Drive-by fix: the order of parameters in the BinaryOpWithFeedback TurboFan code stubs now reflects the convention of having the context at the end.
BUG=v8:5273
Review-Url: https://codereview.chromium.org/2263253002
Cr-Commit-Position: refs/heads/master@{#38832}
Assign feedback slots in the type feedback vector for binary operations.
Update bytecode-generator to use these slots and add them as an operand
to binary operations.
BUG=v8:4280
LOG=N
Review-Url: https://codereview.chromium.org/2209633002
Cr-Commit-Position: refs/heads/master@{#38408}
Introduces fused bytecodes for fusing LdaSmi followed by a binary op bytecode.
The chosen bytecodes are used frequently in Octane: AddSmi, SubSmi,
BitwiseOrSmi, BitwiseAndSmi, ShiftLeftSmi, ShiftRightSmi.
There are additional code stubs for these operations that are biased towards
both the left hand and right hand operands being Smis.
BUG=v8:4280
LOG=N
Review-Url: https://codereview.chromium.org/2111923002
Cr-Commit-Position: refs/heads/master@{#37531}
The global object can be loaded from the native context and the name can be loaded in the type feedback metadata.
BUG=chromium:576312
Review-Url: https://codereview.chromium.org/2096653003
Cr-Commit-Position: refs/heads/master@{#37278}
This change introduces five fused bytecodes for common bytecode
sequences on popular websites. These are LdrNamedProperty,
LdrKeyedProperty, LdrGlobal, LdrContextSlot, and LdrUndefined. These
load values into a destination register operand instead of the
accumulator. They are emitted by the peephole optimizer.
BUG=v8:4280
LOG=N
Review-Url: https://codereview.chromium.org/1985753002
Cr-Commit-Position: refs/heads/master@{#36507}
Prints source position information alongside bytecode.
BUG=v8:4280
LOG=N
Review-Url: https://codereview.chromium.org/1963663002
Cr-Commit-Position: refs/heads/master@{#36171}
This change introduces wide prefix bytecodes to support wide (16-bit)
and extra-wide (32-bit) operands. It retires the previous
wide-bytecodes and reduces the number of operand types.
Operands are now either scalable or fixed size. Scalable operands
increase in width when a bytecode is prefixed with wide or extra-wide.
The bytecode handler table is extended to 256*3 entries. The
first 256 entries are used for bytecodes with 8-bit operands,
the second 256 entries are used for bytecodes with operands that
scale to 16-bits, and the third group of 256 entries are used for
bytecodes with operands that scale to 32-bits.
LOG=N
BUG=v8:4747,v8:4280
Review URL: https://codereview.chromium.org/1783483002
Cr-Commit-Position: refs/heads/master@{#34955}
Bytecode expectations have been moved to external (.golden) files,
one per test. Each test in the suite builds a representation of the
the compiled bytecode using BytecodeExpectationsPrinter. The output is
then compared to the golden file. If the comparision fails, a textual
diff can be used to identify the discrepancies.
Only the test snippets are left in the cc file, which also allows to
make it more compact and meaningful. Leaving the snippets in the cc
file was a deliberate choice to allow keeping the "truth" about the
tests in the cc file, which will rarely change, as opposed to golden
files.
Golden files can be generated and kept up to date using
generate-bytecode-expectations, which also means that the test suite
can be batch updated whenever the bytecode or golden format changes.
The golden format has been slightly amended (no more comments about
`void*`, add size of the bytecode array) following the consideration
made while converting the tests.
There is also a fix: BytecodeExpectationsPrinter::top_level_ was left
uninitialized, leading to undefined behaviour.
BUG=v8:4280
LOG=N
Review URL: https://codereview.chromium.org/1717293002
Cr-Commit-Position: refs/heads/master@{#34285}