Revert "Captured arguments object materialization"

R=jarin@chromium.org

Review URL: https://codereview.chromium.org/130803009

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@18923 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
This commit is contained in:
jarin@chromium.org 2014-01-29 15:49:48 +00:00
parent 5d8e2f3435
commit ec51f26b9e
11 changed files with 123 additions and 692 deletions

View File

@ -5398,7 +5398,7 @@ class Internals {
static const int kNullValueRootIndex = 7;
static const int kTrueValueRootIndex = 8;
static const int kFalseValueRootIndex = 9;
static const int kEmptyStringRootIndex = 146;
static const int kEmptyStringRootIndex = 145;
static const int kNodeClassIdOffset = 1 * kApiPointerSize;
static const int kNodeFlagsOffset = 1 * kApiPointerSize + 3;

View File

@ -706,22 +706,21 @@ static MaybeObject* ConstructArgumentsObjectForInlinedFunction(
int inlined_frame_index) {
Isolate* isolate = inlined_function->GetIsolate();
Factory* factory = isolate->factory();
SlotRefValueBuilder slot_refs(
frame,
inlined_frame_index,
inlined_function->shared()->formal_parameter_count());
int args_count = slot_refs.args_length();
Vector<SlotRef> args_slots =
SlotRef::ComputeSlotMappingForArguments(
frame,
inlined_frame_index,
inlined_function->shared()->formal_parameter_count());
int args_count = args_slots.length();
Handle<JSObject> arguments =
factory->NewArgumentsObject(inlined_function, args_count);
Handle<FixedArray> array = factory->NewFixedArray(args_count);
slot_refs.Prepare(isolate);
for (int i = 0; i < args_count; ++i) {
Handle<Object> value = slot_refs.GetNext(isolate, 0);
Handle<Object> value = args_slots[i].GetValue(isolate);
array->set(i, *value);
}
slot_refs.Finish(isolate);
arguments->set_elements(*array);
args_slots.Dispose();
// Return the freshly allocated arguments object.
return *arguments;

