable',
'dependencies': [
'v8_base',
'v8_builtins_setup',
'v8_init',
'v8_libbase',
'v8_libplatform',
'v8_nosnapshot',

View File

@ -326,7 +326,7 @@ v8_executable("cctest") {
deps = [
":resources",
"../..:v8_builtins_generators",
"../..:v8_initializers",
"../..:v8_libbase",
"../..:v8_libplatform",
"../..:wasm_module_runner",

View File

@ -433,7 +433,7 @@
'dependencies': ['../../src/v8.gyp:v8'],
}],
['v8_use_snapshot=="true"', {
'dependencies': ['../../src/v8.gyp:v8_builtins_generators'],
'dependencies': ['../../src/v8.gyp:v8_initializers'],
}],
],
},

View File

@ -9,19 +9,25 @@
namespace v8 {
namespace internal {
void SetupIsolateDelegateForTests::SetupBuiltins(Isolate* isolate,
bool create_heap_objects) {
if (create_heap_objects) {
void SetupIsolateDelegateForTests::SetupBuiltins(Isolate* isolate) {
if (create_heap_objects_) {
SetupBuiltinsInternal(isolate);
}
}
void SetupIsolateDelegateForTests::SetupInterpreter(
interpreter::Interpreter* interpreter, bool create_heap_objects) {
if (create_heap_objects) {
interpreter::Interpreter* interpreter) {
if (create_heap_objects_) {
interpreter::SetupInterpreter::InstallBytecodeHandlers(interpreter);
}
}
bool SetupIsolateDelegateForTests::SetupHeap(Heap* heap) {
if (create_heap_objects_) {
return SetupHeapInternal(heap);
}
return true;
}
} // namespace internal
} // namespace v8

View File

@ -12,13 +12,15 @@ namespace internal {
class SetupIsolateDelegateForTests : public SetupIsolateDelegate {
public:
SetupIsolateDelegateForTests() : SetupIsolateDelegate() {}
explicit SetupIsolateDelegateForTests(bool create_heap_objects)
: SetupIsolateDelegate(create_heap_objects) {}
virtual ~SetupIsolateDelegateForTests() {}
void SetupBuiltins(Isolate* isolate, bool create_heap_objects) override;
void SetupBuiltins(Isolate* isolate) override;
void SetupInterpreter(interpreter::Interpreter* interpreter,
bool create_heap_objects) override;
void SetupInterpreter(interpreter::Interpreter* interpreter) override;
bool SetupHeap(Heap* heap) override;
};
} // namespace internal

View File

@ -69,7 +69,7 @@ class TestIsolate : public Isolate {
public:
static v8::Isolate* NewInitialized(bool enable_serializer) {
i::Isolate* isolate = new TestIsolate(enable_serializer);
isolate->setup_delegate_ = new SetupIsolateDelegateForTests();
isolate->setup_delegate_ = new SetupIsolateDelegateForTests(true);
v8::Isolate* v8_isolate = reinterpret_cast<v8::Isolate*>(isolate);
v8::Isolate::Scope isolate_scope(v8_isolate);
isolate->Init(NULL);
@ -80,14 +80,16 @@ class TestIsolate : public Isolate {
// the production Isolate class has one or the other behavior baked in.
static v8::Isolate* New(const v8::Isolate::CreateParams& params) {
i::Isolate* isolate = new TestIsolate(false);
isolate->setup_delegate_ = new SetupIsolateDelegateForTests();
bool create_heap_objects = params.snapshot_blob == nullptr;
isolate->setup_delegate_ =
new SetupIsolateDelegateForTests(create_heap_objects);
return v8::IsolateNewImpl(isolate, params);
}
explicit TestIsolate(bool enable_serializer) : Isolate(enable_serializer) {
set_array_buffer_allocator(CcTest::array_buffer_allocator());
}
void CreateSetupDelegateForTests() {
setup_delegate_ = new SetupIsolateDelegateForTests();
void SetDeserializeFromSnapshot() {
setup_delegate_ = new SetupIsolateDelegateForTests(false);
}
};
@ -164,7 +166,7 @@ v8::Isolate* InitializeFromBlob(StartupBlobs& blobs) {
TestIsolate* isolate = new TestIsolate(false);
v8_isolate = reinterpret_cast<v8::Isolate*>(isolate);
v8::Isolate::Scope isolate_scope(v8_isolate);
isolate->CreateSetupDelegateForTests();
isolate->SetDeserializeFromSnapshot();
isolate->Init(&deserializer);
}
return v8_isolate;

View File

@ -266,7 +266,7 @@
],
}],
['v8_use_snapshot=="true"', {
'dependencies': ['../../src/v8.gyp:v8_builtins_generators'],
'dependencies': ['../../src/v8.gyp:v8_initializers'],
}],
],
},