Previously, both type feedback vector and the shared function info
of a function points to the matching type feedback metadata. This
makes finding the shared function info of a type feedback vector
difficult.
Instead, we now point the type feeback vector to the shared function
info, and find the metadata through the shared function info.
Also remove the obsolete empty type feedback vector.
R=hpayer@chromium.org, mvstanton@chromium.org
BUG=v8:5808
Review-Url: https://codereview.chromium.org/2672363002
Cr-Commit-Position: refs/heads/master@{#43026}
... and TypeFeedbackMetadata to FeedbackMetadata.
BUG=
Change-Id: I2556d1c2a8f37b8cf3d532cc98d973b6dc7e9e6c
Reviewed-on: https://chromium-review.googlesource.com/439244
Commit-Queue: Igor Sheludko <ishell@chromium.org>
Reviewed-by: Michael Starzinger <mstarzinger@chromium.org>
Reviewed-by: Michael Stanton <mvstanton@chromium.org>
Reviewed-by: Jaroslav Sevcik <jarin@chromium.org>
Reviewed-by: Yang Guo <yangguo@chromium.org>
Reviewed-by: Hannes Payer <hpayer@chromium.org>
Cr-Commit-Position: refs/heads/master@{#42999}
TypeFeedbackVectors are strongly rooted by a closure. However, in modern
JavaScript closures are created and abandoned more freely. An important
closure may not be present in the root-set at time of garbage collection,
even though we've cached optimized code and use it regularly. For
example, consider leaf functions in an event dispatching system. They may
well be "hot," but tragically non-present when we collect the heap.
Until now, we've relied on a weak root to cache the feedback vector in
this case. Since there is no way to signal intent or relative importance,
this weak root is as susceptible to clearing as any other weak root at
garbage collection time.
Meanwhile, the feedback vector has become more important. All of our
ICs store their data there. Literal and regex boilerplates are stored there.
If we lose the vector, then we not only lose optimized code built from
it, we also lose the very feedback which allowed us to create that optimized
code. Therefore it's vital to express that dependency through the root
set.
This CL does this by creating a strong link to a feedback
vector at the instantiation site of the function closure.
This instantiation site is in the code and feedback vector
of the outer closure.
BUG=v8:5456
Review-Url: https://codereview.chromium.org/2674593003
Cr-Commit-Position: refs/heads/master@{#42953}
The InterpreterTester class cobbles together a JSFunction from
a manually created bytecode and feedback vector. However it's
fragile against design changes in the way literal arrays and
feedback vectors are handled. It's better to let it hand in
a feedback vector metadata object, and allow the system to
create the vector from that.
BUG=v8:5456
Review-Url: https://codereview.chromium.org/2652893010
Cr-Commit-Position: refs/heads/master@{#42684}
E.g., ast/ast.h uses Label but shouldn't need to include assembler.h for that. With
this change, we can hope for proper layering in the future (not quite there
yet).
Also includes minor random include lowering and relevant IWYU fixes.
BUG=v8:5294
Review-Url: https://codereview.chromium.org/2645063002
Cr-Commit-Position: refs/heads/master@{#42563}
We get less "pollution" of type feedback if we have one vector per native
context, rather than one for the whole system. This CL moves the vector
appropriately.
BUG=
Review-Url: https://codereview.chromium.org/1906823002
Cr-Commit-Position: refs/heads/master@{#36539}
Introduces a bytecode whose handler executes the equivalent of %_IsArray and %_IsJSReceiver without a runtime call.
BUG=v8:4822
LOG=y
Review URL: https://codereview.chromium.org/1645763003
Cr-Commit-Position: refs/heads/master@{#34983}