View File

@ -773,11 +773,6 @@ void Deoptimizer::DoComputeOutputFrames() {
}
output_count_ = count;
Register fp_reg = JavaScriptFrame::fp_register();
stack_fp_ = reinterpret_cast<Address>(
input_->GetRegister(fp_reg.code()) +
has_alignment_padding_ * kPointerSize);
// Translate each output frame.
for (int i = 0; i < count; ++i) {
// Read the ast node id, function, and frame height for this output frame.
@ -1782,24 +1777,14 @@ Handle<Object> Deoptimizer::MaterializeNextHeapObject() {
// Reuse the HeapNumber value directly as it is already properly
// tagged and skip materializing the HeapNumber explicitly.
Handle<Object> object = MaterializeNextValue();
if (object_index < prev_materialized_count_) {
materialized_objects_->Add(Handle<Object>(
previously_materialized_objects_->get(object_index), isolate_));
} else {
materialized_objects_->Add(object);
}
materialized_objects_->Add(object);
materialization_value_index_ += kDoubleSize / kPointerSize - 1;
break;
}
case JS_OBJECT_TYPE: {
Handle<JSObject> object =
isolate_->factory()->NewJSObjectFromMap(map, NOT_TENURED, false);
if (object_index < prev_materialized_count_) {
materialized_objects_->Add(Handle<Object>(
previously_materialized_objects_->get(object_index), isolate_));
} else {
materialized_objects_->Add(object);
}
materialized_objects_->Add(object);
Handle<Object> properties = MaterializeNextValue();
Handle<Object> elements = MaterializeNextValue();
object->set_properties(FixedArray::cast(*properties));
@ -1813,12 +1798,7 @@ Handle<Object> Deoptimizer::MaterializeNextHeapObject() {
case JS_ARRAY_TYPE: {
Handle<JSArray> object =
isolate_->factory()->NewJSArray(0, map->elements_kind());
if (object_index < prev_materialized_count_) {
materialized_objects_->Add(Handle<Object>(
previously_materialized_objects_->get(object_index), isolate_));
} else {
materialized_objects_->Add(object);
}
materialized_objects_->Add(object);
Handle<Object> properties = MaterializeNextValue();
Handle<Object> elements = MaterializeNextValue();
Handle<Object> length = MaterializeNextValue();
@ -1851,12 +1831,6 @@ Handle<Object> Deoptimizer::MaterializeNextValue() {
void Deoptimizer::MaterializeHeapObjects(JavaScriptFrameIterator* it) {
ASSERT_NE(DEBUGGER, bailout_type_);
MaterializedObjectStore* materialized_store =
isolate_->materialized_object_store();
previously_materialized_objects_ = materialized_store->Get(stack_fp_);
prev_materialized_count_ = previously_materialized_objects_.is_null() ?
0 : previously_materialized_objects_->length();
// Walk all JavaScript output frames with the given frame iterator.
for (int frame_index = 0; frame_index < jsframe_count(); ++frame_index) {
if (frame_index != 0) it->Advance();
@ -1946,10 +1920,6 @@ void Deoptimizer::MaterializeHeapObjects(JavaScriptFrameIterator* it) {
ASSERT(materialization_object_index_ == materialized_objects_->length());
ASSERT(materialization_value_index_ == materialized_values_->length());
}
if (prev_materialized_count_ > 0) {
materialized_store->Remove(stack_fp_);
}
}
@ -2978,11 +2948,12 @@ const char* Translation::StringFor(Opcode opcode) {
// We can't intermix stack decoding and allocations because
// deoptimization infrastracture is not GC safe.
// Thus we build a temporary structure in malloced space.
SlotRef SlotRefValueBuilder::ComputeSlotForNextArgument(
Translation::Opcode opcode,
TranslationIterator* iterator,
DeoptimizationInputData* data,
JavaScriptFrame* frame) {
SlotRef SlotRef::ComputeSlotForNextArgument(TranslationIterator* iterator,
DeoptimizationInputData* data,
JavaScriptFrame* frame) {
Translation::Opcode opcode =
static_cast<Translation::Opcode>(iterator->Next());
switch (opcode) {
case Translation::BEGIN:
case Translation::JS_FRAME:
@ -2993,18 +2964,12 @@ SlotRef SlotRefValueBuilder::ComputeSlotForNextArgument(
// Peeled off before getting here.
break;
case Translation::DUPLICATED_OBJECT: {
return SlotRef::NewDuplicateObject(iterator->Next());
}
case Translation::DUPLICATED_OBJECT:
case Translation::ARGUMENTS_OBJECT:
case Translation::CAPTURED_OBJECT:
// This can be only emitted for local slots not for argument slots.
break;
case Translation::CAPTURED_OBJECT: {
return SlotRef::NewDeferredObject(iterator->Next());
}
case Translation::REGISTER:
case Translation::INT32_REGISTER:
case Translation::UINT32_REGISTER:
@ -3054,12 +3019,28 @@ SlotRef SlotRefValueBuilder::ComputeSlotForNextArgument(
}
SlotRefValueBuilder::SlotRefValueBuilder(JavaScriptFrame* frame,
int inlined_jsframe_index,
int formal_parameter_count)
: current_slot_(0), args_length_(-1), first_slot_index_(-1) {
DisallowHeapAllocation no_gc;
void SlotRef::ComputeSlotsForArguments(Vector<SlotRef>* args_slots,
TranslationIterator* it,
DeoptimizationInputData* data,
JavaScriptFrame* frame) {
// Process the translation commands for the arguments.
// Skip the translation command for the receiver.
it->Skip(Translation::NumberOfOperandsFor(
static_cast<Translation::Opcode>(it->Next())));
// Compute slots for arguments.
for (int i = 0; i < args_slots->length(); ++i) {
(*args_slots)[i] = ComputeSlotForNextArgument(it, data, frame);
}
}
Vector<SlotRef> SlotRef::ComputeSlotMappingForArguments(
JavaScriptFrame* frame,
int inlined_jsframe_index,
int formal_parameter_count) {
DisallowHeapAllocation no_gc;
int deopt_index = Safepoint::kNoDeoptimizationIndex;
DeoptimizationInputData* data =
static_cast<OptimizedFrame*>(frame)->GetDeoptimizationData(&deopt_index);
@ -3068,18 +3049,12 @@ SlotRefValueBuilder::SlotRefValueBuilder(JavaScriptFrame* frame,
Translation::Opcode opcode = static_cast<Translation::Opcode>(it.Next());
ASSERT(opcode == Translation::BEGIN);
it.Next(); // Drop frame count.
stack_frame_id_ = frame->fp();
int jsframe_count = it.Next();
USE(jsframe_count);
ASSERT(jsframe_count > inlined_jsframe_index);
int jsframes_to_skip = inlined_jsframe_index;
int number_of_slots = -1; // Number of slots inside our frame (yet unknown)
bool should_deopt = false;
while (number_of_slots != 0) {
while (true) {
opcode = static_cast<Translation::Opcode>(it.Next());
bool processed = false;
if (opcode == Translation::ARGUMENTS_ADAPTOR_FRAME) {
if (jsframes_to_skip == 0) {
ASSERT(Translation::NumberOfOperandsFor(opcode) == 2);
@ -3087,336 +3062,36 @@ SlotRefValueBuilder::SlotRefValueBuilder(JavaScriptFrame* frame,
it.Skip(1); // literal id
int height = it.Next();
// Skip the translation command for the receiver.
it.Skip(Translation::NumberOfOperandsFor(
static_cast<Translation::Opcode>(it.Next())));
// We reached the arguments adaptor frame corresponding to the
// inlined function in question. Number of arguments is height - 1.
first_slot_index_ = slot_refs_.length();
args_length_ = height - 1;
number_of_slots = height - 1;
processed = true;
Vector<SlotRef> args_slots =
Vector<SlotRef>::New(height - 1); // Minus receiver.
ComputeSlotsForArguments(&args_slots, &it, data, frame);
return args_slots;
}
} else if (opcode == Translation::JS_FRAME) {
if (jsframes_to_skip == 0) {
// Skip over operands to advance to the next opcode.
it.Skip(Translation::NumberOfOperandsFor(opcode));
// Skip the translation command for the receiver.
it.Skip(Translation::NumberOfOperandsFor(
static_cast<Translation::Opcode>(it.Next())));
// We reached the frame corresponding to the inlined function
// in question. Process the translation commands for the
// arguments. Number of arguments is equal to the number of
// format parameter count.
first_slot_index_ = slot_refs_.length();
args_length_ = formal_parameter_count;
number_of_slots = formal_parameter_count;
processed = true;
Vector<SlotRef> args_slots =
Vector<SlotRef>::New(formal_parameter_count);
ComputeSlotsForArguments(&args_slots, &it, data, frame);
return args_slots;
}
jsframes_to_skip--;
} else if (opcode != Translation::BEGIN &&
opcode != Translation::CONSTRUCT_STUB_FRAME) {
slot_refs_.Add(ComputeSlotForNextArgument(opcode, &it, data, frame));
if (first_slot_index_ >= 0) {
// We have found the beginning of our frame -> make sure we count
// the nested slots of captured objects
number_of_slots--;
SlotRef& slot = slot_refs_.last();
if (slot.Representation() == SlotRef::DEFERRED_OBJECT) {
number_of_slots += slot.DeferredObjectLength();
}
if (slot.Representation() == SlotRef::DEFERRED_OBJECT ||
slot.Representation() == SlotRef::DUPLICATE_OBJECT) {
should_deopt = true;
}
}
processed = true;
}
if (!processed) {
// Skip over operands to advance to the next opcode.
it.Skip(Translation::NumberOfOperandsFor(opcode));
}
}
if (should_deopt) {
List<JSFunction*> functions(2);
frame->GetFunctions(&functions);
Deoptimizer::DeoptimizeFunction(functions[0]);
}
}
Handle<Object> SlotRef::GetValue(Isolate* isolate) {
switch (representation_) {
case TAGGED:
return Handle<Object>(Memory::Object_at(addr_), isolate);
case INT32: {
int value = Memory::int32_at(addr_);
if (Smi::IsValid(value)) {
return Handle<Object>(Smi::FromInt(value), isolate);
} else {
return isolate->factory()->NewNumberFromInt(value);
}
}
case UINT32: {
uint32_t value = Memory::uint32_at(addr_);
if (value <= static_cast<uint32_t>(Smi::kMaxValue)) {
return Handle<Object>(Smi::FromInt(static_cast<int>(value)), isolate);
} else {
return isolate->factory()->NewNumber(static_cast<double>(value));
}
}
case DOUBLE: {
double value = read_double_value(addr_);
return isolate->factory()->NewNumber(value);
}
case LITERAL:
return literal_;
default:
UNREACHABLE();
return Handle<Object>::null();
}
}
void SlotRefValueBuilder::Prepare(Isolate* isolate) {
MaterializedObjectStore* materialized_store =
isolate->materialized_object_store();
previously_materialized_objects_ = materialized_store->Get(stack_frame_id_);
prev_materialized_count_ = previously_materialized_objects_.is_null()
? 0 : previously_materialized_objects_->length();
// Skip any materialized objects of the inlined "parent" frames.
// (Note that we still need to materialize them because they might be
// referred to as duplicated objects.)
while (current_slot_ < first_slot_index_) {
GetNext(isolate, 0);
}
ASSERT(current_slot_ == first_slot_index_);
}
Handle<Object> SlotRefValueBuilder::GetPreviouslyMaterialized(
Isolate* isolate, int length) {
int object_index = materialized_objects_.length();
Handle<Object> return_value = Handle<Object>(
previously_materialized_objects_->get(object_index), isolate);
materialized_objects_.Add(return_value);
// Now need to skip all nested objects (and possibly read them from
// the materialization store, too)
for (int i = 0; i < length; i++) {
SlotRef& slot = slot_refs_[current_slot_];
current_slot_++;
// For nested deferred objects, we need to read its properties
if (slot.Representation() == SlotRef::DEFERRED_OBJECT) {
length += slot.DeferredObjectLength();
}
// For nested deferred and duplicate objects, we need to put them into
// our materialization array
if (slot.Representation() == SlotRef::DEFERRED_OBJECT ||
slot.Representation() == SlotRef::DUPLICATE_OBJECT) {
int nested_object_index = materialized_objects_.length();
Handle<Object> nested_object = Handle<Object>(
previously_materialized_objects_->get(nested_object_index),
isolate);
materialized_objects_.Add(nested_object);
}
}
return return_value;
}
Handle<Object> SlotRefValueBuilder::GetNext(Isolate* isolate, int lvl) {
SlotRef& slot = slot_refs_[current_slot_];
current_slot_++;
switch (slot.Representation()) {
case SlotRef::TAGGED:
case SlotRef::INT32:
case SlotRef::UINT32:
case SlotRef::DOUBLE:
case SlotRef::LITERAL: {
return slot.GetValue(isolate);
}
case SlotRef::DEFERRED_OBJECT: {
int length = slot.DeferredObjectLength();
ASSERT(slot_refs_[current_slot_].Representation() == SlotRef::LITERAL ||
slot_refs_[current_slot_].Representation() == SlotRef::TAGGED);
int object_index = materialized_objects_.length();
if (object_index < prev_materialized_count_) {
return GetPreviouslyMaterialized(isolate, length);
}
Handle<Object> map_object = slot_refs_[current_slot_].GetValue(isolate);
Handle<Map> map = Map::GeneralizeAllFieldRepresentations(
Handle<Map>::cast(map_object), Representation::Tagged());
current_slot_++;
// TODO(jarin) this should be unified with the code in
// Deoptimizer::MaterializeNextHeapObject()
switch (map->instance_type()) {
case HEAP_NUMBER_TYPE: {
// Reuse the HeapNumber value directly as it is already properly
// tagged and skip materializing the HeapNumber explicitly.
Handle<Object> object = GetNext(isolate, lvl + 1);
materialized_objects_.Add(object);
return object;
}
case JS_OBJECT_TYPE: {
Handle<JSObject> object =
isolate->factory()->NewJSObjectFromMap(map, NOT_TENURED, false);
materialized_objects_.Add(object);
Handle<Object> properties = GetNext(isolate, lvl + 1);
Handle<Object> elements = GetNext(isolate, lvl + 1);
object->set_properties(FixedArray::cast(*properties));
object->set_elements(FixedArrayBase::cast(*elements));
for (int i = 0; i < length - 3; ++i) {
Handle<Object> value = GetNext(isolate, lvl + 1);
object->FastPropertyAtPut(i, *value);
}
return object;
}
case JS_ARRAY_TYPE: {
Handle<JSArray> object =
isolate->factory()->NewJSArray(0, map->elements_kind());
materialized_objects_.Add(object);
Handle<Object> properties = GetNext(isolate, lvl + 1);
Handle<Object> elements = GetNext(isolate, lvl + 1);
Handle<Object> length = GetNext(isolate, lvl + 1);
object->set_properties(FixedArray::cast(*properties));
object->set_elements(FixedArrayBase::cast(*elements));
object->set_length(*length);
return object;
}
default:
PrintF(stderr,
"[couldn't handle instance type %d]\n", map->instance_type());
UNREACHABLE();
break;
}
UNREACHABLE();
}
case SlotRef::DUPLICATE_OBJECT: {
int object_index = slot.DuplicateObjectId();
Handle<Object> object = materialized_objects_[object_index];
materialized_objects_.Add(object);
return object;
}
default:
UNREACHABLE();
break;
// Skip over operands to advance to the next opcode.
it.Skip(Translation::NumberOfOperandsFor(opcode));
}
UNREACHABLE();
return Handle<Object>::null();
}
void SlotRefValueBuilder::Finish(Isolate* isolate) {
// We should have processed all slot
ASSERT(slot_refs_.length() == current_slot_);
if (materialized_objects_.length() > prev_materialized_count_) {
// We have materialized some new objects, so we have to store them
// to prevent duplicate materialization
Handle<FixedArray> array = isolate->factory()->NewFixedArray(
materialized_objects_.length());
for (int i = 0; i < materialized_objects_.length(); i++) {
array->set(i, *(materialized_objects_.at(i)));
}
isolate->materialized_object_store()->Set(stack_frame_id_, array);
}
}
Handle<FixedArray> MaterializedObjectStore::Get(Address fp) {
int index = StackIdToIndex(fp);
if (index == -1) {
return Handle<FixedArray>::null();
}
Handle<FixedArray> array = GetStackEntries();
ASSERT(array->length() > index);
return Handle<FixedArray>::cast(Handle<Object>(array->get(index),
isolate()));
}
void MaterializedObjectStore::Set(Address fp,
Handle<FixedArray> materialized_objects) {
int index = StackIdToIndex(fp);
if (index == -1) {
index = frame_fps_.length();
frame_fps_.Add(fp);
}
Handle<FixedArray> array = EnsureStackEntries(index + 1);
array->set(index, *materialized_objects);
}
void MaterializedObjectStore::Remove(Address fp) {
int index = StackIdToIndex(fp);
ASSERT(index >= 0);
frame_fps_.Remove(index);
Handle<FixedArray> array = GetStackEntries();
ASSERT(array->length() > index);
for (int i = index; i < frame_fps_.length(); i++) {
array->set(i, array->get(i + 1));
}
array->set(frame_fps_.length(), isolate()->heap()->undefined_value());
}
int MaterializedObjectStore::StackIdToIndex(Address fp) {
for (int i = 0; i < frame_fps_.length(); i++) {
if (frame_fps_[i] == fp) {
return i;
}
}
return -1;
}
Handle<FixedArray> MaterializedObjectStore::GetStackEntries() {
return Handle<FixedArray>(isolate()->heap()->materialized_objects());
}
Handle<FixedArray> MaterializedObjectStore::EnsureStackEntries(int length) {
Handle<FixedArray> array = GetStackEntries();
if (array->length() >= length) {
return array;
}
int new_length = length > 10 ? length : 10;
if (new_length < 2 * array->length()) {
new_length = 2 * array->length();
}
Handle<FixedArray> new_array =
isolate()->factory()->NewFixedArray(new_length, TENURED);
for (int i = 0; i < array->length(); i++) {
new_array->set(i, array->get(i));
}
for (int i = array->length(); i < length; i++) {
new_array->set(i, isolate()->heap()->undefined_value());
}
isolate()->heap()->public_set_materialized_objects(*new_array);
return new_array;
return Vector<SlotRef>();
}
#ifdef ENABLE_DEBUGGER_SUPPORT

View File

@ -435,11 +435,6 @@ class Deoptimizer : public Malloced {
List<ObjectMaterializationDescriptor> deferred_objects_;
List<HeapNumberMaterializationDescriptor<Address> > deferred_heap_numbers_;
// Key for lookup of previously materialized objects
Address stack_fp_;
Handle<FixedArray> previously_materialized_objects_;
int prev_materialized_count_;
// Output frame information. Only used during heap object materialization.
List<Handle<JSFunction> > jsframe_functions_;
List<bool> jsframe_has_adapted_arguments_;
@ -788,13 +783,7 @@ class SlotRef BASE_EMBEDDED {
INT32,
UINT32,
DOUBLE,
LITERAL,
DEFERRED_OBJECT, // Object captured by the escape analysis.
// The number of nested objects can be obtained
// with the DeferredObjectLength() method
// (the SlotRefs of the nested objects follow
// this SlotRef in the depth-first order.)
DUPLICATE_OBJECT // Duplicated object of a deferred object.
LITERAL
};
SlotRef()
@ -806,66 +795,52 @@ class SlotRef BASE_EMBEDDED {
SlotRef(Isolate* isolate, Object* literal)
: literal_(literal, isolate), representation_(LITERAL) { }
static SlotRef NewDeferredObject(int length) {
SlotRef slot;
slot.representation_ = DEFERRED_OBJECT;
slot.deferred_object_length_ = length;
return slot;
Handle<Object> GetValue(Isolate* isolate) {
switch (representation_) {
case TAGGED:
return Handle<Object>(Memory::Object_at(addr_), isolate);
case INT32: {
int value = Memory::int32_at(addr_);
if (Smi::IsValid(value)) {
return Handle<Object>(Smi::FromInt(value), isolate);
} else {
return isolate->factory()->NewNumberFromInt(value);
}
}
case UINT32: {
uint32_t value = Memory::uint32_at(addr_);
if (value <= static_cast<uint32_t>(Smi::kMaxValue)) {
return Handle<Object>(Smi::FromInt(static_cast<int>(value)), isolate);
} else {
return isolate->factory()->NewNumber(static_cast<double>(value));
}
}
case DOUBLE: {
double value = read_double_value(addr_);
return isolate->factory()->NewNumber(value);
}
case LITERAL:
return literal_;
default:
UNREACHABLE();
return Handle<Object>::null();
}
}
SlotRepresentation Representation() { return representation_; }
static SlotRef NewDuplicateObject(int id) {
SlotRef slot;
slot.representation_ = DUPLICATE_OBJECT;
slot.duplicate_object_id_ = id;
return slot;
}
int DeferredObjectLength() { return deferred_object_length_; }
int DuplicateObjectId() { return duplicate_object_id_; }
Handle<Object> GetValue(Isolate* isolate);
static Vector<SlotRef> ComputeSlotMappingForArguments(
JavaScriptFrame* frame,
int inlined_frame_index,
int formal_parameter_count);
private:
Address addr_;
Handle<Object> literal_;
SlotRepresentation representation_;
int deferred_object_length_;
int duplicate_object_id_;
};
class SlotRefValueBuilder BASE_EMBEDDED {
public:
SlotRefValueBuilder(
JavaScriptFrame* frame,
int inlined_frame_index,
int formal_parameter_count);
void Prepare(Isolate* isolate);
Handle<Object> GetNext(Isolate* isolate, int level);
void Finish(Isolate* isolate);
int args_length() { return args_length_; }
private:
List<Handle<Object> > materialized_objects_;
Handle<FixedArray> previously_materialized_objects_;
int prev_materialized_count_;
Address stack_frame_id_;
List<SlotRef> slot_refs_;
int current_slot_;
int args_length_;
int first_slot_index_;
static SlotRef ComputeSlotForNextArgument(
Translation::Opcode opcode,
TranslationIterator* iterator,
DeoptimizationInputData* data,
JavaScriptFrame* frame);
Handle<Object> GetPreviouslyMaterialized(Isolate* isolate, int length);
static Address SlotAddress(JavaScriptFrame* frame, int slot_index) {
if (slot_index >= 0) {
@ -877,27 +852,15 @@ class SlotRefValueBuilder BASE_EMBEDDED {
}
}
Handle<Object> GetDeferredObject(Isolate* isolate);
};
static SlotRef ComputeSlotForNextArgument(TranslationIterator* iterator,
DeoptimizationInputData* data,
JavaScriptFrame* frame);
class MaterializedObjectStore {
public:
explicit MaterializedObjectStore(Isolate* isolate) : isolate_(isolate) {
}
Handle<FixedArray> Get(Address fp);
void Set(Address fp, Handle<FixedArray> materialized_objects);
void Remove(Address fp);
private:
Isolate* isolate() { return isolate_; }
Handle<FixedArray> GetStackEntries();
Handle<FixedArray> EnsureStackEntries(int size);
int StackIdToIndex(Address fp);
Isolate* isolate_;
List<Address> frame_fps_;
static void ComputeSlotsForArguments(
Vector<SlotRef>* args_slots,
TranslationIterator* iterator,
DeoptimizationInputData* data,
JavaScriptFrame* frame);
};

View File

@ -3293,11 +3293,6 @@ bool Heap::CreateInitialObjects() {
Symbol::cast(obj)->set_is_private(true);
set_observed_symbol(Symbol::cast(obj));
{ MaybeObject* maybe_obj = AllocateFixedArray(0, TENURED);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_materialized_objects(FixedArray::cast(obj));
// Handling of script id generation is in Factory::NewScript.
set_last_script_id(Smi::FromInt(v8::Script::kNoScriptId));

View File

@ -201,8 +201,7 @@ namespace internal {
V(Symbol, elements_transition_symbol, ElementsTransitionSymbol) \
V(SeededNumberDictionary, empty_slow_element_dictionary, \
EmptySlowElementDictionary) \
V(Symbol, observed_symbol, ObservedSymbol) \
V(FixedArray, materialized_objects, MaterializedObjects)
V(Symbol, observed_symbol, ObservedSymbol)
#define ROOT_LIST(V) \
STRONG_ROOT_LIST(V) \
@ -1368,10 +1367,6 @@ class Heap {
roots_[kStoreBufferTopRootIndex] = reinterpret_cast<Smi*>(top);
}
void public_set_materialized_objects(FixedArray* objects) {
roots_[kMaterializedObjectsRootIndex] = objects;
}
// Generated code can embed this address to get access to the roots.
Object** roots_array_start() { return roots_; }

View File

@ -1529,7 +1529,6 @@ Isolate::Isolate()
stats_table_(NULL),
stub_cache_(NULL),
deoptimizer_data_(NULL),
materialized_object_store_(NULL),
capture_stack_trace_for_uncaught_exceptions_(false),
stack_trace_for_uncaught_exceptions_frame_limit_(0),
stack_trace_for_uncaught_exceptions_options_(StackTrace::kOverview),
@ -1778,9 +1777,6 @@ Isolate::~Isolate() {
delete stats_table_;
stats_table_ = NULL;
delete materialized_object_store_;
materialized_object_store_ = NULL;
delete logger_;
logger_ = NULL;
@ -1951,7 +1947,6 @@ bool Isolate::Init(Deserializer* des) {
bootstrapper_ = new Bootstrapper(this);
handle_scope_implementer_ = new HandleScopeImplementer(this);
stub_cache_ = new StubCache(this);
materialized_object_store_ = new MaterializedObjectStore(this);
regexp_stack_ = new RegExpStack();
regexp_stack_->isolate_ = this;
date_cache_ = new DateCache();

View File

@ -51,13 +51,12 @@ namespace v8 {
namespace internal {
class Bootstrapper;
struct CallInterfaceDescriptor;
class CodeGenerator;
class CodeRange;
struct CodeStubInterfaceDescriptor;
struct CallInterfaceDescriptor;
class CodeTracer;
class CompilationCache;
class ConsStringIteratorOp;
class ContextSlotCache;
class Counters;
class CpuFeatures;
@ -74,19 +73,19 @@ class HeapProfiler;
class HStatistics;
class HTracer;
class InlineRuntimeFunctionsTable;
class InnerPointerToCodeCache;
class MaterializedObjectStore;
class NoAllocationStringAllocator;
class InnerPointerToCodeCache;
class RandomNumberGenerator;
class RegExpStack;
class SaveContext;
class UnicodeCache;
class ConsStringIteratorOp;
class StringTracker;
class StubCache;
class SweeperThread;
class ThreadManager;
class ThreadState;
class ThreadVisitor; // Defined in v8threads.h
class UnicodeCache;
template <StateTag Tag> class VMState;
// 'void function pointer', used to roundtrip the
@ -870,9 +869,6 @@ class Isolate {
StubCache* stub_cache() { return stub_cache_; }
DeoptimizerData* deoptimizer_data() { return deoptimizer_data_; }
ThreadLocalTop* thread_local_top() { return &thread_local_top_; }
MaterializedObjectStore* materialized_object_store() {
return materialized_object_store_;
}
MemoryAllocator* memory_allocator() {
return memory_allocator_;
@ -1279,7 +1275,6 @@ class Isolate {
StatsTable* stats_table_;
StubCache* stub_cache_;
DeoptimizerData* deoptimizer_data_;
MaterializedObjectStore* materialized_object_store_;
ThreadLocalTop thread_local_top_;
bool capture_stack_trace_for_uncaught_exceptions_;
int stack_trace_for_uncaught_exceptions_frame_limit_;

View File

@ -532,16 +532,16 @@ LEnvironment* LChunkBuilderBase::CreateEnvironment(
// We are building three lists here:
//
// 1. In the result->object_mapping_ list (added to by the
// LEnvironment::Add*Object methods), we store the lengths (number
// of fields) of the captured objects in depth-first traversal order, or
// in case of duplicated objects, we store the index to the duplicate object
// (with a tag to differentiate between captured and duplicated objects).
// LEnvironment::Add*Object methods), we store the lengths (number
// of fields) of the captured objects in depth-first traversal order, or
// in case of duplicated objects, we store the index to the duplicate object
// (with a tag to differentiate between captured and duplicated objects).
//
// 2. The object fields are stored in the result->values_ list
// (added to by the LEnvironment.AddValue method) sequentially as lists
// of fields with holes for nested objects (the holes will be expanded
// later by LCodegen::AddToTranslation according to the
// LEnvironment.object_mapping_ list).
// (added to by the LEnvironment.AddValue method) sequentially as lists
// of fields with holes for nested objects (the holes will be expanded
// later by LCodegen::AddToTranslation according to the
// LEnvironment.object_mapping_ list).
//
// 3. The auxiliary objects_to_materialize array stores the hydrogen values
// in the same order as result->object_mapping_ list. This is used

View File

@ -8049,22 +8049,23 @@ static SmartArrayPointer<Handle<Object> > GetCallerArguments(
if (functions.length() > 1) {
int inlined_jsframe_index = functions.length() - 1;
JSFunction* inlined_function = functions[inlined_jsframe_index];
SlotRefValueBuilder slot_refs(
frame,
inlined_jsframe_index,
inlined_function->shared()->formal_parameter_count());
Vector<SlotRef> args_slots =
SlotRef::ComputeSlotMappingForArguments(
frame,
inlined_jsframe_index,
inlined_function->shared()->formal_parameter_count());
int args_count = slot_refs.args_length();
int args_count = args_slots.length();
*total_argc = prefix_argc + args_count;
SmartArrayPointer<Handle<Object> > param_data(
NewArray<Handle<Object> >(*total_argc));
slot_refs.Prepare(isolate);
for (int i = 0; i < args_count; i++) {
Handle<Object> val = slot_refs.GetNext(isolate, 0);
Handle<Object> val = args_slots[i].GetValue(isolate);
param_data[prefix_argc + i] = val;
}
slot_refs.Finish(isolate);
args_slots.Dispose();
return param_data;
} else {

View File

@ -1,187 +0,0 @@
// Copyright 2013 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Flags: --allow-natives-syntax --use-escape-analysis --expose-gc
// Simple test of capture
(function testCapturedArguments() {
function h() {
return g.arguments[0];
}
function g(x) {
return h();
}
function f() {
var l = { y : { z : 4 }, x : 2 }
var r = g(l);
assertEquals(2, r.x);
assertEquals(2, l.x);
l.x = 3;
l.y.z = 5;
// Test that the arguments object is properly
// aliased
assertEquals(3, r.x);
assertEquals(3, l.x);
assertEquals(5, r.y.z);
}
f(); f(); f();
%OptimizeFunctionOnNextCall(f);
f();
})();
// Get the arguments object twice, test aliasing
(function testTwoCapturedArguments() {
function h() {
return g.arguments[0];
}
function i() {
return g.arguments[0];
}
function g(x) {
return {h : h() , i : i()};
}
function f() {
var l = { y : { z : 4 }, x : 2 }
var r = g(l);
assertEquals(2, r.h.x)
l.y.z = 3;
assertEquals(3, r.h.y.z);
assertEquals(3, r.i.y.z);
}
f(); f(); f();
%OptimizeFunctionOnNextCall(f);
f();
})();
// Nested arguments object test
(function testTwoCapturedArgumentsNested() {
function i() {
return { gx : g.arguments[0], hx : h.arguments[0] };
}
function h(x) {
return i();
}
function g(x) {
return h(x.y);
}
function f() {
var l = { y : { z : 4 }, x : 2 }
var r = g(l);
assertEquals(2, r.gx.x)
assertEquals(4, r.gx.y.z)
assertEquals(4, r.hx.z)
l.y.z = 3;
assertEquals(3, r.gx.y.z)
assertEquals(3, r.hx.z)
assertEquals(3, l.y.z)
}
f(); f(); f();
%OptimizeFunctionOnNextCall(f);
f(); f();
%OptimizeFunctionOnNextCall(f);
f(); f();
})();
// Nested arguments object test with different inlining
(function testTwoCapturedArgumentsNested2() {
function i() {
return { gx : g.arguments[0], hx : h.arguments[0] };
}
function h(x) {
return i();
}
function g(x) {
return h(x.y);
}
function f() {
var l = { y : { z : 4 }, x : 2 }
var r = g(l);
assertEquals(2, r.gx.x)
assertEquals(4, r.gx.y.z)
assertEquals(4, r.hx.z)
l.y.z = 3;
assertEquals(3, r.gx.y.z)
assertEquals(3, r.hx.z)
assertEquals(3, l.y.z)
}
%NeverOptimizeFunction(i);
f(); f(); f();
%OptimizeFunctionOnNextCall(f);
f(); f();
%OptimizeFunctionOnNextCall(f);
f(); f();
})();
// Multiple captured argument test
(function testTwoArgumentsCapture() {
function h() {
return { a : g.arguments[1], b : g.arguments[0] };
}
function g(x, y) {
return h();
}
function f() {
var l = { y : { z : 4 }, x : 2 }
var k = { t : { u : 3 } };
var r = g(k, l);
assertEquals(2, r.a.x)
assertEquals(4, r.a.y.z)
assertEquals(3, r.b.t.u)
l.y.z = 6;
r.b.t.u = 7;
assertEquals(6, r.a.y.z)
assertEquals(7, k.t.u)
}
f(); f(); f();
%OptimizeFunctionOnNextCall(f);
f(); f();
%OptimizeFunctionOnNextCall(f);
f(); f();
})();